JP4107783B2 - Voltage control method for distribution lines - Google Patents

Voltage control method for distribution lines Download PDF

Info

Publication number
JP4107783B2
JP4107783B2 JP2000075506A JP2000075506A JP4107783B2 JP 4107783 B2 JP4107783 B2 JP 4107783B2 JP 2000075506 A JP2000075506 A JP 2000075506A JP 2000075506 A JP2000075506 A JP 2000075506A JP 4107783 B2 JP4107783 B2 JP 4107783B2
Authority
JP
Japan
Prior art keywords
voltage
series
svr
svc
load
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2000075506A
Other languages
Japanese (ja)
Other versions
JP2001268795A (en
Inventor
尚明 深津
信行 藤原
一朗 炭谷
隆章 甲斐
達則 佐藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Meidensha Corp
Tokyo Electric Power Co Inc
Original Assignee
Meidensha Corp
Tokyo Electric Power Co Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Meidensha Corp, Tokyo Electric Power Co Inc filed Critical Meidensha Corp
Priority to JP2000075506A priority Critical patent/JP4107783B2/en
Publication of JP2001268795A publication Critical patent/JP2001268795A/en
Application granted granted Critical
Publication of JP4107783B2 publication Critical patent/JP4107783B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E40/00Technologies for an efficient electrical power generation, transmission or distribution
    • Y02E40/10Flexible AC transmission systems [FACTS]
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E40/00Technologies for an efficient electrical power generation, transmission or distribution
    • Y02E40/30Reactive power compensation

Landscapes

  • Supply And Distribution Of Alternating Current (AREA)
  • Control Of Electrical Variables (AREA)

Description

【0001】
【発明の属する技術分野】
この発明は、直列型電圧制御装置およびこれとステップ電圧制御装置とを組み合わせた配電線路の電圧制御方法に関するものである。
【0002】
【従来の技術】
本出願人は先にステップ電圧制御装置(SVR装置)と直列型電圧制御装置(直列型SVC装置)とを組み合わせた電力系統の電圧制御方式を提案した。(特願平10−168051号)。
【0003】
上記電圧制御方式を図1について説明する。なお、本文中電圧電流のベクトル記号は省略してある。系統電源(配電用変電所)PSからの配電線にSVR装置1を接続し、その下流側に直列型SVC装置2を近接設置する。SVR装置1は緩慢な電圧変動補償しかできないので、直列型SVC装置2により急激な電圧変動補償を行わせる。
【0004】
SVR装置1は図13に示すように、タップ切換変圧器1aと90リレー1bからなり、90リレー1bは、SVR装置1の2次側電圧V2からみた負荷中心点aの電圧VL={V2−(R+jX)I}の大きさに対して、基準電圧Vrefとの差をとり、これを積分回路11で積分してその大きさが動作時間整定値を超えるとタップ上げ(または下げ)指令をタップ切換変圧器1aに出力して負荷側の電圧を制御する。ただし、この差の大きさが不感帯を超えなければ積分は行わない。
【0005】
図15はSVR装置1で負荷中心点電圧を制御する場合の負荷中心点電圧の変化を示す。SVR装置は原理上タップ上げ(下げ)指令出力に対し数分かかり、タップ制御後も負荷中心点電圧と基準電圧とに差(不感帯以上)があるとさらにタップ上げ(下げ)指令出力に対して数分要する。
【0006】
直列型SVC装置2は図14に示すように、配電線に接続された並列変圧器Taと直列変圧器Tbおよび変圧器Ta,Tb間に接続された自励式コンバータ2aと自励式インバータ2bとで構成されている。
【0007】
直列型SVC装置2はその1次側電圧V1と2次側の電流Iを自励式インバータの制御回路に入力して電圧制御を行う。即ち、電圧V1を基準電圧Vrefにして、電圧を上げる場合は電圧V1と同相の電圧VCを発生させ、電圧を下げる場合は電圧V1と反対位相の電圧VCを発生させる。発生させる電圧VCの大きさは直列型SVC装置2の2次側電圧V2から求めた負荷中心点aの電圧VLの大きさが基準電圧Vref(=V1)になるように制御する。
【0008】
【数1】

Figure 0004107783
【0009】
電圧V1,V2は同位相とし、SVR装置1と直列型SVC装置2の負荷中心点の位置a及び基準電圧Vrefと不感帯の大きさは同じ値としている。
【0010】
【発明が解決しようとする課題】
上記電圧制御方式は、SVR装置と直列型SVC装置とを併用し、緩慢な電圧変動に対してはSVR装置だけで補償し、急激な電圧変動に対してはSVR装置で不足する補償電圧を直列型SVC装置で補完する。この直列型SVC装置はその1次側電圧を基準電圧として制御している。そのためにSVR装置の負荷側(下流側)に直列型SVC装置を近接設置することが条件となっている。
【0011】
ところで、配電線の電圧補償をする場合、SVR装置、直列型SVC装置いずれもが、配電柱に装柱されることになる。このため、これらを近接設置させる条件は制約が多く現実的に困難なケースが生ずるものと思われる。
【0012】
この発明は、直列型SVC装置がその1次側電圧を基準とすることなく負荷中心点電圧変動分を一定に制御でき、またSVR装置と直列型SVC装置の協調制御する場合、上記条件を課せることなく、SVR装置と直列型SVC装置とで配電線の電圧補償ができる配電線路の電圧制御方法を提供することにある。
【0013】
【課題を解決するための手段】
この発明の配電線路の電圧制御方法は、配電線路にタップ変圧器とタップ切換指令を出力する電圧調整リレーとからなるステップ電圧制御装置および直列型電圧制御装置とを設置し、直列型電圧制御装置を負荷中心点電圧変動分が予め定められた変動許容範囲内となるよう制御すると共に、ステップ電圧制御装置の整定値からタップ制御時間を予測し、これを考慮して直列型電圧制御装置の変動値基準時間を定めて基準電圧を算出し、電圧を発生して補償することにより協調制御ができることを特徴としたものである。
【0023】
【発明の実施の形態】
実施の形態1
図1に示すように配電線にSVR装置1を設けその下流側に直列型SVC装置2を設け、電圧を補償すべき負荷中心点(目標地点)aを定める。SVR装置1、直列型SVC装置2は従来の技術で説明した図13、図14の構成となっている。
【0024】
まず、直列型SVC装置2による負荷中心点電圧の制御方法について説明する。負荷中心点aの電圧変動率が許容値αを超えると、直列型SVC装置2を起動させて、負荷中心点aの電圧変動率をαに維持するように直列型SVC装置2の発生電圧を制御する。そのため、次のように直列型SVC装置2の1次側電圧V1からみた負荷中心点の電圧VLの電圧変動率を装置起動条件とする。
【0025】
【数2】
Figure 0004107783
【0026】
また、緩慢な電圧変動による直列型SVC装置2の起動を避け、急激な電圧変動だけを確実に補償するために、負荷中心点電圧を移動平均処理して得られる変動値基準時間△T時間前の負荷中心点電圧の大きさを基準電圧VLrefとして、現在の負荷中心点電圧VLの大きさの電圧変動率ε(%)を求める。
【0027】
【数3】
Figure 0004107783
【0028】
この電圧変動率εを許容値αと比較し、ε>αとなった場合、直列型SVC装置を起動させる。この装置の2次側からみた負荷中心点電圧VL′は、
【0029】
【数4】
Figure 0004107783
【0030】
この負荷中心点電圧VL′の上記基準電圧VLrefに対する電圧変動率ε′を求める。
【0031】
【数5】
Figure 0004107783
【0032】
この電圧変動率ε′が許容値αになるように、直列型SVC装置の発生電圧VCの大きさを制御する。
【0033】
負荷中心点電圧VLについて、現在電圧と基準電圧を図2に示す。現在電圧VLは現在時点でこれより数サイクル間の負荷中心点電圧の大きさの平均値、基準電圧VLrefは現在より△T時間(変動値基準時間)前の時点において、これよりT0時間(基準電圧平均時間)の負荷中心点電圧の大きさの平均値である。
【0034】
直列型SVC装置2の発生電圧VCは次のように求める。 図3にベクトル図を示す。直列型SVC装置2の1次電圧V1と同相成分をq軸成分、これより90°進みの成分をd軸成分として表現する。
【0035】
直列型SVC装置2の2次側電圧V2からみた負荷中心点の電圧VL′について、d・q軸成分で表すと、
【0036】
【数6】
VLq+VLd=(V1q+jV1d)+(VCq+jVCd)−(r+jx)(Iq+jId
Cは、V1と同相または反対位相であり、V1はq軸成分なので、V1d=0、VCd=0である。
【0037】
【数7】
Figure 0004107783
【0038】
【数8】
Figure 0004107783
【0039】
負荷急変により電圧が低下した場合の負荷中心点の基準電圧VLref、現在電圧と基準電圧との電圧偏差△Vおよび直列型SVC装置2の1次側と2次側電圧よりみた電圧変動率ε,ε′を図4に示す。
【0040】
図4について、負荷急変動が発生し負荷中心点電圧VLが低下する。基準電圧VLrefは現在より△T時間前の負荷中心点電圧の大きさの平均値であるから、△T時間変化せずにその後直線的に低下してT0秒後負荷中心点電圧VLと等しくなる。また電圧偏差△V=VL−VLrefも△T時間変化せずその後直線的に減少してT0秒後△V=0となる。
【0041】
したがって、電圧変動率ε′(%)は負荷急変と同時に増加する。図4の場合、負荷急変時の電圧変動率εは許容値αを超えているので、負荷急変と同時に直列型SVC装置2が起動し、直列型SVC装置2の2次側からみた負荷中心点の電圧変動率ε′(%)を許容値αに維持するように直列型SVC装置2は電圧VCを発生する。
【0042】
上記電圧変化から△T時間(変動値基準時間)を超える基準電圧VLrefは電圧変化後の値を平均値計算に取り始めるので、その値は徐々に零に近づいていき、これよりT0時間(基準電圧平均時間)後には零になる。
【0043】
この間に電圧変動率εは許容値αより小さくなり、直列型SVC装置2は停止する。直列型SVC装置2が停止すると電圧変動率ε,ε′はやがて零になる。配電線電圧は直列型SVC装置2の停止とともに電圧低下が継続するが後述のようにSVR装置1と動作協調を取り△T時間をSVR装置1が動作できる時間より大きくするので、電圧変動率εを許容値α以下に維持できる。
【0044】
図5は直列型SVC装置2の設置位置と配電線各点の電圧変動率ε,ε′との関係を示すもので、直列型SVC装置2では装置負荷側を補償して配電用変電所(系統電源)から負荷中心点の電圧変動率を許容値以下にする。直列型SVC装置2は設置位置に拘わらず上述の電圧算出方法により、負荷中心点の電圧変動分を許容値αに維持できる。
【0045】
次にSVR装置1と直列型SVC装置2との動作協調について説明する。図6にSVR装置1の負荷側に直列型SVC装置2を配置した配電線の電圧変動率の時間推移を示す。なお、ともに負荷中心点は末端としている。
【0046】
図6について、電圧変動発生直後▲1▼は、SVR装置1は応答できないため、直列型SVC装置2が電圧VCを出力して負荷中心点aの電圧変動率εを許容値αに維持する。
【0047】
その後▲2▼で、SVR装置1は負荷側電圧からみた負荷中心点電圧と基準電圧(設定値)との偏差に応じた積分時間が整定値に達するため、タップを上昇させる。このSVR装置1の動作により直列型SVC装置2の電源側電圧はSVR装置1の1タップ分だけ電圧が補償されるので、直列型SVC装置2の補償電圧VCが減少する。
【0048】
以後、SVR装置1のタップ動作が進むにつれて直列型SVC装置2の補償電圧VCは減少する。▲3▼に示すように負荷中心点の電圧変動率が許容値以下になると、直列型SVC装置2の補償電圧VCは零になる。
【0049】
以上のように、SVR装置1のタップ動作と直列型SVC装置2の補償動作は独立しているため、電圧変動直後は直列型SVC装置2が、その後段階的にSVR装置が電圧変動を補償する動作協調が可能となる。
【0050】
上記は直列型SVC装置2がSVR装置の負荷側に設置された場合であるが、直列型SVC装置2がSVR装置1に対して電源側に設置された場合の動作協調は上述とは異なる。この場合は移動平均値の基準時間△T、即ち図2の変動値基準時間△Tを適当に整定することにより協調制御が可能となる。
【0051】
上記の方法はSVR装置が同一線路に複数台設置されている場合にも適用できる。
【0052】
SVR装置1の負荷側に直列型SVC装置2を設置した場合の動作協調性能についてのディジタルシミュレーション結果について述べる。解析対象回路は図7に示すように、急変動負荷として変電所より10kmの配電線末端(#7)に同期発電機Gを選定し、出力1[MW](力率1)運転時の発電機脱落を模擬した。SVR装置(SVR)と直列型SVC装置(SVC)の負荷中心点は配電線末端とし、電圧変動率許容値(整定値)を5%とした。また、SVR、SVCの設置点は変電所よりそれぞれ4km、6kmの地点とした。
【0053】
シミュレーション結果を図8に示す。急変負荷である同期発電機脱落直後の▲1▼ではSVR装置の1次側(#4)電圧よりみた負荷中心点(#7)の電圧変動率εは、7.7%である。電圧変動率εの許容値は5%なので、直列型SVC装置は起動し、その装置の2次側(#5)電圧よりみた負荷中心点の電圧変動率ε′を許容値の5%になるように直列型SVC装置は発生電圧を制御する。その結果、負荷中心点の電圧変動率ε′は4.9%になり、配電線全体の電圧変動率は許容値の5%以下になる。
【0054】
同期発電機脱落後から約8秒経過の▲2▼では、SVR装置は動作してタップ制御(電圧変動率で1.5%相当)される。直列型SVC装置の1次側電圧からみた負荷中心点の電圧変動率は6.1%であるので、直列SVC装置は起動し続け、この装置の2次側電圧からみた負荷中心点の電圧変動率ε′を5%に維持するよう発生電圧を制御するが、SVR装置で電圧制御された(電圧変動率で1.5%相当)発生電圧は小さくなる。
【0055】
SVR装置が1タップ制御してからさらに10秒(同期発電機脱落後から18秒)経過の▲3▼で、SVR装置は動作し、2タップ制御されると、直列型SVC装置の1次電圧からみた負荷中心点の電圧変動率は4.2%になるのでSVR装置は停止する。しかし、SVR装置の動作により配電線全体の電圧変動率は許容値の5%以下なので、目的とする電圧制御は果たされており、SVR装置と直列型SVR装置の動作協調は良好になされている。
【0056】
この動作協調はSVR装置の整定値などから電圧変動に対するタップ制御時間を予測し、これを考慮して直列型SVC装置の△T時間(変動値基準時間)を決めることによって良好になされる。
【0057】
実施の形態2
直列型SVC装置の通常負荷電流は電源端(配電用変電所)から負荷の方へ電流が流れる。しかし最近配電系統へ分散型電源が導入されており、この電源によって直列型SVC装置からみて電流方向が電源端へなることがある。これを逆潮流と呼んでいる。
【0058】
図9の(a)、(b)は順送状態での逆流なし、ありの状態を示す。順送とは常時の配電用変電所PS1から電力供給される状態をいう。これに対して常時の配電用変電所PS1から事故などで電力供給できない場合、別の配電用変電所(分散型電源)PS2から電力供給することがあり、この配電用変電所PS1からの電流の流れが順送時とは逆になる状態を逆送と呼んでいる。図10の(a),(b)は逆送状態での逆潮流なし、ありの状態を示す。
【0059】
実施の形態2は逆潮流のあり、なしに拘わらず順送、逆送条件を自動的に判定して順送時のみ直列型SVC装置を機能させる。逆送時に直列型SVC装置を機能させないのは、電源端PS1からみて負荷端が逆方向になるからである。逆潮流がなければ常時の電流方向で順送か逆送判定は可能である。しかし逆潮流を考慮するとその順送・逆送判別方法では判定不可能である。
【0060】
図11について、配電線の分散型電源PS2の上流側(配電用変電所PS1側)に直列型SVC装置2を設けて負荷L2の投入時などの過渡的な電圧変動補償をする。負荷L2投入時の電流は配電用変電所PS1と分散型電源PS2から供給される。従って図11にしめすように、直列型SVC装置2より負荷L2側にある負荷投入による電流変化△I方向は逆潮流有りでも逆潮流がない場合と同様に配電用変電所PS1から投入負荷方向になる。負荷遮断はこれとは電流変化方向は逆になる。
【0061】
この場合の直列型SVC装置2の電源側電圧V1の変化分△V1の符号を求める。急変動負荷投入による電流変化分の有効分を△Ip、無効分を△Iqとすると△V1は[数9]となる。
【0062】
【数9】
△V1=−√3(Re△Ip+Xe△Iq)(電圧低下方向を負とした)
ただし、Re,Xe:配電用変電所からSVC設置点までの配電線抵抗、リアクタンス
△Ip,△Iq:有効、無効電流変化分(増加方向を正とする。無効電流は遅れを正)
アルミ線120mm2は単位長あたりRe=0.25Ω/km、Xe=0.35Ω/kmである。よって負荷力率進み0.80(位相角40°)の負荷投入のときには有効電流による電圧降下と進み無効電流による電圧上昇が打ち消し合い電圧変化が零になる。これより力率(進み)が低下すると進み無効電流による電圧上昇が有効分による電圧降下を上回り電圧変化分の符号は正となる(電圧増加)。
【0063】
一方、負荷力率進み0.80より力率が大きくなるとき、または負荷遅れのときは進み無効電流による電圧上昇が小さくなる、または遅れ無効電流による電圧降下が大きくなるので、電圧変化分の符号は負になる(電圧低下)。
【0064】
この性質は分散型電圧によりSVC装置箇所の潮流状態(逆潮流あり・なし)と無関係に成立する。(図12(a)の右半面)。負荷遮断時は投入時の関係と反対になる(図12(a)の左半面)。
【0065】
逆送条件でのこれらの関係は図12(b)に示すように順送時と対称となる。
【0066】
【表1】
Figure 0004107783
【0067】
よって、表1に示すように直列型SVCの1次電圧V1と電流変化分△Iとの位相関係とこの電圧の大きさの変化した符号(電圧上昇で正、電圧低下で負)によって順送・逆送判定を行うことができる。この順送・逆送判定結果が順送の場合のみ直列型SVC装置を機能可能としておき、順送時の負荷点の電圧変動を実施の形態1の場合と同様に制御する。
【0068】
【発明の効果】
本願の発明は、上述のとおり構成されているので、次に記載する効果を奏する。
【0069】
(1)設置箇所を制約することなく負荷中心点電圧変動率を許容値以下にできる。
【0070】
(2)直列型SVC装置は負荷中心点電圧変動分の大きさが整定値以上の条件で起動する。
【0071】
(3)直列型SVC装置の負荷中心点の電圧の変動分を負荷中心点電圧の移動平均値の常時一定時間(変動値基準時間)から求めた基準電圧から算出した場合、変動値基準時間を超えると電圧変動率は許容値より小さくなり、直列型SVC装置は停止する。
【0072】
(4)SVR装置と直列型SVC装置との協調制御が容易となる。
【0073】
(5)順送時の電圧変動に対して確実に起動し、補償電圧を発生する。
【0074】
(6)電圧変動分だけを補償するので装置小容量化が期待できる。
【図面の簡単な説明】
【図1】SVR装置と、直列型SVC装置の協調制御説明図。
【図2】演算に使用する電圧の説明図。
【図3】直列型SVC装置の発生電圧を説明するベクトル図。
【図4】直列型SVC装置の1次側と2次側電圧よりみた電圧変動率を示すグラフ。
【図5】直列型SVC装置設置位置と配電線各点の電圧変動率を示すグラフ。
【図6】SVR装置と直列型SVC装置の協調制御における配電線の電圧変動率の時間推移を示す概念図。
【図7】解析対象回路図。
【図8】シミュレーション結果を示すグラフ。
【図9】順送状態を示す直列型SVC装置設置の配電線路図。
【図10】逆送状態を示す直列型SVC装置設置の配電線路図。
【図11】順送条件逆潮流ありでの負荷投入による電流変化方向の説明図。
【図12】電圧・電流の位相関係を示すグラフ。
【図13】SVR装置の構成を示すブロック図。
【図14】直列型SVC装置の構成を示すブロック図。
【図15】従来SVR装置配電線路の負荷投入による電圧降下説明図。
【符号の説明】
1…SVR装置(ステップ電圧制御装置)
2…直列型SVC装置(直列型電圧制御装置)
ε…直列型SVC装置の1次側電圧よりみた負荷中心点の電圧変動率
ε′…直列型SVC装置の2次側電圧よりみた負荷中心点の電圧変動率[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a series voltage control device and a voltage control method for a distribution line in which the voltage control device is combined with a step voltage control device.
[0002]
[Prior art]
The present applicant has previously proposed a voltage control method for an electric power system in which a step voltage control device (SVR device) and a series voltage control device (series SVC device) are combined. (Japanese Patent Application No. 10-168051).
[0003]
The voltage control method will be described with reference to FIG. In the text, the vector symbol of voltage / current is omitted. The SVR device 1 is connected to the distribution line from the system power supply (distribution substation) PS, and the serial SVC device 2 is installed in the vicinity thereof on the downstream side. Since the SVR device 1 can only perform slow voltage fluctuation compensation, the series-type SVC device 2 causes sudden voltage fluctuation compensation.
[0004]
As shown in FIG. 13, the SVR device 1 includes a tap switching transformer 1 a and a 90 relay 1 b, and the 90 relay 1 b has a voltage V L = {V at the load center point a viewed from the secondary side voltage V <b> 2 of the SVR device 1. 2− (R + jX) I} is taken as a difference from the reference voltage Vref and integrated by the integration circuit 11, and when the magnitude exceeds the operating time set value, a tap raising (or lowering) command is issued. Is output to the tap switching transformer 1a to control the voltage on the load side. However, integration is not performed unless the magnitude of this difference exceeds the dead zone.
[0005]
FIG. 15 shows a change in the load center voltage when the SVR device 1 controls the load center voltage. In principle, the SVR device takes several minutes for the tap up (down) command output, and if there is a difference between the load center voltage and the reference voltage (over the dead band) even after tap control, the tap up (down) command output It takes a few minutes.
[0006]
As shown in FIG. 14, the series-type SVC device 2 includes a parallel transformer Ta connected to the distribution line, a series transformer Tb, a self-excited converter 2a connected between the transformers Ta and Tb, and a self-excited inverter 2b. It is configured.
[0007]
The series-type SVC device 2 performs voltage control by inputting the primary side voltage V 1 and the secondary side current I to the control circuit of the self-excited inverter. That is, the voltages V 1 to the reference voltage Vref, when raising the voltage to generate a voltage V C of the voltage V 1 and phase, when lowering the voltage to generate a voltage V C of the voltages V 1 and opposite phase. The magnitude of the voltage V C to be generated is controlled so that the magnitude of the voltage V L at the load center point a obtained from the secondary side voltage V 2 of the series SVC device 2 becomes the reference voltage Vref (= V 1 ). .
[0008]
[Expression 1]
Figure 0004107783
[0009]
The voltages V 1 and V 2 have the same phase, and the position a of the load center point of the SVR device 1 and the serial type SVC device 2 and the size of the dead band are the same as the reference voltage Vref.
[0010]
[Problems to be solved by the invention]
The above voltage control method uses both an SVR device and a series SVC device, and compensates for a slow voltage variation only by the SVR device, and for a sudden voltage variation, a compensation voltage that is insufficient by the SVR device is serially connected. Complement with type SVC device. This series-type SVC device controls the primary side voltage as a reference voltage. Therefore, it is a condition that a series-type SVC device is installed close to the load side (downstream side) of the SVR device.
[0011]
By the way, when compensating the voltage of the distribution line, both the SVR device and the series-type SVC device are mounted on the distribution column. For this reason, there are many restrictions on the conditions for installing them close to each other, and it seems that a practically difficult case may occur.
[0012]
In the present invention, the series SVC device can control the load center point voltage fluctuation constant without using the primary side voltage as a reference, and the above condition is imposed when the SVR device and the series SVC device perform coordinated control. It is providing the voltage control method of the distribution line which can compensate the voltage of a distribution line with a SVR apparatus and a serial type SVC apparatus, without making it.
[0013]
[Means for Solving the Problems]
A voltage control method for a distribution line according to the present invention includes a step voltage control device and a series voltage control device each including a tap transformer and a voltage adjustment relay that outputs a tap switching command to the distribution line, and the series voltage control device. Is controlled so that the voltage fluctuation at the load center point is within a predetermined allowable fluctuation range, and the tap control time is predicted from the set value of the step voltage controller, and the fluctuation of the series voltage controller is taken into consideration. It is characterized in that cooperative control can be performed by calculating a reference voltage by setting a value reference time, and generating and compensating the voltage.
[0023]
DETAILED DESCRIPTION OF THE INVENTION
Embodiment 1
As shown in FIG. 1, an SVR device 1 is provided on the distribution line, and a serial SVC device 2 is provided on the downstream side thereof, and a load center point (target point) a at which the voltage should be compensated is determined. The SVR device 1 and the serial type SVC device 2 have the configurations shown in FIGS. 13 and 14 described in the prior art.
[0024]
First, a method of controlling the load center point voltage by the series SVC device 2 will be described. When the voltage fluctuation rate at the load center point a exceeds the allowable value α, the series-type SVC device 2 is started and the voltage generated by the series SVC device 2 is set so as to maintain the voltage fluctuation rate at the load center point a at α. Control. Therefore, the voltage variation rate of the voltage V L at the load center point as seen from the primary side voltage V 1 of the series-type SVC device 2 is set as the device activation condition as follows.
[0025]
[Expression 2]
Figure 0004107783
[0026]
Further, in order to avoid the start-up of the series-type SVC device 2 due to slow voltage fluctuations, and to reliably compensate for only sudden voltage fluctuations, the fluctuation value reference time ΔT hours before obtained by moving average processing of the load center point voltage The voltage fluctuation rate ε (%) of the current load center point voltage V L is obtained with the magnitude of the load center point voltage as the reference voltage V L ref.
[0027]
[Equation 3]
Figure 0004107783
[0028]
This voltage fluctuation rate ε is compared with the allowable value α, and when ε> α, the series SVC device is started. The load center point voltage V L ′ seen from the secondary side of this device is
[0029]
[Expression 4]
Figure 0004107783
[0030]
A voltage fluctuation rate ε ′ of the load center point voltage V L ′ with respect to the reference voltage V L ref is obtained.
[0031]
[Equation 5]
Figure 0004107783
[0032]
The magnitude of the generated voltage V C of the series SVC device is controlled so that the voltage fluctuation rate ε ′ becomes an allowable value α.
[0033]
FIG. 2 shows the current voltage and the reference voltage for the load center point voltage V L. The current voltage V L is an average value of the magnitude of the load center point voltage over several cycles at the present time point, and the reference voltage V L ref is T T at a time point before ΔT time (variation value reference time) from the present time. This is the average value of the load center point voltage for 0 hours (reference voltage average time).
[0034]
The generated voltage V C of the serial SVC device 2 is obtained as follows. FIG. 3 shows a vector diagram. A component in phase with the primary voltage V 1 of the series-type SVC device 2 is expressed as a q-axis component, and a component advanced by 90 ° is expressed as a d-axis component.
[0035]
The voltage V L 'of the tandem SVC 2-side voltage V 2 viewed from the load center point of the device 2, is represented by d · q-axis component,
[0036]
[Formula 6]
V Lq + V Ld = (V 1q + jV 1d ) + (V Cq + jV Cd ) − (r + jx) (I q + jI d )
V C is V 1 and phase or opposite phase, V 1 is so q-axis component, a V 1 d = 0, V Cd = 0.
[0037]
[Expression 7]
Figure 0004107783
[0038]
[Equation 8]
Figure 0004107783
[0039]
Voltage fluctuation rate as seen from the reference voltage V L ref at the load center point when the voltage drops due to sudden load change, the voltage deviation ΔV between the current voltage and the reference voltage, and the primary side and secondary side voltages of the series SVC device 2 ε and ε ′ are shown in FIG.
[0040]
In FIG. 4, a sudden load change occurs and the load center point voltage V L decreases. Since the reference voltage V L ref is the average value of the load center point voltage ΔT time before the present time, it does not change ΔT time and then decreases linearly, and then the load center point voltage V after T 0 seconds. Equal to L Also, the voltage deviation ΔV = V L −V L ref does not change for ΔT time and then decreases linearly and becomes ΔV = 0 after T 0 seconds.
[0041]
Therefore, the voltage fluctuation rate ε ′ (%) increases simultaneously with the sudden load change. In the case of FIG. 4, since the voltage fluctuation rate ε at the time of sudden load change exceeds the allowable value α, the series-type SVC device 2 is activated simultaneously with the sudden load change, and the load center point as seen from the secondary side of the series-type SVC device 2 The serial SVC device 2 generates the voltage V C so that the voltage fluctuation rate ε ′ (%) of the current is maintained at the allowable value α.
[0042]
Since the reference voltage V L ref that exceeds ΔT time (variation value reference time) from the voltage change starts to take the value after voltage change in the average value calculation, the value gradually approaches zero, and from this, T 0 After time (reference voltage average time), it becomes zero.
[0043]
During this time, the voltage fluctuation rate ε becomes smaller than the allowable value α, and the series SVC device 2 stops. When the serial SVC device 2 stops, the voltage fluctuation rates ε and ε ′ eventually become zero. The voltage of the distribution line continues to decrease as the series-type SVC device 2 stops. However, as described later, the operation coordination with the SVR device 1 is taken and the ΔT time is made longer than the time during which the SVR device 1 can operate. Can be maintained below the allowable value α.
[0044]
FIG. 5 shows the relationship between the installation position of the series-type SVC device 2 and the voltage fluctuation rates ε, ε ′ at each point of the distribution line. The series-type SVC device 2 compensates the device load side and distributes the distribution substation ( Set the voltage fluctuation rate at the load center to the allowable value or less. The serial SVC device 2 can maintain the voltage fluctuation at the load center point at the allowable value α by the above-described voltage calculation method regardless of the installation position.
[0045]
Next, operation cooperation between the SVR device 1 and the serial SVC device 2 will be described. FIG. 6 shows the time transition of the voltage fluctuation rate of the distribution line in which the serial SVC device 2 is arranged on the load side of the SVR device 1. In both cases, the load center point is at the end.
[0046]
In FIG. 6, immediately after the occurrence of the voltage fluctuation (1), since the SVR device 1 cannot respond, the series-type SVC device 2 outputs the voltage V C and maintains the voltage fluctuation rate ε at the load center point a at the allowable value α. .
[0047]
After that, at (2), the SVR device 1 raises the tap because the integration time corresponding to the deviation between the load center point voltage and the reference voltage (set value) viewed from the load side voltage reaches the set value. The operation of the SVR device 1 compensates the voltage of the power supply side voltage of the series-type SVC device 2 by one tap of the SVR device 1, so that the compensation voltage V C of the series-type SVC device 2 decreases.
[0048]
Thereafter, as the tap operation of the SVR device 1 proceeds, the compensation voltage V C of the serial SVC device 2 decreases. As shown in (3), when the voltage fluctuation rate at the load center point is less than the allowable value, the compensation voltage V C of the series SVC device 2 becomes zero.
[0049]
As described above, since the tap operation of the SVR device 1 and the compensation operation of the series SVC device 2 are independent, the series SVC device 2 compensates for the voltage variation immediately after the voltage variation, and the SVR device compensates for the voltage variation thereafter. Motion coordination is possible.
[0050]
The above is the case where the serial SVC device 2 is installed on the load side of the SVR device, but the operation coordination when the serial SVC device 2 is installed on the power supply side with respect to the SVR device 1 is different from the above. In this case, the coordinated control can be performed by appropriately setting the reference time ΔT of the moving average value, that is, the fluctuation value reference time ΔT of FIG.
[0051]
The above method can also be applied when a plurality of SVR devices are installed on the same line.
[0052]
The digital simulation result about the operation cooperative performance when the serial SVC device 2 is installed on the load side of the SVR device 1 will be described. As shown in Fig. 7, the analysis target circuit selects a synchronous generator G from the substation as a sudden variable load at the terminal end (# 7) of 10km from the substation, and generates power during operation of output 1 [MW] (power factor 1). Simulated machine dropout. The load center point of the SVR device (SVR) and the serial type SVC device (SVC) was the distribution line end, and the voltage fluctuation rate allowable value (settling value) was 5%. The installation points of SVR and SVC were 4 km and 6 km respectively from the substation.
[0053]
The simulation result is shown in FIG. In (1) immediately after the synchronous generator is dropped, which is a sudden change load, the voltage fluctuation rate ε at the load center point (# 7) viewed from the primary side (# 4) voltage of the SVR device is 7.7%. Since the allowable value of the voltage fluctuation rate ε is 5%, the series-type SVC device starts up, and the voltage fluctuation rate ε ′ at the load center point as seen from the secondary (# 5) voltage of the device becomes 5% of the allowable value. Thus, the serial type SVC device controls the generated voltage. As a result, the voltage fluctuation rate ε ′ at the load center point is 4.9%, and the voltage fluctuation rate of the entire distribution line is 5% or less of the allowable value.
[0054]
In (2) after about 8 seconds have elapsed since the synchronous generator was dropped, the SVR device is operated and tap-controlled (corresponding to 1.5% in terms of voltage fluctuation rate). Since the voltage fluctuation rate at the load center point as viewed from the primary side voltage of the series-type SVC device is 6.1%, the series SVC device continues to start up, and the voltage fluctuation at the load center point as seen from the secondary side voltage of this device. The generated voltage is controlled so as to maintain the rate ε ′ at 5%, but the generated voltage that is voltage controlled by the SVR device (corresponding to 1.5% in terms of voltage fluctuation rate) becomes small.
[0055]
In (3), when 10 seconds (18 seconds after the synchronous generator is dropped) after the SVR device has been controlled by one tap, the SVR device operates and when the two-tap control is performed, the primary voltage of the serial SVC device is increased. Since the voltage fluctuation rate at the load center point is 4.2%, the SVR device stops. However, since the voltage fluctuation rate of the entire distribution line is 5% or less of the allowable value due to the operation of the SVR device, the target voltage control is achieved, and the SVR device and the series-type SVR device are well coordinated. Yes.
[0056]
This operation coordination is favorably achieved by predicting the tap control time for voltage fluctuation from the set value of the SVR device, etc., and determining the ΔT time (fluctuation value reference time) of the serial SVC device in consideration of this.
[0057]
Embodiment 2
The normal load current of the series SVC device flows from the power supply end (distribution substation) toward the load. Recently, however, a distributed power source has been introduced into the power distribution system, and this power source may cause the current direction to reach the power source end when viewed from the serial SVC device. This is called reverse current.
[0058]
(A) and (b) of FIG. 9 show a state where there is no backflow in the progressive state. Progressive transmission refers to a state in which electric power is supplied from the normal distribution substation PS1. On the other hand, if power cannot be supplied from the normal distribution substation PS1 due to an accident or the like, power may be supplied from another distribution substation (distributed power source) PS2, and the current from the distribution substation PS1 A state in which the flow is opposite to that at the time of progressive feeding is called reverse feeding. (A) and (b) of FIG. 10 show a state where there is no reverse power flow in the reverse feed state.
[0059]
The second embodiment automatically determines forward / reverse feed conditions regardless of whether there is a reverse power flow, and allows the serial SVC device to function only during forward feed. The reason why the serial SVC device does not function at the time of reverse feeding is that the load end is in the reverse direction when viewed from the power supply end PS1. If there is no reverse power flow, forward or reverse determination can be made in the normal current direction. However, when the reverse power flow is taken into account, it cannot be determined by the forward / backward discrimination method.
[0060]
As shown in FIG. 11, a series-type SVC device 2 is provided on the upstream side (distribution substation PS1 side) of the distributed power source PS2 of the distribution line to compensate for transient voltage fluctuations such as when the load L2 is turned on. The current when the load L2 is turned on is supplied from the distribution substation PS1 and the distributed power source PS2. Accordingly, as shown in FIG. 11, the current change ΔI direction due to the loading of the load on the load L2 side from the series-type SVC device 2 is in the direction of the loading load from the distribution substation PS1 in the same manner as in the case where there is no reverse flow even with the reverse flow. Become. In the case of load shedding, the direction of current change is reversed.
[0061]
Request tandem SVC device 2 of the sign of the changed amount △ V 1 of the power source side voltages V 1 in this case. ΔV 1 is given by [Equation 9] where ΔIp is an effective portion of a current change due to sudden change load application and ΔIq is an ineffective portion.
[0062]
[Equation 9]
ΔV 1 = −√3 (ReΔIp + XeΔIq) (voltage drop direction is negative)
However, Re, Xe: Distribution line resistance from distribution substation to SVC installation point, reactance ΔIp, ΔIq: Effective, reactive current change (Increase direction is positive. Reactive current has positive delay)
For the aluminum wire 120 mm 2, Re = 0.25Ω / km and Xe = 0.35Ω / km per unit length. Therefore, when the load is applied with a load power factor advance of 0.80 (phase angle 40 °), the voltage drop due to the active current cancels the voltage increase due to the advance reactive current, and the voltage change becomes zero. When the power factor (advance) decreases, the voltage increase due to the reactive current exceeds the voltage drop due to the effective component, and the sign of the voltage change becomes positive (voltage increase).
[0063]
On the other hand, when the power factor becomes larger than 0.80 of the load power factor, or when the load is delayed, the voltage increase due to the reactive current becomes small or the voltage drop due to the delayed reactive current becomes large. Becomes negative (voltage drop).
[0064]
This property is established regardless of the power flow state (with or without reverse power flow) at the SVC device location due to the distributed voltage. (The right half of FIG. 12A). When the load is interrupted, the relationship at the time of turning on is opposite (the left half of FIG. 12A).
[0065]
These relationships under reverse feed conditions are symmetric with those during forward feed as shown in FIG.
[0066]
[Table 1]
Figure 0004107783
[0067]
Therefore, as shown in Table 1, the phase relationship between the primary voltage V 1 of the series-type SVC and the current change ΔI and the sign of the change in the magnitude of the voltage (positive when the voltage rises and negative when the voltage falls). Forward / backward judgment can be performed. The serial SVC device is made functional only when the forward / reverse determination result is forward, and the voltage variation at the load point during forward transmission is controlled in the same manner as in the first embodiment.
[0068]
【The invention's effect】
Since the invention of the present application is configured as described above, the following effects can be obtained.
[0069]
(1) The load center point voltage fluctuation rate can be made below the allowable value without restricting the installation location.
[0070]
(2) The series-type SVC device is activated under the condition that the magnitude of the voltage fluctuation at the load center point is equal to or greater than the set value.
[0071]
(3) When the fluctuation of the voltage at the load center point of the series type SVC device is calculated from the reference voltage obtained from the constant time (variation value reference time) of the moving average value of the load center point voltage, the fluctuation value reference time is If exceeded, the voltage fluctuation rate becomes smaller than the allowable value, and the series SVC device stops.
[0072]
(4) Cooperative control between the SVR device and the serial SVC device is facilitated.
[0073]
(5) Starts up reliably against voltage fluctuations during progressive feeding and generates compensation voltage.
[0074]
(6) Since only the voltage fluctuation is compensated, the device capacity can be expected to be reduced.
[Brief description of the drawings]
FIG. 1 is an explanatory diagram of cooperative control of an SVR device and a serial SVC device.
FIG. 2 is an explanatory diagram of voltages used for calculation.
FIG. 3 is a vector diagram for explaining a generated voltage of a series SVC device.
FIG. 4 is a graph showing a voltage variation rate as seen from a primary side voltage and a secondary side voltage of a series SVC device.
FIG. 5 is a graph showing the voltage fluctuation rate at each point of the distribution line and the series type SVC device installation position.
FIG. 6 is a conceptual diagram showing a time transition of a voltage fluctuation rate of a distribution line in cooperative control of an SVR device and a series SVC device.
FIG. 7 is a circuit diagram to be analyzed.
FIG. 8 is a graph showing simulation results.
FIG. 9 is a distribution line diagram of a serial SVC device installed showing a progressive state.
FIG. 10 is a distribution line diagram of a series-type SVC device showing a reverse feed state.
FIG. 11 is an explanatory diagram of a current change direction due to load application under a forward flow condition and reverse flow.
FIG. 12 is a graph showing a phase relationship between voltage and current.
FIG. 13 is a block diagram showing a configuration of an SVR device.
FIG. 14 is a block diagram showing a configuration of a serial SVC device.
FIG. 15 is an explanatory diagram of a voltage drop due to loading of a conventional SVR device distribution line.
[Explanation of symbols]
1 ... SVR device (step voltage control device)
2 ... Series SVC device (series voltage controller)
ε ... Voltage fluctuation rate at the load center point as seen from the primary side voltage of the series type SVC device ε '... Voltage fluctuation rate at the load center point as seen from the secondary side voltage of the series type SVC device

Claims (1)

配電線路にタップ変圧器とタップ切換指令を出力する電圧調整リレーとからなるステップ電圧制御装置および直列型電圧制御装置とを設置し、
直列型電圧制御装置を負荷中心点電圧変動分が予め定められた変動許容範囲内となるよう制御すると共に、ステップ電圧制御装置の整定値からタップ制御時間を予測し、これを考慮して直列型電圧制御装置の変動値基準時間を定めて基準電圧を算出し、電圧を発生して補償することにより協調制御ができることを特徴とする配電線路の電圧制御方法。
A step voltage control device and a series voltage control device comprising a tap transformer and a voltage adjustment relay that outputs a tap switching command are installed on the distribution line,
The series type voltage control device is controlled so that the voltage fluctuation at the load center point is within a predetermined fluctuation allowable range, and the tap control time is predicted from the set value of the step voltage control device, and this is taken into consideration. A voltage control method for a distribution line characterized in that cooperative control can be performed by calculating a reference voltage by setting a reference time for a fluctuation value of the voltage control device, and generating and compensating for the voltage.
JP2000075506A 2000-03-17 2000-03-17 Voltage control method for distribution lines Expired - Fee Related JP4107783B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2000075506A JP4107783B2 (en) 2000-03-17 2000-03-17 Voltage control method for distribution lines

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000075506A JP4107783B2 (en) 2000-03-17 2000-03-17 Voltage control method for distribution lines

Publications (2)

Publication Number Publication Date
JP2001268795A JP2001268795A (en) 2001-09-28
JP4107783B2 true JP4107783B2 (en) 2008-06-25

Family

ID=18593389

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000075506A Expired - Fee Related JP4107783B2 (en) 2000-03-17 2000-03-17 Voltage control method for distribution lines

Country Status (1)

Country Link
JP (1) JP4107783B2 (en)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4786391B2 (en) * 2006-03-31 2011-10-05 株式会社Nttファシリティーズ Instantaneous voltage drop generation device and instantaneous voltage drop generation method
JP5523171B2 (en) * 2010-04-02 2014-06-18 三菱電機株式会社 Automatic voltage regulator for track
JP5457949B2 (en) * 2010-06-18 2014-04-02 株式会社日立製作所 Reactive power compensator with power flow calculation function, and system and method thereof
JP5914231B2 (en) * 2012-07-25 2016-05-11 北陸電力株式会社 Method and apparatus for calculating settling value of line voltage drop compensator
JP6069060B2 (en) * 2013-03-22 2017-01-25 株式会社東光高岳 Automatic voltage regulator power transmission state determination device and power transmission state determination method
CN109638842B (en) * 2019-01-15 2022-05-17 杭州电子科技大学 Intelligent search algorithm applied to flexible load real-time voltage regulation

Also Published As

Publication number Publication date
JP2001268795A (en) 2001-09-28

Similar Documents

Publication Publication Date Title
JP4577274B2 (en) Vehicle power supply system
KR950012303B1 (en) Device for driving elevator at service interruption
US6792341B2 (en) Method and system for controlling power distribution in a hybrid fuel cell vehicle
KR101419203B1 (en) Electric-vehicle propulsion power-conversion device
US20040115487A1 (en) Fuel cell control system
CN104508965A (en) DC/DC power converter control strategy for source protection
WO2017175684A1 (en) Train power conversion controller
JP4107783B2 (en) Voltage control method for distribution lines
JP4805303B2 (en) DC / DC converter device, electric vehicle, and control method of DC / DC converter
JP6591064B2 (en) Power conversion system
JP3407234B2 (en) Control method of distributed arrangement type power supply linked to power system
JPH0757753A (en) Fuel cell power generator and operation control thereof
US6680592B2 (en) Method and apparatus for producing current values dependent on the position of the accelerator pedal for the purpose of controlling the power of one or more drives in a mobile device with a fuel cell for supplying energy
JP3443681B2 (en) Reactive power compensation system
JPH1167253A (en) Fuel cell output variation compensation method and system
JP3853072B2 (en) Power system voltage control system
JP2008172952A (en) Voltage converter and vehicle
JP2020188614A (en) Control method and control circuit of reactive power compensator
JP2006014445A (en) Distribution line voltage fluctuation compensator
JP5148380B2 (en) DC / DC converter device, electric vehicle, and control method of DC / DC converter
JP2006166683A (en) Method and system for suppressing voltage fluctuation
JP2006094587A (en) Generator for vehicle
CA2975965A1 (en) Demand response implemented in an infrastructure having a dc link
US20240332975A1 (en) Power supply apparatus and method for controlling power supply apparatus
JP2008079439A (en) Control system of step-up chopper

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20051108

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20070601

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070612

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070807

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20071113

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080115

A911 Transfer of reconsideration by examiner before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20080131

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20080318

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20080401

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110411

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

Ref document number: 4107783

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130411

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140411

Year of fee payment: 6

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees