JP2001281391A - Condensate demineralization device - Google Patents

Condensate demineralization device

Info

Publication number
JP2001281391A
JP2001281391A JP2000096608A JP2000096608A JP2001281391A JP 2001281391 A JP2001281391 A JP 2001281391A JP 2000096608 A JP2000096608 A JP 2000096608A JP 2000096608 A JP2000096608 A JP 2000096608A JP 2001281391 A JP2001281391 A JP 2001281391A
Authority
JP
Japan
Prior art keywords
resin
acidic cation
basic anion
strongly
mixed
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2000096608A
Other languages
Japanese (ja)
Other versions
JP3778541B2 (en
Inventor
Takao Ino
隆夫 猪野
Takeshi Izumi
丈志 出水
Tatsuya Deguchi
達也 出口
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ebara Corp
Original Assignee
Ebara Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ebara Corp filed Critical Ebara Corp
Priority to JP2000096608A priority Critical patent/JP3778541B2/en
Publication of JP2001281391A publication Critical patent/JP2001281391A/en
Application granted granted Critical
Publication of JP3778541B2 publication Critical patent/JP3778541B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E30/00Energy generation of nuclear origin
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E30/00Energy generation of nuclear origin
    • Y02E30/30Nuclear fission reactors

Landscapes

  • Treatment Of Water By Ion Exchange (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a condensate demineralization device for PWR nuclear power plant capable of obtaining a highly pure processed water quality. SOLUTION: In this condensate demineralization device for PWR nuclear power plant equipped with a filling bed for ion-exchange resin, the filling bed of ion-exchange resin is formed of a mixed bed consisting of weak acidic cationic resin and strong basic anion resin, or of weak acidic cationic resin, strong acidic cationic resin, and strong basic anionic resin; formed of an upper layer part consisting of strong basic anionic resin and a lower layer part consisting of a mixed layer of weak acidic cationic resin and strong basic anionic resin or a mixed layer of weak acidic cationic resin, strong acidic cationic resin and strong basic anionic resin; or formed of the upper layer part, the lower layer part and weak acidic cationic resin mixed as intermediate layer part between the both.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、復水脱塩装置に係
り、特に、高純度な処理水質を得ることができるPWR
型原子力発電プラントの復水脱塩装置に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a condensate desalination apparatus, and more particularly to a PWR capable of obtaining high-purity treated water quality.
Condensate desalination equipment for nuclear power plants.

【0002】[0002]

【従来の技術】PWR型原子力発電プラントでは、蒸気
発生器の内部を常に清浄に維持しなければならないの
で、その浄化設備としてイオン交換樹脂を使用している
復水脱塩装置が設置されている。そのイオン交換樹脂と
しては、強酸性カチオン樹脂と強塩基性アニオン樹脂を
混床で使用している。最近のPWR型原子力発電プラン
トでは、イオン交換樹脂、特に強酸性カチオン樹脂から
溶出する有機性不純物が処理水質を低下させる要因とな
っていた。強酸性カチオン樹脂より溶出する有機性不純
物には、官能基としてスルホン基が含まれており、これ
が蒸気発生器内に流入すると、熱分解により硫酸イオン
となるため、蒸気発生器構成材料の健全性を阻害する要
因となっている。
2. Description of the Related Art In a PWR type nuclear power plant, since the inside of a steam generator must always be kept clean, a condensate desalination apparatus using an ion exchange resin is installed as a purification facility. . As the ion exchange resin, a strongly acidic cation resin and a strongly basic anion resin are used in a mixed bed. In recent PWR-type nuclear power plants, organic impurities eluted from ion-exchange resins, particularly strongly acidic cation resins, have been a factor in reducing the quality of treated water. Organic impurities eluted from the strongly acidic cation resin contain a sulfone group as a functional group, and when it flows into the steam generator, it becomes sulfuric acid ions by thermal decomposition. Is a factor that hinders.

【0003】[0003]

【発明が解決しようとする課題】本発明は、上記従来技
術に鑑み、イオン交換樹脂から原子炉内に溶出するスル
ホン基を抑制して、処理水質を高度化できるPWR型原
子力発電プラントの復水脱塩装置を提供することを課題
とする。
DISCLOSURE OF THE INVENTION In view of the above prior art, the present invention relates to a condensate for a PWR type nuclear power plant capable of improving the quality of treated water by suppressing sulfone groups eluted from an ion exchange resin into a nuclear reactor. It is an object to provide a desalination apparatus.

【0004】[0004]

【課題を解決するための手段】上記課題を解決するため
に、本発明では、イオン交換樹脂の充填床を備えたPW
R型原子力発電プラントの復水脱塩装置において、該イ
オン交換樹脂の充填床は、弱酸性カチオン樹脂と強塩基
性アニオン樹脂、又は、弱酸性カチオン樹脂と強酸性カ
チオン樹脂と強塩基性アニオン樹脂の混床を使用するこ
とを特徴とする復水脱塩装置としたものである。また、
本発明では、イオン交換樹脂の充填床を備えたPWR型
原子力発電プラントの復水脱塩装置において、該イオン
交換樹脂の充填床は、上層部が強塩基性アニオン樹脂、
下層部が弱酸性カチオン樹脂と強塩基性アニオン樹脂の
混合層、又は、弱酸性カチオン樹脂と強酸性カチオン樹
脂と強塩基性アニオン樹脂の混合層を配分することがで
きる。
According to the present invention, there is provided a PW having a packed bed of an ion exchange resin.
In a condensate desalination apparatus of an R-type nuclear power plant, the packed bed of the ion exchange resin is a weakly acidic cation resin and a strongly basic anion resin, or a weakly acidic cation resin, a strongly acidic cation resin and a strongly basic anion resin. A condensate desalination apparatus characterized by using a mixed bed of the above. Also,
In the present invention, in a condensate desalination apparatus of a PWR-type nuclear power plant equipped with a packed bed of an ion exchange resin, the packed bed of the ion exchange resin has an upper layer portion of a strong basic anion resin,
The lower layer can be a mixed layer of a weakly acidic cation resin and a strongly basic anion resin, or a mixed layer of a weakly acidic cation resin, a strongly acidic cation resin and a strongly basic anion resin.

【0005】さらに、本発明では、イオン交換樹脂の充
填床を備えたPWR型原子力発電プラントの復水脱塩装
置において、該イオン交換樹脂の充填床は、上層部が強
塩基性アニオン樹脂、中間層部が弱酸性カチオン樹脂、
下層部が強酸性カチオン樹脂と強塩基性アニオン樹脂の
混合層、又は弱酸性カチオン樹脂と強酸性カチオン樹脂
と強塩基性アニオン樹脂の混合層を配分することができ
る。前記復水脱塩装置においては、使用するイオン交換
樹脂は、少なくとも一つは粒径分布が均一であるのがよ
い。
Further, according to the present invention, in a condensate desalination apparatus of a PWR type nuclear power plant provided with a packed bed of an ion exchange resin, the packed bed of the ion exchange resin has a strong base anionic resin, Layer part is weakly acidic cationic resin,
The lower layer may be a mixed layer of a strongly acidic cation resin and a strongly basic anion resin, or a mixed layer of a weakly acidic cation resin, a strongly acidic cation resin and a strongly basic anion resin. In the condensate desalination apparatus, it is preferable that at least one of the ion exchange resins used has a uniform particle size distribution.

【0006】[0006]

【発明の実施の形態】従来のPWR型原子力発電プラン
トの復水脱塩装置では、使用するイオン交換樹脂とし
て、強酸性カチオン樹脂を使用しており、この強酸性カ
チオン樹脂には、官能基としてスルホン基が含まれてい
るため、これが原子炉内に流入することにより分解し、
無機イオンである硫酸イオンとなり、これが上記発生器
内の構成材料の健全性を阻害する要因となっていた。そ
こで、本発明は、官能基にスルホン基を含まない弱酸性
カチオン樹脂を使用することにより、有機性不純物がカ
チオン樹脂より溶出しても蒸気発生器内で硫酸イオンを
発生させることをなくすことができることを見出してな
された。
DESCRIPTION OF THE PREFERRED EMBODIMENTS In a conventional condensate desalination apparatus of a PWR type nuclear power plant, a strongly acidic cation resin is used as an ion exchange resin to be used. Since it contains a sulfone group, it decomposes by flowing into the reactor,
Sulfate ions, which are inorganic ions, have been factors that impair the soundness of the constituent materials in the generator. Therefore, the present invention uses a weakly acidic cation resin that does not contain a sulfone group in the functional group, thereby eliminating the generation of sulfate ions in the steam generator even when organic impurities are eluted from the cation resin. I did what I could do.

【0007】従来、弱酸性カチオン樹脂は、強酸性カチ
オン樹脂に比べ中性塩分解能力が低く、反応速度が若干
劣り、且つ捕捉したイオンを加水分解によりリークしや
すい特性があるため、これまで復水脱塩装置に使用され
ることはなかった。しかし近年においては、硫酸イオン
濃度に対する低減要求が非常に高くなっているため、弱
酸性カチオン樹脂を適用することが望まれており、ま
た、PWRプラントの二次系水質のpHはアルカリ側で
運用されており、弱酸性カチオン樹脂の反応速度への影
響は少ない。更に、この欠点を補うために、均一粒径樹
脂を使用する方法もある。即ち、粒径分布を均一にする
ことにより、樹脂の持つ表面積を増やすことが可能とな
り、反応速度を高めることが可能となる。
Conventionally, a weakly acidic cation resin has a lower neutral salt decomposition ability than a strongly acidic cation resin, has a slightly lower reaction rate, and tends to leak trapped ions by hydrolysis. It was not used in water desalination equipment. However, in recent years, the demand for reducing the sulfate ion concentration has become extremely high, so it has been desired to apply a weakly acidic cation resin, and the pH of the secondary water quality of the PWR plant is operated on the alkaline side. And has little effect on the reaction rate of the weakly acidic cation resin. Further, there is a method of using a resin having a uniform particle size to make up for this disadvantage. That is, by making the particle size distribution uniform, the surface area of the resin can be increased, and the reaction rate can be increased.

【0008】[0008]

【実施例】以下、実施例により本発明を具体的に説明す
る。 実施例1 強酸性及び弱酸性カチオン樹脂より溶出した有機性不純
物について、TOC濃度、及び、その溶液を紫外線にて
分解し、その後硫酸イオン濃度を測定することにより、
溶出速度を求めた。その結果を表1に示す。弱酸性カチ
オン樹脂からは、硫酸イオンは検出されないことが確認
された。
The present invention will be described below in detail with reference to examples. Example 1 For organic impurities eluted from strongly acidic and weakly acidic cation resins, TOC concentration, and the solution was decomposed with ultraviolet light, and then sulfate ion concentration was measured.
The elution rate was determined. Table 1 shows the results. It was confirmed that sulfate ions were not detected from the weakly acidic cation resin.

【表1】 [Table 1]

【0009】実施例2 PWR二次系における水質を模擬し、弱酸性樹脂による
イオン交換能力を以下の方法にて確認した。内径25m
mのカラムに樹脂を充填し、層高1mの樹脂層を形成す
る。樹脂層としては、次の5ケースについて行った。
尚、いずれのケースについてもカチオン/アニオン樹脂
比は2/1とした。 ケース1:強酸性カチオン樹脂と強塩基性アニオン樹脂
を混合した場合(比較例)、 ケース2:弱酸性カチオン樹脂と強塩基性アニオン樹脂
を混合した場合(実施例)、 ケース3:上層部に強塩基性アニオン樹脂を配し、下層
部に弱酸性カチオン樹脂と強塩基性アニオン樹脂の混合
層を配した場合(実施例)、
Example 2 Water quality in a secondary PWR system was simulated, and the ion exchange capacity of a weakly acidic resin was confirmed by the following method. 25m inside diameter
m is filled with resin to form a resin layer having a height of 1 m. The following five cases were used as the resin layer.
In each case, the cation / anion resin ratio was 2/1. Case 1: When a strongly acidic cation resin and a strongly basic anion resin are mixed (Comparative Example); Case 2: When a weakly acidic cation resin and a strongly basic anion resin are mixed (Example); Case 3: In the upper layer portion When a strongly basic anion resin is disposed and a mixed layer of a weakly acidic cation resin and a strongly basic anion resin is disposed in a lower layer portion (Example),

【0010】ケース4:上層部に強塩基性アニオン樹脂
を配し、下層部に弱酸性カチオン樹脂と強酸性カチオン
樹脂と強塩基性アニオン樹脂の混合層を配した場合(実
施例)、 ケース5:上層部に強塩基性アニオン樹脂を配し、中間
層部が弱酸性カチオン樹脂、下層部が強酸性カチオン樹
脂と強塩基性アニオン樹脂の混合層を配した場合(実施
例)、 実験は、カラム入口よりアンモニア約2ppmとヒドラ
ジン約0.5ppmを含む水溶液を線流速100m/h
で通水し、処理水の導電率の測定を行った。その結果、
比較例と同様実施例についても、処理水の導電率は0.
055μS/cmとなり、処理性能上問題のないことが
確認された。
Case 4: Case 5 in which a strongly basic anion resin is disposed in an upper layer portion and a mixed layer of a weakly acidic cation resin, a strongly acidic cation resin and a strongly basic anion resin is disposed in a lower layer portion (Example). : When an upper layer is provided with a strongly basic anion resin, an intermediate layer is provided with a weakly acidic cation resin, and a lower layer is provided with a mixed layer of a strongly acidic cation resin and a strongly basic anion resin (Example). A linear flow rate of 100 m / h containing an aqueous solution containing about 2 ppm of ammonia and about 0.5 ppm of hydrazine from the column inlet.
And the conductivity of the treated water was measured. as a result,
In the same manner as in the comparative example, the conductivity of the treated water in the example was 0.1.
It was 055 μS / cm, and it was confirmed that there was no problem in processing performance.

【0011】実施例3 PWR二次系における水質を模擬し、弱酸性樹脂による
イオン交換能力を以下の方法にて確認した。内径25m
mのカラムに樹脂を充填し、層高1mの樹脂層を形成す
る。樹脂層としては、次の5ケースについて行った。
尚、いずれのケースについてもカチオン/アニオン樹脂
比は2/1とした。 ケース1:強酸性カチオン樹脂と強塩基性アニオン樹脂
を混合した場合(比較例)、 ケース2:弱酸性カチオン樹脂と強塩基性アニオン樹脂
を混合した場合(実施例)、 ケース3:上層部に強塩基性アニオン樹脂を配し、下層
部に弱酸性カチオン樹脂と強塩基性アニオン樹脂の混合
層を配した場合(実施例)、
Example 3 Water quality in a secondary PWR system was simulated, and the ion exchange capacity of a weakly acidic resin was confirmed by the following method. 25m inside diameter
m is filled with resin to form a resin layer having a height of 1 m. The following five cases were used as the resin layer.
In each case, the cation / anion resin ratio was 2/1. Case 1: When a strongly acidic cation resin and a strongly basic anion resin are mixed (Comparative Example); Case 2: When a weakly acidic cation resin and a strongly basic anion resin are mixed (Example); Case 3: In the upper layer portion When a strongly basic anion resin is disposed and a mixed layer of a weakly acidic cation resin and a strongly basic anion resin is disposed in a lower layer portion (Example),

【0012】ケース4:上層部に強塩基性アニオン樹脂
を配し、下層部に弱酸性カチオン樹脂と強酸性カチオン
樹脂と強塩基性アニオン樹脂の混合層を配した場合(実
施例)、 ケース5:上層部に強塩基性アニオン樹脂を配し、中間
層部が弱酸性カチオン樹脂、下層部が強酸性カチオン樹
脂と強塩基性アニオン樹脂の混合層を配した場合(実施
例)、 実験は、カラム入口よりアンモニア約2ppmとヒドラ
ジン約0.5ppmを含む水溶液を線流速100m/h
で通水し、処理水の導電率の測定を行った。そして、処
理水の導電率が0.1μS/cmを上回るまでの貫流交
換容量を求めた。
Case 4: Case 5 in which a strongly basic anion resin is provided in the upper layer, and a mixed layer of a weakly acidic cation resin, a strongly acidic cation resin and a strongly basic anion resin is provided in the lower layer (Example). : When an upper layer is provided with a strongly basic anion resin, an intermediate layer is provided with a weakly acidic cation resin, and a lower layer is provided with a mixed layer of a strongly acidic cation resin and a strongly basic anion resin (Example). A linear flow rate of 100 m / h containing an aqueous solution containing about 2 ppm of ammonia and about 0.5 ppm of hydrazine from the column inlet.
And the conductivity of the treated water was measured. Then, the flow-through exchange capacity until the conductivity of the treated water exceeded 0.1 μS / cm was determined.

【0013】これらのケースについて比較例を1とした
場合の貫流交換容量の比較結果を表2に示す。表から明
らかなように、比較例と比べて同等以上の貫流交換容量
を有していることが確認された。
Table 2 shows a comparison result of the once-through exchange capacity when the comparative example is set to 1 in these cases. As is clear from the table, it was confirmed that it had a flow-through exchange capacity equal to or higher than that of the comparative example.

【表2】 [Table 2]

【0014】また、これらの実施例についてカラム処理
水を採取し、紫外線照射実施後に硫酸イオン濃度を測定
した。その結果を表3に示す。表からわかるように、い
ずれの実施例についても比較例と比べ小さい値を示して
いることが確認された。
In each of these examples, column-treated water was collected, and the sulfate ion concentration was measured after irradiation with ultraviolet rays. Table 3 shows the results. As can be seen from the table, it was confirmed that each of the examples exhibited a smaller value than the comparative example.

【表3】 [Table 3]

【0015】実施例4 PWR二次系における水質を模擬し、弱酸性樹脂による
イオン交換能力を以下の方法にて確認した。内径25m
mのカラムに樹脂を充填し、層高1mの樹脂層を形成す
る。樹脂層としては、次の2ケースについて行った。
尚、いずれのケースについてもカチオン/アニオン樹脂
比は2/1とした。 ケース3:上層部に強塩基性アニオン樹脂を配し、下層
部に弱酸性力チオン樹脂と強塩基性アニオン樹脂の混合
層を配した場合 ケース6:上層部に強塩基性アニオン樹脂を配し、下層
部に均一粒径の弱酸性カチオン樹脂と強塩基性アニオン
樹脂の混合層を配した場合 これらのケースについて実施例3のケース1(比較例)
を1とした場合の貫流交換容量の比較結果を表4に示
す。表から明らかなように、均一粒径樹脂の方が大きな
値を有していることがわかる。
Example 4 Water quality in a secondary PWR system was simulated, and the ion exchange capacity of a weakly acidic resin was confirmed by the following method. 25m inside diameter
m is filled with resin to form a resin layer having a height of 1 m. The following two cases were used as the resin layer.
In each case, the cation / anion resin ratio was 2/1. Case 3: Strongly basic anion resin is disposed in the upper layer, and a mixed layer of weakly acidic thione resin and strongly basic anion resin is disposed in the lower layer. Case 6: Strongly basic anion resin is disposed in the upper layer. In the case where a mixed layer of a weakly acidic cation resin and a strongly basic anion resin having a uniform particle size is disposed in the lower part, case 1 of Example 3 (comparative example)
Table 4 shows the results of comparison of the flow-through exchange capacity in the case where is set to 1. As is clear from the table, the resin having a uniform particle size has a larger value.

【表4】 [Table 4]

【0016】[0016]

【発明の効果】本発明によれば、PWR型原子力発電プ
ラントの復水脱塩装置に関し、処理水質を高度化するこ
とが可能となる。
According to the present invention, it is possible to improve the quality of treated water in a condensate desalination apparatus for a PWR type nuclear power plant.

───────────────────────────────────────────────────── フロントページの続き (72)発明者 出口 達也 東京都大田区羽田旭町11番1号株式会社荏 原製作所内 Fターム(参考) 4D025 AA07 AB08 AB09 AB14 BA09 BA10 BA14 BA22 BB03 BB04 ──────────────────────────────────────────────────続 き Continuation of front page (72) Inventor Tatsuya F-term in Ebara Corporation, 1-1-1 Asahi-cho, Haneda, Ota-ku, Tokyo 4D025 AA07 AB08 AB09 AB14 BA09 BA10 BA14 BA22 BB03 BB04

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】 イオン交換樹脂の充填床を備えたPWR
型原子力発電プラントの復水脱塩装置において、該イオ
ン交換樹脂の充填床は、弱酸性カチオン樹脂と強塩基性
アニオン樹脂、又は、弱酸性カチオン樹脂と強酸性カチ
オン樹脂と強塩基性アニオン樹脂の混床を使用すること
を特徴とする復水脱塩装置。
1. PWR with packed bed of ion exchange resin
In a condensate desalination apparatus of a nuclear power plant, the packed bed of the ion-exchange resin is made of a weakly acidic cation resin and a strongly basic anion resin, or a weakly acidic cation resin, a strongly acidic cation resin and a strongly basic anion resin. A condensate desalination apparatus characterized by using a mixed bed.
【請求項2】 イオン交換樹脂の充填床を備えたPWR
型原子力発電プラントの復水脱塩装置において、該イオ
ン交換樹脂の充填床は、上層部が強塩基性アニオン樹
脂、下層部が弱酸性カチオン樹脂と強塩基性アニオン樹
脂の混合層、又は、弱酸性カチオン樹脂と強酸性カチオ
ン樹脂と強塩基性アニオン樹脂の混合層を配分すること
を特徴とする復水脱塩装置。
2. A PWR having a packed bed of ion exchange resin.
In the condensate desalination apparatus of a nuclear power plant, the packed bed of the ion exchange resin has a strong base anion resin in the upper layer, a mixed layer of a weakly acidic cation resin and a strong base anion resin in the lower layer, or a weak bed. A condensate desalination apparatus wherein a mixed layer of an acidic cation resin, a strongly acidic cation resin and a strongly basic anion resin is distributed.
【請求項3】 イオン交換樹脂の充填床を備えたPWR
型原子力発電プラントの復水脱塩装置において、該イオ
ン交換樹脂の充填床は、上層部が強塩基性アニオン樹
脂、中間層部が弱酸性カチオン樹脂、下層部が強酸性カ
チオン樹脂と強塩基性アニオン樹脂の混合層、又は、弱
酸性カチオン樹脂と強酸性カチオンと強塩基性アニオン
樹脂の混合層を配分することを特徴とする復水脱塩装
置。
3. A PWR having a packed bed of ion exchange resin.
In a condensate desalination unit of a nuclear power plant, the packed bed of the ion exchange resin has a strong basic anion resin in the upper layer, a weak acidic cation resin in the middle layer, and a strong acidic cation resin in the lower layer. A condensate desalination apparatus wherein a mixed layer of an anionic resin or a mixed layer of a weakly acidic cation resin, a strongly acidic cation, and a strongly basic anion resin is distributed.
【請求項4】 前記使用するイオン交換樹脂は、少なく
とも一つは粒径分布が均一であることを特徴とする請求
項1、2又は3記載の復水脱塩装置。
4. The condensate desalination apparatus according to claim 1, wherein at least one of the ion exchange resins used has a uniform particle size distribution.
JP2000096608A 2000-03-31 2000-03-31 Condensate demineralizer Expired - Fee Related JP3778541B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2000096608A JP3778541B2 (en) 2000-03-31 2000-03-31 Condensate demineralizer

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000096608A JP3778541B2 (en) 2000-03-31 2000-03-31 Condensate demineralizer

Publications (2)

Publication Number Publication Date
JP2001281391A true JP2001281391A (en) 2001-10-10
JP3778541B2 JP3778541B2 (en) 2006-05-24

Family

ID=18611346

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000096608A Expired - Fee Related JP3778541B2 (en) 2000-03-31 2000-03-31 Condensate demineralizer

Country Status (1)

Country Link
JP (1) JP3778541B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008190933A (en) * 2007-02-02 2008-08-21 Japan Atom Power Co Ltd:The Method for evaluating concentration of ion impurity in secondary coolant at pwr-type nuclear power plant and method for operating secondary cooling system at pwr-type nuclear power plant using such evaluation system

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008190933A (en) * 2007-02-02 2008-08-21 Japan Atom Power Co Ltd:The Method for evaluating concentration of ion impurity in secondary coolant at pwr-type nuclear power plant and method for operating secondary cooling system at pwr-type nuclear power plant using such evaluation system

Also Published As

Publication number Publication date
JP3778541B2 (en) 2006-05-24

Similar Documents

Publication Publication Date Title
Yeon et al. A study on stack configuration of continuous electrodeionization for removal of heavy metal ions from the primary coolant of a nuclear power plant
US8861670B2 (en) Method and apparatus for condensate demineralization
KR100769919B1 (en) Condensate demineralization
JP4467488B2 (en) Condensate demineralization method and condensate demineralization apparatus
JPH11352283A (en) Condensate processing method and condensate demineralization device
JP4943377B2 (en) Condensate demineralization method and condensate demineralization apparatus
JP2001281391A (en) Condensate demineralization device
JP3900399B2 (en) Condensate demineralizer
JP2003315496A (en) Method for regenerating ion-exchange resin and method for refining regenerant used for it
JP4383091B2 (en) Condensate desalination method and apparatus
KR20020066775A (en) Removal of metal ions and recovery of boron using electrodeionization process in the primary cooling water of nuclear power plant
JPS5522379A (en) Manufacture of pure water
JP2009279519A (en) Condensate demineralization method and condensate demineralizer
JP2001246377A (en) Operating method of condensate demineralizer
JPH0379077B2 (en)
JP2004279227A (en) Method and device for condensate demineralization
JP7261711B2 (en) Ultrapure water production system and ultrapure water production method
JPH02131188A (en) Removal process for suspended impurities by mixed bed type filter desalting device
JP3081149B2 (en) Method for reducing impurity elution from condensate desalination unit of BWR type nuclear power plant
JP2002011465A (en) Device and method for desalting condensed water
JPH0445233B2 (en)
JPH01167202A (en) Purification of heavy water
JP2005003597A (en) Method for evaluating performance of strongly acidic positive ion exchanging resin in mixed bed condensate polisher of primary cooling water system at pressurized-water nuclear power generating plant
JP2002126541A (en) Processing method of boron elute containing alkali
JPS5451248A (en) Method of purifying cooling water for heat exchanger

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20031212

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20050725

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060110

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060202

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20060227

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20060227

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100310

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110310

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110310

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120310

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120310

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130310

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130310

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140310

Year of fee payment: 8

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees