JP2001307724A - Spinel type positive electrode material for lithium secondary battery and its manufacturing method - Google Patents

Spinel type positive electrode material for lithium secondary battery and its manufacturing method

Info

Publication number
JP2001307724A
JP2001307724A JP2000118383A JP2000118383A JP2001307724A JP 2001307724 A JP2001307724 A JP 2001307724A JP 2000118383 A JP2000118383 A JP 2000118383A JP 2000118383 A JP2000118383 A JP 2000118383A JP 2001307724 A JP2001307724 A JP 2001307724A
Authority
JP
Japan
Prior art keywords
positive electrode
electrode material
spinel
type positive
secondary battery
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2000118383A
Other languages
Japanese (ja)
Other versions
JP3407880B2 (en
Inventor
Koichi Numata
幸一 沼田
Janko Marinov Todorov
ヤンコ マリノフ トドロフ
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsui Mining and Smelting Co Ltd
Original Assignee
Mitsui Mining and Smelting Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsui Mining and Smelting Co Ltd filed Critical Mitsui Mining and Smelting Co Ltd
Priority to JP2000118383A priority Critical patent/JP3407880B2/en
Publication of JP2001307724A publication Critical patent/JP2001307724A/en
Application granted granted Critical
Publication of JP3407880B2 publication Critical patent/JP3407880B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Abstract

PROBLEM TO BE SOLVED: To provide a spinel type positive electrode material for a lithium secondary battery that is superior in high capacity and high-temperature characteristics. SOLUTION: This spinel type positive electrode material for a lithium secondary battery has Li-Mn-Al-O-F as a constituent element, and further contains M (one or more elements selected from among Cr, Fe, Co, Ni, Cu and Mg) as a constituent element, and has BBT specific surface less than 1.5 m2/g. The manufacturing method for the spinel type positive electrode material is to add a compound of element M to a mixture of a lithium compound, manganese compound and aluminum compound, and mix them to bake. AlF3 is used at least as a part of aluminum compound.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【産業上の利用分野】本発明は、リチウム二次電池用ス
ピネル型正極材料及び製造方法に関し、詳しくは高容量
の充放電特性が得られるリチウム二次電池用スピネル型
正極材料及び製造方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a spinel-type positive electrode material for a lithium secondary battery and a method for producing the same, and more particularly to a spinel-type positive electrode material for a lithium secondary battery and a method for producing the same, which can provide high capacity charge / discharge characteristics.

【0002】[0002]

【従来技術】近年のパソコンや電話等のポータブル化、
コードレス化の急速な進歩により、それらの駆動用電源
としての二次電池の需要が高まっている。その中でも非
水電解質二次電池は、小型かつ高エネルギー密度を持つ
ため特に期待されている。非水電解質二次電池の正極材
料としては、コバルト酸リチウム(LiCoO2)、ニ
ッケル酸リチウム(LiNiO2)、マンガン酸リチウ
ム(LiMn2O4)等がある。これらの正極材料は、リ
チウムに対し4V以上の電圧を有していることから、高
エネルギー密度を有する電池となる。
2. Description of the Related Art In recent years, portable personal computers and telephones have become portable.
With the rapid progress of cordless technology, the demand for secondary batteries as power sources for driving them is increasing. Among them, non-aqueous electrolyte secondary batteries are particularly expected because of their small size and high energy density. As the positive electrode material of the nonaqueous electrolyte secondary battery, there are lithium cobaltate (LiCoO2), lithium nickelate (LiNiO2), lithium manganate (LiMn2O4) and the like. Since these positive electrode materials have a voltage of 4 V or more with respect to lithium, the battery has a high energy density.

【0003】しかしながら、これらの正極材料を用いて
リチウム二次電池を製造した場合、LiCoO2、Li
NiO2は理論容量が280mAh/g程度である。こ
れに対し、LiMn2O4の理論容量は148mAh/g
と小さいが、原料となるマンガン酸化物が豊富で安価で
あることや、LiNiO2のような充電時の熱的不安定
性がないことから、EV用途に適していると考えられて
いる。しかしながら、従来提案されているLiMn2O4
ではいずれも理論容量にほど遠いという状態であった。
However, when a lithium secondary battery is manufactured using these cathode materials, LiCoO 2, LiCoO 2
NiO2 has a theoretical capacity of about 280 mAh / g. In contrast, the theoretical capacity of LiMn2 O4 is 148 mAh / g.
However, it is considered to be suitable for EV applications because of its abundance of inexpensive manganese oxide as a raw material and lack of thermal instability during charging as in LiNiO2. However, the conventionally proposed LiMn2 O4
All were far from the theoretical capacity.

【0004】[0004]

【発明が解決しようとする課題】従って、本発明の目的
は、高容量の充放電特性が得られるリチウム二次電池用
正極材料及び製造方法を提供することにある。
SUMMARY OF THE INVENTION Accordingly, an object of the present invention is to provide a positive electrode material for a lithium secondary battery and a method for producing the same, which can provide high capacity charge / discharge characteristics.

【0005】[0005]

【課題を解決するための手段】よって、本発明は、Li
−Mn−Al−O−Fを構成元素とすることを特徴とす
るリチウム二次電池用スピネル型正極材料である。ま
た、さらにM(MはCr、Fe、Co、Ni、Cu、M
gから選ばれる少なくとも1種以上の元素)を構成元素
として含むことを特徴とする前記記載のリチウム二次電
池用スピネル型正極材料である。また、BET比表面積
が1.5m2/g以下である前記記載のリチウム二次電池
用スピネル型正極材料である。また、リチウム化合物,
マンガン化合物,アルミニウム化合物を混合・焼成して
リチウム二次電池用スピネル型正極材料を製造する方法
であって, アルミニウム化合物の少なくとも一部にAl
F3を用いることを特徴とするリチウム二次電池用スピ
ネル型正極材料の製造方法である。また、リチウム化合
物,マンガン化合物,アルミニウム化合物にさらにM元素
の化合物(MはCr、Fe、Co、Ni、Cu、Mgか
ら選ばれる少なくとも1種以上の元素)を加えて混合・
焼成することを特徴とする前記記載のリチウム二次電池
用スピネル型正極材料の製造方法である。
SUMMARY OF THE INVENTION Accordingly, the present invention provides
A spinel-type positive electrode material for a lithium secondary battery, characterized by comprising -Mn-Al-OF as a constituent element. Further, M (M is Cr, Fe, Co, Ni, Cu, M
g) (at least one element selected from g) as a constituent element. The spinel-type positive electrode material for a lithium secondary battery described above, which has a BET specific surface area of 1.5 m 2 / g or less. Also lithium compounds,
A method for producing a spinel-type cathode material for a lithium secondary battery by mixing and firing a manganese compound and an aluminum compound, wherein at least a part of the aluminum compound contains Al.
A method for producing a spinel-type positive electrode material for a lithium secondary battery, characterized by using F3. Further, a compound of M element (M is at least one or more elements selected from Cr, Fe, Co, Ni, Cu, Mg) is added to the lithium compound, manganese compound, and aluminum compound and mixed.
A method for producing a spinel-type positive electrode material for a lithium secondary battery as described above, characterized by firing.

【0006】[0006]

【発明の実施の形態】以下、本発明を詳細に説明する。
本発明のリチウム二次電池用スピネル型正極材料は、マ
ンガン原料、リチウム原料に置換する元素を含む化合
物、アルミニウム原料、及びアルミニウム原料の少なく
とも一部にAlF3を用いこれらを混合し、焼成して得
られる。リチウム原料としては、炭酸リチウム(Li2
CO3)、硝酸リチウム(Li2NO3)、水酸化リチウ
ム(LiOH)等が挙げられる。また、マンガン原料及
びこれらを置換する元素の原料としては各元素の酸化物
や水酸化物と、アルミニウム化合物の少なくとも一部に
AlF3が用いられる。
BEST MODE FOR CARRYING OUT THE INVENTION Hereinafter, the present invention will be described in detail.
The spinel-type positive electrode material for a lithium secondary battery of the present invention is obtained by mixing and firing a manganese raw material, a compound containing an element to be replaced with a lithium raw material, an aluminum raw material, and at least a part of the aluminum raw material, and mixing and firing them. Can be Lithium carbonate (Li2
CO3), lithium nitrate (Li2NO3), lithium hydroxide (LiOH) and the like. In addition, as a manganese raw material and a raw material of an element which substitutes for them, an oxide or a hydroxide of each element and AlF3 for at least a part of the aluminum compound are used.

【0007】これらの原料は、より大きな反応面積を得
る為に、原料混合前あるいは後に粉砕することも好まし
い。秤量・混合された原料はそのままでも、あるいは造
粒して使用してもよい。造粒方法は、湿式でも乾式でも
よい。
[0007] In order to obtain a larger reaction area, these raw materials are preferably ground before or after mixing the raw materials. The weighed and mixed raw materials may be used as they are or may be granulated and used. The granulation method may be wet or dry.

【0008】これらの原料を焼成炉内に投入し、700
℃前後の通常の焼成温度に比較して,低温の温度範囲で
焼成することにより、本発明のリチウム二次電池用スピ
ネル型正極材料が得られる。ここで用いられる焼成炉と
しては、ロータリーキルン或いは静置炉等が例示され
る。焼成時間は、均一な反応を得る為1時間以上、好ま
しくは5〜20時間である。
[0008] These raw materials are put into a firing furnace, and 700
By firing at a lower temperature range than the normal firing temperature of about ° C., the spinel-type positive electrode material for a lithium secondary battery of the present invention can be obtained. Examples of the firing furnace used here include a rotary kiln and a stationary furnace. The firing time is 1 hour or more, preferably 5 to 20 hours, to obtain a uniform reaction.

【0009】ここで、リチウム二次電池に関して、上記
正極材料とカーボンブラック等の導電材と、テフロン
(商品名:ポリテトラフルオロエチレン)バインダー等
の結着剤とを混合して正極合剤とし、また、負極にはリ
チウム合金、またはカーボン等のリチウムを脱・吸蔵で
きる材料が用いられ、非水系電解質としては、六フッ化
リン酸リチウム(LiPF6)等のリチウム塩をエチレ
ンカーボネート−ジメチルカーボネート等の混合溶媒に
溶解したもの、あるいはそれらをゲル電解質にしたもの
が用いられる。
Here, with respect to the lithium secondary battery, the positive electrode material, a conductive material such as carbon black, and a binder such as Teflon (polytetrafluoroethylene) binder are mixed to form a positive electrode mixture, For the negative electrode, a material capable of desorbing and occluding lithium such as lithium alloy or carbon is used. As the non-aqueous electrolyte, a lithium salt such as lithium hexafluorophosphate (LiPF6) is used such as ethylene carbonate-dimethyl carbonate. Those dissolved in a mixed solvent or those obtained by converting them into a gel electrolyte are used.

【0010】[0010]

【実施例】以下,実施例及び比較例に基づき本発明を具
体的に説明するが、本発明は特にこれに限定されるもの
ではない。 [実施例1]炭酸リチウム21.21gと、二酸化マンガ
ン92.18gと、水酸化アルミニウム8.28gと、
フッ化アルミニウム(AlF3)0.79gをそれぞれ
秤量し、ボールミルで混合した後、750℃で20時間
焼成した。得られたスピネル型正極材料は、スピネル型
特有の結晶構造を有することをX線回析で確認した。ま
た、BET比表面積は1.2m2/gであった。
EXAMPLES Hereinafter, the present invention will be specifically described based on examples and comparative examples, but the present invention is not particularly limited thereto. [Example 1] 21.21 g of lithium carbonate, 92.18 g of manganese dioxide, 8.28 g of aluminum hydroxide,
0.79 g of aluminum fluoride (AlF3) was weighed, mixed with a ball mill, and fired at 750 ° C for 20 hours. It was confirmed by X-ray diffraction that the obtained spinel-type positive electrode material had a crystal structure unique to spinel-type. The BET specific surface area was 1.2 m2 / g.

【0011】また、上記で得られたスピネル型正極材料
を、アセチレンブラック、テフロンバインダーと混合し
て正極合剤を作製した。この正極合剤40mgを秤り取
り、直径12mmのディスク状に成形し、真空下200
℃で乾燥後、金属リチウム対極でリチウム二次電池のモ
デルセルを作製した。これを4.3Vまで充電した後、
3.0Vまでの放電容量(初期容量)を測定したところ
118mAh/gと高容量であることが分かった。
Further, the spinel-type positive electrode material obtained above was mixed with acetylene black and Teflon binder to prepare a positive electrode mixture. 40 mg of this positive electrode mixture was weighed and formed into a disk having a diameter of 12 mm,
After drying at ° C, a model cell of a lithium secondary battery was prepared using a metal lithium counter electrode. After charging this to 4.3V,
When the discharge capacity (initial capacity) up to 3.0 V was measured, it was found that the capacity was as high as 118 mAh / g.

【0012】また、上記で得られたスピネル型正極材料
2gを、1モル/lの六フッ化リン酸リチウム(LiP
F6)とエチレンカーボネート(EC)−ジメチルカー
ボネート(DMC)の1対1混合電解液5mlに浸漬
し、80℃で20日間放置した。その後、DMCで良く
洗浄、乾燥し、上記と同様に放電容量を測定し、保存前
後の放電容量比を放電容量維持率として表1に示した。
Further, 2 g of the spinel-type positive electrode material obtained above was mixed with 1 mol / l of lithium hexafluorophosphate (LiP
F6) and 5 ml of a one-to-one mixed electrolyte of ethylene carbonate (EC) -dimethyl carbonate (DMC) and left at 80 ° C. for 20 days. Thereafter, the well was thoroughly washed with DMC, dried, and the discharge capacity was measured in the same manner as above. The ratio of the discharge capacity before and after storage was shown in Table 1 as a discharge capacity retention ratio.

【0013】[0013]

【表1】 【table 1】

【0014】[実施例2]炭酸リチウム21.21gと、
二酸化マンガン92.18gと、水酸化アルミニウム
8.28gと、フッ化アルミニウム(AlF3)0.7
9gをそれぞれ秤量し、ボールミルで混合した後、80
0℃で20時間焼成した。得られたスピネル型正極材料
は、スピネル型特有の結晶構造を有することをX線回析
で確認した。また、BET比表面積は1.1m2/gであ
った。また、実施例1と同様に電池特性を評価し、得ら
れた結果を表1に示した。
Example 2 21.21 g of lithium carbonate,
92.18 g of manganese dioxide, 8.28 g of aluminum hydroxide, and 0.7 of aluminum fluoride (AlF3)
9 g each was weighed and mixed with a ball mill.
Baking was performed at 0 ° C. for 20 hours. It was confirmed by X-ray diffraction that the obtained spinel-type positive electrode material had a crystal structure unique to spinel-type. The BET specific surface area was 1.1 m2 / g. Further, the battery characteristics were evaluated in the same manner as in Example 1, and the obtained results are shown in Table 1.

【0015】[実施例3]炭酸リチウム21.45gと、
二酸化マンガン96.28gと、酸化マグネシウム0.
45gと、水酸化アルミニウム4.37gと、フッ化ア
ルミニウム(AlF3)0.31gをそれぞれ秤量し、
ボールミルで混合した後、700℃で20時間焼成し
た。得られたスピネル型正極材料は、スピネル型特有の
結晶構造を有することをX線回析で確認した。また、B
ET比表面積は1.4m2/gであった。また、実施例1
と同様に電池特性を評価し、得られた結果を表1に示し
た。
Example 3 21.45 g of lithium carbonate,
96.28 g of manganese dioxide and 0.
45 g, 4.37 g of aluminum hydroxide, and 0.31 g of aluminum fluoride (AlF3) were weighed,
After mixing with a ball mill, the mixture was fired at 700 ° C. for 20 hours. It was confirmed by X-ray diffraction that the obtained spinel-type positive electrode material had a crystal structure unique to spinel-type. Also, B
The ET specific surface area was 1.4 m2 / g. Example 1
The battery characteristics were evaluated in the same manner as described above, and the obtained results are shown in Table 1.

【0016】[実施例4]炭酸リチウム21.45gと、
二酸化マンガン96.28gと、酸化マグネシウム0.
45gと、水酸化アルミニウム4.33gと、フッ化ア
ルミニウム(AlF3)0.39gをそれぞれ秤量し、
ボールミルで混合した後、700℃で20時間焼成し
た。得られたスピネル型正極材料は、スピネル型特有の
結晶構造を有することをX線回析で確認した。また、B
ET比表面積は1.3m2/gであった。また、実施例1
と同様に電池特性を評価し、得られた結果を表1に示し
た。
Example 4 21.45 g of lithium carbonate,
96.28 g of manganese dioxide and 0.
45 g, 4.33 g of aluminum hydroxide, and 0.39 g of aluminum fluoride (AlF3) were weighed,
After mixing with a ball mill, the mixture was fired at 700 ° C. for 20 hours. It was confirmed by X-ray diffraction that the obtained spinel-type positive electrode material had a crystal structure unique to spinel-type. Also, B
The ET specific surface area was 1.3 m2 / g. Example 1
The battery characteristics were evaluated in the same manner as described above, and the obtained results are shown in Table 1.

【0017】[実施例5]炭酸リチウム21.66gと、
二酸化マンガン96.28gと、酸化マグネシウム0.
45gと、水酸化アルミニウム4.21gと、フッ化ア
ルミニウム(AlF3)0.63gをそれぞれ秤量し、
ボールミルで混合した後、700℃で20時間焼成し
た。得られたスピネル型正極材料は、スピネル型特有の
結晶構造を有することをX線回析で確認した。また、B
ET比表面積は1.2m2/gであった。また、実施例1
と同様に電池特性を評価し、得られた結果を表1に示し
た。
Example 5 21.66 g of lithium carbonate,
96.28 g of manganese dioxide and 0.
45 g, 4.21 g of aluminum hydroxide, and 0.63 g of aluminum fluoride (AlF3) were weighed,
After mixing with a ball mill, the mixture was fired at 700 ° C. for 20 hours. It was confirmed by X-ray diffraction that the obtained spinel-type positive electrode material had a crystal structure unique to spinel-type. Also, B
The ET specific surface area was 1.2 m2 / g. Example 1
The battery characteristics were evaluated in the same manner as described above, and the obtained results are shown in Table 1.

【0018】[実施例6]炭酸リチウム21.86gと、
二酸化マンガン96.28gと、酸化マグネシウム0.
45gと、水酸化アルミニウム4.06gと、フッ化ア
ルミニウム(AlF3)0.94gをそれぞれ秤量し、
ボールミルで混合した後、700℃で20時間焼成し
た。得られたスピネル型正極材料は、スピネル型特有の
結晶構造を有することをX線回析で確認した。また、B
ET比表面積は1.1m2/gであった。また、実施例1
と同様に電池特性を評価し、得られた結果を表1に示し
た。
[Example 6] 21.86 g of lithium carbonate,
96.28 g of manganese dioxide and 0.
45 g, 4.06 g of aluminum hydroxide, and 0.94 g of aluminum fluoride (AlF3) were weighed,
After mixing with a ball mill, the mixture was fired at 700 ° C. for 20 hours. It was confirmed by X-ray diffraction that the obtained spinel-type positive electrode material had a crystal structure unique to spinel-type. Also, B
The ET specific surface area was 1.1 m2 / g. Example 1
The battery characteristics were evaluated in the same manner as described above, and the obtained results are shown in Table 1.

【0019】[実施例7]炭酸リチウム22.06gと、
二酸化マンガン96.28gと、酸化マグネシウム0.
45gと、水酸化アルミニウム3.91gと、フッ化ア
ルミニウム(AlF3)1.26gをそれぞれ秤量し、
ボールミルで混合した後、700℃で20時間焼成し
た。得られたスピネル型正極材料は、スピネル型特有の
結晶構造を有することをX線回析で確認した。また、B
ET比表面積は1.1m2/gであった。また、実施例1
と同様に電池特性を評価し、得られた結果を表1に示し
た。
Example 7 22.06 g of lithium carbonate,
96.28 g of manganese dioxide and 0.
45 g, 3.91 g of aluminum hydroxide and 1.26 g of aluminum fluoride (AlF3) were weighed,
After mixing with a ball mill, the mixture was fired at 700 ° C. for 20 hours. It was confirmed by X-ray diffraction that the obtained spinel-type positive electrode material had a crystal structure unique to spinel-type. Also, B
The ET specific surface area was 1.1 m2 / g. Example 1
The battery characteristics were evaluated in the same manner as described above, and the obtained results are shown in Table 1.

【0020】[実施例8]炭酸リチウム21.45gと、
二酸化マンガン96.28gと、三酸化二クロム0.8
5gと、水酸化アルミニウム4.33gと、フッ化アル
ミニウム(AlF3)0.39gをそれぞれ秤量し、ボ
ールミルで混合した後、700℃で20時間焼成した。
得られたスピネル型正極材料は、スピネル型特有の結晶
構造を有することをX線回析で確認した。また、BET
比表面積は1.2m2/gであった。また、実施例1と同
様に電池特性を評価し、得られた結果を表1に示した。
Example 8 21.45 g of lithium carbonate,
96.28 g of manganese dioxide and 0.8 chromium dioxide
5 g, 4.33 g of aluminum hydroxide, and 0.39 g of aluminum fluoride (AlF3) were weighed, mixed by a ball mill, and fired at 700 ° C. for 20 hours.
It was confirmed by X-ray diffraction that the obtained spinel-type positive electrode material had a crystal structure unique to spinel-type. In addition, BET
The specific surface area was 1.2 m2 / g. Further, the battery characteristics were evaluated in the same manner as in Example 1, and the obtained results are shown in Table 1.

【0021】[実施例9]炭酸リチウム21.45gと、
二酸化マンガン96.28gと、三酸化二鉄0.90g
と、水酸化アルミニウム4.33gと、フッ化アルミニ
ウム(AlF3)0.39gをそれぞれ秤量し、ボール
ミルで混合した後、700℃で20時間焼成した。得ら
れたスピネル型正極材料は、スピネル型特有の結晶構造
を有することをX線回析で確認した。また、BET比表
面積は1.1m2/gであった。また、実施例1と同様に
電池特性を評価し、得られた結果を表1に示した。
Example 9 21.45 g of lithium carbonate,
96.28 g of manganese dioxide and 0.90 g of diiron trioxide
, 4.33 g of aluminum hydroxide, and 0.39 g of aluminum fluoride (AlF3) were weighed, mixed by a ball mill, and fired at 700 ° C. for 20 hours. It was confirmed by X-ray diffraction that the obtained spinel-type positive electrode material had a crystal structure unique to spinel-type. The BET specific surface area was 1.1 m2 / g. Further, the battery characteristics were evaluated in the same manner as in Example 1, and the obtained results are shown in Table 1.

【0022】[実施例10]炭酸リチウム21.45g
と、二酸化マンガン96.28gと、水酸化ニッケル
1.04gと、水酸化アルミニウム4.33gと、フッ
化アルミニウム(AlF3)0.39gをそれぞれ秤量
し、ボールミルで混合した後、700℃で20時間焼成
した。得られたスピネル型正極材料は、スピネル型特有
の結晶構造を有することをX線回析で確認した。また、
BET比表面積は1.3m2/gであった。また、実施例
1と同様に電池特性を評価し、得られた結果を表1に示し
た。
Example 10 21.45 g of lithium carbonate
, 96.28 g of manganese dioxide, 1.04 g of nickel hydroxide, 4.33 g of aluminum hydroxide, and 0.39 g of aluminum fluoride (AlF 3) were weighed and mixed by a ball mill, and then mixed at 700 ° C. for 20 hours. Fired. It was confirmed by X-ray diffraction that the obtained spinel-type positive electrode material had a crystal structure unique to spinel-type. Also,
The BET specific surface area was 1.3 m2 / g. Also, the embodiment
The battery characteristics were evaluated in the same manner as in Example 1, and the obtained results are shown in Table 1.

【0023】[実施例11]炭酸リチウム21.45g
と、二酸化マンガン96.28gと、水酸化コバルト
1.04gと、水酸化アルミニウム4.33gと、フッ
化アルミニウム(AlF3)0.39gをそれぞれ秤量
し、ボールミルで混合した後、700℃で20時間焼成
した。得られたスピネル型正極材料は、スピネル型特有
の結晶構造を有することをX線回析で確認した。また、
BET比表面積は1.1m2/gであった。また、実施例
1と同様に電池特性を評価し、得られた結果を表1に示し
た。
Example 11 21.45 g of lithium carbonate
, 96.28 g of manganese dioxide, 1.04 g of cobalt hydroxide, 4.33 g of aluminum hydroxide, and 0.39 g of aluminum fluoride (AlF3) were weighed and mixed by a ball mill, and then mixed at 700 ° C. for 20 hours. Fired. It was confirmed by X-ray diffraction that the obtained spinel-type positive electrode material had a crystal structure unique to spinel-type. Also,
The BET specific surface area was 1.1 m2 / g. Also, the embodiment
The battery characteristics were evaluated in the same manner as in Example 1, and the obtained results are shown in Table 1.

【0024】[実施例12]炭酸リチウム21.45g
と、二酸化マンガン96.28gと、一酸化銅0.89
gと、水酸化アルミニウム4.33gと、フッ化アルミ
ニウム(AlF3)0.39gをそれぞれ秤量し、ボー
ルミルで混合した後、700℃で20時間焼成した。得
られたスピネル型正極材料は、スピネル型特有の結晶構
造を有することをX線回析で確認した。また、BET比
表面積は1.2m2/gであった。また、実施例1と同様
に電池特性を評価し、得られた結果を表1に示した。
Example 12 21.45 g of lithium carbonate
96.28 g of manganese dioxide and 0.89 of copper monoxide
g, 4.33 g of aluminum hydroxide, and 0.39 g of aluminum fluoride (AlF 3) were weighed, mixed by a ball mill, and then fired at 700 ° C. for 20 hours. It was confirmed by X-ray diffraction that the obtained spinel-type positive electrode material had a crystal structure unique to spinel-type. The BET specific surface area was 1.2 m2 / g. Further, the battery characteristics were evaluated in the same manner as in Example 1, and the obtained results are shown in Table 1.

【0025】[比較例1]炭酸リチウム21.21gと、
二酸化マンガン92.18gと、水酸化アルミニウム
9.03gをそれぞれ秤量し、ボールミルで混合した
後、750℃で20時間焼成した。得られたスピネル型
正極材料のBET比表面積は2.0m2/gであった。ま
た、実施例1と同様に電池特性を評価し、得られた結果
を表1に示した。
Comparative Example 1 21.21 g of lithium carbonate,
After 92.18 g of manganese dioxide and 9.03 g of aluminum hydroxide were weighed and mixed by a ball mill, the mixture was baked at 750 ° C. for 20 hours. The BET specific surface area of the obtained spinel type positive electrode material was 2.0 m 2 / g. Further, the battery characteristics were evaluated in the same manner as in Example 1, and the obtained results are shown in Table 1.

【0026】[比較例2]炭酸リチウム21.21gと、
二酸化マンガン92.18gと、水酸化アルミニウム
9.03gをそれぞれ秤量し、ボールミルで混合した
後、800℃で20時間焼成した。得られたスピネル型
正極材料のBET比表面積は1.8m2/gであった。ま
た、実施例1と同様に電池特性を評価し、得られた結果
を表1に示した。
[Comparative Example 2] 21.21 g of lithium carbonate,
After 92.18 g of manganese dioxide and 9.03 g of aluminum hydroxide were weighed and mixed in a ball mill, the mixture was baked at 800 ° C. for 20 hours. The BET specific surface area of the obtained spinel-type positive electrode material was 1.8 m 2 / g. Further, the battery characteristics were evaluated in the same manner as in Example 1, and the obtained results are shown in Table 1.

【0027】[比較例3]炭酸リチウム21.25gと、
二酸化マンガン96.28gと、水酸化アルミニウム
4.52gと、酸化マグネシウム0.45gをそれぞれ
秤量し、ボールミルで混合した後、700℃で20時間
焼成した。得られたスピネル型正極材料のBET比表面
積は1.9m2/gであった。また、実施例1と同様に電
池特性を評価し、得られた結果を表1に示した。
[Comparative Example 3] 21.25 g of lithium carbonate,
96.28 g of manganese dioxide, 4.52 g of aluminum hydroxide, and 0.45 g of magnesium oxide were each weighed, mixed with a ball mill, and fired at 700 ° C. for 20 hours. The BET specific surface area of the obtained spinel-type positive electrode material was 1.9 m 2 / g. Further, the battery characteristics were evaluated in the same manner as in Example 1, and the obtained results are shown in Table 1.

【0028】[比較例4]炭酸リチウム21.63gと、
フッ化リチウム0.36gと、二酸化マンガン99.7
0gと、酸化マグネシウム0.45gをそれぞれ秤量
し、ボールミルで混合した後、700℃で20時間焼成
した。得られたスピネル型正極材料のBET比表面積は
1.9m2/gであった。また、実施例1と同様に電池特
性を評価し、得られた結果を表1に示した。
[Comparative Example 4] 21.63 g of lithium carbonate,
0.36 g of lithium fluoride and 99.7 g of manganese dioxide
0 g and 0.45 g of magnesium oxide were weighed and mixed by a ball mill, and then fired at 700 ° C. for 20 hours. The BET specific surface area of the obtained spinel-type positive electrode material was 1.9 m 2 / g. Further, the battery characteristics were evaluated in the same manner as in Example 1, and the obtained results are shown in Table 1.

【0029】[比較例5]炭酸リチウム21.90gと、
フッ化リチウム0.36gと、二酸化マンガン100.
04gをそれぞれ秤量し、ボールミルで混合した後、7
00℃で20時間焼成した。得られたスピネル型正極材
料のBET比表面積は1.9m2/gであった。また、実
施例1と同様に電池特性を評価し、得られた結果を表1に
示した。
[Comparative Example 5] 21.90 g of lithium carbonate,
0.36 g of lithium fluoride and manganese dioxide 100.
After weighing 04 g each and mixing with a ball mill, 7 g
It was baked at 00 ° C. for 20 hours. The BET specific surface area of the obtained spinel-type positive electrode material was 1.9 m 2 / g. Further, the battery characteristics were evaluated in the same manner as in Example 1, and the obtained results are shown in Table 1.

【0030】上記実施例より、Mnの置換量を(Mn2-
x(Al,M)x)として、xは0.01以上0.25以
下とするのが特に高容量かつ高温特性の向上に好まし
い。ただし、この場合のMは、Li、Cr、Fe、C
o、Ni、Cu、Mgから選ばれる少なくとも1種以上
の元素である。
According to the above example, the substitution amount of Mn was (Mn2-
As x (Al, M) x), x is preferably 0.01 or more and 0.25 or less, which is particularly preferable for high capacity and improvement in high temperature characteristics. However, M in this case is Li, Cr, Fe, C
At least one element selected from o, Ni, Cu, and Mg.

【0031】[0031]

【発明の効果】本発明では、Li基準で3.0〜4.3
Vの電圧範囲における放電容量が115mAh/g以上
である高容量のリチウム二次電池用スピネル型正極材料
が得られる。また、高温特性にも優れており、特に、B
ET比表面積が1.5m2/g以下と低く、これが高温特
性の改善に寄与していると考えられる。また、700℃
前後の低温焼成でスピネル型結晶が得られるため、高温
焼成での焼成の際の材料の焼き塊などのトラブルを避け
ることができ、工程の簡略化、投入エネルギーの低減化
にも効果がある。
According to the present invention, 3.0 to 4.3 based on Li is used.
A high-capacity spinel-type positive electrode material for a lithium secondary battery having a discharge capacity of 115 mAh / g or more in a voltage range of V is obtained. It also has excellent high temperature properties,
The ET specific surface area is as low as 1.5 m 2 / g or less, which is considered to contribute to the improvement of high temperature characteristics. 700 ° C
Since the spinel-type crystal is obtained by firing at low temperatures before and after, troubles such as burning of materials during firing at high temperatures can be avoided, and the process is simplified and the input energy is reduced.

Claims (5)

【特許請求の範囲】[Claims] 【請求項1】Li−Mn−Al−O−Fを構成元素とす
ることを特徴とするリチウム二次電池用スピネル型正極
材料。
1. A spinel-type positive electrode material for a lithium secondary battery, comprising Li-Mn-Al-OF as a constituent element.
【請求項2】さらにM(MはCr、Fe、Co、Ni、
Cu、Mgから選ばれる少なくとも1種以上の元素)を
構成元素として含むことを特徴とする請求項1記載のリ
チウム二次電池用スピネル型正極材料。
2. The method according to claim 1, wherein M is M, Cr, Fe, Co, Ni
2. The spinel-type positive electrode material for a lithium secondary battery according to claim 1, wherein at least one element selected from Cu and Mg) is included as a constituent element.
【請求項3】BET比表面積が1.5m2/g以下である
請求項1または2記載のリチウム二次電池用スピネル型
正極材料。
3. The spinel-type positive electrode material for a lithium secondary battery according to claim 1, wherein the BET specific surface area is 1.5 m 2 / g or less.
【請求項4】リチウム化合物,マンガン化合物,アルミニ
ウム化合物を混合・焼成してリチウム二次電池用スピネ
ル型正極材料を製造する方法であって, アルミニウム化
合物の少なくとも一部にAlF3を用いることを特徴と
するリチウム二次電池用スピネル型正極材料の製造方
法。
4. A method for producing a spinel cathode material for a lithium secondary battery by mixing and firing a lithium compound, a manganese compound, and an aluminum compound, wherein AlF3 is used for at least a part of the aluminum compound. For producing a spinel-type positive electrode material for a lithium secondary battery.
【請求項5】リチウム化合物,マンガン化合物,アルミニ
ウム化合物にさらにM元素の化合物(MはLi、Cr、
Fe、Co、Ni、Cu、Mgから選ばれる少なくとも
1種以上の元素)を加えて混合・焼成することを特徴と
する請求項4記載のリチウム二次電池用スピネル型正極
材料の製造方法。
5. A lithium compound, a manganese compound, an aluminum compound and a compound of M element (M is Li, Cr,
5. The method for producing a spinel-type positive electrode material for a lithium secondary battery according to claim 4, wherein at least one element selected from the group consisting of Fe, Co, Ni, Cu, and Mg) is added, followed by mixing and firing.
JP2000118383A 2000-04-19 2000-04-19 Spinel-type positive electrode material for lithium secondary battery and manufacturing method Expired - Lifetime JP3407880B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2000118383A JP3407880B2 (en) 2000-04-19 2000-04-19 Spinel-type positive electrode material for lithium secondary battery and manufacturing method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000118383A JP3407880B2 (en) 2000-04-19 2000-04-19 Spinel-type positive electrode material for lithium secondary battery and manufacturing method

Publications (2)

Publication Number Publication Date
JP2001307724A true JP2001307724A (en) 2001-11-02
JP3407880B2 JP3407880B2 (en) 2003-05-19

Family

ID=18629534

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000118383A Expired - Lifetime JP3407880B2 (en) 2000-04-19 2000-04-19 Spinel-type positive electrode material for lithium secondary battery and manufacturing method

Country Status (1)

Country Link
JP (1) JP3407880B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008147160A (en) * 2006-11-17 2008-06-26 Nippon Chem Ind Co Ltd Cathode active substance for lithium secondary battery, its manufacturing method and lithium secondary cell
WO2013150987A1 (en) 2012-04-05 2013-10-10 東ソー株式会社 Metal-containing trimanganese tetraoxide composite particles and method for producing same
WO2018218902A1 (en) * 2017-05-31 2018-12-06 华南理工大学 Long-life lithium manganate-based positive electrode material with specific composition and morphology characteristics and preparation method therefor

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008147160A (en) * 2006-11-17 2008-06-26 Nippon Chem Ind Co Ltd Cathode active substance for lithium secondary battery, its manufacturing method and lithium secondary cell
KR101378215B1 (en) 2006-11-17 2014-03-27 니폰 가가쿠 고교 가부시키가이샤 Positive Electrode Active Material for Lithium Secondary Battery, Process for Preparing the Same and Lithium Secondary Battery
WO2013150987A1 (en) 2012-04-05 2013-10-10 東ソー株式会社 Metal-containing trimanganese tetraoxide composite particles and method for producing same
KR20140141606A (en) 2012-04-05 2014-12-10 도소 가부시키가이샤 Metal-containing trimanganese tetraoxide composite particles and method for producing same
US10109857B2 (en) 2012-04-05 2018-10-23 Tosoh Corporation Metal-containing trimanganese tetraoxide composite particles and method for producing same
WO2018218902A1 (en) * 2017-05-31 2018-12-06 华南理工大学 Long-life lithium manganate-based positive electrode material with specific composition and morphology characteristics and preparation method therefor

Also Published As

Publication number Publication date
JP3407880B2 (en) 2003-05-19

Similar Documents

Publication Publication Date Title
JP4096754B2 (en) Cathode active material for non-aqueous electrolyte secondary battery
JP2000277116A (en) Lithium secondary battery
JP2018503238A (en) Multi-component material having an inclined structure for lithium ion battery, preparation method thereof, positive electrode of lithium ion battery and lithium ion battery
JP2000306584A (en) Positive electrode active material for lithium secondary battery and its manufacture
JP2002298846A (en) Nonaqueous electrolyte secondary battery and method for manufacturing the same
JP3695366B2 (en) Positive electrode active material for lithium ion secondary battery and method for producing the same
JP2002124258A (en) Lithium manganate particle powder and its manufacturing method
JP2000327332A (en) Production of spinel type lithium manganate
JPH11339802A (en) Manufacture of positive active material for lithium secondary battery
JP2001297761A (en) Positive electrode activator for nonaqueous electrolyte secondary cell
JP2001064020A (en) Production of lithium manganate
JP3441652B2 (en) Method for producing positive electrode material for lithium secondary battery
JP3407880B2 (en) Spinel-type positive electrode material for lithium secondary battery and manufacturing method
JP2002260660A (en) Positive electrode material for nonaqueous electrolyte secondary battery, and manufacturing method therefor
JP4676691B2 (en) Positive electrode material for Li-ion secondary battery
JP3835235B2 (en) Cathode active material for non-aqueous electrolyte secondary battery and method for producing the same
JP2004342554A (en) Manufacturing method of anode active material of lithium secondary battery
JP2002251995A (en) Spinel type positive electrode material for lithium secondary battery and manufacturing method
JP3487941B2 (en) Method for producing positive electrode active material for non-aqueous electrolyte battery
JP2001196062A (en) Lithium manganate mixture and lithium secondary battery using the same
US7829223B1 (en) Process for preparing lithium ion cathode material
JP3620744B2 (en) Method for producing active material for lithium secondary battery
JP2001110413A (en) Material for positive electrode of lithium secondary battery and the lithium secondary battery using the material
JP4043000B2 (en) Method for producing lithium composite oxide
JP2000294239A (en) Manufacture of spinel type lithium manganate

Legal Events

Date Code Title Description
TRDD Decision of grant or rejection written
R150 Certificate of patent or registration of utility model

Ref document number: 3407880

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090314

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090314

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100314

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110314

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120314

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120314

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130314

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130314

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140314

Year of fee payment: 11

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term