JP2001268795A - Voltage control method of distribution line - Google Patents

Voltage control method of distribution line

Info

Publication number
JP2001268795A
JP2001268795A JP2000075506A JP2000075506A JP2001268795A JP 2001268795 A JP2001268795 A JP 2001268795A JP 2000075506 A JP2000075506 A JP 2000075506A JP 2000075506 A JP2000075506 A JP 2000075506A JP 2001268795 A JP2001268795 A JP 2001268795A
Authority
JP
Japan
Prior art keywords
voltage
series
center point
load center
distribution line
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2000075506A
Other languages
Japanese (ja)
Other versions
JP4107783B2 (en
Inventor
Naoaki Fukatsu
尚明 深津
Nobuyuki Fujiwara
信行 藤原
Ichiro Sumiya
一朗 炭谷
Takaaki Kai
隆章 甲斐
Tatsunori Sato
達則 佐藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Meidensha Corp
Meidensha Electric Manufacturing Co Ltd
Tokyo Electric Power Company Holdings Inc
Original Assignee
Meidensha Corp
Tokyo Electric Power Co Inc
Meidensha Electric Manufacturing Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Meidensha Corp, Tokyo Electric Power Co Inc, Meidensha Electric Manufacturing Co Ltd filed Critical Meidensha Corp
Priority to JP2000075506A priority Critical patent/JP4107783B2/en
Publication of JP2001268795A publication Critical patent/JP2001268795A/en
Application granted granted Critical
Publication of JP4107783B2 publication Critical patent/JP4107783B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E40/00Technologies for an efficient electrical power generation, transmission or distribution
    • Y02E40/10Flexible AC transmission systems [FACTS]
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E40/00Technologies for an efficient electrical power generation, transmission or distribution
    • Y02E40/30Reactive power compensation

Landscapes

  • Supply And Distribution Of Alternating Current (AREA)
  • Control Of Electrical Variables (AREA)

Abstract

PROBLEM TO BE SOLVED: To control voltage regulation of a load center point to an allowable value. SOLUTION: An SVR(step voltage control unit) and an SVC (series type voltage control unit) are installed in a distribution line. The SVC makes the voltage regulation ε of a voltage VL of a load center point (a) viewed from a primary voltage V1 the starting condition. In order to avoid the start of the SVC due to gentle voltage change and surely compensate sharp voltage change only, ε is obtained by setting the magnitude of the load center point voltage before ΔT seconds (changing value reference time) obtained by moving average processing of the voltage VL as a reference voltage VLref. Concerning a voltage V2' of the point (a) viewed from a secondary voltage V2, a voltage regulation ε' to VLref is obtained. A generating voltage VC of the SVC is so controlled that ε' becomes the allowable value α. When a load L changes quickly and ε is larger than α, the SVC starts and controls to obtain a relation of ε'=α. After that, the SVR starts late, and steps up or down one tap. In the case of ε<α, the SVC stops.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】この発明は、直列型電圧制御
装置およびこれとステップ電圧制御装置とを組み合わせ
た配電線路の電圧制御方法に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a series voltage controller and a voltage control method for a distribution line by combining the voltage controller with a step voltage controller.

【0002】[0002]

【従来の技術】本出願人は先にステップ電圧制御装置
(SVR装置)と直列型電圧制御装置(直列型SVC装
置)とを組み合わせた電力系統の電圧制御方式を提案し
た。(特願平10−168051号)。
2. Description of the Related Art The applicant of the present invention has previously proposed a voltage control method for a power system in which a step voltage control device (SVR device) and a series voltage control device (series SVC device) are combined. (Japanese Patent Application No. 10-168051).

【0003】上記電圧制御方式を図1について説明す
る。なお、本文中電圧電流のベクトル記号は省略してあ
る。系統電源(配電用変電所)PSからの配電線にSV
R装置1を接続し、その下流側に直列型SVC装置2を
近接設置する。SVR装置1は緩慢な電圧変動補償しか
できないので、直列型SVC装置2により急激な電圧変
動補償を行わせる。
The above voltage control method will be described with reference to FIG. It should be noted that vector symbols of voltage and current are omitted in the text. SV on distribution line from grid power supply (distribution substation) PS
The R device 1 is connected, and the serial type SVC device 2 is installed close to the downstream side. Since the SVR device 1 can perform only slow voltage fluctuation compensation, the series-type SVC device 2 performs rapid voltage fluctuation compensation.

【0004】SVR装置1は図13に示すように、タッ
プ切換変圧器1aと90リレー1bからなり、90リレ
ー1bは、SVR装置1の2次側電圧V2からみた負荷
中心点aの電圧VL={V2−(R+jX)I}の大きさ
に対して、基準電圧Vrefとの差をとり、これを積分
回路11で積分してその大きさが動作時間整定値を超え
るとタップ上げ(または下げ)指令をタップ切換変圧器
1aに出力して負荷側の電圧を制御する。ただし、この
差の大きさが不感帯を超えなければ積分は行わない。
As shown in FIG. 13, the SVR device 1 comprises a tap switching transformer 1a and a 90 relay 1b, and the 90 relay 1b is a voltage VL at a load center point a as viewed from a secondary voltage V2 of the SVR device 1. = {V 2 − (R + jX) I}, the difference from the reference voltage Vref is taken, and the difference is integrated by the integration circuit 11. When the size exceeds the operation time set value, the tap is raised (or A lowering) command is output to the tap switching transformer 1a to control the voltage on the load side. However, integration is not performed unless the magnitude of this difference exceeds the dead zone.

【0005】図15はSVR装置1で負荷中心点電圧を
制御する場合の負荷中心点電圧の変化を示す。SVR装
置は原理上タップ上げ(下げ)指令出力に対し数分かか
り、タップ制御後も負荷中心点電圧と基準電圧とに差
(不感帯以上)があるとさらにタップ上げ(下げ)指令
出力に対して数分要する。
FIG. 15 shows a change in the load center point voltage when the SVR device 1 controls the load center point voltage. In principle, the SVR device takes several minutes to output the tap-up (lower) command, and if there is a difference (more than the dead zone) between the load center point voltage and the reference voltage even after tap control, the tap-up (lower) command is further output. It takes several minutes.

【0006】直列型SVC装置2は図14に示すよう
に、配電線に接続された並列変圧器Taと直列変圧器T
bおよび変圧器Ta,Tb間に接続された自励式コンバ
ータ2aと自励式インバータ2bとで構成されている。
[0006] As shown in FIG. 14, a serial type SVC device 2 includes a parallel transformer Ta and a series transformer T connected to a distribution line.
b and a self-excited converter 2a and a self-excited inverter 2b connected between the transformers Ta and Tb.

【0007】直列型SVC装置2はその1次側電圧V1
と2次側の電流Iを自励式インバータの制御回路に入力
して電圧制御を行う。即ち、電圧V1を基準電圧Vre
fにして、電圧を上げる場合は電圧V1と同相の電圧VC
を発生させ、電圧を下げる場合は電圧V1と反対位相の
電圧VCを発生させる。発生させる電圧VCの大きさは直
列型SVC装置2の2次側電圧V2から求めた負荷中心
点aの電圧VLの大きさが基準電圧Vref(=V1)に
なるように制御する。
The serial type SVC device 2 has a primary side voltage V 1.
And the current I on the secondary side is input to the control circuit of the self-excited inverter to perform voltage control. That is, the reference voltage Vre the voltages V 1
f to increase the voltage, the voltage V C in phase with the voltage V 1
Is generated, and when the voltage is reduced, a voltage V C having an opposite phase to the voltage V 1 is generated. The magnitude of the voltage V C to be generated is controlled to be in-line SVC device 2 of the voltage V L of the load center point a obtained from the secondary voltage V 2 magnitude reference voltage Vref (= V 1) .

【0008】[0008]

【数1】 (Equation 1)

【0009】電圧V1,V2は同位相とし、SVR装置1
と直列型SVC装置2の負荷中心点の位置a及び基準電
圧Vrefと不感帯の大きさは同じ値としている。
The voltages V 1 and V 2 have the same phase, and the SVR device 1
The position a of the load center point of the series SVC device 2 and the reference voltage Vref have the same value as the size of the dead zone.

【0010】[0010]

【発明が解決しようとする課題】上記電圧制御方式は、
SVR装置と直列型SVC装置とを併用し、緩慢な電圧
変動に対してはSVR装置だけで補償し、急激な電圧変
動に対してはSVR装置で不足する補償電圧を直列型S
VC装置で補完する。この直列型SVC装置はその1次
側電圧を基準電圧として制御している。そのためにSV
R装置の負荷側(下流側)に直列型SVC装置を近接設
置することが条件となっている。
The voltage control method described above is
The SVR device and the series type SVC device are used together, and a slow voltage change is compensated only by the SVR device, and a sudden voltage change is compensated for by the SVR device.
Complement with a VC device. This serial type SVC device controls the primary side voltage as a reference voltage. SV for that
The condition is that a series-type SVC device is installed close to the load side (downstream side) of the R device.

【0011】ところで、配電線の電圧補償をする場合、
SVR装置、直列型SVC装置いずれもが、配電柱に装
柱されることになる。このため、これらを近接設置させ
る条件は制約が多く現実的に困難なケースが生ずるもの
と思われる。
By the way, when compensating the voltage of the distribution line,
Both the SVR device and the serial type SVC device will be mounted on the distribution pole. For this reason, it is considered that the conditions for disposing them in close proximity are limited and may be difficult in practice.

【0012】この発明は、直列型SVC装置がその1次
側電圧を基準とすることなく負荷中心点電圧変動分を一
定に制御でき、またSVR装置と直列型SVC装置の協
調制御する場合、上記条件を課せることなく、SVR装
置と直列型SVC装置とで配電線の電圧補償ができる配
電線路の電圧制御方法を提供することにある。
According to the present invention, when the series-type SVC device can control the fluctuation of the load center point voltage constant without using the primary side voltage as a reference, and when the SVR device and the series-type SVC device perform cooperative control, It is an object of the present invention to provide a voltage control method for a distribution line that can perform voltage compensation of a distribution line between an SVR device and a series-type SVC device without imposing any conditions.

【0013】[0013]

【課題を解決するための手段】この発明の配電線路の電
圧制御方法は、配電線路に直列に接続された直列変圧器
とこの線路から電力を受けて直列変圧器に無効電力ない
し有効電力を出力して直列変圧器の出力電力を制御する
電力変換器とからなる直列型電圧制御装置を設置し、直
列型電圧制御装置は、その装置の電源側の電圧と負荷中
心点までの線路インピーダンスおよび線路電流から負荷
中心点の電圧を算出し、この負荷中心点の電圧変動分を
一定値に制御するものである。
SUMMARY OF THE INVENTION A voltage control method for a distribution line according to the present invention comprises a series transformer connected in series to the distribution line and receiving power from the line to output reactive power or active power to the series transformer. And a power converter for controlling the output power of the series transformer, and a series-type voltage control device is installed. The voltage at the load center point is calculated from the current, and the voltage fluctuation at the load center point is controlled to a constant value.

【0014】上記負荷中心点の電圧変動分の算出は、負
荷中心点電圧の所定時間の移動平均値を求め、常時一定
時間前のこの移動平均値を電圧基準値として算出すると
よい。
In the calculation of the voltage fluctuation at the load center point, it is preferable that a moving average value of the load center point voltage for a predetermined time is obtained, and this moving average value a predetermined time before is always calculated as a voltage reference value.

【0015】また、上記直列型電圧制御装置は、負荷中
心点電圧変動分の大きさが整定値以上の条件で起動させ
るとよい。
Further, it is preferable that the series-type voltage control device is started under the condition that the magnitude of the load center point voltage fluctuation is equal to or larger than a set value.

【0016】また、上記直列型電圧制御装置は、その発
生電圧の位相を、電圧上げ方向ではその装置の1次電圧
と同相に、電圧下げ方向ではその電圧と逆位相に制御す
るとよい。
In the above-mentioned series voltage control device, the phase of the generated voltage may be controlled to be in phase with the primary voltage of the device in the voltage increasing direction and opposite to the voltage in the voltage decreasing direction.

【0017】また、上記負荷中心点電圧の変動分は、直
列型電圧制御装置の1次側電圧の負荷中心点電圧に対し
て常時一定時間前の移動平均値と、その装置の1次側電
圧、負荷中心点までのインピーダンス、線路電流とで整
定値に制御するとよい。
Further, the variation of the load center point voltage is obtained by always calculating a moving average value of the primary side voltage of the series type voltage controller before the load center point voltage for a fixed time, and a primary side voltage of the device. , And the impedance up to the load center point and the line current may be controlled to a set value.

【0018】または、配電線路の電圧を調整するタップ
変圧器と、このタップ変圧器の2次側電圧からみた負荷
中心点電圧が基準電圧となるようにタップ変圧器のタッ
プ切換指令を出力する電圧調整リレーとからなるステッ
プ電圧制御装置を設置すると共に、直列型電圧制御装置
は負荷中心点の電圧変動分を一定に制御して補償するこ
とにより、装置の設置箇所の制約を受けることなく、タ
ップ変圧器とタップ切換指令を出力する電圧調整リレー
とからなるステップ電圧制御装置と協調制御を行うもの
である。
Alternatively, a tap transformer for adjusting the voltage of the distribution line, and a voltage for outputting a tap switching command of the tap transformer so that the load center point voltage viewed from the secondary voltage of the tap transformer becomes a reference voltage. In addition to installing a step voltage control device consisting of an adjustment relay, the series voltage control device controls and compensates for the voltage fluctuation at the load center point to a constant value, so that taps are not restricted by the installation location of the device. It performs cooperative control with a step voltage control device including a transformer and a voltage adjustment relay that outputs a tap switching command.

【0019】その電圧変動分の算出は負荷中心点電圧の
移動平均値の常時一定時間(変動値基準時間)前の値を
基準電圧として算出し、ステップ電圧制御装置が応動で
きない期間を直列型電圧制御装置が確実に補償して協調
制御を行うために、ステップ電圧制御装置の整定値から
タップ制御時間を予測し、変動値基準時間をこの時間よ
り長く整定するとよい。
The voltage fluctuation is calculated by always using a value before a moving average value of the load center point voltage for a fixed time (a fluctuation value reference time) as a reference voltage, and a period during which the step voltage control device cannot respond is a series type voltage. To ensure that the control device compensates and performs cooperative control, it is preferable to predict the tap control time from the set value of the step voltage control device and set the fluctuation value reference time longer than this time.

【0020】また、上記ステップ電圧制御装置が負荷中
心点を基準電圧に維持するために過不足する電圧を直列
型電圧制御装置の1次側電圧、線路電流、負荷中心点ま
での線路インピーダンスおよび負荷中心点の電圧変動分
の整定値から発生電圧を算出して補償するとよい。
In addition, the above step voltage control device controls the primary-side voltage, line current, line impedance to the load center point, and load of the series type voltage control device on the primary and secondary sides of the voltage which is too short or too short to maintain the load center point at the reference voltage. The generated voltage may be calculated and compensated from the set value of the voltage fluctuation at the center point.

【0021】また、上記ステップ電圧制御装置はその負
荷中心点電圧を基準電圧に維持するため過不足する電圧
を、直列型電圧制御装置よりその装置の1次側電圧の負
荷中心点電圧に対して起動瞬時の一定時間前の移動平均
値と、その1次側電圧、負荷中心点までのインピーダン
ス、線路電流とから発生電圧を算出して補償するとよ
い。
Further, the above-mentioned step voltage control device applies an excess or deficiency voltage to maintain the load center point voltage at the reference voltage with respect to the load center point voltage of the primary side voltage of the device from the series type voltage control device. The generated voltage may be calculated and compensated from the moving average value a predetermined time before the start instant, the primary voltage thereof, the impedance to the load center point, and the line current.

【0022】配電線路に分散型電源がある場合、電圧を
基準ベクトルにして線路電流変化分電流の位相関係と電
圧上げ下げの正負符号との関係により順送、逆送判定を
行い、順送時のみ直列型電圧制御装置を動作させるとよ
い。
When there is a distributed power source in the distribution line, forward / reverse transmission is determined based on the relationship between the phase relationship of the current corresponding to the line current change and the positive / negative sign of voltage increase / decrease using the voltage as a reference vector. The series voltage controller may be operated.

【0023】[0023]

【発明の実施の形態】実施の形態1 図1に示すように配電線にSVR装置1を設けその下流
側に直列型SVC装置2を設け、電圧を補償すべき負荷
中心点(目標地点)aを定める。SVR装置1、直列型
SVC装置2は従来の技術で説明した図13、図14の
構成となっている。
BEST MODE FOR CARRYING OUT THE INVENTION First Embodiment As shown in FIG. 1, an SVR device 1 is provided on a distribution line, and a series-type SVC device 2 is provided downstream thereof, and a load center point (target point) a for which voltage is to be compensated. Is determined. The SVR device 1 and the serial type SVC device 2 have the configurations shown in FIGS. 13 and 14 described in the related art.

【0024】まず、直列型SVC装置2による負荷中心
点電圧の制御方法について説明する。負荷中心点aの電
圧変動率が許容値αを超えると、直列型SVC装置2を
起動させて、負荷中心点aの電圧変動率をαに維持する
ように直列型SVC装置2の発生電圧を制御する。その
ため、次のように直列型SVC装置2の1次側電圧V 1
からみた負荷中心点の電圧VLの電圧変動率を装置起動
条件とする。
First, the load center by the series type SVC device 2
A method of controlling the point voltage will be described. Load center point a
When the pressure fluctuation rate exceeds the allowable value α, the series type SVC device 2
Start and maintain the voltage fluctuation rate at the load center point a at α
Thus, the generated voltage of the serial type SVC device 2 is controlled. That
Therefore, the primary side voltage V of the serial type SVC device 2 is as follows. 1
Voltage V at the load center pointLStartup of voltage fluctuation rate
Conditions.

【0025】[0025]

【数2】 (Equation 2)

【0026】また、緩慢な電圧変動による直列型SVC
装置2の起動を避け、急激な電圧変動だけを確実に補償
するために、負荷中心点電圧を移動平均処理して得られ
る変動値基準時間△T時間前の負荷中心点電圧の大きさ
を基準電圧VLrefとして、現在の負荷中心点電圧VL
の大きさの電圧変動率ε(%)を求める。
Also, a series type SVC due to a slow voltage fluctuation
In order to avoid the start-up of the device 2 and reliably compensate only for abrupt voltage fluctuations, a fluctuation value reference time obtained by performing a moving average process on the load center point voltage △ the magnitude of the load center point voltage before T time As the voltage V L ref, the current load center point voltage V L
The voltage fluctuation rate ε (%) having the magnitude of is calculated.

【0027】[0027]

【数3】 (Equation 3)

【0028】この電圧変動率εを許容値αと比較し、ε
>αとなった場合、直列型SVC装置を起動させる。こ
の装置の2次側からみた負荷中心点電圧VL′は、
This voltage fluctuation rate ε is compared with an allowable value α, and ε
If> α, activate the series SVC device. The load center point voltage V L ′ viewed from the secondary side of this device is

【0029】[0029]

【数4】 (Equation 4)

【0030】この負荷中心点電圧VL′の上記基準電圧
Lrefに対する電圧変動率ε′を求める。
A voltage variation rate ε ′ of the load center point voltage V L ′ with respect to the reference voltage V L ref is determined.

【0031】[0031]

【数5】 (Equation 5)

【0032】この電圧変動率ε′が許容値αになるよう
に、直列型SVC装置の発生電圧V Cの大きさを制御す
る。
The voltage fluctuation rate ε 'is set to the allowable value α.
And the generated voltage V of the series SVC device CControl the size of
You.

【0033】負荷中心点電圧VLについて、現在電圧と
基準電圧を図2に示す。現在電圧VLは現在時点でこれ
より数サイクル間の負荷中心点電圧の大きさの平均値、
基準電圧VLrefは現在より△T時間(変動値基準時
間)前の時点において、これよりT0時間(基準電圧平
均時間)の負荷中心点電圧の大きさの平均値である。
FIG. 2 shows the current voltage and the reference voltage for the load center point voltage V L. The current voltage VL is the average value of the magnitude of the load center point voltage for several cycles from now,
The reference voltage V L ref is an average value of the magnitude of the load center point voltage at time T 0 (reference voltage average time) before ΔT time (variation value reference time) before the present time.

【0034】直列型SVC装置2の発生電圧VCは次の
ように求める。 図3にベクトル図を示す。直列型SV
C装置2の1次電圧V1と同相成分をq軸成分、これよ
り90°進みの成分をd軸成分として表現する。
The generated voltage V C of the serial type SVC device 2 is obtained as follows. FIG. 3 shows a vector diagram. Series type SV
A component in-phase with the primary voltage V 1 of the C device 2 is expressed as a q-axis component, and a component advanced by 90 ° from this is expressed as a d-axis component.

【0035】直列型SVC装置2の2次側電圧V2から
みた負荷中心点の電圧VL′について、d・q軸成分で
表すと、
[0035] The voltage V L 'of the tandem SVC 2-side voltage V 2 viewed from the load center point of the device 2, is represented by d · q-axis component,

【0036】[0036]

【数6】VLq+VLd=(V1q+jV1d)+(VCq+jVCd
−(r+jx)(Iq+jId) VCは、V1と同相または反対位相であり、V1はq軸成
分なので、V1d=0、VCd=0である。
[6] V L 'q + V L' d = (V 1q + jV 1d) + (V Cq + jV Cd)
- (r + jx) (I q + jI d) V C is V 1 and phase or opposite phase, V 1 is so q-axis component, a V 1 d = 0, V Cd = 0.

【0037】[0037]

【数7】 (Equation 7)

【0038】[0038]

【数8】 (Equation 8)

【0039】負荷急変により電圧が低下した場合の負荷
中心点の基準電圧VLref、現在電圧と基準電圧との
電圧偏差△Vおよび直列型SVC装置2の1次側と2次
側電圧よりみた電圧変動率ε,ε′を図4に示す。
The reference voltage V L ref at the load center point when the voltage drops due to a sudden change in the load, the voltage deviation ΔV between the current voltage and the reference voltage, and the primary and secondary voltages of the series SVC device 2 FIG. 4 shows the voltage fluctuation rates ε and ε ′.

【0040】図4について、負荷急変動が発生し負荷中
心点電圧VLが低下する。基準電圧VLrefは現在より
△T時間前の負荷中心点電圧の大きさの平均値であるか
ら、△T時間変化せずにその後直線的に低下してT0
後負荷中心点電圧VLと等しくなる。また電圧偏差△V
=VL−VLrefも△T時間変化せずその後直線的に減
少してT0秒後△V=0となる。
Referring to FIG. 4, a sudden load change occurs, and the load center point voltage VL decreases. Since the reference voltage V L ref is the average value of the magnitude of the load center point voltage before ΔT time from the present time, the load center point voltage V is reduced linearly after T 0 seconds without changing for ΔT time. It becomes equal to L. Also, voltage deviation △ V
= V L -V L ref also does not change for ΔT time and then decreases linearly and becomes ΔV = 0 after T 0 seconds.

【0041】したがって、電圧変動率ε′(%)は負荷
急変と同時に増加する。図4の場合、負荷急変時の電圧
変動率εは許容値αを超えているので、負荷急変と同時
に直列型SVC装置2が起動し、直列型SVC装置2の
2次側からみた負荷中心点の電圧変動率ε′(%)を許
容値αに維持するように直列型SVC装置2は電圧V C
を発生する。
Therefore, the voltage fluctuation rate ε '(%)
It increases simultaneously with sudden changes. In the case of FIG. 4, the voltage at the time of sudden load change
Since the fluctuation rate ε exceeds the allowable value α,
The serial type SVC device 2 is activated in the
Allow voltage fluctuation rate ε '(%) at the load center point as viewed from the secondary side
In order to maintain the capacitance α, the series SVC device 2 C
Occurs.

【0042】上記電圧変化から△T時間(変動値基準時
間)を超える基準電圧VLrefは電圧変化後の値を平
均値計算に取り始めるので、その値は徐々に零に近づい
ていき、これよりT0時間(基準電圧平均時間)後には
零になる。
The reference voltage V L ref which exceeds ΔT time (variation value reference time) from the above voltage change starts to take the value after the voltage change for the calculation of the average value, and the value gradually approaches zero. It becomes zero after T 0 time (reference voltage average time).

【0043】この間に電圧変動率εは許容値αより小さ
くなり、直列型SVC装置2は停止する。直列型SVC
装置2が停止すると電圧変動率ε,ε′はやがて零にな
る。配電線電圧は直列型SVC装置2の停止とともに電
圧低下が継続するが後述のようにSVR装置1と動作協
調を取り△T時間をSVR装置1が動作できる時間より
大きくするので、電圧変動率εを許容値α以下に維持で
きる。
During this time, the voltage fluctuation rate ε becomes smaller than the allowable value α, and the serial type SVC device 2 stops. Series type SVC
When the device 2 stops, the voltage fluctuation rates ε and ε ′ eventually become zero. The distribution line voltage continues to decrease with the stop of the series-type SVC device 2, but cooperates with the SVR device 1 as described later. Since the T time is set to be longer than the time during which the SVR device 1 can operate, the voltage fluctuation rate ε Can be maintained below the allowable value α.

【0044】図5は直列型SVC装置2の設置位置と配
電線各点の電圧変動率ε,ε′との関係を示すもので、
直列型SVC装置2では装置負荷側を補償して配電用変
電所(系統電源)から負荷中心点の電圧変動率を許容値
以下にする。直列型SVC装置2は設置位置に拘わらず
上述の電圧算出方法により、負荷中心点の電圧変動分を
許容値αに維持できる。
FIG. 5 shows the relationship between the installation position of the series type SVC device 2 and the voltage fluctuation rates ε and ε ′ at each point of the distribution line.
In the series type SVC device 2, the device load side is compensated to make the voltage fluctuation rate from the distribution substation (system power supply) to the load center point equal to or less than an allowable value. The series-type SVC device 2 can maintain the voltage fluctuation at the load center point at the allowable value α by the above-described voltage calculation method regardless of the installation position.

【0045】次にSVR装置1と直列型SVC装置2と
の動作協調について説明する。図6にSVR装置1の負
荷側に直列型SVC装置2を配置した配電線の電圧変動
率の時間推移を示す。なお、ともに負荷中心点は末端と
している。
Next, operation coordination between the SVR device 1 and the serial type SVC device 2 will be described. FIG. 6 shows a time transition of the voltage fluctuation rate of the distribution line in which the series SVC device 2 is arranged on the load side of the SVR device 1. In both cases, the load center point is at the end.

【0046】図6について、電圧変動発生直後は、S
VR装置1は応答できないため、直列型SVC装置2が
電圧VCを出力して負荷中心点aの電圧変動率εを許容
値αに維持する。
Referring to FIG. 6, immediately after the occurrence of the voltage fluctuation, S
Since the VR device 1 can not respond, tandem SVC device 2 maintains the voltage regulation of the voltage V C output to the load center point a epsilon in tolerance alpha.

【0047】その後で、SVR装置1は負荷側電圧か
らみた負荷中心点電圧と基準電圧(設定値)との偏差に
応じた積分時間が整定値に達するため、タップを上昇さ
せる。このSVR装置1の動作により直列型SVC装置
2の電源側電圧はSVR装置1の1タップ分だけ電圧が
補償されるので、直列型SVC装置2の補償電圧VC
減少する。
Thereafter, the SVR device 1 raises the tap because the integration time according to the deviation between the load center point voltage and the reference voltage (set value) as viewed from the load side voltage reaches the set value. Since the power source side voltage of the series type SVC apparatus 2 by the operation of the SVR device 1 voltage by one tap of SVR device 1 is compensated, the compensation voltage V C of the series type SVC device 2 decreases.

【0048】以後、SVR装置1のタップ動作が進むに
つれて直列型SVC装置2の補償電圧VCは減少する。
に示すように負荷中心点の電圧変動率が許容値以下に
なると、直列型SVC装置2の補償電圧VCは零にな
る。
Thereafter, as the tap operation of the SVR device 1 proceeds, the compensation voltage V C of the serial type SVC device 2 decreases.
When the voltage variation rate of the load center point becomes equal to or less than the allowable value as shown in, compensation voltage V C of the series type SVC device 2 becomes zero.

【0049】以上のように、SVR装置1のタップ動作
と直列型SVC装置2の補償動作は独立しているため、
電圧変動直後は直列型SVC装置2が、その後段階的に
SVR装置が電圧変動を補償する動作協調が可能とな
る。
As described above, since the tap operation of the SVR device 1 and the compensation operation of the series SVC device 2 are independent,
Immediately after the voltage fluctuation, the series-type SVC device 2 can perform operation coordination in which the SVR device compensates for the voltage fluctuation stepwise thereafter.

【0050】上記は直列型SVC装置2がSVR装置の
負荷側に設置された場合であるが、直列型SVC装置2
がSVR装置1に対して電源側に設置された場合の動作
協調は上述とは異なる。この場合は移動平均値の基準時
間△T、即ち図2の変動値基準時間△Tを適当に整定す
ることにより協調制御が可能となる。
The above is a case where the serial type SVC device 2 is installed on the load side of the SVR device.
Are different from those described above in the case where is installed on the power supply side with respect to the SVR device 1. In this case, cooperative control can be performed by appropriately setting the reference time ΔT of the moving average value, that is, the fluctuation value reference time ΔT in FIG.

【0051】上記の方法はSVR装置が同一線路に複数
台設置されている場合にも適用できる。
The above method can be applied to a case where a plurality of SVR devices are installed on the same track.

【0052】SVR装置1の負荷側に直列型SVC装置
2を設置した場合の動作協調性能についてのディジタル
シミュレーション結果について述べる。解析対象回路は
図7に示すように、急変動負荷として変電所より10k
mの配電線末端(#7)に同期発電機Gを選定し、出力
1[MW](力率1)運転時の発電機脱落を模擬した。
SVR装置(SVR)と直列型SVC装置(SVC)の
負荷中心点は配電線末端とし、電圧変動率許容値(整定
値)を5%とした。また、SVR、SVCの設置点は変
電所よりそれぞれ4km、6kmの地点とした。
A digital simulation result on operation coordination performance when the series type SVC device 2 is installed on the load side of the SVR device 1 will be described. As shown in FIG. 7, the circuit to be analyzed is 10 k
A synchronous generator G was selected at the end of the m distribution line (# 7) to simulate the generator falling off during operation at an output of 1 [MW] (power factor of 1).
The load center point of the SVR device (SVR) and the series type SVC device (SVC) was at the end of the distribution line, and the allowable value of voltage fluctuation rate (set value) was 5%. The installation points of SVR and SVC were 4 km and 6 km from the substation, respectively.

【0053】シミュレーション結果を図8に示す。急変
負荷である同期発電機脱落直後のではSVR装置の1
次側(#4)電圧よりみた負荷中心点(#7)の電圧変
動率εは、7.7%である。電圧変動率εの許容値は5
%なので、直列型SVC装置は起動し、その装置の2次
側(#5)電圧よりみた負荷中心点の電圧変動率ε′を
許容値の5%になるように直列型SVC装置は発生電圧
を制御する。その結果、負荷中心点の電圧変動率ε′は
4.9%になり、配電線全体の電圧変動率は許容値の5
%以下になる。
FIG. 8 shows the simulation results. Immediately after the synchronous generator, which is a sudden change in load, falls short of the SVR device.
The voltage fluctuation rate ε at the load center point (# 7) as viewed from the secondary (# 4) voltage is 7.7%. The allowable value of the voltage fluctuation rate ε is 5
%, The series-type SVC device starts up, and the series-type SVC device generates a voltage such that the voltage fluctuation rate ε ′ at the load center point as viewed from the secondary (# 5) voltage of the device becomes 5% of the allowable value. Control. As a result, the voltage fluctuation rate ε ′ at the load center point is 4.9%, and the voltage fluctuation rate of the entire distribution line is 5% of the allowable value.
% Or less.

【0054】同期発電機脱落後から約8秒経過ので
は、SVR装置は動作してタップ制御(電圧変動率で
1.5%相当)される。直列型SVC装置の1次側電圧
からみた負荷中心点の電圧変動率は6.1%であるの
で、直列SVC装置は起動し続け、この装置の2次側電
圧からみた負荷中心点の電圧変動率ε′を5%に維持す
るよう発生電圧を制御するが、SVR装置で電圧制御さ
れた(電圧変動率で1.5%相当)発生電圧は小さくな
る。
After about 8 seconds have passed since the synchronous generator was dropped, the SVR device is operated to perform tap control (corresponding to 1.5% in voltage fluctuation rate). Since the voltage fluctuation rate at the load center point as viewed from the primary voltage of the series type SVC device is 6.1%, the series SVC device continues to be activated, and the voltage fluctuation at the load center point as viewed from the secondary voltage of this device. The generated voltage is controlled so that the rate ε 'is maintained at 5%, but the generated voltage, which is voltage-controlled by the SVR device (corresponding to a voltage fluctuation rate of 1.5%), becomes small.

【0055】SVR装置が1タップ制御してからさらに
10秒(同期発電機脱落後から18秒)経過ので、S
VR装置は動作し、2タップ制御されると、直列型SV
C装置の1次電圧からみた負荷中心点の電圧変動率は
4.2%になるのでSVR装置は停止する。しかし、S
VR装置の動作により配電線全体の電圧変動率は許容値
の5%以下なので、目的とする電圧制御は果たされてお
り、SVR装置と直列型SVR装置の動作協調は良好に
なされている。
Since another 10 seconds have passed since the SVR device performed one tap control (18 seconds after the synchronous generator was dropped), S
When the VR device operates and is controlled by two taps, the serial type SV
Since the voltage fluctuation rate at the load center point as viewed from the primary voltage of the C device becomes 4.2%, the SVR device stops. However, S
Since the voltage fluctuation rate of the entire distribution line is 5% or less of the allowable value due to the operation of the VR device, the target voltage control is achieved, and the operation coordination between the SVR device and the series SVR device is favorably performed.

【0056】この動作協調はSVR装置の整定値などか
ら電圧変動に対するタップ制御時間を予測し、これを考
慮して直列型SVC装置の△T時間(変動値基準時間)
を決めることによって良好になされる。
This operation coordination predicts the tap control time for the voltage fluctuation from the set value of the SVR device, etc., and takes into account this, the ΔT time (variation value reference time) of the serial type SVC device.
Is made well by deciding.

【0057】実施の形態2 直列型SVC装置の通常負荷電流は電源端(配電用変電
所)から負荷の方へ電流が流れる。しかし最近配電系統
へ分散型電源が導入されており、この電源によって直列
型SVC装置からみて電流方向が電源端へなることがあ
る。これを逆潮流と呼んでいる。
Embodiment 2 The normal load current of the series-type SVC device flows from the power supply end (distribution substation) toward the load. However, recently, a distributed power supply has been introduced into a distribution system, and this power supply may cause a current direction to a power supply end when viewed from a series-type SVC device. This is called reverse flow.

【0058】図9の(a)、(b)は順送状態での逆流
なし、ありの状態を示す。順送とは常時の配電用変電所
PS1から電力供給される状態をいう。これに対して常
時の配電用変電所PS1から事故などで電力供給できな
い場合、別の配電用変電所(分散型電源)PS2から電
力供給することがあり、この配電用変電所PS1からの
電流の流れが順送時とは逆になる状態を逆送と呼んでい
る。図10の(a),(b)は逆送状態での逆潮流な
し、ありの状態を示す。
FIGS. 9A and 9B show a state in which there is no backflow in the forward feeding state and there is a backflow. The progressive transfer refers to a state where power is constantly supplied from the distribution substation PS1. On the other hand, when power cannot be supplied from the distribution substation PS1 due to an accident or the like, power may be supplied from another distribution substation (distributed power supply) PS2. A state in which the flow is opposite to that in the forward transmission is called reverse transmission. FIGS. 10A and 10B show a state in which there is no reverse power flow and a state in which there is a reverse power flow in the reverse transmission state.

【0059】実施の形態2は逆潮流のあり、なしに拘わ
らず順送、逆送条件を自動的に判定して順送時のみ直列
型SVC装置を機能させる。逆送時に直列型SVC装置
を機能させないのは、電源端PS1からみて負荷端が逆
方向になるからである。逆潮流がなければ常時の電流方
向で順送か逆送判定は可能である。しかし逆潮流を考慮
するとその順送・逆送判別方法では判定不可能である。
In the second embodiment, regardless of the presence or absence of a reverse power flow, the forward and reverse conditions are automatically determined, and the serial SVC device is operated only during the forward transport. The reason why the series-type SVC device is not operated at the time of reverse transmission is that the load terminal is in the opposite direction as viewed from the power supply terminal PS1. If there is no reverse power flow, it is possible to determine forward or reverse in the normal current direction. However, in consideration of the reverse power flow, it is impossible to determine by the forward / reverse transmission discrimination method.

【0060】図11について、配電線の分散型電源PS
2の上流側(配電用変電所PS1側)に直列型SVC装
置2を設けて負荷L2の投入時などの過渡的な電圧変動
補償をする。負荷L2投入時の電流は配電用変電所PS
1と分散型電源PS2から供給される。従って図11に
しめすように、直列型SVC装置2より負荷L2側にあ
る負荷投入による電流変化△I方向は逆潮流有りでも逆
潮流がない場合と同様に配電用変電所PS1から投入負
荷方向になる。負荷遮断はこれとは電流変化方向は逆に
なる。
Referring to FIG. 11, a distributed power source PS for distribution lines
A series-type SVC device 2 is provided upstream (distribution substation PS1 side) of 2 to compensate for transient voltage fluctuation such as when the load L2 is turned on. The current when the load L2 is applied is the distribution substation PS
1 and distributed power supply PS2. Therefore, as shown in FIG. 11, the current change ΔI due to the load application on the load L2 side from the series type SVC device 2 in the direction of the input load from the distribution substation PS1 is the same as in the case where there is a reverse power flow and no reverse power flow. Become. In load shedding, the direction of current change is reversed.

【0061】この場合の直列型SVC装置2の電源側電
圧V1の変化分△V1の符号を求める。急変動負荷投入に
よる電流変化分の有効分を△Ip、無効分を△Iqとす
ると△V1は[数9]となる。
[0061] determining the sign of the in-line SVC change in the supply-side voltage V 1 of the device 2 min △ V 1 of the this case. Assuming that the effective portion of the current change due to the sudden load input is △ Ip and the ineffective portion is △ Iq, △ V 1 is [Equation 9].

【0062】[0062]

【数9】△V1=−√3(Re△Ip+Xe△Iq)
(電圧低下方向を負とした) ただし、Re,Xe:配電用変電所からSVC設置点ま
での配電線抵抗、リアクタンス △Ip,△Iq:有効、無効電流変化分(増加方向を正
とする。無効電流は遅れを正) アルミ線120mm2は単位長あたりRe=0.25Ω
/km、Xe=0.35Ω/kmである。よって負荷力
率進み0.80(位相角40°)の負荷投入のときには
有効電流による電圧降下と進み無効電流による電圧上昇
が打ち消し合い電圧変化が零になる。これより力率(進
み)が低下すると進み無効電流による電圧上昇が有効分
による電圧降下を上回り電圧変化分の符号は正となる
(電圧増加)。
△ V 1 = −√3 (Re △ Ip + Xe △ Iq)
However, Re, Xe: distribution line resistance from the distribution substation to the SVC installation point, reactance ΔIp, ΔIq: valid, reactive current change (increase direction is positive). Reactive current has a positive delay) Aluminum wire 120mm 2 has Re = 0.25Ω per unit length
/ Km and Xe = 0.35Ω / km. Therefore, when a load with a load power factor advance of 0.80 (phase angle 40 °) is applied, the voltage drop due to the active current and the voltage rise due to the advance reactive current cancel each other out, and the voltage change becomes zero. When the power factor (lead) decreases from this, the sign of the voltage change becomes positive because the voltage rise due to the advance reactive current exceeds the voltage drop due to the effective component (voltage increase).

【0063】一方、負荷力率進み0.80より力率が大
きくなるとき、または負荷遅れのときは進み無効電流に
よる電圧上昇が小さくなる、または遅れ無効電流による
電圧降下が大きくなるので、電圧変化分の符号は負にな
る(電圧低下)。
On the other hand, when the power factor is larger than 0.80, or when the load is delayed, the voltage rise due to the leading reactive current is small or the voltage drop due to the delayed reactive current is large. The sign of the minute becomes negative (voltage drop).

【0064】この性質は分散型電圧によりSVC装置箇
所の潮流状態(逆潮流あり・なし)と無関係に成立す
る。(図12(a)の右半面)。負荷遮断時は投入時の
関係と反対になる(図12(a)の左半面)。
This property is established by the distributed voltage irrespective of the power flow state (with or without reverse power flow) at the location of the SVC device. (Right half of FIG. 12 (a)). At the time of load shedding, the relationship is the opposite of that at the time of application (the left half of FIG. 12A).

【0065】逆送条件でのこれらの関係は図12(b)
に示すように順送時と対称となる。
FIG. 12 (b) shows the relationship under the reverse transmission condition.
As shown in FIG.

【0066】[0066]

【表1】 [Table 1]

【0067】よって、表1に示すように直列型SVCの
1次電圧V1と電流変化分△Iとの位相関係とこの電圧
の大きさの変化した符号(電圧上昇で正、電圧低下で
負)によって順送・逆送判定を行うことができる。この
順送・逆送判定結果が順送の場合のみ直列型SVC装置
を機能可能としておき、順送時の負荷点の電圧変動を実
施の形態1の場合と同様に制御する。
Therefore, as shown in Table 1, the phase relationship between the primary voltage V 1 of the serial type SVC and the current change ΔI and the sign of the change in the magnitude of the voltage (positive when the voltage increases and negative when the voltage decreases) ) Can determine forward / reverse transmission. The serial type SVC device is enabled only when the result of the forward / reverse determination is forward, and the voltage fluctuation at the load point at the time of forward feed is controlled in the same manner as in the first embodiment.

【0068】[0068]

【発明の効果】本願の発明は、上述のとおり構成されて
いるので、次に記載する効果を奏する。
Since the present invention is configured as described above, the following effects can be obtained.

【0069】(1)設置箇所を制約することなく負荷中
心点電圧変動率を許容値以下にできる。
(1) The load center point voltage fluctuation rate can be made equal to or less than an allowable value without restricting the installation location.

【0070】(2)直列型SVC装置は負荷中心点電圧
変動分の大きさが整定値以上の条件で起動する。
(2) The serial type SVC device is started under the condition that the magnitude of the voltage fluctuation at the load center point is equal to or larger than the set value.

【0071】(3)直列型SVC装置の負荷中心点の電
圧の変動分を負荷中心点電圧の移動平均値の常時一定時
間(変動値基準時間)から求めた基準電圧から算出した
場合、変動値基準時間を超えると電圧変動率は許容値よ
り小さくなり、直列型SVC装置は停止する。
(3) When the variation of the voltage at the load center point of the series-type SVC device is calculated from the reference voltage obtained from a constant time (variation value reference time) of the moving average value of the load center point voltage, the variation value When the reference time is exceeded, the voltage fluctuation rate becomes smaller than the allowable value, and the serial type SVC device stops.

【0072】(4)SVR装置と直列型SVC装置との
協調制御が容易となる。
(4) Cooperative control between the SVR device and the serial type SVC device is facilitated.

【0073】(5)順送時の電圧変動に対して確実に起
動し、補償電圧を発生する。
(5) A reliable start-up is performed in response to a voltage fluctuation during forward feeding, and a compensation voltage is generated.

【0074】(6)電圧変動分だけを補償するので装置
小容量化が期待できる。
(6) Since only the voltage fluctuation is compensated, a reduction in the device capacity can be expected.

【図面の簡単な説明】[Brief description of the drawings]

【図1】SVR装置と、直列型SVC装置の協調制御説
明図。
FIG. 1 is an explanatory diagram of cooperative control of an SVR device and a serial type SVC device.

【図2】演算に使用する電圧の説明図。FIG. 2 is an explanatory diagram of voltages used for calculation.

【図3】直列型SVC装置の発生電圧を説明するベクト
ル図。
FIG. 3 is a vector diagram illustrating a generated voltage of the serial type SVC device.

【図4】直列型SVC装置の1次側と2次側電圧よりみ
た電圧変動率を示すグラフ。
FIG. 4 is a graph showing a voltage fluctuation rate as viewed from a primary side voltage and a secondary side voltage of a serial type SVC device.

【図5】直列型SVC装置設置位置と配電線各点の電圧
変動率を示すグラフ。
FIG. 5 is a graph showing an installation position of a series type SVC device and a voltage fluctuation rate at each point of a distribution line.

【図6】SVR装置と直列型SVC装置の協調制御にお
ける配電線の電圧変動率の時間推移を示す概念図。
FIG. 6 is a conceptual diagram showing a time change of a voltage fluctuation rate of a distribution line in cooperative control of an SVR device and a serial type SVC device.

【図7】解析対象回路図。FIG. 7 is an analysis target circuit diagram.

【図8】シミュレーション結果を示すグラフ。FIG. 8 is a graph showing simulation results.

【図9】順送状態を示す直列型SVC装置設置の配電線
路図。
FIG. 9 is a distribution line diagram of a serial type SVC device installed showing a progressive state.

【図10】逆送状態を示す直列型SVC装置設置の配電
線路図。
FIG. 10 is a distribution line diagram of a series type SVC device installation showing a reverse feed state.

【図11】順送条件逆潮流ありでの負荷投入による電流
変化方向の説明図。
FIG. 11 is an explanatory diagram of a current change direction due to loading of a load in the presence of reverse power flow in a forward condition.

【図12】電圧・電流の位相関係を示すグラフ。FIG. 12 is a graph showing a phase relationship between voltage and current.

【図13】SVR装置の構成を示すブロック図。FIG. 13 is a block diagram showing a configuration of the SVR device.

【図14】直列型SVC装置の構成を示すブロック図。FIG. 14 is a block diagram showing a configuration of a serial type SVC device.

【図15】従来SVR装置配電線路の負荷投入による電
圧降下説明図。
FIG. 15 is an explanatory diagram of a voltage drop due to a load input to a conventional SVR device distribution line.

【符号の説明】[Explanation of symbols]

1…SVR装置(ステップ電圧制御装置) 2…直列型SVC装置(直列型電圧制御装置) ε…直列型SVC装置の1次側電圧よりみた負荷中心点
の電圧変動率 ε′…直列型SVC装置の2次側電圧よりみた負荷中心
点の電圧変動率
DESCRIPTION OF SYMBOLS 1 ... SVR apparatus (step voltage control apparatus) 2 ... Series type SVC apparatus (series type voltage control apparatus) ε ... Voltage fluctuation rate of load center point viewed from primary side voltage of series type SVC apparatus ε '... series type SVC apparatus Of voltage change at the load center point as seen from the secondary side voltage

───────────────────────────────────────────────────── フロントページの続き (72)発明者 藤原 信行 神奈川県横浜市鶴見区江ヶ崎町4番1号 東京電力株式会社電力技術研究所内 (72)発明者 炭谷 一朗 神奈川県横浜市鶴見区江ヶ崎町4番1号 東京電力株式会社電力技術研究所内 (72)発明者 甲斐 隆章 東京都品川区大崎2丁目1番17号 株式会 社明電舎内 (72)発明者 佐藤 達則 東京都品川区大崎2丁目1番17号 株式会 社明電舎内 Fターム(参考) 5G066 DA01 DA04 DA07 5H420 BB03 CC04 DD03 EA29 EA30 EA49 EB38  ──────────────────────────────────────────────────続 き Continued on the front page (72) Inventor Nobuyuki Fujiwara 4-1 Egasakicho, Tsurumi-ku, Yokohama-shi, Kanagawa Prefecture Within the Electric Power Research Laboratory, Tokyo Electric Power Company (72) Inventor Ichiro Sumiya E, Tsurumi-ku, Yokohama-shi, Kanagawa Prefecture 4-1, Kasaki-cho, Tokyo Electric Power Company, Electric Power Research Institute (72) Inventor Takaaki Kai 2-1-1-17, Osaki, Shinagawa-ku, Tokyo Inside Meidensha Co., Ltd. (72) Inventor Tatsunori Sato, Osaki, Shinagawa-ku, Tokyo 2-1-1-17 F-term in Meidensha Co., Ltd. (reference) 5G066 DA01 DA04 DA07 5H420 BB03 CC04 DD03 EA29 EA30 EA49 EB38

Claims (9)

【特許請求の範囲】[Claims] 【請求項1】 配電線路に直列に接続された直列変圧器
とこの線路から電力を受けて直列変圧器に無効電力ない
し有効電力を出力して直列変圧器の出力電力を制御する
電力変換器とからなる直列型電圧制御装置を設置し、 その装置の1次側の電圧と補償すべき目標地点である負
荷中心点までの線路インピーダンスおよび線路電流から
負荷中心点の電圧を算出し、その電圧変動分を一定値に
制御することを特徴とする配電線路の電圧制御方法。
1. A series transformer connected in series to a distribution line, a power converter receiving power from the line, outputting reactive power or active power to the series transformer, and controlling output power of the series transformer. The voltage at the center of the load is calculated from the voltage on the primary side of the device and the line impedance and the line current to the load center, which is the target point to be compensated. A voltage control method for a distribution line, wherein the voltage is controlled to a constant value.
【請求項2】 請求項1において、負荷中心点の電圧変
動分は、負荷中心点電圧の所定時間の移動平均値を求
め、常に一定時間である変動値基準時間前の移動平均値
を電圧基準値として算出することを特徴とする配電線路
の電圧制御方法。
2. The method according to claim 1, wherein a moving average value of the load center point voltage for a predetermined time is obtained as a voltage fluctuation at the load center point, and a moving average value before a fluctuation value reference time, which is always a fixed time, is calculated as a voltage reference. A voltage control method for a distribution line, which is calculated as a value.
【請求項3】 請求項1において、直列型電圧制御装置
を、負荷中心点の電圧変動分の大きさが整定値以上の条
件で起動させることを特徴とする配電線路の電圧制御方
法。
3. The voltage control method for a distribution line according to claim 1, wherein the series voltage control device is started under a condition that a magnitude of a voltage fluctuation at a load center point is equal to or larger than a set value.
【請求項4】 請求項1において、直列型電圧制御装置
の発生電圧の位相を、電圧上げ方向ではその装置の1次
側電圧と同相に、電圧下げ方向ではその電圧と逆位相に
制御することを特徴とする配電線路の電圧制御方法。
4. The method according to claim 1, wherein the phase of the voltage generated by the series-type voltage control device is controlled to be in phase with the primary voltage of the device in the voltage increasing direction and opposite to the voltage in the voltage decreasing direction. A voltage control method for a distribution line, comprising:
【請求項5】 請求項1において、負荷中心点の電圧変
動分を一定値とするために、その整定値と電圧基準値、
直列型電圧制御装置1次側電圧、線路電流、負荷中心点
までのインピーダンスから制御電圧を算出することを特
徴とする配電線路の電圧制御方法。
5. The method according to claim 1, wherein the set value and the voltage reference value are set so as to make the voltage fluctuation at the load center point a constant value.
A voltage control method for a distribution line, comprising calculating a control voltage from a primary-side voltage, a line current, and an impedance to a load center point of a series voltage controller.
【請求項6】 配電線路にタップ変圧器とタップ切換指
令を出力する電圧調整リレーとからなるステップ電圧制
御装置および直列型電圧制御装置とを設置し、 直列型電圧制御装置が負荷中心点電圧変動分を一定に制
御することにより、直列型電圧制御装置の設置箇所の制
約を受けることなく、ステップ電圧制御装置と協調制御
を行うことを特徴とする配電線路の電圧制御方法。
6. A step voltage controller and a series voltage controller comprising a tap transformer and a voltage adjusting relay for outputting a tap switching command are installed on a distribution line, and the series voltage controller is configured to control a load center point voltage fluctuation. A voltage control method for a distribution line, comprising: performing a coordinated control with a step voltage control device by controlling the number of minutes to be constant, without being restricted by an installation location of the series-type voltage control device.
【請求項7】 請求項6において、ステップ電圧制御装
置の整定値からタップ制御時間を予測し、これを考慮し
て直列型電圧制御装置の変動値基準時間を定めて基準電
圧を算出し、電圧を発生して補償することにより協調制
御ができることを特徴とする配電線路の電圧制御方法。
7. The method according to claim 6, wherein a tap control time is predicted from a set value of the step voltage control device, and a reference value is calculated by determining a fluctuation value reference time of the series voltage control device in consideration of the tap control time. A voltage control method for a distribution line, wherein cooperative control can be performed by generating and compensating for the voltage.
【請求項8】 請求項6において、ステップ電圧制御装
置の負荷中心点電圧を基準電圧に維持するために過不足
する電圧を、直列型電圧制御装置が負荷中心点の電圧変
動分の整定値と装置1次側の電圧、線路電流、負荷中心
点までのインピーダンスから発生電圧を算出して補償す
ることを特徴とする配電線路の電圧制御方法。
8. The voltage controller according to claim 6, wherein the voltage that is excessive or insufficient to maintain the load center point voltage of the step voltage controller at the reference voltage is determined by the series type voltage controller as the set value of the voltage fluctuation at the load center point. A voltage control method for a distribution line, comprising calculating and compensating a generated voltage from a voltage on a primary side of a device, a line current, and an impedance to a load center point.
【請求項9】 請求項1または請求項6において、電圧
を基準ベクトルにして線路電流の変化分の位相関係と電
圧上げ下げの方向の関係により順送、逆送判定を行い、
順送時のみ直列型電圧制御装置を動作させることを特徴
とする配電線路の電圧制御方法。
9. The method according to claim 1, wherein forward or backward transmission is determined by using a voltage as a reference vector in accordance with a phase relationship of a change in line current and a relationship between directions of voltage increase and decrease.
A voltage control method for a distribution line, wherein a series-type voltage control device is operated only during forward feeding.
JP2000075506A 2000-03-17 2000-03-17 Voltage control method for distribution lines Expired - Fee Related JP4107783B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2000075506A JP4107783B2 (en) 2000-03-17 2000-03-17 Voltage control method for distribution lines

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000075506A JP4107783B2 (en) 2000-03-17 2000-03-17 Voltage control method for distribution lines

Publications (2)

Publication Number Publication Date
JP2001268795A true JP2001268795A (en) 2001-09-28
JP4107783B2 JP4107783B2 (en) 2008-06-25

Family

ID=18593389

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000075506A Expired - Fee Related JP4107783B2 (en) 2000-03-17 2000-03-17 Voltage control method for distribution lines

Country Status (1)

Country Link
JP (1) JP4107783B2 (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007272636A (en) * 2006-03-31 2007-10-18 Ntt Facilities Inc Instantaneous voltage drop generation device instantaneous voltage drop generation method
JP2011217581A (en) * 2010-04-02 2011-10-27 Mitsubishi Electric Corp Automatic voltage regulating device for lines
JP2012005277A (en) * 2010-06-18 2012-01-05 Hitachi Ltd Reactive power compensation device having power current calculation function, and system and method thereof
JP2014027737A (en) * 2012-07-25 2014-02-06 Hokuriku Electric Power Co Inc:The Method and device for calculating setting value of line voltage drop compensator
JP2014187781A (en) * 2013-03-22 2014-10-02 Takaoka Toko Co Ltd Power transmission state determination device and power transmission state determination method for automatic voltage regulator
CN109638842A (en) * 2019-01-15 2019-04-16 杭州电子科技大学 A kind of intelligent search algorithm applied to the real-time pressure regulation of flexible load

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007272636A (en) * 2006-03-31 2007-10-18 Ntt Facilities Inc Instantaneous voltage drop generation device instantaneous voltage drop generation method
JP2011217581A (en) * 2010-04-02 2011-10-27 Mitsubishi Electric Corp Automatic voltage regulating device for lines
JP2012005277A (en) * 2010-06-18 2012-01-05 Hitachi Ltd Reactive power compensation device having power current calculation function, and system and method thereof
JP2014027737A (en) * 2012-07-25 2014-02-06 Hokuriku Electric Power Co Inc:The Method and device for calculating setting value of line voltage drop compensator
JP2014187781A (en) * 2013-03-22 2014-10-02 Takaoka Toko Co Ltd Power transmission state determination device and power transmission state determination method for automatic voltage regulator
CN109638842A (en) * 2019-01-15 2019-04-16 杭州电子科技大学 A kind of intelligent search algorithm applied to the real-time pressure regulation of flexible load
CN109638842B (en) * 2019-01-15 2022-05-17 杭州电子科技大学 Intelligent search algorithm applied to flexible load real-time voltage regulation

Also Published As

Publication number Publication date
JP4107783B2 (en) 2008-06-25

Similar Documents

Publication Publication Date Title
KR950012303B1 (en) Device for driving elevator at service interruption
EP2443719B1 (en) Controlling an inverter device of a high voltage dc system for supporting an ac system
JP2020182276A (en) Monitoring and controlling device and control method for photovoltaic power generation facility
US8823297B2 (en) Method of control implemented in a variable speed drive for controlling the deceleration of an electric motor in the case of power outage
JP6591064B2 (en) Power conversion system
JP2001268795A (en) Voltage control method of distribution line
JP2001051734A (en) Reactive power compensation system
JP3407234B2 (en) Control method of distributed arrangement type power supply linked to power system
JPH09191690A (en) Input power controller for induction motor
KR20150134924A (en) Apparatus and method for controlling bidirectional dc-dc converter
JP3443681B2 (en) Reactive power compensation system
JPH069164A (en) Control method and device of elevator
JP3853072B2 (en) Power system voltage control system
JP4560657B2 (en) Uninterruptible power system
US11632032B2 (en) Power converter with output misconnection determiner
JP2003348755A (en) Method of restraining three-phase imbalance in power distribution system
JP2006014445A (en) Distribution line voltage fluctuation compensator
CA2975965A1 (en) Demand response implemented in an infrastructure having a dc link
JPH08265975A (en) Static reactive power compensator
US20240332975A1 (en) Power supply apparatus and method for controlling power supply apparatus
JP2000032764A (en) Inverter device, inverter controller and inverter system
JPH0965574A (en) Control of self-excited reactive power compensating device
KR102638961B1 (en) Inverter apparatus capable of high speed operation mode switching and high speed start-up and control method thereof
JP2002223592A (en) Common rectifying inverter
JP3743950B2 (en) Control device for power converter

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20051108

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20070601

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070612

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070807

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20071113

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080115

A911 Transfer of reconsideration by examiner before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20080131

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20080318

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20080401

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110411

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

Ref document number: 4107783

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130411

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140411

Year of fee payment: 6

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees