JP2001279268A - Method for producing fuel oil for fuel cell and hydrogen for fuel cell - Google Patents

Method for producing fuel oil for fuel cell and hydrogen for fuel cell

Info

Publication number
JP2001279268A
JP2001279268A JP2000093536A JP2000093536A JP2001279268A JP 2001279268 A JP2001279268 A JP 2001279268A JP 2000093536 A JP2000093536 A JP 2000093536A JP 2000093536 A JP2000093536 A JP 2000093536A JP 2001279268 A JP2001279268 A JP 2001279268A
Authority
JP
Japan
Prior art keywords
fuel cell
fuel oil
catalyst
hydrogen
fuel
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2000093536A
Other languages
Japanese (ja)
Inventor
Tetsuya Fukunaga
哲也 福永
Mitsuru Osawa
満 大澤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Idemitsu Kosan Co Ltd
Original Assignee
Idemitsu Kosan Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Idemitsu Kosan Co Ltd filed Critical Idemitsu Kosan Co Ltd
Priority to JP2000093536A priority Critical patent/JP2001279268A/en
Publication of JP2001279268A publication Critical patent/JP2001279268A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/50Improvements relating to the production of bulk chemicals
    • Y02P20/52Improvements relating to the production of bulk chemicals using catalysts, e.g. selective catalysts

Landscapes

  • Fuel Cell (AREA)
  • Hydrogen, Water And Hydrids (AREA)
  • Catalysts (AREA)
  • Production Of Liquid Hydrocarbon Mixture For Refining Petroleum (AREA)
  • Liquid Carbonaceous Fuels (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a method for producing the subject fuel oil capable of effectively producing hydrogen by reforming treatment through suppressing the deterioration of a reforming catalyst due to carbon deposition and/or sulfur poisoning so as to effect longer service life of the catalyst, and to provide a method for producing hydrogen for fuel cells by using the above fuel oil. SOLUTION: This method for producing a fuel oil for fuel cells comprises polymerizing and then hydrogenating light olefins. The method for producing hydrogen for fuel cells comprises using the above fuel oil.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、燃料電池用燃料油
及び燃料電池用水素の製造方法に関する。さらに詳しく
は、本発明は、改質処理による水素の製造において、改
質触媒の炭素析出による劣化や硫黄被毒による劣化を抑
制して、触媒の長寿命化を図り、効果的に水素を製造し
得る燃料電池用燃料油、及びこの燃料油を用い、改質処
理により燃料電池用水素を製造する方法に関するもので
ある。
The present invention relates to a method for producing fuel oil for fuel cells and hydrogen for fuel cells. More specifically, the present invention suppresses the deterioration of the reforming catalyst due to carbon deposition and the deterioration due to sulfur poisoning in the production of hydrogen by the reforming treatment, prolongs the life of the catalyst, and effectively produces hydrogen. The present invention relates to a fuel cell fuel oil that can be used, and a method for producing hydrogen for a fuel cell by a reforming process using the fuel oil.

【0002】[0002]

【従来の技術】近年、環境問題から新エネルギー技術が
脚光を浴びており、この新エネルギー技術の一つとして
燃料電池が注目されている。この燃料電池は、水素と酸
素を電気化学的に反応させることにより、化学エネルギ
ーを電気エネルギーに変換するものであって、エネルギ
ーの利用効率が高いという特徴を有しており、民生用、
産業用あるいは自動車用などとして、実用化研究が積極
的になされている。この燃料電池には、使用する電解質
の種類に応じて、リン酸型、溶融炭酸塩型、固体酸化物
型、固体高分子型などのタイプが知られている。一方、
水素源としては、メタノール、メタンを主体とする液化
天然ガス、この天然ガスを主成分とする都市ガス、天然
ガスを原料とする合成液体燃料、さらには石油系のLP
G、ナフサ、ガソリン、灯油などの炭化水素の使用が研
究されている。
2. Description of the Related Art In recent years, new energy technologies have been spotlighted due to environmental problems, and fuel cells have attracted attention as one of the new energy technologies. This fuel cell converts chemical energy into electric energy by electrochemically reacting hydrogen and oxygen, and has the feature of high energy use efficiency.
Practical research is being actively conducted for industrial or automotive use. As the fuel cell, types such as a phosphoric acid type, a molten carbonate type, a solid oxide type, and a solid polymer type are known according to the type of electrolyte used. on the other hand,
As a hydrogen source, liquefied natural gas mainly composed of methanol and methane, city gas mainly composed of natural gas, synthetic liquid fuel composed of natural gas as raw material, and petroleum LP
The use of hydrocarbons such as G, naphtha, gasoline, and kerosene has been studied.

【0003】燃料電池を民生用や自動車用などに利用す
る場合、上記石油系炭化水素は、保管及び取扱いが容易
である上、ガソリンスタンドや販売店など、供給システ
ムが整備されていることから、水素源として有利であ
る。石油系炭化水素を用いて水素を製造する場合、一般
に、該炭化水素を、改質触媒の存在下に水蒸気改質や部
分酸化改質処理する方法などが用いられる。このような
改質処理においては、上記改質触媒の劣化を抑制し、長
寿命化を図ることは、実用面で極めて重要である。
[0003] When a fuel cell is used for consumer or automobile use, the petroleum-based hydrocarbon is easy to store and handle, and in addition, a supply system such as a gas station and a store is provided. It is advantageous as a hydrogen source. When hydrogen is produced using a petroleum hydrocarbon, a method of subjecting the hydrocarbon to steam reforming or partial oxidation reforming in the presence of a reforming catalyst is generally used. In such a reforming process, it is extremely important in practical use to suppress the deterioration of the reforming catalyst and extend the life.

【0004】該改質触媒の劣化の要因としては、石油系
炭化水素中に含まれている硫黄による被毒と、触媒上へ
の炭素析出(コーク被毒)を挙げることができる。硫黄
による被毒については、該炭化水素を低硫黄濃度まで脱
硫処理するために、様々な脱硫剤、例えばニッケル系や
ニッケル−銅系吸着剤などが開発されているが、脱硫性
能や触媒寿命面などで、必ずしも充分に満足しうるもの
ではない。一方、コーク被毒については、石油系炭化水
素に含まれるコーク源として、例えば芳香族化合物及び
二環以上の環状飽和炭化水素化合物が知られているが、
改質触媒上への炭素析出を抑制し、改質触媒の寿命を実
用的に満足させる石油系炭化水素は、これまで提供され
ていないのが実状である。
[0004] Factors causing the deterioration of the reforming catalyst include poisoning by sulfur contained in petroleum hydrocarbons and carbon deposition (coke poisoning) on the catalyst. Regarding sulfur poisoning, various desulfurizing agents, such as nickel-based and nickel-copper-based adsorbents, have been developed to desulfurize the hydrocarbons to a low sulfur concentration. For example, it is not always satisfactory. On the other hand, regarding coke poisoning, as a coke source contained in petroleum hydrocarbons, for example, aromatic compounds and cyclic saturated hydrocarbon compounds having two or more rings are known,
Petroleum hydrocarbons that suppress carbon deposition on the reforming catalyst and practically satisfy the life of the reforming catalyst have not been provided so far.

【0005】[0005]

【発明が解決しようとする課題】本発明は、このような
状況下で、改質処理による水素の製造において、改質触
媒の炭素析出による劣化や硫黄被毒による劣化を抑制し
て、触媒の長寿命化を図り、効果的に水素を製造し得る
燃料電池用燃料油、及びこの燃料油を用い、燃料電池用
水素を製造する方法を提供することを目的とするもので
ある。
SUMMARY OF THE INVENTION Under the above circumstances, the present invention suppresses deterioration of a reforming catalyst due to carbon deposition and sulfur poisoning in the production of hydrogen by a reforming treatment, thereby improving the performance of the catalyst. It is an object of the present invention to provide a fuel oil for a fuel cell capable of effectively producing hydrogen with a long life, and a method for producing hydrogen for a fuel cell using the fuel oil.

【0006】[0006]

【課題を解決するための手段】本発明者らは、前記目的
を達成するために鋭意研究を重ねた結果、軽質オレフィ
ン類を重合した後、水素化処理してなるものは、硫黄分
濃度が極めて低く、改質処理における触媒の硫黄被毒を
抑制し得る上、芳香族化合物、二環以上の環状飽和炭化
水素化合物及びオレフィン類などを実質上含まないので
改質処理における触媒のコーク被毒を抑制することがで
き、燃料電池用燃料油として、その目的に適合し得るこ
とを見出した。本発明は、かかる知見に基づいて完成し
たものである。すなわち、本発明は、軽質オレフィン類
を重合した後、水素化処理してなる燃料電池用燃料油を
提供するものである。本発明はまた、上記燃料油を用い
ることを特徴とする燃料電池用水素の製造方法をも提供
するものである。
Means for Solving the Problems The inventors of the present invention have conducted intensive studies to achieve the above object, and as a result, those obtained by polymerizing light olefins and then subjecting them to hydrogenation treatment have a sulfur content of less than 10%. It is extremely low and can suppress sulfur poisoning of the catalyst in the reforming treatment, and is substantially free of aromatic compounds, cyclic saturated hydrocarbon compounds having two or more rings, and olefins. Has been found to be suitable for the purpose as a fuel oil for a fuel cell. The present invention has been completed based on such findings. That is, the present invention provides a fuel oil for a fuel cell, which is obtained by polymerizing a light olefin and then hydrotreating the polymer. The present invention also provides a method for producing hydrogen for a fuel cell, characterized by using the above fuel oil.

【0007】[0007]

【発明の実施の形態】本発明の燃料電池用燃料油は、軽
質オレフィン類の重合した後、水素化処理してなるもの
であって、原料の軽質オレフィン類としては、プロピレ
ン及び/又はブテンが一般的であるが、エチレンやオレ
フィンナフサ等も用いられる。このプロピレンやブテン
としては、例えば流動接触分解装置(FCC)あるいは
スチームクラッカーなどからのC3 ,C4 分を使用する
ことができる。この場合、不純物のジエン類は重合反応
を阻害するので、除去するのがよく、一般に、原料中の
含有量が5重量%以下、好ましくは2重量%以下に制御
するのが有利である。軽質オレフィン類としては、特に
イソブテンが反応性が高く、原料として優れている。
BEST MODE FOR CARRYING OUT THE INVENTION The fuel oil for a fuel cell of the present invention is obtained by polymerizing a light olefin and then hydrotreating it. As the light olefin as a raw material, propylene and / or butene are used. Generally, ethylene and olefin naphtha are also used. As the propylene or butene, for example, C 3 and C 4 from a fluid catalytic cracker (FCC) or a steam cracker can be used. In this case, the diene as an impurity inhibits the polymerization reaction, so it is preferable to remove the diene. In general, it is advantageous to control the content in the raw material to 5% by weight or less, preferably 2% by weight or less. As a light olefin, isobutene is particularly highly reactive and is excellent as a raw material.

【0008】上記軽質オレフィン類を重合する方法とし
ては、特に制限はなく、従来重合ガソリンの製造におい
て慣用さている各種の方法を用いることができる。例え
ば、重合触媒として塩化アルミニウム、三フッ化ホウ素
の各種錯体、有機アルミニウム、ゼオライト(ZSM5
等)、シリカ−アルミナ、固形リン酸触媒など、好まし
くは塩化アルミニウム、有機アルミニウム、ゼオライト
(ZSM5)及びシリカ−アルミナの中から選ばれる少
なくとも一種を用い、温度50〜250℃程度、圧力
0.5〜6MPa程度の条件にて、該軽質オレフィン類
を重合させる方法を、好ましく用いることができる。
The method of polymerizing the light olefins is not particularly limited, and various methods conventionally used in the production of polymerized gasoline can be used. For example, as a polymerization catalyst, aluminum chloride, various complexes of boron trifluoride, organoaluminum, zeolite (ZSM5
Etc.), silica-alumina, solid phosphoric acid catalyst, etc., preferably at least one selected from aluminum chloride, organoaluminum, zeolite (ZSM5) and silica-alumina, at a temperature of about 50 to 250 ° C. and a pressure of 0.5 A method of polymerizing the light olefin under the conditions of about 6 MPa can be preferably used.

【0009】重合反応終了後、固体触媒を用いた場合
は、例えば固液分離などによって該固体触媒を分離・除
去することにより、一方、塩化アルミニウムなどの水溶
性触媒を用いた場合には、水洗などによって除去するこ
とにより、所望の軽質オレフィン類の液状重合物が得ら
れる。固定床の固体触媒を用いた場合は、この分離操作
は不要である。この液状重合物には、オレフィンや微量
の芳香族化合物などの二重結合を有する化合物が含まれ
ているので、本発明においては、該二重結合の水素化を
行う。この水素化処理は、前記重合触媒として、例えば
塩化アルミニウムを用いた場合、重合物中にClが含ま
れているので、そのClをHと置換する役割も有してい
る。
After the completion of the polymerization reaction, when a solid catalyst is used, the solid catalyst is separated and removed by, for example, solid-liquid separation. On the other hand, when a water-soluble catalyst such as aluminum chloride is used, washing with water is performed. Thus, a desired light olefin liquid polymer can be obtained. When a fixed bed solid catalyst is used, this separation operation is unnecessary. Since the liquid polymer contains a compound having a double bond such as an olefin or a trace amount of an aromatic compound, the double bond is hydrogenated in the present invention. In the hydrogenation treatment, when, for example, aluminum chloride is used as the polymerization catalyst, since Cl is contained in the polymer, it also has a role of replacing the Cl with H.

【0010】この水素化処理における触媒としては、従
来水素化触媒として公知のもの、例えば、パラジウム、
ルテニウム、白金、ニッケルなどの中から選ばれる少な
くとも一種の金属を含む触媒などが、通常用いられる。
これらの触媒においては、白金ブラック、ラネーニッケ
ル等の金属そのもの、あるいは金属を担体に担持したも
のが使用される。担体を用いる場合は、一般にアルミ
ナ、活性炭、珪藻土、シリカ−アルミナなどが使用され
る。また、水素化処理においては、反応温度は、通常5
0〜300℃の範囲で選定され、一方反応圧力は、通常
0.5〜3MPaの範囲で選定される。
As the catalyst in this hydrogenation treatment, those conventionally known as hydrogenation catalysts, for example, palladium,
A catalyst containing at least one metal selected from ruthenium, platinum, nickel and the like is usually used.
In these catalysts, metals such as platinum black and Raney nickel, or those in which a metal is supported on a carrier are used. When a carrier is used, alumina, activated carbon, diatomaceous earth, silica-alumina and the like are generally used. In the hydrogenation treatment, the reaction temperature is usually 5
The reaction pressure is usually selected in the range of 0.5 to 3 MPa.

【0011】水素化処理終了後、反応生成物を蒸留処理
することにより、所望の沸点範囲をもつ本発明の燃料油
が得られる。なお、軽質オレフィン類を重合させたの
ち、その重合物を蒸留処理し、それぞれの留分毎に、上
記水素化処理を行ってもよい。このようにして得られた
本発明の燃料油は、実質上オレフィン及び芳香族化合物
が含まれておらず、しかも硫黄分濃度が、通常0.1重
量ppm以下と極めて低い。したがって、この燃料油を
改質処理して水素を製造する場合、改質触媒のコーク被
毒及び硫黄被毒を抑制することができ、該触媒の長寿命
化を図ることができる。
After completion of the hydrotreating, the reaction product is subjected to distillation to obtain the fuel oil of the present invention having a desired boiling point range. After the light olefins are polymerized, the polymer may be subjected to a distillation treatment, and the above-mentioned hydrogenation treatment may be performed for each fraction. The fuel oil of the present invention thus obtained contains substantially no olefins and aromatic compounds, and has a very low sulfur concentration of usually 0.1 ppm by weight or less. Therefore, when hydrogen is produced by reforming this fuel oil, coke poisoning and sulfur poisoning of the reforming catalyst can be suppressed, and the life of the catalyst can be extended.

【0012】本発明の燃料電池用水素の製造方法におい
ては、このようにして得られた燃料油を用いて、水素を
製造するが、その水素製造方法としては、例えば水蒸気
改質法、オートサーマルリフォーミング法及び部分酸化
改質法などが採用される。これらの中で、本発明におい
ては、水蒸気改質法が好ましく用いられる。この水蒸気
改質法で用いる触媒としては特に制限はなく、従来炭化
水素の水蒸気改質触媒として知られている公知のものの
中から、任意のものを適宜選択して用いることができ
る。このような水蒸気改質触媒としては、例えば適当な
担体に、ニッケルやルテニウム、ロジウム、白金などの
貴金属を担持したものを挙げることができる。上記担持
金属は一種担持させてもよく、二種以上を組み合わせて
担持させてもよい。これらの触媒の中で、ルテニウムを
担持させたもの(以下、ルテニウム系触媒と称す。)が
好ましい。
In the method for producing hydrogen for a fuel cell of the present invention, hydrogen is produced using the fuel oil thus obtained. Examples of the hydrogen production method include a steam reforming method and an autothermal method. A reforming method, a partial oxidation reforming method, or the like is employed. Among them, in the present invention, the steam reforming method is preferably used. The catalyst used in the steam reforming method is not particularly limited, and any catalyst may be appropriately selected from known catalysts conventionally known as hydrocarbon steam reforming catalysts. Examples of such a steam reforming catalyst include one in which a noble metal such as nickel, ruthenium, rhodium, and platinum is supported on a suitable carrier. One of the above-mentioned supported metals may be supported, or two or more may be supported in combination. Among these catalysts, those supporting ruthenium (hereinafter referred to as ruthenium-based catalyst) are preferable.

【0013】このルテニウム系触媒の場合、ルテニウム
の担持量は、担体基準で0.05〜20重量%の範囲が
好ましく、より好ましくは0.05〜15重量%、特に
好ましくは0.1〜2重量%の範囲である。担持量が
0.05重量%未満では活性が充分でなく、20重量%
を超えると添加量の割りには活性向上の効果が認められ
ない。このルテニウムを担持する場合、所望により、他
の金属と組み合わせて担持することができる。該他の金
属としては、例えばジルコニウム、コバルト、マグネシ
ウムなどが挙げられる。
In the case of this ruthenium-based catalyst, the supported amount of ruthenium is preferably in the range of 0.05 to 20% by weight, more preferably 0.05 to 15% by weight, and particularly preferably 0.1 to 2% by weight, based on the carrier. % By weight. If the supported amount is less than 0.05% by weight, the activity is not sufficient,
When the amount exceeds the above range, no effect of improving the activity can be recognized even if the amount is added. When the ruthenium is supported, it can be supported in combination with another metal, if desired. Examples of the other metal include zirconium, cobalt, and magnesium.

【0014】一方、担体としては、無機酸化物が好まし
く、具体的にはアルミナ、シリカ、ジルコニア、マグネ
シア及びこれらの混合物などが挙げられる。これらの中
で、特にアルミナ及びジルコニアが好適である。水蒸気
改質処理における反応条件としては、水蒸気と燃料油に
由来する炭素との比S/C(モル比)は、通常2〜5、
好ましくは2〜4、より好ましくは2〜3の範囲で選定
される。
On the other hand, the carrier is preferably an inorganic oxide, and specific examples thereof include alumina, silica, zirconia, magnesia, and mixtures thereof. Of these, alumina and zirconia are particularly preferred. As the reaction conditions in the steam reforming treatment, the ratio S / C (molar ratio) between steam and carbon derived from fuel oil is usually 2 to 5,
Preferably, it is selected in the range of 2 to 4, more preferably 2 to 3.

【0015】また、水蒸気改質触媒層の入口温度を63
0℃以下、さらには600℃以下に保って水蒸気改質を
行うのが好ましい。なお、触媒層出口温度は特に制限は
ないが、650〜800℃の範囲が好ましい。反応圧力
は、通常常圧〜3MPa、好ましくは常圧〜1MPaの
範囲であり、また、LHSVは、通常0.1〜100h
-1、好ましくは0.2〜50h-1の範囲である。このよ
うにして、燃料電池用水素を効率よく製造することがで
きる。
Further, the inlet temperature of the steam reforming catalyst layer is set to 63
It is preferable to carry out steam reforming at a temperature of 0 ° C. or lower, more preferably 600 ° C. or lower. The outlet temperature of the catalyst layer is not particularly limited, but is preferably in the range of 650 to 800 ° C. The reaction pressure is usually in the range of normal pressure to 3 MPa, preferably normal pressure to 1 MPa, and the LHSV is usually 0.1 to 100 h.
-1 , preferably in the range of 0.2 to 50 h -1 . In this way, hydrogen for a fuel cell can be efficiently produced.

【0016】[0016]

【実施例】次に、本発明を実施例により、さらに詳細に
説明するが、本発明は、これらの例によってなんら限定
されるものではない。 実施例1 (1)燃料油の調製 1リットルのオートクレーブに塩化アルミニウム触媒
0.45gと、イソブタン5.6重量%、n−ブタン1
9.5重量%、1−ブテン8.4重量%、イソブテン2
2.8重量%及び2−ブテン43.7重量%からなる混
合物150gとを仕込み、120℃にて20分間重合反
応を行った。次いで、常温、常圧における液体の反応生
成液を水洗して触媒を不活性化したのち、アルカリ洗浄
及び水洗処理した。さらに油層を分離し、無水塩化カル
シウムにより12時間乾燥することにより、重合物を得
た。
Next, the present invention will be described in more detail with reference to examples, but the present invention is not limited to these examples. Example 1 (1) Preparation of fuel oil In a 1-liter autoclave, 0.45 g of an aluminum chloride catalyst, 5.6% by weight of isobutane, and n-butane 1
9.5% by weight, 1-butene 8.4% by weight, isobutene 2
150 g of a mixture consisting of 2.8% by weight and 43.7% by weight of 2-butene was charged, and a polymerization reaction was carried out at 120 ° C. for 20 minutes. Next, the reaction product liquid which was liquid at normal temperature and normal pressure was washed with water to deactivate the catalyst, and then subjected to alkali washing and water washing treatment. Further, the oil layer was separated and dried with anhydrous calcium chloride for 12 hours to obtain a polymer.

【0017】このようにして得られた重合物200g
を、1リットルのオートクレーブにて、水素加圧下、圧
力2.5MPa、温度230℃にて、3時間水素化反応
を行い、オレフィン重合物の水素化及び塩素分の水素置
換反応を行った。なお、水素化触媒として、アルミナ担
体にパラジウム0.5重量%を担持したもの10gを用
いた。触媒を分離した後、反応生成物の蒸留を行い、1
70〜270℃の沸点範囲の留分からなる燃料油を得
た。この燃料油の組成は、飽和炭化水素化合物99.5
容量%、オレフィン0.5容量%、芳香族化合物0容量
%であり、硫黄分濃度は0.1重量ppm未満であっ
た。
200 g of the polymer thus obtained
Was subjected to a hydrogenation reaction in a 1-liter autoclave at a pressure of 2.5 MPa and a temperature of 230 ° C. for 3 hours under a hydrogen pressure to carry out a hydrogenation reaction of an olefin polymer and a hydrogen substitution reaction of chlorine. As the hydrogenation catalyst, 10 g of an alumina carrier supporting 0.5% by weight of palladium was used. After separating the catalyst, the reaction product is distilled to obtain 1
A fuel oil comprising a fraction having a boiling point range of 70 to 270 ° C. was obtained. This fuel oil has a composition of 99.5 saturated hydrocarbon compounds.
% By volume, 0.5% by volume of an olefin, and 0% by volume of an aromatic compound, and the sulfur concentration was less than 0.1 ppm by weight.

【0018】(2)水素の製造 α−アルミナ担体にルテニウム0.5重量%、コバルト
1.0重量%、ジルコニア5.0重量%及びマグネシア
2.0重量%が担持された水蒸気改質触媒を用い、60
0℃で1時間水素還元したのち、上記(1)で得られた
燃料油を、LHSV2.5h-1、水蒸気/炭素モル比
2、触媒層入口温度550℃、触媒層出口温度750℃
の条件で水蒸気改質処理を行い、水素を製造した。下記
の転化率が100%を下回った時点で反応を終了した。
(2) Production of Hydrogen A steam reforming catalyst in which 0.5% by weight of ruthenium, 1.0% by weight of cobalt, 5.0% by weight of zirconia and 2.0% by weight of magnesia are supported on an α-alumina carrier is used. Use, 60
After hydrogen reduction at 0 ° C. for 1 hour, the fuel oil obtained in the above (1) was subjected to LHSV 2.5 h −1 , a steam / carbon molar ratio of 2, a catalyst layer inlet temperature of 550 ° C., and a catalyst layer outlet temperature of 750 ° C.
Was performed under the conditions described above to produce hydrogen. The reaction was terminated when the below-mentioned conversion was less than 100%.

【0019】<転化率> 転化率(%)=100×B/A 〔ただし、Aは時間当たりの供給被処理油中の全炭素量
(モル流量)、Bは時間当たりの改質器出口ガス中のC
1成分の全炭素量(モル流量)でB=CO+CO 2 +C
4 である。〕によって算出した値である。なお、分析
はガスクロマトグラフィー法による。その結果、100
%転化率を維持できた時間は1500時間より長かっ
た。
<Conversion rate> Conversion rate (%) = 100 × B / A [where A is the total amount of carbon in the supplied oil to be treated per hour]
(Molar flow rate), B is C per hour in the reformer outlet gas
B = CO + CO in total carbon amount (molar flow rate) of one component Two+ C
HFourIt is. ]. The analysis
Is by gas chromatography. As a result, 100
% Conversion time is longer than 1500 hours
Was.

【0020】比較例1 組成が飽和炭化水素化合物82.0容量%、オレフィン
0容量%、芳香族化合物18.0容量%であり、硫黄分
濃度が49重量ppmである市販JIS1号灯油を、実
施例1(2)と同様にして水蒸気改質処理を行い、水素
を製造した。その結果、100%転化率を維持できた時
間は1時間であった。
Comparative Example 1 Commercially available JIS No. 1 kerosene having a composition of 82.0% by volume of a saturated hydrocarbon compound, 0% by volume of an olefin, 18.0% by volume of an aromatic compound and a sulfur concentration of 49 ppm by weight was prepared. A steam reforming treatment was performed in the same manner as in Example 1 (2) to produce hydrogen. As a result, the time during which the 100% conversion could be maintained was 1 hour.

【0021】比較例2 組成が飽和炭化水素化合物82.0容量%、オレフィン
0容量%、芳香族化合物18.0容量%であり、硫黄分
濃度が0.1重量ppm未満である市販JIS1号灯油
脱硫品を、実施例1(2)と同様にして水蒸気改質処理
を行い、水素を製造した。その結果、100%転化率を
維持できた時間は50時間であった。
Comparative Example 2 Commercially available JIS No. 1 kerosene having a composition of 82.0% by volume of a saturated hydrocarbon compound, 0% by volume of an olefin, 18.0% by volume of an aromatic compound and a sulfur concentration of less than 0.1 ppm by weight. The desulfurized product was subjected to a steam reforming treatment in the same manner as in Example 1 (2) to produce hydrogen. As a result, the time during which the 100% conversion could be maintained was 50 hours.

【0022】[0022]

【発明の効果】本発明の燃料電池用燃料油は、硫黄分濃
度が極めて低く、改質処理における触媒の硫黄被毒を抑
制し得る上、芳香族化合物、二環以上の環状飽和炭化水
素化合物及びオレフィン類などを実質上含まないので改
質処理における触媒のコーク被毒を抑制することがで
き、触媒の長寿命化を図ることができる。
The fuel oil for a fuel cell according to the present invention has an extremely low sulfur concentration, can suppress the sulfur poisoning of the catalyst in the reforming treatment, and can also contain an aromatic compound or a cyclic saturated hydrocarbon compound having two or more rings. And olefins are substantially not contained, so that coke poisoning of the catalyst in the reforming treatment can be suppressed, and the life of the catalyst can be extended.

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.7 識別記号 FI テーマコート゛(参考) C10G 45/40 C10G 45/40 45/52 45/52 50/00 50/00 69/02 69/02 Fターム(参考) 4G040 EA03 EA06 EA09 EB01 EC02 EC03 4G069 AA03 BA01B BC68A BC70A BC72A BC72B BC75A CC02 DA06 4H013 AA01 4H029 CA00 DA00 DA09 DA10 DA14 5H027 AA02 BA01 ──────────────────────────────────────────────────続 き Continued on the front page (51) Int.Cl. 7 Identification symbol FI Theme coat ゛ (Reference) C10G 45/40 C10G 45/40 45/52 45/52 50/00 50/00 69/02 69/02 F Term (reference) 4G040 EA03 EA06 EA09 EB01 EC02 EC03 4G069 AA03 BA01B BC68A BC70A BC72A BC72B BC75A CC02 DA06 4H013 AA01 4H029 CA00 DA00 DA09 DA10 DA14 5H027 AA02 BA01

Claims (6)

【特許請求の範囲】[Claims] 【請求項1】 軽質オレフィン類を重合した後、水素化
処理してなる燃料電池用燃料油。
1. A fuel oil for a fuel cell obtained by polymerizing a light olefin and then hydrotreating the polymerized light olefin.
【請求項2】 軽質オレフィン類がプロピレン及び/又
はブテンである請求項1記載の燃料電池用燃料油。
2. The fuel oil according to claim 1, wherein the light olefin is propylene and / or butene.
【請求項3】 軽質オレフィン類の重合を、塩化アルミ
ニウム、三フッ化ホウ素及びその錯体、有機アルミニウ
ム、ゼオライト、シリカ−アルミナ及び固形リン酸触媒
の中から選ばれる少なくとも一種からなる触媒を用いて
行う請求項1又は2に記載の燃料電池用燃料油。
3. The polymerization of light olefins is carried out using a catalyst comprising at least one selected from aluminum chloride, boron trifluoride and its complex, organoaluminum, zeolite, silica-alumina and solid phosphoric acid catalyst. The fuel oil for a fuel cell according to claim 1.
【請求項4】 水素化処理を、パラジウム、ルテニウ
ム、白金及びニッケルの中から選ばれる少なくとも一種
の金属を含む触媒を用いて行う請求項1〜3のいずれか
に記載の燃料電池用燃料油。
4. The fuel oil for a fuel cell according to claim 1, wherein the hydrogenation treatment is performed using a catalyst containing at least one metal selected from palladium, ruthenium, platinum and nickel.
【請求項5】 請求項1ないし4のいずれかに記載の燃
料油を用いることを特徴とする燃料電池用水素の製造方
法。
5. A method for producing hydrogen for a fuel cell, comprising using the fuel oil according to claim 1.
【請求項6】 水素製造方法として、水蒸気改質法、オ
ートサーマルリフォーミング法又は部分酸化改質法を採
用する燃料電池用水素の製造方法。
6. A method for producing hydrogen for a fuel cell, which employs a steam reforming method, an autothermal reforming method, or a partial oxidation reforming method as a hydrogen producing method.
JP2000093536A 2000-03-30 2000-03-30 Method for producing fuel oil for fuel cell and hydrogen for fuel cell Pending JP2001279268A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2000093536A JP2001279268A (en) 2000-03-30 2000-03-30 Method for producing fuel oil for fuel cell and hydrogen for fuel cell

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000093536A JP2001279268A (en) 2000-03-30 2000-03-30 Method for producing fuel oil for fuel cell and hydrogen for fuel cell

Publications (1)

Publication Number Publication Date
JP2001279268A true JP2001279268A (en) 2001-10-10

Family

ID=18608710

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000093536A Pending JP2001279268A (en) 2000-03-30 2000-03-30 Method for producing fuel oil for fuel cell and hydrogen for fuel cell

Country Status (1)

Country Link
JP (1) JP2001279268A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2009106933A1 (en) * 2008-02-28 2009-09-03 Ecole Polytechnique Federale De Lausanne (Epfl) Desensitised fuel cell system

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5134404B1 (en) * 1969-11-14 1976-09-27
JPS63150380A (en) * 1986-12-13 1988-06-23 Idemitsu Kosan Co Ltd Improved kerosene
JPH02152933A (en) * 1988-12-02 1990-06-12 Showa Shell Sekiyu Kk Production of high-quality isoparaffin
JPH0691173A (en) * 1992-09-16 1994-04-05 Sekiyu Sangyo Kasseika Center Catalyst for low pressure degradation-desulfurization and its utilization
JPH07501088A (en) * 1991-09-23 1995-02-02 モービル・オイル・コーポレーション Method for producing high cetane number clean fuel
WO1998008771A2 (en) * 1996-08-26 1998-03-05 Arthur D. Little, Inc. Method and apparatus for converting hydrocarbon fuel into hydrogen gas and carbon dioxide

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5134404B1 (en) * 1969-11-14 1976-09-27
JPS63150380A (en) * 1986-12-13 1988-06-23 Idemitsu Kosan Co Ltd Improved kerosene
JPH02152933A (en) * 1988-12-02 1990-06-12 Showa Shell Sekiyu Kk Production of high-quality isoparaffin
JPH07501088A (en) * 1991-09-23 1995-02-02 モービル・オイル・コーポレーション Method for producing high cetane number clean fuel
JPH0691173A (en) * 1992-09-16 1994-04-05 Sekiyu Sangyo Kasseika Center Catalyst for low pressure degradation-desulfurization and its utilization
WO1998008771A2 (en) * 1996-08-26 1998-03-05 Arthur D. Little, Inc. Method and apparatus for converting hydrocarbon fuel into hydrogen gas and carbon dioxide

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2009106933A1 (en) * 2008-02-28 2009-09-03 Ecole Polytechnique Federale De Lausanne (Epfl) Desensitised fuel cell system

Similar Documents

Publication Publication Date Title
KR101197975B1 (en) Hydrogenation method and petrochemical process
CN105102407B (en) Method and the catalyst that wherein uses of the paraffin conversion into alkene
EP1270069B1 (en) Use of a desulfurizing agent
JPS58170541A (en) Novel palladium and gold supported catalyst for selective hydrogenation of unsaturated hydrocarbon
CN102002130B (en) Preparation method of hydrogenated C9 petroleum resin
JPH06158058A (en) Preparation of hydrocarbon fuel
JP2012509952A (en) Catalytic cracking of hydrocarbon streams to maximize light olefins
JPH0513882B2 (en)
WO2001070914A1 (en) Fuel oil for use both in internal combustion in engine and fuel cell
JP2001279274A (en) Fuel oil for fuel cell, desulfurization method and method for producing hydrogen
JP2593334B2 (en) Method for isomerizing 1-butene to 2-butene in C4 hydrocarbon fraction containing butadiene and sulfur compounds
JP2001279268A (en) Method for producing fuel oil for fuel cell and hydrogen for fuel cell
JP4749589B2 (en) Organic sulfur compound-containing fuel desulfurization agent and fuel cell hydrogen production method
JP2001279257A (en) Desulfurizing agent, method for desulfurization and method for producing hydrogen for fuel battery
JP4388665B2 (en) Ni-Cu desulfurizing agent and method for producing hydrogen for fuel cell
CA2493034C (en) Method for desulfurization of liquid hydrocarbons and process for production of hydrogen for fuel cells
CN102649678A (en) Method for removing phenylacetylene through highly selective hydrogenation in presence of styrene
JP4580070B2 (en) Desulfurization agent for petroleum hydrocarbons and method for producing hydrogen for fuel cells
JP4531939B2 (en) Method for producing nickel-copper desulfurization agent
JP4490533B2 (en) Fuel oil for fuel cells
JP2001279271A (en) Method for producing fuel oil for fuel cell and hydrogen for fuel cell
JP2002322482A (en) Method for desulfurization of liquid oil containing organic sulfur compound
JP2003160515A (en) Method for producing decalin from naphthalene by two stage hydrogeneration reaction
JP2001278602A (en) Desulfurization agent, method of desulfurization and method of manufacturing hydrogen for fuel cell
CN107935806B (en) Method for producing ethylene by selective hydrogenation of acetylene

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060922

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100416

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100420

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20100817