JPH01167202A - Purification of heavy water - Google Patents

Purification of heavy water

Info

Publication number
JPH01167202A
JPH01167202A JP62326243A JP32624387A JPH01167202A JP H01167202 A JPH01167202 A JP H01167202A JP 62326243 A JP62326243 A JP 62326243A JP 32624387 A JP32624387 A JP 32624387A JP H01167202 A JPH01167202 A JP H01167202A
Authority
JP
Japan
Prior art keywords
heavy water
exchange resin
resin
weakly basic
basic anion
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP62326243A
Other languages
Japanese (ja)
Other versions
JPH0442323B2 (en
Inventor
Yoshihiro Ibuki
伊吹 圭弘
Hiroshi Kikuchi
寛 菊池
Satoshi Morita
聡 森田
Kenji Oda
賢治 織田
Hitoshi Miyamaru
宮丸 人志
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Rensui Co
Power Reactor and Nuclear Fuel Development Corp
Original Assignee
Nippon Rensui Co
Power Reactor and Nuclear Fuel Development Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Rensui Co, Power Reactor and Nuclear Fuel Development Corp filed Critical Nippon Rensui Co
Priority to JP62326243A priority Critical patent/JPH01167202A/en
Publication of JPH01167202A publication Critical patent/JPH01167202A/en
Publication of JPH0442323B2 publication Critical patent/JPH0442323B2/ja
Granted legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E30/00Energy generation of nuclear origin
    • Y02E30/30Nuclear fission reactors

Landscapes

  • Treatment Of Water By Ion Exchange (AREA)

Abstract

PURPOSE:To easily obtain purified heavy water useful for a power nuclear reactor, in improved processing capacity, by mixing a strongly acidic cation- exchange resin with a weakly basic anion-exchange resin at a specific mixing ratio and filling the mixture into a mixed-bed demineralization column for heavy water purification. CONSTITUTION:A mixed resin (C) is prepared by mixing (A) a strongly acidic cation-exchange resin such as Diaion SKN-1 with (B) a weakly basic anion- exchange resin such as Diaion WA-21 at a ratio of 1:1-5. The resin (C) is filled in a mixed bed demineralization column for the purification of heavy water, heavy water is passed through the column to adsorb the ions of Li, CO3, NO3, etc., to the resins A and B and the purified heavy water is recovered from the column.

Description

【発明の詳細な説明】 〈発明の対象〉 本発明は、重水減速沸騰軽水冷却型原子炉においてイオ
ン交換樹脂を用いた重水浄化塔に係わシ、特に重水浄化
塔の処理能力を向上させる〈従来技術〉 現在、動力用原子炉の一つに新型転換炉である重水減速
沸騰軽水冷却型原子炉が発電に供されている。原子炉に
は核分裂反応を制御する減速材と、核分裂反応によって
発生した熱を取り出す媒体である冷却材が使用されてい
る。
[Detailed Description of the Invention] <Object of the Invention> The present invention relates to a heavy water purification tower using an ion exchange resin in a heavy water-moderated boiling light water-cooled nuclear reactor, and particularly to improving the processing capacity of the heavy water purification tower. Prior Art Currently, a heavy water-moderated boiling light water-cooled nuclear reactor, which is a new converter reactor, is used as one of the power reactors for power generation. Nuclear reactors use a moderator that controls the nuclear fission reaction and a coolant that is a medium that extracts the heat generated by the nuclear fission reaction.

この重水減速沸騰軽水冷却型原子炉の減速材は、重水系
およびヘリウム系から構成されている。本発明の対象で
ある重水には、反応度補償のためにホウ酸が注入されて
おり、この重水は性陽イオン交換樹脂と弱塩基性陰イオ
ン交換樹脂とから成る混床式脱塩塔が使用されている。
The moderator of this heavy water-moderated boiling light water-cooled nuclear reactor is composed of heavy water and helium. Boric acid is injected into the heavy water that is the object of the present invention to compensate for reactivity, and this heavy water is processed through a mixed bed demineralization tower consisting of a strong cation exchange resin and a weakly basic anion exchange resin. It is used.

弱塩基性陰イオン交換樹脂が用いられているのは、弱酸
であるホウ酸をほとんど吸着せずに不純物のみを吸着す
るため、重水中のホウ酸濃度を変化させず原子炉の反応
度に影響を及ぼさない理由による。また冷却材は軽水が
使用され、発生した蒸気はタービンに導かれ循環再使用
さが著しく、重水系構造材の健全性を保つために必要な
電導度とするためには、比較的頻繁に重水浄化塔樹脂の
樹脂交換を行う必要のあることが判った。重水浄化塔樹
脂の樹脂交換を行うには、樹脂に含まれる軽水が重水中
に侵入し重水濃度を低下させるだめ、予めこの軽水を重
水に置換する重水化操作が必要であるが、浄化塔l塔分
の樹脂′交換に約3m3 の重水を要し、又この重水が
極めて高価であるためできるだけ樹脂交換頻度を下げる
必要があった。
Weakly basic anion exchange resin is used because it adsorbs only impurities without adsorbing much of boric acid, which is a weak acid, so it does not affect the reactivity of the reactor without changing the boric acid concentration in heavy water. For reasons that do not affect In addition, light water is used as a coolant, and the generated steam is led to a turbine and is reused in a significant amount of circulation.In order to maintain the electrical conductivity required to maintain the integrity of heavy water-based structural materials, heavy water is used relatively frequently. It was found that it was necessary to replace the resin in the purification tower. In order to replace the resin in the heavy water purification tower, the light water contained in the resin will enter the heavy water and reduce the concentration of heavy water, so it is necessary to replace this light water with heavy water in advance. Approximately 3 m3 of heavy water was required to replace the resin in the column, and since this heavy water was extremely expensive, it was necessary to reduce the frequency of resin replacement as much as possible.

一方、重水電導度上昇の原因は、重水が放射線分解反応
で生成する過酸化重水素が重水を浄化する時重水浄化塔
に流入してイオン交換樹脂を酸化分解し、その結果イオ
ン交換容量が低下するとともにこの分解生成物がさらに
炉心部で放射線分解され炭酸及び硝酸イオンなどの陰イ
オンを生成し水質劣化させている。
On the other hand, the reason for the increase in heavy water conductivity is that when heavy water is purified by radiolysis reaction, deuterium peroxide flows into the heavy water purification tower and oxidizes and decomposes the ion exchange resin, resulting in a decrease in ion exchange capacity. At the same time, these decomposition products are further subjected to radiolysis in the reactor core, producing anions such as carbonate and nitrate ions, deteriorating water quality.

従来の設計では、陽イオン性不純物と陰イオン不純物の
浄化塔への負荷は同程度と見積もり、イオン交換容量比
を等しくするため、重水浄化塔の強酸性陽イオン交換樹
脂と弱塩基性陰イオン交換樹脂の樹脂量混合比を/:/
としていたが、このように陰イオンが選択的に生成した
場合には著しく陰イオン交換樹脂容量が不足していた。
In conventional designs, the load on the purification tower of cationic impurities and anionic impurities is estimated to be the same, and in order to equalize the ion exchange capacity ratio, the heavy water purification tower's strongly acidic cation exchange resin and weakly basic anion are used. The resin amount mixing ratio of the replacement resin is /:/
However, when anions were selectively generated in this way, the capacity of the anion exchange resin was significantly insufficient.

このだめ、陰イオン性不純物が十分に除去されず、重水
の電導度を上昇させる結果となそこで本発明者等は重水
浄化塔の処理能力を向上させることを目的として鋭意検
討した結果、従来装荷されていた強酸性陽イオン交換樹
脂と弱塩基性陰イオン交換樹脂の樹脂量比を変更するこ
とによって重水浄化塔の処理能力を向上させることがで
きる事を見出し本発明に到達した。
As a result, anionic impurities are not removed sufficiently, resulting in an increase in the conductivity of heavy water.The inventors of the present invention conducted extensive studies with the aim of improving the processing capacity of heavy water purification towers, and found that conventional loading The inventors have discovered that the processing capacity of a heavy water purification tower can be improved by changing the ratio of the amounts of strongly acidic cation exchange resins and weakly basic anion exchange resins, and have arrived at the present invention.

〈発明の構成〉 本発明は、従来装荷されていた強酸性陽イオン交換樹脂
と弱塩基性陰イオン交換樹脂の樹脂量混合比/:/を変
更し樹脂量混合比l:lからl:jの範囲に、望ましく
ll−1:/ニー2からl:3にすることによって重水
浄化塔の処理能力を向上させるものである。
<Structure of the Invention> The present invention changes the resin amount mixing ratio /:/ of the strongly acidic cation exchange resin and the weakly basic anion exchange resin that was conventionally loaded, and changes the resin amount mixing ratio from l:l to l:j. The processing capacity of the heavy water purification tower is improved by adjusting the ratio to be within the range of 1:/k, preferably from 1:2 to 1:3.

以下に、本発明をさらに詳細に説明する。The present invention will be explained in more detail below.

重水中の不純物には、陽イオンであるリチウムが、陰イ
オンでは炭酸および硝酸のほか少量の塩素・亜硝酸・硫
酸が含まれている。また、重水の放射線分解により生成
する過酸化重水素が含まれる。
Impurities in heavy water include lithium, which is a cation, and carbonic acid and nitric acid, as well as small amounts of chlorine, nitrite, and sulfuric acid, as anions. It also includes deuterium peroxide, which is produced by radiolysis of heavy water.

この様な不純物の陽イオンは強酸性陽イオン交換樹脂に
陰イオンは弱塩基性陰イオン交換樹脂に吸着される。こ
れら不純物を含む重水を重水浄化塔に通水すると、通水
初期はイオン状の不純物が全て除去されるが、通水を続
けるに従ってイオン交換樹脂の吸着能力が飽和され重水
炭酸ついで硝酸の陰イオンが最初に漏出し、陽イオンで
あるリチウムが漏出してくるのは、かなり時間を経た後
であることが判明した。この事は弱塩基性陰イオン交換
樹脂の吸着能力が先に飽和されていることを示している
。一方、強酸性陽イオン交換樹脂および弱塩基性陰イオ
ン交換樹脂の単位樹脂容積当たりのイオン交換容量は一
定である。これらのことから重水浄化塔は弱塩基性陰イ
オン交換樹脂のイオン交換容量が不足していて、強酸性
陽イオン交換樹脂が余剰であることが判明した。このだ
め、重水浄化塔に従来用いられ、できだ樹脂量混合比/
:/を改善し、強酸性陽イオン交換樹脂量を減少させ、
弱塩基性陰イオン交換樹脂量を増加させることによって
重水浄化塔の処理能力が向上出来ると以下の条件で、通
水実験を行った。
Cations of such impurities are adsorbed on a strongly acidic cation exchange resin, and anions are adsorbed on a weakly basic anion exchange resin. When heavy water containing these impurities is passed through a heavy water purification tower, all ionic impurities are removed at the beginning of the water flow, but as the water continues to flow, the adsorption capacity of the ion exchange resin becomes saturated and the anions of heavy water carbonate and nitric acid are removed. It was found that lithium, a positive ion, leaked out first, and lithium, a cation, leaked out only after a considerable time had passed. This indicates that the adsorption capacity of the weakly basic anion exchange resin is saturated first. On the other hand, the ion exchange capacity per unit resin volume of the strongly acidic cation exchange resin and the weakly basic anion exchange resin is constant. These results revealed that the heavy water purification tower lacked the ion exchange capacity of the weakly basic anion exchange resin and had a surplus of the strongly acidic cation exchange resin. This tank is conventionally used in heavy water purification towers, resulting in resin amount mixing ratio /
:/Improve the amount of strongly acidic cation exchange resin,
A water flow experiment was conducted under the following conditions, assuming that the processing capacity of the heavy water purification tower could be improved by increasing the amount of weakly basic anion exchange resin.

0 使用樹脂 強酸性陽イオン交換樹脂 ダイヤイオン  5KN−7 (三菱化成工業■製) 弱塩基性陰イオン交換樹脂 ダイヤイオン  WA−21 (三菱化成工業■製) ○液組成 ホウ酸      3.j  ppm as B過酸化
水素    7.0  ppm as H,02硝  
酸        タタ’    pl)b as N
o。
0 Resin used Strongly acidic cation exchange resin Diamond 5KN-7 (manufactured by Mitsubishi Chemical Industries ■) Weakly basic anion exchange resin Diamond WA-21 (manufactured by Mitsubishi Chemical Industries ■) ○Liquid composition Boric acid 3. j ppm as B hydrogen peroxide 7.0 ppm as H,02 nitrate
acid tata' pl)b as N
o.

炭  酸       /!r00    ppb  
as CO30通水流量      2o   BV/
hOカラム30消φ×/j00HH (ジャケット付) O樹脂量および混合比 樹 脂 量  混合比 実施例−/   333ql   tt7H1/ : 
2実施例−22so7   qso7    t; 3
実施例−3/17H1133al    /:j比較例 実施例のイオン交換樹脂量をWA−2/はj 00il
、 SK N −/はj 007111として、そのほ
かは同一条件で通水実験を行った。
Carbonic acid /! r00 ppb
as CO30 water flow rate 2o BV/
hO column 30mm φ×/j00HH (with jacket) O resin amount and mixing ratio Resin amount Mixing ratio example -/ 333ql tt7H1/:
2 Example-22so7 qso7t; 3
Example-3/17H1133al /:j Comparative Example The amount of ion exchange resin in Example WA-2/ is j 00il
, SK N −/ was set to j 007111, and a water flow experiment was conducted under the same conditions except for the following.

〈発明の効果〉 重水型導度の寄与が大きい硝酸イオンを代表とし、原液
中の硝酸イオンが70係漏出した時点の樹脂のイオン吸
着量を求め、比較例を基準とした実施例−/および実施
例−2、実施例−3の吸着量の比を第1図に示した。
<Effects of the Invention> Using nitrate ions, which have a large contribution from heavy water type conductivity, as a representative example, the amount of ion adsorption of the resin at the time when 70% of nitrate ions in the stock solution leaked out was determined, and an example based on a comparative example was carried out. The adsorption amount ratio of Example-2 and Example-3 is shown in FIG.

これらの結果から、強酸性陽イオン交換樹脂と弱塩基性
陰イオン交換樹脂の樹脂量混合比/:/を超えl:夕の
範囲までいづれの比もそのイオン吸着量は、従来の混合
比の値を上回った。
From these results, it can be seen that for any resin mixing ratio of strongly acidic cation-exchange resin and weakly basic anion-exchange resin, the ion adsorption amount exceeds the range of /:/ to the range of 1:2. exceeded the value.

特に混合比が/:3の場合が最大値を示し従来第1図は
、吸着量の比を樹脂量混合比に対してプロットした図で
ある。
Particularly, when the mixing ratio is /:3, the maximum value is obtained. Conventionally, FIG. 1 is a graph in which the adsorption amount ratio is plotted against the resin amount mixing ratio.

Claims (2)

【特許請求の範囲】[Claims] (1)強酸性陽イオン交換樹脂と弱塩基性陰イオン交換
樹脂とから成る重水浄化用混床式脱塩塔において、強酸
性陽イオン交換樹脂と弱塩基性陰イオン交換樹脂の樹脂
量混合比1:1から1:5の範囲を特徴とする重水の浄
化方法
(1) In a mixed-bed demineralization tower for heavy water purification consisting of a strongly acidic cation exchange resin and a weakly basic anion exchange resin, the resin amount mixing ratio of the strongly acidic cation exchange resin and the weakly basic anion exchange resin Heavy water purification method characterized by a ratio of 1:1 to 1:5
(2)前記強酸性陽イオン交換樹脂および弱塩基性陰イ
オン交換樹脂に吸着される成分が、リチウムおよび炭酸
、硝酸の各イオンであるところの特許請求の範囲第1項
記載の方法
(2) The method according to claim 1, wherein the components adsorbed on the strongly acidic cation exchange resin and the weakly basic anion exchange resin are lithium, carbonic acid, and nitric acid ions.
JP62326243A 1987-12-23 1987-12-23 Purification of heavy water Granted JPH01167202A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP62326243A JPH01167202A (en) 1987-12-23 1987-12-23 Purification of heavy water

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP62326243A JPH01167202A (en) 1987-12-23 1987-12-23 Purification of heavy water

Publications (2)

Publication Number Publication Date
JPH01167202A true JPH01167202A (en) 1989-06-30
JPH0442323B2 JPH0442323B2 (en) 1992-07-13

Family

ID=18185594

Family Applications (1)

Application Number Title Priority Date Filing Date
JP62326243A Granted JPH01167202A (en) 1987-12-23 1987-12-23 Purification of heavy water

Country Status (1)

Country Link
JP (1) JPH01167202A (en)

Also Published As

Publication number Publication date
JPH0442323B2 (en) 1992-07-13

Similar Documents

Publication Publication Date Title
Yeon et al. A study on stack configuration of continuous electrodeionization for removal of heavy metal ions from the primary coolant of a nuclear power plant
US20090296873A1 (en) Method and apparatus for condensate demineralization
JP4467488B2 (en) Condensate demineralization method and condensate demineralization apparatus
JP2001215294A (en) Condensate demineralizer
JP6145611B2 (en) Mixed ion exchange resin, desalting method and desalting apparatus
JP2005003598A (en) Desalination tower of mix bed type in pressurized water nuclear power plant, and operation method thereof
JP2007098328A (en) Condensate demineralization method and apparatus
US20090294367A1 (en) Method and apparatus for condensate demineralization
US4332031A (en) Silica removal process and alumina composition used therein
JPH01167202A (en) Purification of heavy water
JPH0248077B2 (en)
US4740359A (en) Process for the recovery of uranium values in an extractive reprocessing process for irradiated nuclear fuels
EP2865650A1 (en) Purification method and apparatus for spent fuel pool water after nuclear power generation and treatment method and apparatus for spent fuel pool water
KR20020066775A (en) Removal of metal ions and recovery of boron using electrodeionization process in the primary cooling water of nuclear power plant
JP2009281873A (en) Method and device for condensate demineralization
JPH01155984A (en) Apparatus for producing pure water
CN114249451A (en) Novel method for treating wastewater of high-temperature gas cooled reactor element core preparation process
US20160289094A1 (en) Condensate demineralization apparatus and condensate demineralization method
JP6543363B2 (en) Nuclear power spent fuel pool water purification method and device and spent fuel pool water treatment method and device
JP2004309268A (en) Desalination tower for primary cooling water system in pressurized water nuclear power generation plant
JP7273682B2 (en) Alpha nuclide removal system
JP2004093149A (en) Equipment and method for purifying primary coolant in nuclear power plant
JP2006194738A (en) Performance evaluation method for sulfonic acid type cation exchange resin of primary cooling water system desalination tower of pressurized water type nuclear power plant
JP2004279227A (en) Method and device for condensate demineralization
CN117756059A (en) Ion liquid exchange tritium removal treatment method for tritium-containing wastewater

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees