JPH11246240A - Workpiece and its surface processing method - Google Patents

Workpiece and its surface processing method

Info

Publication number
JPH11246240A
JPH11246240A JP5484998A JP5484998A JPH11246240A JP H11246240 A JPH11246240 A JP H11246240A JP 5484998 A JP5484998 A JP 5484998A JP 5484998 A JP5484998 A JP 5484998A JP H11246240 A JPH11246240 A JP H11246240A
Authority
JP
Japan
Prior art keywords
workpiece
processing
lens
shape
plasma
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP5484998A
Other languages
Japanese (ja)
Inventor
Koji Nishimura
孝司 西村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Koki Holdings Co Ltd
Original Assignee
Hitachi Koki Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Koki Co Ltd filed Critical Hitachi Koki Co Ltd
Priority to JP5484998A priority Critical patent/JPH11246240A/en
Publication of JPH11246240A publication Critical patent/JPH11246240A/en
Pending legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C17/00Surface treatment of glass, not in the form of fibres or filaments, by coating
    • C03C17/22Surface treatment of glass, not in the form of fibres or filaments, by coating with other inorganic material
    • C03C17/23Oxides
    • C03C17/25Oxides by deposition from the liquid phase
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C2217/00Coatings on glass
    • C03C2217/20Materials for coating a single layer on glass
    • C03C2217/21Oxides
    • C03C2217/213SiO2
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C2218/00Methods for coating glass
    • C03C2218/10Deposition methods
    • C03C2218/11Deposition methods from solutions or suspensions
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C2218/00Methods for coating glass
    • C03C2218/30Aspects of methods for coating glass not covered above
    • C03C2218/32After-treatment
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C2218/00Methods for coating glass
    • C03C2218/30Aspects of methods for coating glass not covered above
    • C03C2218/32After-treatment
    • C03C2218/328Partly or completely removing a coating

Landscapes

  • Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Geochemistry & Mineralogy (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Surface Treatment Of Glass (AREA)
  • Drying Of Semiconductors (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a precision processing method optimum for executing shape correction of precision parts, such as aspherical face lenses and aspherical face molds, having intricate shape with high accuracy. SOLUTION: In the plasma CVM(chemical vaporization machining) method for executing processing of a workpiece surface by supplying a reaction gas to the peripheral of the workpiece, generating a plasma locally between the electrode 3 near the workpiece and the workpiece to form the radical of the reaction gas and reacting the workpiece and the radical, then removing the reaction product by volatilization; an SiO2 layer which is a reactive material giving rise to volatilization removing reaction is formed on the surface of the work piece and this reactive material layer 2 is subjected to plasma CVM processing, by which the shape correction of the workpiece not suitable for plasma CVM processing is executed.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は電子写真技術を用い
た画像形成装置、カメラ等の光学製品あるいは精密機械
製品の光学素子や精密部品あるいは精密成形用金型等を
製造する方法に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method of manufacturing an optical element such as an image forming apparatus, a camera or the like, an optical element of a precision machine product, a precision part, a precision molding die or the like using an electrophotographic technique. .

【0002】[0002]

【従来の技術】従来レンズ製造技術として最も一般的な
技術は研磨方法によるものである。例えば、特開昭62
−203744に記載されているように研磨皿を予め加
工すべきレンズ形状と相反関係をなす形状に加工してお
き、この研磨皿をガラス素材に押し当て、砥粒を研磨皿
とガラス素材の隙間に供給しこすり合わせる方法であ
る。この方法では非常に微細な砥粒を用いて研磨を行う
ため、加工時に硝材に加わる加工応力は小さく、したが
って被加工物内部に残留する歪は少ないと言う利点を有
する。しかし、被加工物の最終仕上がり形状が単純な形
状でないと加工が行なえないため、加工形状選択の自由
度は小さい。
2. Description of the Related Art Conventionally, the most general technique for manufacturing a lens is based on a polishing method. For example, JP
As described in JP-203744, a polishing plate is preliminarily processed into a shape having a reciprocal relationship with a lens shape to be processed, the polishing plate is pressed against a glass material, and abrasive grains are formed in a gap between the polishing plate and the glass material. It is a method of supplying and rubbing. In this method, since polishing is performed using very fine abrasive grains, the processing stress applied to the glass material during processing is small, and therefore, there is an advantage that distortion remaining in the workpiece is small. However, since the processing cannot be performed unless the final finished shape of the workpiece is a simple shape, the degree of freedom in selecting the processing shape is small.

【0003】一方、光学系の高性能化が要求されるのに
従い、レンズ形状精度の高精度化とともにレンズ形状の
非球面化技術が重要となる。上述の研磨加工方法で非球
面を加工することは困難であり一般的にはNC制御を用
いて機械加工により非球面を形成する。NC加工によれ
ば所望の形状を加工することは可能であるが、レンズと
して使用に耐えるだけの鏡面を得ることは困難である。
ところで延性モード研削を行えば、ガラスのような脆性
材料でも鏡面の研削面を得ることが可能となる。
On the other hand, as the performance of the optical system is required to be higher, it is important to improve the accuracy of the lens shape and to make the lens shape aspherical. It is difficult to process an aspherical surface by the above-described polishing method, and generally, an aspherical surface is formed by machining using NC control. According to the NC processing, a desired shape can be processed, but it is difficult to obtain a mirror surface that can withstand use as a lens.
By the way, if the ductile mode grinding is performed, it is possible to obtain a mirror ground surface even with a brittle material such as glass.

【0004】例えば特願平2−53557号明細書記載
の非球面レンズ加工方法によれば、被加工物がモータで
回転するテーブル上に取り付けられると共に、これらの
被加工物を加工するための砥石がエアスピンドルに取り
付けられて、10000rpm程度の回転数で回転して
いる。そして、回転テーブルの回転軸に直結したロータ
リーエンコーダーからパルスを検出して、そのパルスを
もとに加工データをピエゾアクチュエータに供給し、直
進テーブルを連続的に前後に動かす。また、エアスピン
ドルは、回転テーブルの一回転毎にステップ送りされ
て、その位置を変化させることにより、砥石と被加工物
の接触位置を変えている。この方法によれば、任意の非
軸対称非球面形状を加工することができる。さらにこの
方法では被加工物に対する砥石の切り込み量をサブミク
ロンオーダーで制御することができるため、脆性材料を
延性モードで研削することが可能となり、研削加工だけ
でレンズとして用いるのに十分な鏡面を得ることが可能
となる。
For example, according to an aspherical lens processing method described in Japanese Patent Application No. 2-53557, a workpiece is mounted on a table rotated by a motor, and a grindstone for processing these workpieces. Is attached to an air spindle and rotates at a rotation speed of about 10,000 rpm. Then, a pulse is detected from a rotary encoder directly connected to the rotation axis of the rotary table, and processing data is supplied to the piezo actuator based on the pulse, and the linear table is continuously moved back and forth. The air spindle is step-feeded every rotation of the rotary table, and changes its position to change the contact position between the grindstone and the workpiece. According to this method, any non-axisymmetric aspherical shape can be processed. Furthermore, in this method, the cutting depth of the grindstone with respect to the workpiece can be controlled on the order of submicron, so that brittle materials can be ground in ductile mode, and a mirror surface sufficient for use as a lens by grinding alone can be obtained. It is possible to obtain.

【0005】しかし、この方法では非球面部仕上げに多
大な加工時間を要し、さらに加工による形状精度のばら
つきが発生する。したがってNC加工によりレンズのよ
うな光学素子を加工する場合は、加工面の面粗さを向上
させ、さらに形状精度のばらつきを低減させるために、
仕上げ加工が必要になる。
[0005] However, this method requires a long processing time for finishing the aspherical surface portion, and further causes variations in shape accuracy due to the processing. Therefore, when processing an optical element such as a lens by NC processing, in order to improve the surface roughness of the processed surface and further reduce the variation in shape accuracy,
Finishing is required.

【0006】仕上げ加工方法としては一般的には研磨方
法がよく用いられる。研磨方法により非球面表面を仕上
げる場合、例えばダイヤモンド砥粒をフェルトのような
柔らかいパッドで仕上げ面にこすり付ける動作を繰り返
し仕上げ面の状態を整える。形状精度を整えることを主
目的とする場合、小さなパッドを用いて仕上げ面の任意
の位置を局部的に研磨すればよいが、加工時間が遅い。
また、大きなパッドを用いて研磨した場合は加工時間は
速くなるが、当然のことながら、形状修正は行えない。
In general, a polishing method is often used as a finishing method. In the case of finishing the aspheric surface by the polishing method, for example, the operation of rubbing diamond abrasive grains with a soft pad such as felt on the finished surface is repeated to adjust the state of the finished surface. When the main purpose is to adjust the shape accuracy, an arbitrary position on the finished surface may be locally polished using a small pad, but the processing time is slow.
Further, when polishing is performed using a large pad, the processing time is shortened, but the shape cannot be corrected as a matter of course.

【0007】最近、研磨加工に変わる加工方法としてラ
ジカル反応を利用した無歪加工方法が注目されている。
例えば、特開平1−125829号に記載されている方
法は、特にプラズマCVM(Chemical Vaporization
Machining)と呼ばれており(森ら、精密工学会春季大会
学術講演論文集P.637 1992)ラジカル生成にプラズマ
を用いている。プラズマCVMは、高圧力下で加工電極
を用いて被加工物表面に局部的ににプラズマを発生さ
せ、そこに電気陰性度の高い反応ガスを供給することに
より、反応ガスのラジカルを生成させ、このラジカルと
被加工物表面を反応させ、反応生成物を揮発させること
により加工を行う方法である。
Recently, a distortion-free processing method using a radical reaction has attracted attention as a processing method replacing polishing.
For example, the method described in Japanese Patent Application Laid-Open No. 1-125829 is particularly applicable to plasma CVM (Chemical Vaporization).
(Mori et al., Proceedings of the Japan Society for Precision Engineering Spring Meeting, p. 637 1992) uses plasma for radical generation. Plasma CVM generates plasma locally on the surface of a workpiece using a processing electrode under a high pressure, and supplies a reaction gas having a high electronegativity to generate radicals of the reaction gas. In this method, the radical is reacted with the surface of the workpiece, and the reaction product is volatilized to perform processing.

【0008】プラズマCVMによる高精度加工方法とし
ては例えば特開平09−254268号に記載されてい
る。すなわち被加工物の実形状と設計形状を比較して、
実形状で凸となっている個所をプラズマCVM加工によ
り除去する。この方法によればサブミクロンオーダーの
形状修正を機械加工並みの加工時間で行うことが可能と
なる(瀧野ら、精密工学会秋季大会学術講演論文集P.1
87 1997)。
A high-precision processing method using a plasma CVM is described in, for example, JP-A-09-254268. That is, by comparing the actual shape and the design shape of the workpiece,
The convex portions in the actual shape are removed by plasma CVM processing. According to this method, shape correction on the order of submicrons can be performed in a processing time comparable to that of mechanical processing (Takino et al., Proc.
87 1997).

【0009】[0009]

【発明が解決しようとする課題】このようにプラズマC
VMは高精度な面の仕上げ加工に非常に有効な加工技術
であるが、現状ではプラズマCVMを適用できるワーク
材質が石英ガラスを含む数種類の材料に限定される。し
たがって例えばレンズ成形用金型の形状修正にプラズマ
CVMを用いようとした場合、金型材質が石英ガラスで
ない限り、加工ができないことになる。
As described above, the plasma C
Although VM is a very effective processing technique for finishing a high-precision surface, currently, the work material to which the plasma CVM can be applied is limited to several kinds of materials including quartz glass. Therefore, for example, when plasma CVM is used to correct the shape of a lens molding die, processing cannot be performed unless the material of the die is quartz glass.

【0010】本発明の目的は、光学素子や金型等の被加
工物をより高精度に加工することができる形状創成方法
を提供することにある。
An object of the present invention is to provide a shape creating method capable of processing a workpiece such as an optical element or a mold with higher precision.

【0011】[0011]

【課題を解決するための手段】上記目的を達成するため
の本発明の加工方法は以下の通りである。すなわち、被
加工物表面に石英ガラス層を設け、その石英ガラス部に
対してプラズマCVM加工を施すことで、被加工物の形
状創成を行う。すなわち被加工物表面にあらかじめSi
2薄膜を形成しておく。このSiO2の膜厚は加工しろ
より厚く形成しておく。
The processing method of the present invention for achieving the above object is as follows. That is, a quartz glass layer is provided on the surface of the workpiece, and the quartz glass portion is subjected to plasma CVM processing to create the shape of the workpiece. That is, Si
An O 2 thin film is formed. The thickness of this SiO 2 is formed to be larger than the working margin.

【0012】SiO2薄膜を形成する手段としては真空
蒸着やプラズマCVDのような方法のほか、ポリシラザ
ンのような材料を塗布し焼成する方法もある。ポリシラ
ザンはSi、N、H(または有機基)からなるポリマー
で、加熱等によってシリカ(SiO2)に転化する性質
を持ち、半導体の絶縁用被膜等に用いられている。この
ように被加工物の材質が石英ガラスでない場合でも、そ
の表面に上記のような方法でSiO2薄膜層を形成する
ことでプラズマCVM加工が可能となる。
As a means for forming the SiO 2 thin film, there is a method such as vacuum deposition or plasma CVD, or a method such as applying and firing a material such as polysilazane. Polysilazane is a polymer composed of Si, N, and H (or an organic group), has a property of being converted into silica (SiO 2 ) by heating or the like, and is used for a semiconductor insulating film or the like. As described above, even when the material of the workpiece is not quartz glass, plasma CVM processing can be performed by forming the SiO 2 thin film layer on the surface by the above-described method.

【0013】[0013]

【発明の実施の形態】以下実施例図面を参照して本発明
を説明する。
DESCRIPTION OF THE PREFERRED EMBODIMENTS The present invention will be described below with reference to the accompanying drawings.

【0014】(実施例1)直径50mm、板厚10mmのステン
レス円板(SUS420)表面を平面研削盤で平均面粗
さ0.05μmの面になるまで加工する。次にこの面が平均
面粗さ0.015μmになるまでラップする。この状態で粒径
0.25μmのダイヤモンド砥粒をまぶしたフェルト製ポリ
ッシャを300rpm、押し付け荷重10gでサンプル面にこす
りつけサンプル面全域に渡り600秒ポリッシュする。そ
の結果、サンプル面の平均面粗さは0.012μmであった。
一方、面のうねりをサンプル中央部長さ40mmの範囲で測
定した結果、うねり量は0.35μmP-Pであった。次にプラ
ズマCVDを用いてこのサンプル1表面にSiO2薄膜
2を0.5μm形成した(図1)。この面粗さ及びうねり量
を測定した所、ほとんど前処理の状態と同じであった。
次に図2に示すようにプラズマCVM加工を行った。加
工に当たり、加工後の被加工面が平坦になるように被加
工面の凸部を選択的に加工するように加工電極3とサン
プル1’の位置を制御し、局部的にプラズマ状態4を生
成し、プラズマCVM加工を行った。その結果、加工面
の平均面粗さは0.007μm面のうねり量はサンプル中央部
長さ40mmの範囲0.08μmP-Pと改善された。
(Example 1) The surface of a stainless disk (SUS420) having a diameter of 50 mm and a thickness of 10 mm is machined by a surface grinder until the surface has an average surface roughness of 0.05 μm. Next, the surface is wrapped until the average surface roughness becomes 0.015 μm. In this state the particle size
A polisher made of felt coated with 0.25 μm diamond abrasive grains is rubbed against the sample surface with a pressing load of 10 g at 300 rpm and polished for 600 seconds over the entire sample surface. As a result, the average surface roughness of the sample surface was 0.012 μm.
On the other hand, the undulation of the surface was measured in a range of the central portion of the sample having a length of 40 mm. Next, a 0.5 μm thick SiO 2 thin film 2 was formed on the surface of the sample 1 using plasma CVD (FIG. 1). When the surface roughness and the amount of undulation were measured, they were almost the same as those in the pretreatment.
Next, plasma CVM processing was performed as shown in FIG. In processing, the positions of the processing electrode 3 and the sample 1 ′ are controlled so as to selectively process the convex portion of the processing surface so that the processing surface after processing becomes flat, and the plasma state 4 is locally generated. Then, plasma CVM processing was performed. As a result, the average roughness of the machined surface was improved to 0.007 μm, and the waviness of the surface was improved to 0.08 μm P-P in the range of the sample central part length of 40 mm.

【0015】次にこのサンプル平板を金型本体に組み込
み、射出成形機を用いて板厚3mmの樹脂製円盤を成形し
た。樹脂材料にはアクリルを用いた。金型温度110℃、
最大射出圧力600kg/cm2で2000ショット連続して成形を
行った。成形品の表面精度は金型面と同程度すなわち平
均面粗さは0.008μm面のうねり量はサンプル中央部長さ
40mmの範囲0.12μmP-Pであった。成形品のうねりが若干
増加しているが、これは成形品が樹脂であること及び成
形品の板厚が薄いため、成形後に金型から成形品を取り
外す際に生じたうねり成分が加味されたものと考えられ
る。
Next, this sample flat plate was assembled in a mold body, and a resin disk having a thickness of 3 mm was formed using an injection molding machine. Acrylic was used as the resin material. Mold temperature 110 ℃,
Molding was performed continuously at a maximum injection pressure of 600 kg / cm2 for 2000 shots. The surface accuracy of the molded product is almost the same as that of the mold surface, that is, the average surface roughness is 0.008 μm.
The range of 40 mm was 0.12 μm PP. Although the undulation of the molded article has increased slightly, this is due to the undulation component generated when the molded article is removed from the mold after molding because the molded article is a resin and the thickness of the molded article is thin. It is considered something.

【0016】(実施例2)ガラス(硝材BK7)を用い
て、曲率半径50mmの凹面状の球面レンズを加工する。ま
ず所定のサイズにガラスブロックを切り出し、カーブジ
ェネレータ5を用いて曲率半径50mmの凹面を有する粗面
レンズ6を作製する(図3−a)。次に半径50mmの曲率
を有するダイヤモンドペレットを付けた金属皿を粗面レ
ンズ上で揺動させ、いわゆるスムージングを行う。次に
ポリッシャ7を用いてレンズ表面を研磨することにより
鏡面を得る(図3−b)。このレンズ面の形状を測定し
た所、平均面粗さは0.007μm面のうねり量はサンプル中
央部長さ30mmの範囲0.31μmP-Pであった。そこでレンズ
のうねり成分を低減させるためにプラズマCVM加工を
行った。プラズマCVM加工を行うに当たり、現状では
BK7ガラスはうまく適用できないため、作製したガラス
レンズ表面に純粋なSiO2薄膜8を形成することにし
た。本実施例ではSi、N、H(または有機基)からな
るポリマーで、加熱等によってシリカ(SiO2)に転
化するポリシラザンを塗布し焼成する方法を用いた。シ
ラザンはSi−N結合をもつ化合物であり、ポリシラザ
ンはSiH2NHを基本としている。東燃株式会社製ポ
リシラザン「東燃ポリシラザン」をキシレンに溶かし、
この溶液中に作製したガラスレンズを浸し、引き上げて
薄膜を形成した。ポリシラザンは、プラズマCVD法が
高価で特殊な装置を必要とするのに対し、簡易な方法で
膜形成が可能であると同時に厚膜の作製も容易であり、
また密着性に富んでいる。
(Example 2) A concave spherical lens having a radius of curvature of 50 mm is processed using glass (glass material BK7). First, a glass block is cut into a predetermined size, and a rough surface lens 6 having a concave surface with a radius of curvature of 50 mm is manufactured using a curve generator 5 (FIG. 3A). Next, a metal dish provided with diamond pellets having a radius of curvature of 50 mm is swung on a rough lens to perform so-called smoothing. Next, a mirror surface is obtained by polishing the lens surface using a polisher 7 (FIG. 3B). When the shape of the lens surface was measured, the average surface roughness was 0.007 μm, and the undulation amount was 0.31 μm P-P in the range of the central portion of the sample having a length of 30 mm. Therefore, plasma CVM processing was performed to reduce the undulation component of the lens. At present, when performing plasma CVM processing,
Since BK7 glass cannot be applied well, a pure SiO 2 thin film 8 was formed on the surface of the produced glass lens. In the present embodiment, a method of applying a polysilazane, which is a polymer made of Si, N, and H (or an organic group), which is converted into silica (SiO 2 ) by heating or the like, and baking it is used. Silazane is a compound having a Si—N bond, and polysilazane is based on SiH 2 NH. Dissolve Tonen Polysilazane "Tonen Polysilazane" in xylene,
The prepared glass lens was immersed in the solution and pulled up to form a thin film. For polysilazane, a plasma CVD method requires an expensive and special apparatus, while a film can be formed by a simple method and a thick film can be easily formed.
Moreover, it is rich in adhesion.

【0017】自然乾燥させた後、600℃、1時間電気炉中
で焼成した(図3−c)。薄膜面を分析した所、ほぼ10
0%の純粋な石英ガラス状態となっていた。また、この石
英ガラス薄膜層の平均厚さは0.8μm、平均面粗さ0.007
μmであった。ガラスレンズ面のうねり量はサンプル中
央部長さ30mmの範囲0.45μmP-Pであった。これはSiO
2薄膜を形成する際に生じた膜厚むらが加わったためと
考えられる。プラズマCVM加工を用いてレンズ面の仕
上げ加工を行うに当たり実施例1の場合と同様に面のう
ねり量が0.1μm程度になるように加工量の制御を行った
(図3−d)。
After air drying, firing was performed in an electric furnace at 600 ° C. for 1 hour (FIG. 3C). Analysis of the thin film surface shows that almost 10
It was in a state of 0% pure quartz glass. The quartz glass thin film layer had an average thickness of 0.8 μm and an average surface roughness of 0.007.
μm. The amount of undulation on the glass lens surface was 0.45 μm P-P in the range of 30 mm in the central part of the sample. This is SiO
It is considered that the film thickness unevenness generated when forming the two thin films was added. When finishing the lens surface using plasma CVM processing, the amount of processing was controlled such that the amount of undulation of the surface was about 0.1 μm as in the case of Example 1 (FIG. 3D).

【0018】その結果、平均面粗さは0.005μmうねり量
はサンプル中央部長さ30mmの範囲で0.08μmP-Pと面形状
が改善された。
As a result, the average surface roughness was 0.005 μm, and the waviness was 0.08 μm P-P within the range of the central part length of 30 mm, and the surface shape was improved.

【0019】(実施例3)ガラス(硝材BK7)を用い
て、曲率半径50mm程度の凹面状の軸対称非球面レンズを
加工する。加工工程及び内容はおおむね実施例2と同じ
である。ただし粗面レンズを作製するNC加工を行うこ
とが異なる。一連の工程により非球面ガラス凹面レンズ
を作製し、形状を測定した結果、平均面粗さは0.012μm
面のうねり量はサンプル中央部長さ30mmの範囲0.38μmP
-Pであった。そこでレンズの面状態を改善するためにプ
ラズマCVM加工を行った。本実施例でもポリシラザン
を塗布し焼成する方法を用いた。膜作製方法は実施例2
と全く同じである。
Embodiment 3 Using a glass (glass material BK7), a concave axisymmetric aspheric lens having a radius of curvature of about 50 mm is processed. The processing steps and the contents are almost the same as those in the second embodiment. However, the difference is that NC processing for producing a rough lens is performed. A series of steps were performed to produce an aspherical glass concave lens, and the shape was measured.As a result, the average surface roughness was 0.012 μm.
Surface undulation amount is 0.38μmP in the sample center length 30mm
-P. Therefore, plasma CVM processing was performed to improve the surface condition of the lens. Also in this example, a method of applying polysilazane and firing was used. Example 2
Is exactly the same as

【0020】この石英ガラス薄膜層の平均厚さは0.75μ
m、平均面粗さ0.01μmであった。ガラスレンズ面のうね
り量はサンプル中央部長さ30mmの範囲0.51μmP-Pであっ
た。実施例2と同じく面のうねり量が0.1μm程度になる
ように加工量の制御を行った。その結果、平均面粗さは
0.006μmうねり量はサンプル中央部長さ30mmの範囲で0.
08μmP-Pと面形状が改善された。次にこのレンズをマス
ターとして凸面の軸対称非球面レンズを作製した。製造
プロセスを図4に示す。すなわちマスターである凹面非
球面レンズ9の曲率半径にきわめて近い曲率半径を有す
る凸のガラス球面レンズ10を基板レンズとしてその表
面にマスターレンズの非球面形状を樹脂を用いて転写す
るものである。樹脂には紫外線硬化樹脂11を用いる。
すなわち基板レンズの表面に適量の紫外線硬化樹脂を滴
下し、その上から非球面形状を有するマスターレンズを
適当な圧力で押しつけて基板レンズ側にマスターレンズ
の形状を転写した後、紫外線を照射し硬化させ離型す
る。完成したレンズは球面形状を有するガラスレンズの
表面に非球面形状を有する樹脂製非球面レンズが一体と
なったいわゆるハイブリッド構造の非球面レンズ12と
なる。このように本発明の手法は、ハイブリッドレンズ
の金型加工にも有効である。
The average thickness of this quartz glass thin film layer is 0.75 μm.
m, and the average surface roughness was 0.01 μm. The amount of undulation on the glass lens surface was 0.51 μm P-P in the range of 30 mm in the central part of the sample. As in the case of Example 2, the amount of processing was controlled so that the undulation amount of the surface was about 0.1 μm. As a result, the average surface roughness is
The 0.006μm undulation amount is 0 in the range of 30mm in the central part of the sample.
The surface shape was improved to 08μm P-P. Next, using this lens as a master, a convex axisymmetric aspheric lens was manufactured. The manufacturing process is shown in FIG. That is, a convex glass spherical lens 10 having a radius of curvature very close to the radius of curvature of the concave aspherical lens 9 serving as a master is used as a substrate lens, and the aspherical shape of the master lens is transferred to the surface thereof using a resin. As the resin, an ultraviolet curable resin 11 is used.
That is, an appropriate amount of ultraviolet curable resin is dropped on the surface of the substrate lens, and a master lens having an aspherical shape is pressed with an appropriate pressure from above to transfer the shape of the master lens to the substrate lens side, and then irradiated with ultraviolet light and cured. And release. The completed lens is an aspherical lens 12 having a so-called hybrid structure in which a resinous aspherical lens having an aspherical shape is integrated with a surface of a glass lens having a spherical shape. As described above, the method of the present invention is also effective for mold processing of a hybrid lens.

【0021】(実施例4)次に厚肉大径非軸対称非球面
fθガラスレンズの形状修正例を示す。図5に実験に用
いた厚肉大径非軸対称非球面fθガラスレンズ13の形
状を示す。ここで大径とはレンズの幅方向の長さを表
し、A面は、主走査方向曲率半径R1をもち、R1と異
なる副走査方向曲率半径rをもち、かつr1、r2、r
3がそれぞれ異なる曲率半径をもつ非軸対称非球面形状
である。B面は、平面または球面形状である。レンズの
硝材にはBK7を用いた。ガラス素材のA面側は主走査方
向曲率半径がR1であり、副走査方向の曲率半径がr
1、r2、r3とそれぞれ場所によって異なるいわゆる
変形トーリック形状を有し、B面は、平面形状である。
さらに、A面、B面共に鏡面に仕上げており、特にA面
の面粗さは平均面粗さで0.015μm、ガラスレンズ面のう
ねり量は副走査方向で長さ8mmの範囲0.35μmP-Pであっ
た。そこでプラズマCVM加工によりレンズの面状態を
改善するためにレンズ表面にポリシラザンを塗布し焼成
することで石英ガラス薄膜層を形成した。膜作製方法は
実施例2及び3と全く同じである。
(Embodiment 4) Next, an example of correcting the shape of a thick large-diameter non-axisymmetric aspherical fθ glass lens will be described. FIG. 5 shows the shape of the thick thick large-diameter non-axisymmetric aspherical fθ glass lens 13 used in the experiment. Here, the large diameter represents the length in the width direction of the lens, and the A surface has a radius of curvature R1 in the main scanning direction, a radius of curvature r in the sub scanning direction different from R1, and r1, r2, r
Numeral 3 is a non-axisymmetric aspherical shape having different radii of curvature. The surface B has a flat or spherical shape. BK7 was used for the lens glass material. The surface A side of the glass material has a radius of curvature R1 in the main scanning direction and a radius of curvature r in the sub-scanning direction.
It has a so-called deformed toric shape that differs depending on the location of 1, r2, and r3, and the B surface is a planar shape.
Furthermore, both the A and B surfaces are mirror-finished, especially the surface roughness of the A surface is 0.015 μm in average surface roughness, and the waviness of the glass lens surface is 0.35 μm P-P with a length of 8 mm in the sub-scanning direction. Met. Then, in order to improve the surface state of the lens by plasma CVM processing, polysilazane was applied to the lens surface and baked to form a quartz glass thin film layer. The film production method is exactly the same as in Examples 2 and 3.

【0022】この石英ガラス薄膜層の平均厚さは0.5μ
m、平均面粗さ0.012μmであった。ガラスレンズ面のう
ねり量はサンプル中央部長さ30mmの範囲0.45μmP-Pであ
った。実施例2と同じく面のうねり量が0.1μm程度にな
るように加工量の制御を行った。その結果、平均面粗さ
は0.009μmうねり量は0.15μmP-Pと面形状が改善され
た。このレンズをレーザープリンタの光学系に搭載し、
集光特性を測ったところ、走査幅全域において60μmの
均一なビーム径を得ることができた。また、このレンズ
を搭載したプリンタで印刷を行なったところ、NC機械加
工方法のみで作製したレンズと比べ高品質の印刷性能を
得ることができた。
The average thickness of the quartz glass thin film layer is 0.5 μm.
m, and the average surface roughness was 0.012 μm. The amount of undulation on the glass lens surface was 0.45 μm P-P in the range of 30 mm in the central part of the sample. As in the case of Example 2, the amount of processing was controlled so that the undulation amount of the surface was about 0.1 μm. As a result, the average surface roughness was 0.009 μm, and the undulation amount was 0.15 μm P-P, and the surface shape was improved. Mount this lens on the optical system of the laser printer,
As a result of measuring the light-gathering characteristics, a uniform beam diameter of 60 μm was obtained over the entire scanning width. When printing was performed using a printer equipped with this lens, high quality printing performance was obtained compared to a lens manufactured using only the NC machining method.

【0023】[0023]

【発明の効果】上述のように本発明による手法を用いれ
ば、形状創成に非常に有効な加工技術であるプラズマCV
M加工の適用範囲を大きく広げることが可能となり、複
雑な形状を有し、かつ精度も要求されるような部品の加
工も短時間で容易に行うことが可能となった。
As described above, if the method according to the present invention is used, a plasma CV which is a very effective processing technique for shape creation is provided.
The application range of M processing can be greatly expanded, and processing of parts having complicated shapes and requiring high accuracy can be easily performed in a short time.

【図面の簡単な説明】[Brief description of the drawings]

【図1】 プラズマCVM加工における被加工物の断面
構造(SiO2/ステンレス鋼材)である。
FIG. 1 is a cross-sectional structure (SiO 2 / stainless steel material) of a workpiece in plasma CVM processing.

【図2】 プラズマCVM加工の様子を示す模式図であ
る。
FIG. 2 is a schematic view showing a state of plasma CVM processing.

【図3】 本発明を用いた球面レンズ製造プロセスを示
す模式図である。
FIG. 3 is a schematic view showing a spherical lens manufacturing process using the present invention.

【図4】 ハイブリッドレンズ製造プロセスを示す模式
図である。
FIG. 4 is a schematic view showing a hybrid lens manufacturing process.

【図5】 厚肉大径非軸対称非球面fθガラスレンズの
斜視図である。
FIG. 5 is a perspective view of a thick large-diameter non-axisymmetric aspherical fθ glass lens.

【符号の説明】[Explanation of symbols]

1:サンプル(ステンレス円板)、 1’:サンプ
ル(SiO2/ステンレス円板) 2:反応性物質層(SiO2薄膜) 3:プラズマ生成用電極 4:プラズマ 5:カーブジェネレーター 6:粗面レンズ 7:ポリッシャー 8:反応性物質層(SiO2薄膜 ポリシラザンから転
化) 9:凹面ガラス非球面レンズ 10:凸面ガラス球面レンズ 11:紫外線硬化樹脂 12:非球面ハイブリッドレンズ 13:厚肉大径非軸対称非球面fθガラスレンズ A面は非軸対称非球面形状、B面は平面または球面形
状、R1は主走査方向曲率 半径、r1、r2、r3は副走査方向曲率半径、T1、
T2は厚みである。
1: Sample (stainless steel disk), 1 ′: Sample (SiO 2 / stainless steel disk) 2: Reactive substance layer (SiO 2 thin film) 3: Plasma generating electrode 4: Plasma 5: Curve generator 6: Rough lens 7: Polisher 8: Reactive substance layer (converted from SiO 2 thin film polysilazane) 9: Concave glass aspheric lens 10: Convex glass spherical lens 11: UV curable resin 12: Aspheric hybrid lens 13: Thick large diameter non-axisymmetric Aspheric surface fθ glass lens A surface is non-axisymmetric aspherical shape, B surface is flat or spherical shape, R1 is radius of curvature in main scanning direction, r1, r2, r3 is radius of curvature in sub scanning direction, T1,
T2 is the thickness.

Claims (10)

【特許請求の範囲】[Claims] 【請求項1】 被加工物表面に、化学的加工に適合した
反応性物質を形成し、反応性物質表面をプラズマCVM
法により加工したことを特徴とする被加工物の表面加工
方法。
1. A method for forming a reactive material suitable for chemical processing on a surface of a workpiece, and forming the reactive material surface on a plasma CVM.
A surface processing method for a workpiece, wherein the surface is processed by a method.
【請求項2】 反応性物質としてSiO2層を形成した
ことを特徴とする請求項1記載の被加工物の表面加工方
法。
2. The method according to claim 1, wherein an SiO 2 layer is formed as a reactive substance.
【請求項3】 SiO2層の膜厚が10μm以下であること
を特徴とする請求項2記載の被加工物の表面加工方法。
3. The method according to claim 2, wherein the thickness of the SiO 2 layer is 10 μm or less.
【請求項4】 SiO2層は被加工物表面に付与したポ
リシラザンを転化させて形成することを特徴とする請求
項2又は3記載の被加工物の表面加工方法。
4. The method for processing the surface of a workpiece according to claim 2, wherein the SiO 2 layer is formed by converting polysilazane applied to the surface of the workpiece.
【請求項5】 表面に形成した化学的加工に適合した反
応性物質層と、プラズマCVM法により表面を精密加工
された反応性物質層を表面に形成したことを特徴とする
被加工物。
5. A workpiece characterized in that a reactive material layer formed on the surface and adapted for chemical processing and a reactive material layer whose surface is precisely processed by a plasma CVM method are formed on the surface.
【請求項6】 反応性物質層をポリシラザンから転化し
たSiO2層としたことを特徴とする請求項5記載の被
加工物。
6. The workpiece according to claim 5, wherein the reactive material layer is a SiO 2 layer converted from polysilazane.
【請求項7】 被加工物としてガラス材料からなる光学
素子を選定し、ガラス材料表面にSiO2層を形成した
ことを特徴とする請求項6記載の被加工物。
7. The workpiece according to claim 6, wherein an optical element made of a glass material is selected as the workpiece, and a SiO 2 layer is formed on the surface of the glass material.
【請求項8】 被加工物として、光学素子成形用金型を
選定したことを特徴とする請求項6記載の被加工物。
8. The workpiece according to claim 6, wherein a mold for molding an optical element is selected as the workpiece.
【請求項9】 光学素子成形用金型に金属を用い、該金
属面にSiO2層を形成したことを特徴とする請求項8
記載の被加工物。
9. The optical element molding die is made of metal, and a SiO 2 layer is formed on the metal surface.
The workpiece as described.
【請求項10】 請求項7記載の光学素子を搭載したこ
とを特徴とする光学装置。
10. An optical device comprising the optical element according to claim 7.
JP5484998A 1998-03-06 1998-03-06 Workpiece and its surface processing method Pending JPH11246240A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP5484998A JPH11246240A (en) 1998-03-06 1998-03-06 Workpiece and its surface processing method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP5484998A JPH11246240A (en) 1998-03-06 1998-03-06 Workpiece and its surface processing method

Publications (1)

Publication Number Publication Date
JPH11246240A true JPH11246240A (en) 1999-09-14

Family

ID=12982060

Family Applications (1)

Application Number Title Priority Date Filing Date
JP5484998A Pending JPH11246240A (en) 1998-03-06 1998-03-06 Workpiece and its surface processing method

Country Status (1)

Country Link
JP (1) JPH11246240A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015133260A1 (en) * 2014-03-07 2015-09-11 コニカミノルタ株式会社 Projection device, method for producing optical coupling component, and optical coupling component

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015133260A1 (en) * 2014-03-07 2015-09-11 コニカミノルタ株式会社 Projection device, method for producing optical coupling component, and optical coupling component

Similar Documents

Publication Publication Date Title
Brinksmeier et al. Ultra-precision grinding
US20070295030A1 (en) Molded glass substrate for magnetic disk and method for manufacturing the same
US6386957B1 (en) Workpiece holder for polishing, method for producing the same, method for polishing workpiece, and polishing apparatus
JPH11246240A (en) Workpiece and its surface processing method
JP2001030171A (en) Surface smoothing method and manufacture of plastic lens
EP0924043B1 (en) Method for fabricating molding tools for molding optical surfaces
JP2001310330A (en) Mold and molding thereof
JP2000180602A (en) Hybrid lens and manufacture thereof
US6238800B1 (en) Lens and an optical apparatus with the lens
JP3144752B2 (en) Polishing method of diamond film
US6036873A (en) Process for generating precision polished non-plannar aspherical surfaces
JP2002127015A (en) Optical lens smoothing method and optical lens manufacturing method using the same, and optical lens smoothing device
JP2002100025A (en) Molded glass substrate for magnetic disk and method for producing the same
JP2003251552A (en) Working method, method of manufacturing optical element and metal mold, optical element and optical device
JPH0627404A (en) Scanning optical device and production of hybrid scanning lens to be used for this device
JPH11106222A (en) Production of f theta glass molded lens and optical scanning device using the same
JP2873145B2 (en) Glass optical element molding die
JP3144753B2 (en) Diamond film polishing equipment
JP3410213B2 (en) Method and apparatus for processing optical element for synchrotron radiation
JP2001179824A (en) Method for manufacturing mold for microlens array and manufacturing device
EP1525947A1 (en) Method for finish-polishing
JP2968443B2 (en) Method for measuring polishing accuracy of semiconductor wafer
JP2001205645A (en) Mold
SUZUKI et al. Ultraprecision cutting of silicon carbide using micro milling tool of single crystalline diamond
JPH04349133A (en) Method for cutting glass part

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20051006

A131 Notification of reasons for refusal

Effective date: 20051014

Free format text: JAPANESE INTERMEDIATE CODE: A131

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20051125

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060407

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20060726