JP2001274429A - Hybrid thin film photoelectric converter and producing method therefor - Google Patents

Hybrid thin film photoelectric converter and producing method therefor

Info

Publication number
JP2001274429A
JP2001274429A JP2000082386A JP2000082386A JP2001274429A JP 2001274429 A JP2001274429 A JP 2001274429A JP 2000082386 A JP2000082386 A JP 2000082386A JP 2000082386 A JP2000082386 A JP 2000082386A JP 2001274429 A JP2001274429 A JP 2001274429A
Authority
JP
Japan
Prior art keywords
photoelectric conversion
crystalline
type
type layer
unit
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2000082386A
Other languages
Japanese (ja)
Other versions
JP4592866B2 (en
Inventor
Akihiko Nakajima
昭彦 中島
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kanegafuchi Chemical Industry Co Ltd
Original Assignee
Kanegafuchi Chemical Industry Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kanegafuchi Chemical Industry Co Ltd filed Critical Kanegafuchi Chemical Industry Co Ltd
Priority to JP2000082386A priority Critical patent/JP4592866B2/en
Publication of JP2001274429A publication Critical patent/JP2001274429A/en
Application granted granted Critical
Publication of JP4592866B2 publication Critical patent/JP4592866B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy

Landscapes

  • Photovoltaic Devices (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a highly reliable hybrid thin film photoelectric converter showing an almost fixed photoelectric conversion characteristic without depending on a measuring method. SOLUTION: This hybrid thin film photoelectric converter is provided with a transparent electrode 2, a noncrystalline photoelectric converting unit 3, a crystalline photoelectric converting unit 4, and a rear electrode 5 successively laminated on a transparent insulating substrate 1. The crystalline unit 4 is provided with a p-type layer 4p, a crystalline i-type photoelectric converting layer 4i and an n-type layer 4n successively deposited by a plasma CVD method. The p-type layer 4p provided in the crystalline unit 4 has a crystallization factor greater than 85% on the interface with the crystalline i-type photoelectric converting layer 4i, the crystalline i-type photoelectric converting layer 4i has a crystal structure containing a prismatic crystal extended in the direction of the thickness, and that prismatic crystal is extended in <110> preferential crystal direction.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は半導体薄膜光電変換
装置に関し、特に、ハイブリッド型シリコン系薄膜光電
変換装置の信頼性向上に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a semiconductor thin-film photoelectric conversion device, and more particularly to improvement in reliability of a hybrid silicon-based thin-film photoelectric conversion device.

【0002】[0002]

【従来の技術】半導体薄膜光電変換装置は、一般に、少
なくとも表面が絶縁性の基板上に順次積層された第1電
極、1以上の半導体薄膜光電変換ユニット、および第2
電極を含んでいる。そして、1つの光電変換ユニット
は、p型層とn型層でサンドイッチされたi型層を含ん
でいる。光電変換ユニットの厚さの大部分を占めるi型
層は実質的に真性の半導体層であって、光電変換作用は
主としてこのi型層内で生じる。
2. Description of the Related Art In general, a semiconductor thin-film photoelectric conversion device has a first electrode, at least one semiconductor thin-film photoelectric conversion unit, and a second thin-film photoelectric conversion unit which are sequentially laminated on an insulating substrate at least on the surface.
Includes electrodes. Then, one photoelectric conversion unit includes an i-type layer sandwiched between a p-type layer and an n-type layer. The i-type layer occupying most of the thickness of the photoelectric conversion unit is a substantially intrinsic semiconductor layer, and the photoelectric conversion action mainly occurs in the i-type layer.

【0003】したがって、光電変換ユニットは、それに
含まれるp型とn型の導電型層が非晶質か結晶質かにか
かわらず、i型の光電変換層が非晶質のものは非晶質ユ
ニットと称され、i型層が結晶質のものは結晶質ユニッ
トと称される。なお、本願明細書内で、「結晶質」の用
語は、薄膜光電変換装置の技術分野で一般に用いられて
いるように、部分的に非晶質状態を含むものをも意味す
るものとする。
Therefore, regardless of whether the p-type and n-type conductive layers included therein are amorphous or crystalline, a photoelectric conversion unit having an amorphous i-type photoelectric conversion layer has an amorphous structure. A unit in which the i-type layer is crystalline is called a crystalline unit. In the specification of the present application, the term “crystalline” also means a material that partially includes an amorphous state, as generally used in the technical field of a thin-film photoelectric conversion device.

【0004】他方、p型やn型の導電型層は光電変換ユ
ニット内に拡散電位を生じさせる役割を果たし、その拡
散電位の大きさによって光電変換装置の重要な特性の1
つである開放端電圧の値も左右される。しかし、これら
の導電型層は光電変換に直接寄与しない不活性な層であ
り、導電型層にドープされた不純物によって吸収される
光は発電に寄与しない損失となる。したがって、導電型
層は、必要な拡散電位を生じさせることを前提として、
できるだけ薄い厚さにすることが望まれる。
On the other hand, the p-type or n-type conductive layer plays a role of generating a diffusion potential in the photoelectric conversion unit, and one of the important characteristics of the photoelectric conversion device depends on the magnitude of the diffusion potential.
The value of the open-circuit voltage is also affected. However, these conductive type layers are inactive layers that do not directly contribute to photoelectric conversion, and light absorbed by impurities doped in the conductive type layers is a loss that does not contribute to power generation. Therefore, on the assumption that the conductive type layer generates a necessary diffusion potential,
It is desired that the thickness be as thin as possible.

【0005】ここで、ガラス板のような透明絶縁基板上
に薄膜光電変換装置が形成される場合、その基板は光電
変換装置の表面保護用カバーガラスの役割を果たさせる
ことができ、一般に、ガラス基板上には透明電極を介し
て比較的大きなバンドギャップのp型層、i型光電変換
層、および比較的小さなバンドギャップのn型層の順に
積層されることが多い。
[0005] When a thin-film photoelectric conversion device is formed on a transparent insulating substrate such as a glass plate, the substrate can serve as a cover glass for protecting the surface of the photoelectric conversion device. In many cases, a p-type layer having a relatively large bandgap, an i-type photoelectric conversion layer, and an n-type layer having a relatively small bandgap are stacked on a glass substrate via a transparent electrode.

【0006】また、薄膜光電変換装置の変換効率を向上
させる方法として、2以上の光電変換ユニットを積層し
てタンデム型にする方法がある。この方法においては、
光電変換装置の光入射側に大きなバンドギャップを有す
る光電変換層を含む前方ユニットを配置し、その後ろに
順に小さなバンドギャップを有する(たとえばSi−G
e合金の)光電変換層を含む後方ユニットを配置するこ
とにより、入射光の広い波長範囲にわたって光電変換を
可能にし、これによって装置全体の変換効率の向上が図
られる。タンデム型薄膜光電変換装置の中でも、非晶質
光電変換ユニットと結晶質光電変換ユニットを積層した
ものはハイブリッド型薄膜光電変換装置と称される。
As a method of improving the conversion efficiency of a thin film photoelectric conversion device, there is a method of stacking two or more photoelectric conversion units to form a tandem type. In this method,
A front unit including a photoelectric conversion layer having a large band gap is disposed on the light incident side of the photoelectric conversion device, and a rear band unit having a smaller band gap (for example, Si-G
By arranging the rear unit including the photoelectric conversion layer (of the e-alloy), it is possible to perform photoelectric conversion over a wide wavelength range of incident light, thereby improving the conversion efficiency of the entire device. Among tandem-type thin film photoelectric conversion devices, a device in which an amorphous photoelectric conversion unit and a crystalline photoelectric conversion unit are stacked is referred to as a hybrid thin film photoelectric conversion device.

【0007】たとえば、i型非晶質シリコンが光電変換
し得る光の波長は長波長側において約800nm程度ま
でであるが、i型結晶質シリコンはそれより長い約11
00nm程度の波長の光までを光電変換することができ
る。したがって、ガラス基板上にハイブリッド型薄膜光
電変換装置が形成される場合、通常は、そのガラス基板
上に透明電極、非晶質ユニット、結晶質ユニット、およ
び裏面電極がこの順に積層される。
For example, the wavelength of light that can be photoelectrically converted by i-type amorphous silicon is up to about 800 nm on the long wavelength side, while i-type crystalline silicon has a longer wavelength of about 11 nm.
It is possible to photoelectrically convert light having a wavelength of about 00 nm. Therefore, when a hybrid thin-film photoelectric conversion device is formed on a glass substrate, usually, a transparent electrode, an amorphous unit, a crystalline unit, and a back electrode are laminated on the glass substrate in this order.

【0008】[0008]

【発明が解決しようとする課題】このようなハイブリッ
ド型薄膜光電変換装置は、単一の非晶質光電変換ユニッ
トまたは単一の結晶質光電変換ユニットのいずれかを含
むシングル型薄膜光電変換装置に比べて、顕著に高い光
電変換効率を発揮し得るものである。
SUMMARY OF THE INVENTION Such a hybrid thin film photoelectric conversion device is a single type thin film photoelectric conversion device including either a single amorphous photoelectric conversion unit or a single crystalline photoelectric conversion unit. In comparison, it can exhibit significantly higher photoelectric conversion efficiency.

【0009】しかし最近において、本発明者は、現時点
において原因不明ではあるが、ハイブリッド型薄膜光電
変換装置について測定して得られる光電変換特性値がそ
の測定方法に依存して変動することを見出した。このこ
とは、ある測定方法によって得られた光電変換特性値を
公称性能として表示されたハイブリッド型薄膜光電変換
装置がその実際の使用状態において公称どおりの性能を
発揮し得るものかについて信頼し得ないことを意味す
る。このように測定方法に依存して得られる光電変換特
性値が変動するということは、シングル型薄膜光電変換
装置や複数の非晶質ユニットのみを含むタンデム型薄膜
光電変換装置では起こらなかったことである。
However, recently, the present inventor has found that although the cause is unknown at this time, the photoelectric conversion characteristic value obtained by measuring the hybrid thin-film photoelectric conversion device varies depending on the measurement method. . This means that the hybrid thin-film photoelectric conversion device, in which the photoelectric conversion characteristic value obtained by a certain measurement method is displayed as the nominal performance, cannot be relied on as to whether the hybrid thin-film photoelectric conversion device can perform the nominal performance in its actual use state. Means that. The fact that the obtained photoelectric conversion characteristic value fluctuates depending on the measurement method does not occur in a single-type thin-film photoelectric conversion device or a tandem-type thin-film photoelectric conversion device including only a plurality of amorphous units. is there.

【0010】一般に、光電変換装置の光電変換特性値は
図3の簡略化された回路図で示されているような方法に
よって測定される。この図3において、薄膜光電変換装
置11はそれに含まれるpin半導体接合に基づくダイ
オードとしての性質を有しており、光Lを受けたときに
はそのダイオードの整流作用の方向である順方向に反す
る逆方向の出力電流を生じる。光電変換装置11は外部
電圧源12および電流計13と直列接続されており、こ
れらは閉ループを構成している。従来では、外部電圧源
12はダイオード11に対して順方向に任意の値の電圧
を印加し得る可変DC(直流)電圧源が用いられてい
る。
Generally, a photoelectric conversion characteristic value of a photoelectric conversion device is measured by a method as shown in a simplified circuit diagram of FIG. In FIG. 3, the thin-film photoelectric conversion device 11 has properties as a diode based on a pin semiconductor junction included therein, and when receiving the light L, a reverse direction opposite to a forward direction which is a rectifying direction of the diode. Output current. The photoelectric conversion device 11 is connected in series with an external voltage source 12 and an ammeter 13, and these constitute a closed loop. Conventionally, as the external voltage source 12, a variable DC (direct current) voltage source capable of applying a voltage of an arbitrary value to the diode 11 in the forward direction is used.

【0011】そして、一般に、光電変換装置11にソー
ラシミュレータからの光Lを照射した状態で外部DC電
圧源12からダイオード11の順方向の電圧を0電位か
ら正電位の方へスウィープしてDC電圧を印加するか、
または予想される開放端出力電圧より大きな正電位から
0電位の方へスウィープしてDC電圧を印加することに
よって、0電位のときの光電変換装置11の出力電流値
を短絡電流値Jscとして測定し、開放端電圧値Voc
は出力電流を0にするのに釣り合う外部印加電圧から測
定される。ところが、本発明者は、ハイブリッド型薄膜
光電変換装置に関しては、外部印加電圧をスウィープす
る方向、その電圧スウィープの速度、さらには電圧スウ
ィープ開始前のプレバイアス電圧などに依存して、測定
値として得られる光電変換特性値が変動することを見出
したのである。
In general, when the photoelectric conversion device 11 is irradiated with the light L from the solar simulator, the forward voltage of the diode 11 is swept from the zero potential to the positive potential from the external DC voltage source 12 to the DC voltage. Or apply
Alternatively, the output current value of the photoelectric conversion device 11 at the time of 0 potential is measured as the short-circuit current value Jsc by sweeping from the positive potential larger than the expected open-end output voltage to the 0 potential and applying a DC voltage. , Open end voltage value Voc
Is measured from an externally applied voltage balanced to make the output current zero. However, the present inventor has obtained a hybrid thin-film photoelectric conversion device as a measured value depending on the direction in which the externally applied voltage is swept, the speed of the voltage sweep, and the pre-bias voltage before the start of the voltage sweep. It was found that the obtained photoelectric conversion characteristic value fluctuated.

【0012】そこで、本発明者は、外部DC電圧源12
としてダイオード11に対して順方向と逆方向のいずれ
においても任意の電圧を印加し得るものを用い、系統的
に測定方法を変化させることによって従来の1つのハイ
ブリッド型薄膜光電変換装置における光電変換特性値の
変動を調べた。その結果が、図4のグラフに示されてい
る。
Therefore, the present inventor has proposed an external DC voltage source 12.
That can apply an arbitrary voltage to the diode 11 in both the forward direction and the reverse direction, and systematically change the measuring method to obtain the photoelectric conversion characteristics of one conventional hybrid thin-film photoelectric conversion device. The variation of the value was examined. The result is shown in the graph of FIG.

【0013】図4のグラフにおいて、横軸は光電変換装
置11の出力電圧(V)を表わし、縦軸は出力電流密度
(mA/cm2)を表わしている。グラフ中の実線の曲
線は、−2.5V(ダイオードに対する逆方向電圧)の
プレバイアス電圧を5分以上印加した後に、100ms
ec以内にソーラシミュレータからAM1.5のスペク
トル分布と100mW/cm2のエネルギ密度を有する
擬似太陽光の照射を開始するとともに、+2.5V(ダ
イオードに対する順方向電圧)から−2.5Vまで1.
5secで外部印加電圧をスウィープしたときの測定結
果を示している。
In the graph of FIG. 4, the horizontal axis represents the output voltage (V) of the photoelectric conversion device 11, and the vertical axis represents the output current density (mA / cm 2 ). The solid curve in the graph indicates that the pre-bias voltage of -2.5 V (reverse voltage for the diode) was applied for 5 minutes or more, and then 100 ms.
The irradiation of simulated sunlight having a spectral distribution of AM1.5 and an energy density of 100 mW / cm 2 from the solar simulator is started within ec, and from +2.5 V (forward voltage to the diode) to −2.5 V.
The measurement results when the external applied voltage is swept in 5 seconds are shown.

【0014】同様に、点線の曲線は、−2.5Vのプレ
バイアス電圧を5分以上印加した後に+2.5Vから−
2.5Vまで20secで電圧スウィープしたときの測
定結果を示している。また、破線の曲線は、−2.5V
のプレバイアス電圧を5分以上印加した後に−2.5V
から+2.5Vまで20secで電圧スウィープしたと
きの測定結果を示している。さらに、一点鎖線の曲線
は、+2.5Vのプレバイアス電圧を5分以上印加した
後に+2.5Vから−2.5Vまで1.5secで電圧
スウィープしたときの測定結果を示している。
[0014] Similarly, the dotted curve shows that the pre-bias voltage of -2.5 V is applied for more than 5 minutes, and the curve from -2.5 V to -2.5 V is applied.
The measurement result when the voltage sweep is performed in 20 seconds to 2.5 V is shown. The broken line curve is -2.5V
-2.5V after applying the pre-bias voltage of 5 minutes or more
It shows the measurement results when a voltage sweep is performed from 20 to +2.5 V in 20 seconds. Further, the one-dot chain line shows the measurement results when the voltage was swept from +2.5 V to -2.5 V in 1.5 seconds after the pre-bias voltage of +2.5 V was applied for 5 minutes or more.

【0015】図4からわかるように、短絡電流密度値J
scとしては測定方法に依存することなくほぼ10mA
/cm2が得られているが、開放端電圧値Vocは測定
方法に依存して1.22Vから1.34Vまで変動して
いる。これに伴って、最大出力時の光電変換効率値も、
8.2%から9.1%まで変動している。
As can be seen from FIG. 4, the short-circuit current density J
As sc, almost 10 mA without depending on the measurement method
/ Cm 2, but the open-end voltage value Voc varies from 1.22 V to 1.34 V depending on the measurement method. Along with this, the photoelectric conversion efficiency value at the maximum output also
It fluctuates from 8.2% to 9.1%.

【0016】本発明者が見出して確認したこのような課
題に鑑み、本発明は、測定方法に依存することなくほぼ
一定の光電変換特性値を示す信頼性の高いハイブリッド
型薄膜光電変換装置を提供することを目的としている。
In view of such problems that the present inventors have found and confirmed, the present invention provides a highly reliable hybrid thin-film photoelectric conversion device that exhibits a substantially constant photoelectric conversion characteristic value without depending on a measuring method. It is intended to be.

【0017】[0017]

【課題を解決するための手段】本発明によれば、ハイブ
リッド型薄膜光電変換装置は、透明絶縁基板上に順次積
層された透明電極、非晶質光電変換ユニット、結晶質光
電変換ユニット、および裏面電極を含み、その結晶質ユ
ニットはプラズマCVD法によって順次堆積されたp型
層、結晶質i型光電変換層、およびn型層を含み、結晶
質ユニットに含まれるp型層は結晶質i型光電変換層と
の界面において85%より大きな結晶化分率を有し、結
晶質i型光電変換層はその厚さ方向に沿って延びる柱状
晶を含む結晶構造を有し、その柱状晶は〈110〉優先
結晶方向に沿って伸びていることを特徴としている。な
お、結晶質ユニットに含まれるp型層は、結晶質i型光
電変換層との界面において95%以上の結晶化分率を有
していることがより好ましい。
According to the present invention, there is provided a hybrid thin-film photoelectric conversion device comprising a transparent electrode, an amorphous photoelectric conversion unit, a crystalline photoelectric conversion unit, and a back surface which are sequentially laminated on a transparent insulating substrate. The crystalline unit includes an electrode, and the crystalline unit includes a p-type layer, a crystalline i-type photoelectric conversion layer, and an n-type layer sequentially deposited by a plasma CVD method, and the p-type layer included in the crystalline unit includes a crystalline i-type. The crystalline i-type photoelectric conversion layer has a crystal structure including columnar crystals extending along its thickness direction, having a crystallization fraction of greater than 85% at the interface with the photoelectric conversion layer. 110> extending along the preferred crystal direction. The p-type layer included in the crystalline unit more preferably has a crystallization fraction of 95% or more at the interface with the crystalline i-type photoelectric conversion layer.

【0018】このようなハイブリッド型薄膜光電変換装
置の製造方法においては、結晶質ユニット含まれるp型
層と結晶質i型層は少なくともシラン系原料ガスと水素
希釈ガスを含む混合ガスを用いたプラズマCVDによっ
て堆積され、結晶質ユニットに含まれるp型層は400
Pa(3Torr)未満のガス圧のもとで堆積され、結
晶質i型層は667Pa(5Torr)以上のガス圧の
もとで堆積されることを特徴としている。なお、結晶質
ユニットに含まれるp型層の堆積の間には、シラン系原
料ガスに対する水素希釈ガスの混合比が100倍より大
きくされることが好ましい。
In the method of manufacturing such a hybrid thin film photoelectric conversion device, the p-type layer and the crystalline i-type layer included in the crystalline unit are formed by a plasma using a mixed gas containing at least a silane-based source gas and a hydrogen diluent gas. The p-type layer deposited by CVD and contained in crystalline units is 400
It is characterized in that it is deposited under a gas pressure of less than Pa (3 Torr) and the crystalline i-type layer is deposited under a gas pressure of 667 Pa (5 Torr) or more. In addition, during the deposition of the p-type layer included in the crystalline unit, it is preferable that the mixing ratio of the hydrogen diluent gas to the silane-based source gas is made larger than 100 times.

【0019】[0019]

【発明の実施の形態】以下の種々の実験例に基づいて、
本発明の効果を発揮し得る実施の形態を明らかにする。
DESCRIPTION OF THE PREFERRED EMBODIMENTS Based on the following various experimental examples,
Embodiments that can exhibit the effects of the present invention will be clarified.

【0020】まず、種々の実験を開始するに際してし、
ハイブリッド型薄膜光電変換装置に含まれる結晶質光電
変換ユニットの形成方法として参考になる特開平11−
145499は、プラズマ反応室内の圧力が400Pa
(3Torr)以上のもとで、シラン系ガスとその50
倍以上の混合比の水素希釈ガスを用いることによって、
高品質の結晶質シリコン系光電変換ユニットが高速度で
堆積され得ることを開示している。そして、その反応室
の圧力は667Pa(5Torr)以上であることがよ
り好ましい旨を述べている。
First, when starting various experiments,
Japanese Unexamined Patent Application Publication No. 11-110, which is referred to as a method for forming a crystalline photoelectric conversion unit included in a hybrid type thin film photoelectric conversion device
145499 indicates that the pressure in the plasma reaction chamber is 400 Pa
(3 Torr) or more and the silane gas and its 50
By using a hydrogen dilution gas with a mixing ratio of twice or more,
It discloses that a high quality crystalline silicon-based photoelectric conversion unit can be deposited at a high speed. And, it is more preferable that the pressure in the reaction chamber is 667 Pa (5 Torr) or more.

【0021】そこで、本発明者は、以下に述べる方法と
条件のもとで、図1の模式的な断面図により示されてい
るようなハイブリッド型薄膜光電変換装置を作製した。
Therefore, the present inventor produced a hybrid thin-film photoelectric conversion device as shown in the schematic sectional view of FIG. 1 under the method and conditions described below.

【0022】すなわち、まず最初の実験例において、厚
さ約600nmのTCO(透明導電性酸化物)電極2が
1主面上に形成されたガラス基板1が用意された。TC
O電極2上には、厚さ約300nmの非晶質シリコン系
光電変換ユニット3がプラズマCVDによって堆積され
た。非晶質光電変換ユニット3はp型層3p、非晶質光
電変換層3i、およびn型層3nを含み、これらの層は
非晶質ユニットを形成する場合の周知慣用的条件のもと
で堆積された。
That is, in the first experimental example, a glass substrate 1 having a TCO (transparent conductive oxide) electrode 2 having a thickness of about 600 nm formed on one main surface was prepared. TC
An amorphous silicon-based photoelectric conversion unit 3 having a thickness of about 300 nm was deposited on the O electrode 2 by plasma CVD. The amorphous photoelectric conversion unit 3 includes a p-type layer 3p, an amorphous photoelectric conversion layer 3i, and an n-type layer 3n. These layers are formed under well-known and ordinary conditions when forming an amorphous unit. Deposited.

【0023】非晶質ユニット3上には、150℃の基板
温度、667Pa(5Torr)の反応室内圧力、およ
び100mW/cm2のRF(高周波)パワーのもと
で、結晶質光電変換ユニット4がプラズマCVDによっ
て形成された。この結晶質ユニット4に含まれるp型層
4pは、シランの20sccmと、水素の8000sc
cmと、5000ppmに水素希釈されたジボランを含
むジボラン含有ガスの30sccmを用いて、20nm
の厚さに堆積された。結晶質i型光電変換層4iは、シ
ランの20sccmと、水素の1500sccmを用い
て、2.5μmの厚さに堆積された。こうして形成され
た結晶質i型光電変換層4iは、その厚さ方向に沿って
延びる柱状晶を含む結晶構造を有し、その柱状晶は〈1
10〉優先結晶方向に沿って伸びていた。そして、n型
層4nは、シランの20sccmと、水素の6000s
ccmと、5000ppmに水素希釈されたホスフィン
を含むホスフィン含有ガスの80sccmを用いて、3
0nmの厚さに堆積された。
A crystalline photoelectric conversion unit 4 is placed on the amorphous unit 3 under a substrate temperature of 150 ° C., a reaction chamber pressure of 667 Pa (5 Torr), and an RF (high frequency) power of 100 mW / cm 2. It was formed by plasma CVD. The p-type layer 4p included in the crystalline unit 4 has 20 sccm of silane and 8000 sc of hydrogen.
using 20 sccm of a diborane-containing gas containing diborane hydrogen-diluted to 5000 ppm
Deposited to a thickness of. The crystalline i-type photoelectric conversion layer 4i was deposited to a thickness of 2.5 μm using 20 sccm of silane and 1500 sccm of hydrogen. The crystalline i-type photoelectric conversion layer 4i thus formed has a crystal structure including columnar crystals extending along the thickness direction, and the columnar crystals are <1
10> It extends along the preferred crystal direction. The n-type layer 4n is made of 20 sccm of silane and 6000 s of hydrogen.
ccm and 80 sccm of a phosphine-containing gas containing phosphine diluted to 5000 ppm with hydrogen.
Deposited to a thickness of 0 nm.

【0024】結晶質光電変換ユニット4上には、裏面電
極5として、厚さ80nmのTCO層5tと厚さ400
nmの銀層5mが、それぞれスパッタリングと蒸着によ
って堆積された。このTCO層5tは、銀層5mの光反
射性を高く維持するとともに、銀原子が光電変換ユニッ
ト4,3内へ拡散することを防止するように作用し得る
ものである。
On the crystalline photoelectric conversion unit 4, a TCO layer 5 t having a thickness of 80 nm and a thickness 400
A 5 nm silver layer was deposited by sputtering and evaporation, respectively. The TCO layer 5t can function to maintain the light reflectivity of the silver layer 5m high and to prevent silver atoms from diffusing into the photoelectric conversion units 4 and 3.

【0025】こうして作製された最初の実験例によるハ
イブリッド型薄膜光電変換装置に関して、図4の場合と
同様な測定において+2.5Vのプレバイアス電圧を1
0分以上印加した後に+2.5Vから−2.5Vまで
1.5secの電圧スウィープを行なった場合に、1.
22Vの開放端電圧値が得られた。他方、−2.5Vの
プレバイアス電圧を10分以上印加した後に+2.5V
から−2.5Vまで1.5secで電圧スウィープした
場合には、1.36Vの開放端電圧値が得られた。すな
わち、この最初の実験例によるハイブリッド型薄膜光電
変換装置は、測定方法に依存して0.14Vも変化する
開放端電圧値を示し、信頼性に乏しいものと言わざるを
得ない。
With respect to the hybrid thin-film photoelectric conversion device according to the first experimental example thus manufactured, a pre-bias voltage of +2.5 V was set to 1 in the same measurement as in FIG.
When a voltage sweep is performed for 1.5 seconds from +2.5 V to -2.5 V after application for 0 minutes or more, 1.
An open-end voltage value of 22 V was obtained. On the other hand, after applying a pre-bias voltage of -2.5 V for 10 minutes or more, +2.5 V
When the voltage was swept from 1.5 to -2.5 V in 1.5 seconds, an open-end voltage value of 1.36 V was obtained. In other words, the hybrid thin-film photoelectric conversion device according to the first experimental example exhibits an open-circuit voltage value that changes by as much as 0.14 V depending on the measurement method, and has to be said to have poor reliability.

【0026】そこで、本発明者は、図1に示されている
ようなハイブリッド型薄膜光電変換装置をさらに多数作
製するに際して、非晶質光電変換ユニット3の厚さを
0.2〜0.4μmの範囲で、結晶質光電変換ユニット
4の厚さを1.0〜5.0μmの範囲で、さらに結晶質
ユニット4に含まれるp型層4pの堆積時におけるプラ
ズマ反応室の圧力を133〜1330Pa(1〜10T
orr)の範囲で種々に変化させ、その他の条件は最初
の実験例と同じにした多くの実験を行なった。
Therefore, the present inventor, when fabricating more hybrid thin-film photoelectric conversion devices as shown in FIG. , The thickness of the crystalline photoelectric conversion unit 4 is in the range of 1.0 to 5.0 μm, and the pressure of the plasma reaction chamber during the deposition of the p-type layer 4p included in the crystalline unit 4 is 133 to 1330 Pa. (1-10T
A number of experiments were performed with various changes in the range of (orr) and other conditions being the same as those of the first experimental example.

【0027】これらの実験において得られたハイブリッ
ド型薄膜光電変換装置について、図4の場合と同様にし
て光電変換特性値が測定された。その結果、ハイブリッ
ド型薄膜光電変換装置に含まれる非晶質ユニット3と結
晶質ユニット4との厚さの変化に関して、測定方法に依
存する光電変換特性値の変動が系統的な関係を有するこ
とは観察されなかった。また、いずれの結晶質ユニット
4に含まれるi型光電変換層4iも、その厚さ方向に沿
った柱状晶の結晶構造を有していた。
With respect to the hybrid thin-film photoelectric conversion devices obtained in these experiments, photoelectric conversion characteristic values were measured in the same manner as in the case of FIG. As a result, regarding the change in the thickness between the amorphous unit 3 and the crystalline unit 4 included in the hybrid type thin film photoelectric conversion device, the variation in the photoelectric conversion characteristic value depending on the measurement method has a systematic relationship. Not observed. Also, the i-type photoelectric conversion layer 4i included in any of the crystalline units 4 had a columnar crystal structure along the thickness direction.

【0028】しかし、結晶質ユニット4に含まれるp型
層4pの堆積時における反応室の圧力の変化に関して
は、測定方法に依存する光電変換特性値の変動が系統的
な関係を有することが見出された。この結果が、図2に
示されている。
However, regarding the change of the pressure in the reaction chamber during the deposition of the p-type layer 4p included in the crystalline unit 4, it is found that the fluctuation of the photoelectric conversion characteristic value depending on the measurement method has a systematic relationship. Was issued. The result is shown in FIG.

【0029】図2のグラフにおいて、横軸は結晶質ユニ
ット4に含まれるp型層4pの堆積時における反応室の
圧力(×133Pa:Torr)を表わしている。他
方、このグラフの縦軸は、+2.5Vのプレバイアス電
圧を10分以上印加の後10秒経過する前に+2.5V
から−2.5Vまで1.5secで電圧スウィープした
場合の測定Voc値から、−2.5Vのプレバイアス電
圧印加後に+2.5Vから−2.5Vまで1.5sec
で電圧スウィープした場合の測定Voc値を差し引いた
開放端電圧変動値ΔVoc(V)を表わしている。
In the graph of FIG. 2, the horizontal axis represents the pressure (× 133 Pa: Torr) of the reaction chamber when the p-type layer 4p included in the crystalline unit 4 is deposited. On the other hand, the vertical axis of this graph indicates +2.5 V before applying 10 seconds or more after applying the pre-bias voltage of +2.5 V for 10 minutes or more.
From the measured Voc value when a voltage sweep was performed from 1.5 V to -2.5 V in 1.5 sec, 1.5 sec from +2.5 V to -2.5 V after applying a pre-bias voltage of -2.5 V
Represents the open-ended voltage fluctuation value ΔVoc (V) obtained by subtracting the measured Voc value when the voltage sweeps.

【0030】このグラフから明らかなように、結晶質ユ
ニット4に含まれるp型層4pの成膜時の反応室圧力が
400Pa(3Torr)以上の場合にハイブリッド型
薄膜光電変換装置の開放端電圧変動値ΔVocの絶対値
が大きくなり、その信頼性が低下することがわかる。他
方、p型層4pの成膜圧力が400Pa(3Torr)
未満の場合には、開放端電圧変動値ΔVocがほとんど
0である0.002V以下(測定誤差範囲と考えられ
る)となり、信頼性の高いハイブリッド型薄膜光電変換
装置が得られることがわかる。
As is clear from this graph, when the reaction chamber pressure at the time of forming the p-type layer 4p included in the crystalline unit 4 is 400 Pa (3 Torr) or more, the open-end voltage fluctuation of the hybrid thin-film photoelectric conversion device is obtained. It can be seen that the absolute value of the value ΔVoc increases and its reliability decreases. On the other hand, the deposition pressure of the p-type layer 4p is 400 Pa (3 Torr).
When the value is less than 0.002 V, the open-end voltage fluctuation value ΔVoc is almost 0 (which is considered to be a measurement error range), which indicates that a highly reliable hybrid thin-film photoelectric conversion device can be obtained.

【0031】本発明者は、ハイブリッド型薄膜光電変換
装置の開放端電圧変動値ΔVocに対して結晶質ユニッ
ト4に含まれるp型層4pが重大な影響を及ぼすことに
鑑み、さらに以下のような実験を試みた。すなわち。結
晶質ユニット4に含まれるp型層4pについての前述の
堆積条件と同じ条件のもとで、直接ガラス基板上に厚さ
20nmのp型層を堆積した。
In view of the fact that the p-type layer 4p included in the crystalline unit 4 has a significant effect on the open-end voltage fluctuation value ΔVoc of the hybrid thin-film photoelectric conversion device, the present inventor further described the following. An experiment was attempted. That is. Under the same deposition conditions as described above for the p-type layer 4p included in the crystalline unit 4, a 20-nm-thick p-type layer was directly deposited on the glass substrate.

【0032】このガラス基板上のp型層について、25
0〜1200μmの波長範囲で分光エリプソメータを用
いて非晶質シリコンと結晶質シリコンの成分比、すなわ
ち結晶化分率(結晶化度ともいう)を測定した。その結
果、p型層は、ガラス基板側10nmの厚さ部分と成長
表面側10nmの厚さ部分とで結晶化度が種々に異なる
ことが判明した。このような結果が、表1に示されてい
る。
For the p-type layer on this glass substrate, 25
The component ratio between amorphous silicon and crystalline silicon, that is, the crystallization fraction (also referred to as crystallinity) was measured using a spectroscopic ellipsometer in the wavelength range of 0 to 1200 μm. As a result, it was found that the crystallinity of the p-type layer was variously different between the thickness of 10 nm on the glass substrate side and the thickness of 10 nm on the growth surface side. Such a result is shown in Table 1.

【0033】[0033]

【表1】 [Table 1]

【0034】表1からわかるように、p型層の成膜圧力
が1.0〜13.0(×133Pa:Torr)の範囲
で変化しても、そのp型層のガラス基板側における結晶
化度は65〜80%の比較的狭い範囲内で変動している
が、成長表面側の結晶化度は遥かに大きな範囲で変動し
ている。すなわち、p型層の成長面側において、その成
膜圧力が約400Pa(3Torr)以下の場合には結
晶化度が約95%以上であり、667Pa(5Tor
r)前後では結晶化度が70〜80%程度であり、そし
て約1333Pa(10Torr)以上では結晶化度が
約40%以下になっている。
As can be seen from Table 1, even if the film forming pressure of the p-type layer changes in the range of 1.0 to 13.0 (× 133 Pa: Torr), the crystallization of the p-type layer on the glass substrate side. The degree of crystallinity varies within a relatively narrow range of 65 to 80%, but the crystallinity on the growth surface side varies over a much larger range. That is, when the film forming pressure on the growth surface side of the p-type layer is about 400 Pa (3 Torr) or less, the crystallinity is about 95% or more and 667 Pa (5 Torr).
Before and after r), the crystallinity is about 70 to 80%, and at about 1333 Pa (10 Torr) or more, the crystallinity is about 40% or less.

【0035】このような事実と図2の結果とを照らし合
わせて考えれば、測定方法に依存する開放端電圧変動値
ΔVocが小さくて信頼性の高いハイブリッド型薄膜光
電変換装置を得るためには、結晶質ユニット4に含まれ
るp型層4pが結晶質i型光電変換層4iとの界面にお
いて85%より大きな結晶化度を有することが望まれ、
95%以上の結晶化度を有することがより好ましいと考
えられる。
Considering these facts and the results of FIG. 2, in order to obtain a highly reliable hybrid thin-film photoelectric conversion device in which the open-circuit voltage fluctuation value ΔVoc depending on the measurement method is small, It is desired that the p-type layer 4p included in the crystalline unit 4 has a degree of crystallinity greater than 85% at the interface with the crystalline i-type photoelectric conversion layer 4i,
It is believed that having a crystallinity of 95% or more is more preferred.

【0036】なお、一般に、プラズマCVDで堆積され
たシリコン層の結晶化度はその下地の影響をも受けるの
で、結晶質ユニット4に含まれるp型層4pの結晶化度
は、その下地となる非晶質ユニット3に含まれるn型層
3nの結晶化度の影響をも受けると考えられる。しか
し、一般に、非晶質ユニット3に含まれるn型層3nの
結晶化度がそんなに高いとは考えられないので、結晶質
ユニット4に含まれるp型層4pにおける成膜圧力とそ
の結晶化度の関係も、ガラス基板上に堆積されたp型層
におけるのと同様な傾向にあるものと推定される。
In general, the crystallinity of a silicon layer deposited by plasma CVD is also affected by the underlying layer, so the crystallinity of the p-type layer 4p included in the crystalline unit 4 is the underlying layer. It is considered that the influence of the crystallinity of the n-type layer 3n included in the amorphous unit 3 also exists. However, since the crystallinity of the n-type layer 3n included in the amorphous unit 3 is generally not considered to be so high, the film forming pressure and the crystallinity in the p-type layer 4p included in the crystalline unit 4 are considered. Is presumed to have the same tendency as in the p-type layer deposited on the glass substrate.

【0037】[0037]

【発明の効果】以上のように、本発明によれば、測定方
法に依存することなくほぼ一定の光電変換特性値を示す
信頼性の高いハイブリッド型薄膜光電変換装置を提供す
ることができる。
As described above, according to the present invention, it is possible to provide a highly reliable hybrid thin-film photoelectric conversion device exhibiting a substantially constant photoelectric conversion characteristic value without depending on the measuring method.

【図面の簡単な説明】[Brief description of the drawings]

【図1】 本発明の実施の形態によるハイブリッド型薄
膜光電変換装置の一例を示す模式的な断面図である。
FIG. 1 is a schematic sectional view showing an example of a hybrid thin-film photoelectric conversion device according to an embodiment of the present invention.

【図2】 ハイブリッド型薄膜光電変換装置において、
結晶質ユニットに含まれるp型層の成膜圧力と測定方法
に依存する開放端電圧変動値との関係を示すグラフであ
る。
FIG. 2 shows a hybrid thin-film photoelectric conversion device.
4 is a graph showing a relationship between a film forming pressure of a p-type layer included in a crystalline unit and an open-end voltage fluctuation value depending on a measurement method.

【図3】 光電変換装置の光電変換特性値を測定する方
法を説明するための簡略化された回路図である。
FIG. 3 is a simplified circuit diagram for explaining a method of measuring a photoelectric conversion characteristic value of a photoelectric conversion device.

【図4】 先行技術によるハイブリッド型薄膜光電変換
装置における光電変換特性値の測定方法依存性を示すグ
ラフである。
FIG. 4 is a graph showing measurement method dependence of a photoelectric conversion characteristic value in a hybrid thin-film photoelectric conversion device according to the prior art.

【符号の説明】[Explanation of symbols]

1 ガラス基板、2 TCO電極、3 非晶質光電変換
ユニット、3p p型層、3i 非晶質i型光電変換
層、3n n型層、4 結晶質光電変換ユニット、4p
p型層、4i 結晶質i型光電変換層、4n n型
層、5 裏面電極、5t TCO層、5m 金属層。
Reference Signs List 1 glass substrate, 2 TCO electrode, 3 amorphous photoelectric conversion unit, 3 p p-type layer, 3 i amorphous i-type photoelectric conversion layer, 3 n n-type layer, 4 crystalline photoelectric conversion unit, 4 p
p-type layer, 4i crystalline i-type photoelectric conversion layer, 4n n-type layer, 5 back electrode, 5t TCO layer, 5m metal layer.

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】 透明絶縁基板上に順次積層された透明電
極、非晶質光電変換ユニット、結晶質光電変換ユニッ
ト、および裏面電極を含み、 前記結晶質光電変換ユニットはプラズマCVD法によっ
て順次堆積されたp型層、結晶質i型光電変換層、およ
びn型層を含み、 前記結晶質ユニットに含まれるp型層は前記結晶質i型
光電変換層との界面において85%より大きな結晶化分
率を有し、 前記結晶質i型光電変換層はその厚さ方向に沿って延び
る柱状晶を含む結晶構造を有し、前記柱状晶は〈11
0〉優先結晶方向に沿って伸びていることを特徴とす
る、ハイブリッド型薄膜光電変換装置。
1. A transparent electrode, an amorphous photoelectric conversion unit, a crystalline photoelectric conversion unit, and a back electrode sequentially laminated on a transparent insulating substrate, wherein the crystalline photoelectric conversion units are sequentially deposited by a plasma CVD method. A p-type layer, a crystalline i-type photoelectric conversion layer, and an n-type layer, wherein the p-type layer contained in the crystalline unit has a crystallized fraction greater than 85% at an interface with the crystalline i-type photoelectric conversion layer. The crystalline i-type photoelectric conversion layer has a crystal structure including columnar crystals extending along the thickness direction thereof, and the columnar crystals have a <11
0> A hybrid thin-film photoelectric conversion device extending along a preferred crystal direction.
【請求項2】 前記結晶質ユニットに含まれるp型層は
前記結晶質i型光電変換層との界面において95%以上
の結晶化分率を有していることを特徴とする、請求項1
に記載のハイブリッド型薄膜光電変換装置。
2. The method according to claim 1, wherein the p-type layer included in the crystalline unit has a crystallization fraction of 95% or more at the interface with the crystalline i-type photoelectric conversion layer.
3. The hybrid thin-film photoelectric conversion device according to item 1.
【請求項3】 請求項1または2に記載のハイブリッド
型薄膜光電変換装置を製造するための方法であって、 前記結晶質ユニットに含まれるp型層と前記結晶質i型
層は少なくともシラン系原料ガスと水素希釈ガスを含む
混合ガスを用いたプラズマCVDによって堆積され、 前記結晶質ユニットに含まれるp型層は400Pa(3
Torr)未満のガス圧のもとで堆積され、前記結晶質
i型層は667Pa(5Torr)以上のガス圧のもと
で堆積されることを特徴とする製造方法。
3. The method for manufacturing a hybrid thin-film photoelectric conversion device according to claim 1, wherein the p-type layer and the crystalline i-type layer included in the crystalline unit are at least silane-based. The p-type layer is deposited by plasma CVD using a mixed gas containing a source gas and a hydrogen dilution gas, and the p-type layer contained in the crystalline unit is 400 Pa (3
A method according to claim 1, wherein the crystalline i-type layer is deposited under a gas pressure of less than 667 Pa (5 Torr).
【請求項4】 前記結晶質ユニットに含まれるp型層の
堆積の間はシラン系原料ガスに対する水素希釈ガスの混
合比が100倍より大きくされていることを特徴とする
請求項3に記載の製造方法。
4. The method according to claim 3, wherein during the deposition of the p-type layer included in the crystalline unit, the mixture ratio of the hydrogen dilution gas to the silane-based source gas is set to be larger than 100 times. Production method.
JP2000082386A 2000-03-23 2000-03-23 Hybrid thin film photoelectric conversion device and manufacturing method thereof Expired - Lifetime JP4592866B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2000082386A JP4592866B2 (en) 2000-03-23 2000-03-23 Hybrid thin film photoelectric conversion device and manufacturing method thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000082386A JP4592866B2 (en) 2000-03-23 2000-03-23 Hybrid thin film photoelectric conversion device and manufacturing method thereof

Publications (2)

Publication Number Publication Date
JP2001274429A true JP2001274429A (en) 2001-10-05
JP4592866B2 JP4592866B2 (en) 2010-12-08

Family

ID=18599203

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000082386A Expired - Lifetime JP4592866B2 (en) 2000-03-23 2000-03-23 Hybrid thin film photoelectric conversion device and manufacturing method thereof

Country Status (1)

Country Link
JP (1) JP4592866B2 (en)

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11145498A (en) * 1997-11-10 1999-05-28 Kanegafuchi Chem Ind Co Ltd Silicon thin-film photoelectric converting device
JPH11145499A (en) * 1997-11-10 1999-05-28 Kanegafuchi Chem Ind Co Ltd Manufacturing silicon type thin-film photoelectric converter
JPH11150284A (en) * 1997-11-19 1999-06-02 Tdk Corp Manufacture of polycrystalline silicon thin film
JPH11150283A (en) * 1997-11-19 1999-06-02 Tdk Corp Manufacture of polycrystalline silicon thin film
JPH11186583A (en) * 1997-12-24 1999-07-09 Kanegafuchi Chem Ind Co Ltd Integrated tandem-type thin-film photoelectric converting device and its manufacture
JPH11214727A (en) * 1998-01-28 1999-08-06 Kanegafuchi Chem Ind Co Ltd Tandem type silicon thin-film photoelectric conversion device
JPH11330520A (en) * 1998-03-09 1999-11-30 Kanegafuchi Chem Ind Co Ltd Manufacture for silicon system thin film photoelectric converter and plasma cvd device for use in the method
JP2000174309A (en) * 1998-12-09 2000-06-23 Kanegafuchi Chem Ind Co Ltd Tandem thin-film photoelectric conversion device and its manufacture

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11145498A (en) * 1997-11-10 1999-05-28 Kanegafuchi Chem Ind Co Ltd Silicon thin-film photoelectric converting device
JPH11145499A (en) * 1997-11-10 1999-05-28 Kanegafuchi Chem Ind Co Ltd Manufacturing silicon type thin-film photoelectric converter
JPH11150284A (en) * 1997-11-19 1999-06-02 Tdk Corp Manufacture of polycrystalline silicon thin film
JPH11150283A (en) * 1997-11-19 1999-06-02 Tdk Corp Manufacture of polycrystalline silicon thin film
JPH11186583A (en) * 1997-12-24 1999-07-09 Kanegafuchi Chem Ind Co Ltd Integrated tandem-type thin-film photoelectric converting device and its manufacture
JPH11214727A (en) * 1998-01-28 1999-08-06 Kanegafuchi Chem Ind Co Ltd Tandem type silicon thin-film photoelectric conversion device
JPH11330520A (en) * 1998-03-09 1999-11-30 Kanegafuchi Chem Ind Co Ltd Manufacture for silicon system thin film photoelectric converter and plasma cvd device for use in the method
JP2000174309A (en) * 1998-12-09 2000-06-23 Kanegafuchi Chem Ind Co Ltd Tandem thin-film photoelectric conversion device and its manufacture

Also Published As

Publication number Publication date
JP4592866B2 (en) 2010-12-08

Similar Documents

Publication Publication Date Title
KR100976010B1 (en) Silicon-based thin-film photoelectric converter and method of manufacturing the same
Schropp et al. Amorphous silicon, microcrystalline silicon, and thin-film polycrystalline silicon solar cells
JPWO2005011002A1 (en) Silicon-based thin film solar cell
JP2989923B2 (en) Solar cell element
Chowdhury et al. Fabrication of thin film nanocrystalline silicon solar cell with low light-induced degradation
JP2003298089A (en) Tandem thin film photoelectric converter and its fabricating method
JPS59224183A (en) Photoelectric converter device
JP2001028452A (en) Photoelectric conversion device
JPH10242492A (en) Manufacture of amorphous silicon germanium thin film and photovoltaic element
JPH0595126A (en) Thin film solar battery and manufacturing method thereof
JPH11145498A (en) Silicon thin-film photoelectric converting device
JPH11186574A (en) Silicon-based thin-film photoelectric converter
JP4038263B2 (en) Tandem silicon thin film photoelectric conversion device
JPH11274527A (en) Photovoltaic device
JP4592866B2 (en) Hybrid thin film photoelectric conversion device and manufacturing method thereof
JP3762086B2 (en) Tandem silicon thin film photoelectric conversion device
JP2000349321A (en) Thin-film solar battery and its manufacture
JP2004363577A (en) Semiconductor thin film, photoelectric converter employing it, and photovoltaic generator device
JP3745076B2 (en) Tandem silicon thin film photoelectric conversion device
Peng et al. High phosphorus-doped seed layer in microcrystalline silicon oxide front contact layers for silicon heterojunction solar cells
JP4289768B2 (en) Photovoltaic device
JPH10294482A (en) Silicon-based thin film photoelectric converter
JP2001284619A (en) Phtovoltaic device
JPH09181343A (en) Photoelectric conversion device
JP3933334B2 (en) Silicon-based thin film photoelectric conversion device and manufacturing method thereof

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070129

RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20080912

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20080917

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20080917

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20090811

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090901

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20091028

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20100914

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20100915

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130924

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4592866

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130924

Year of fee payment: 3

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term