JP2020182276A - Monitoring and controlling device and control method for photovoltaic power generation facility - Google Patents

Monitoring and controlling device and control method for photovoltaic power generation facility Download PDF

Info

Publication number
JP2020182276A
JP2020182276A JP2019082609A JP2019082609A JP2020182276A JP 2020182276 A JP2020182276 A JP 2020182276A JP 2019082609 A JP2019082609 A JP 2019082609A JP 2019082609 A JP2019082609 A JP 2019082609A JP 2020182276 A JP2020182276 A JP 2020182276A
Authority
JP
Japan
Prior art keywords
power
inverter
monitoring
power generation
control device
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2019082609A
Other languages
Japanese (ja)
Other versions
JP7202963B2 (en
Inventor
智道 伊藤
Tomomichi Ito
智道 伊藤
輝 菊池
Teru Kikuchi
輝 菊池
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP2019082609A priority Critical patent/JP7202963B2/en
Publication of JP2020182276A publication Critical patent/JP2020182276A/en
Application granted granted Critical
Publication of JP7202963B2 publication Critical patent/JP7202963B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/56Power conversion systems, e.g. maximum power point trackers
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E40/00Technologies for an efficient electrical power generation, transmission or distribution
    • Y02E40/70Smart grids as climate change mitigation technology in the energy generation sector
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E70/00Other energy conversion or management systems reducing GHG emissions
    • Y02E70/30Systems combining energy storage with energy generation of non-fossil origin
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y04INFORMATION OR COMMUNICATION TECHNOLOGIES HAVING AN IMPACT ON OTHER TECHNOLOGY AREAS
    • Y04SSYSTEMS INTEGRATING TECHNOLOGIES RELATED TO POWER NETWORK OPERATION, COMMUNICATION OR INFORMATION TECHNOLOGIES FOR IMPROVING THE ELECTRICAL POWER GENERATION, TRANSMISSION, DISTRIBUTION, MANAGEMENT OR USAGE, i.e. SMART GRIDS
    • Y04S10/00Systems supporting electrical power generation, transmission or distribution
    • Y04S10/12Monitoring or controlling equipment for energy generation units, e.g. distributed energy generation [DER] or load-side generation
    • Y04S10/123Monitoring or controlling equipment for energy generation units, e.g. distributed energy generation [DER] or load-side generation the energy generation units being or involving renewable energy sources
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y04INFORMATION OR COMMUNICATION TECHNOLOGIES HAVING AN IMPACT ON OTHER TECHNOLOGY AREAS
    • Y04SSYSTEMS INTEGRATING TECHNOLOGIES RELATED TO POWER NETWORK OPERATION, COMMUNICATION OR INFORMATION TECHNOLOGIES FOR IMPROVING THE ELECTRICAL POWER GENERATION, TRANSMISSION, DISTRIBUTION, MANAGEMENT OR USAGE, i.e. SMART GRIDS
    • Y04S10/00Systems supporting electrical power generation, transmission or distribution
    • Y04S10/14Energy storage units

Landscapes

  • Supply And Distribution Of Alternating Current (AREA)
  • Charge And Discharge Circuits For Batteries Or The Like (AREA)
  • Remote Monitoring And Control Of Power-Distribution Networks (AREA)

Abstract

To provide a monitoring and controlling device and a control method for a photovoltaic power generation system capable of stabilizing the system voltage by keeping a power factor at a power receiving point of a facility above a predetermined value while suppressing reverse power flow.SOLUTION: A monitoring and controlling device for a photovoltaic power generation facility in a consumer 90 that feeds power to a load 50 from a bus bar connecting an AC system and the photovoltaic power generation facility 20 includes: a calculation portion 1 that detects a state quantity for calculating a power factor of an interconnection point 80 between the AC system and the consumer and calculates a reactive power outputted from an inverter required to make the power factor of the interconnection point between the AC system and the consumer equal to or higher than a predetermined power factor based on the state quantity; and an inverter control portion 10 that controls the inverter with the reactive power as a reactive power command.SELECTED DRAWING: Figure 1

Description

本発明は、需要家内に設置される太陽光発電設備の監視制御装置および制御方法に係り、特に交流系統に連係されて需要家内の電気負荷に給電する太陽光発電設備の監視制御装置および制御方法に関する。 The present invention relates to a monitoring control device and a control method for a photovoltaic power generation facility installed in a customer, and in particular, a monitoring control device and a control method for the photovoltaic power generation facility linked to an AC system to supply power to an electric load in the consumer. Regarding.

近年、電力固定金額買取り制度(以降、FITと記す)や税制上の優遇措置により、太陽光発電システムが世界中に普及した。大量普及と、市場競争原理により太陽光発電システムのkWあたりのコストが低下し、日射条件の良い地域においては火力発電などの従来の発電システムによる発電コストに比べて太陽光発電システムによる発電コストが安くなる、いわゆるグリッドパリティが成立し始めた。 In recent years, photovoltaic power generation systems have become widespread all over the world due to the fixed amount purchase system for electricity (hereinafter referred to as FIT) and tax incentives. Due to mass diffusion and the principle of market competition, the cost per kW of the photovoltaic power generation system is reduced, and in areas with good solar radiation conditions, the power generation cost by the photovoltaic power generation system is higher than the power generation cost by the conventional power generation system such as thermal power generation. The so-called grid parity, which is cheaper, has begun to be established.

一方で、太陽光発電システムが十分普及したことにより、地域によりFITでの電力買取り金額が低下、もしくは廃止されるようになった。これを受け、売電目的ではなく、太陽光発電システムで発電する電力を、需要家内の設備で自家消費する自家消費型太陽光発電システムの導入ケースが増えてきている。 On the other hand, due to the widespread use of photovoltaic power generation systems, the amount of electricity purchased at FIT has decreased or has been abolished depending on the region. In response to this, there are an increasing number of cases of introducing self-consumption type photovoltaic power generation systems in which the electricity generated by the photovoltaic power generation system is consumed by the equipment in the consumer, not for the purpose of selling electricity.

売電型の太陽光発電設備は、系統運営者により連系許可枠を設けることにより系統運営者によって導入量をある程度コントロールすることができた。しかし、系統へ電力を供給しない、すなわち逆潮流をしない自家消費型太陽光発電の場合は、系統から見ると消費電力が変動するだけである。そのため、連系枠による導入量のコントロールができない。 The amount of power-selling photovoltaic power generation facilities could be controlled to some extent by the grid operator by establishing an interconnection permit frame by the grid operator. However, in the case of self-consumed photovoltaic power generation that does not supply power to the grid, that is, does not reverse power flow, the power consumption only fluctuates when viewed from the grid. Therefore, it is not possible to control the introduction amount by the interconnection frame.

自家消費型の太陽光発電システムを成立させる技術としては、最低負荷以下の定格を有する太陽光発電システムを用いる、もしくは特許文献1に開示されるように逆潮流を防止するよう、太陽光発電システムを制御する方法がある。 As a technique for establishing a self-consumption type photovoltaic power generation system, a photovoltaic power generation system having a rating of the minimum load or less is used, or as disclosed in Patent Document 1, a photovoltaic power generation system is used to prevent reverse power flow. There is a way to control.

特開2018−182847号公報JP-A-2018-182847

自家消費型太陽光発電システムを導入する場合に、系統の安定化を図れるものであることが要望される。 When introducing a self-consumption type photovoltaic power generation system, it is required that the system can be stabilized.

まず安定化阻害要因のうち逆潮流の防止に関しては、特許文献1などの採用により、潮流は上位系統から下位系統に保たれる。潮流の方向が保たれることにより、系統運営者の設置した電圧安定化装置の安定運用が保たれるようになる。 First, regarding the prevention of reverse power flow among the factors that inhibit stabilization, the power flow is maintained from the upper system to the lower system by adopting Patent Document 1 and the like. By maintaining the direction of the tidal current, the stable operation of the voltage stabilizer installed by the system operator can be maintained.

一方で自家消費型太陽光発電システム内に着目してみると、太陽光発電システムが力率100%で運用される場合、太陽光発電システムからは有効電力のみが供給される。この場合に、需要家内の負荷は、太陽光発電システムの出力に寄らず有効電力と無効電力を系統から受電するため、自家消費型太陽光発電システムを導入した需要家の受電力率は負荷のみ接続された状況に比べて低くなる。特に、負荷消費電力に対する太陽光発電システムの定格値の割合が大きくなると、上記の力率低下の影響が大きくなる。 On the other hand, focusing on the inside of the self-consumption type photovoltaic power generation system, when the photovoltaic power generation system is operated at a power factor of 100%, only active power is supplied from the photovoltaic power generation system. In this case, the load in the consumer receives active power and reactive power from the grid regardless of the output of the photovoltaic power generation system, so the power receiving rate of the consumer who introduced the self-consumption photovoltaic power generation system is only the load. It will be lower than the connected situation. In particular, as the ratio of the rated value of the photovoltaic power generation system to the load power consumption increases, the effect of the above-mentioned decrease in power factor increases.

この点に関して、太陽光発電システムにおける力率低下は、系統の安定化阻害要因である。系統の電圧安定化機器の多くは、フィーダを流れる有効電力の変化からフィーダ末端の電圧を推定し、フィーダ全体の電圧を所定範囲内に制御する。そのため、受電電力の力率が大きく変動すると系統の電圧を安定に制御することが困難となる。 In this regard, the decrease in power factor in the photovoltaic power generation system is a factor that hinders the stabilization of the system. Most of the voltage stabilizing devices in the system estimate the voltage at the end of the feeder from the change in the active power flowing through the feeder, and control the voltage of the entire feeder within a predetermined range. Therefore, if the power factor of the received power fluctuates greatly, it becomes difficult to stably control the voltage of the system.

以上のことから本発明においては、逆潮流を抑制しながら、設備受電点における力率を所定の値以上に保つことで系統電圧の安定化を図ることができる太陽光発電設備の監視制御装置および制御方法を提供することを目的とする。 From the above, in the present invention, the monitoring and control device of the photovoltaic power generation equipment capable of stabilizing the system voltage by keeping the power factor at the power receiving point of the equipment above a predetermined value while suppressing the reverse power flow. The purpose is to provide a control method.

以上のことから本発明においては、交流系統と太陽光発電設備を接続する母線から負荷に給電する需要家における太陽光発電設備の監視制御装置であって、監視制御装置は、交流系統と需要家の連系点の力率を算出するための状態量を検出し、交流系統と需要家の連系点の力率を所定力率以上とするために必要なインバータの出力する無効電力を状態量に基づいて算出する演算部と、無効電力を無効電力指令としてインバータを制御するインバータ制御部を備えることを特徴とする。 From the above, in the present invention, it is a monitoring control device for the photovoltaic power generation equipment in the consumer who supplies power to the load from the bus connecting the AC system and the photovoltaic power generation equipment, and the monitoring control device is the AC system and the consumer. The state quantity for calculating the power factor of the interconnection point of the AC system is detected, and the invalid power output by the inverter required to make the power factor of the interconnection point between the AC system and the consumer equal to or higher than the predetermined power factor is the state quantity. It is characterized in that it includes a calculation unit that calculates based on the above, and an inverter control unit that controls the inverter using the invalid power as an invalid power command.

また本発明においては、交流系統と太陽光発電設備を接続する母線から負荷に給電する需要家における太陽光発電設備の監視制御方法であって、交流系統と需要家の連系点の力率を算出するための状態量を検出し、交流系統と需要家の連系点の力率を所定力率以上とするために必要なインバータの出力する無効電力を状態量に基づいて算出し、インバータを制御することを特徴とする。 Further, the present invention is a method of monitoring and controlling the photovoltaic power generation equipment in the consumer who supplies power to the load from the bus connecting the AC system and the photovoltaic power generation equipment, and determines the power factor of the interconnection point between the AC system and the consumer. The amount of state to be calculated is detected, the power factor output by the inverter required to make the power factor of the interconnection point between the AC system and the consumer equal to or higher than the predetermined power factor is calculated based on the amount of state, and the inverter is calculated. It is characterized by controlling.

本発明によれば、逆潮流を抑制しながら、設備受電点における力率を所定の値以上に保つことができるため、系統電圧の安定化が容易となる。 According to the present invention, the power factor at the power receiving point of the equipment can be maintained at a predetermined value or higher while suppressing the reverse power flow, so that the system voltage can be easily stabilized.

実施例1に係る太陽光発電システムの監視制御装置を含む需要家内設備の全体構成例を示す図。The figure which shows the whole composition example of the consumer equipment including the monitoring control device of the photovoltaic power generation system which concerns on Example 1. FIG. インバータ制御部10とインバータINVを含む太陽光インバータシステムの構成例を示す図。The figure which shows the configuration example of the solar inverter system including the inverter control part 10 and the inverter INV. 制御装置1の概略の制御ロジックを示す図。The figure which shows the schematic control logic of the control device 1. 無効電力指令値算出器100の制御ロジックを示す図。The figure which shows the control logic of the reactive power command value calculator 100. 有効電力上限算出器200の制御ロジックを示す図。The figure which shows the control logic of the active power upper limit calculator 200. インバータ動作マップテーブル201の動作マップ例を示す図。The figure which shows the operation map example of the inverter operation map table 201. 無効電力制御をしない負荷運用例を示す図。The figure which shows the load operation example which does not perform reactive power control. 無効電力制御をしない負荷運用時の力率変動を示す図。The figure which shows the power factor fluctuation at the time of a load operation which does not perform reactive power control. 本発明の実施例1に係る制御を実行した時の負荷運用例を示す図。The figure which shows the load operation example when the control which concerns on Example 1 of this invention is executed. 本発明の実施例1に係る負荷運用時の力率変動を示す図。The figure which shows the power factor fluctuation at the time of load operation which concerns on Example 1 of this invention. 無効電力制御をしない負荷運用例を示す図。The figure which shows the load operation example which does not perform reactive power control. 無効電力制御をしない負荷運用時の力率変動を示す図。The figure which shows the power factor fluctuation at the time of a load operation which does not perform reactive power control. 逆潮流を阻止する本発明の実施例1に係る負荷運用例を示す図。The figure which shows the load operation example which concerns on Example 1 of this invention which prevents reverse power flow. 逆潮流を阻止する本発明の実施例1に係る負荷運用時の力率変動を示す図。The figure which shows the power factor fluctuation at the time of a load operation which concerns on Example 1 of this invention which prevents reverse power flow. 実施例2に係る太陽光発電システムの監視制御装置を含む需要家内設備の全体構成例を示す図。The figure which shows the whole composition example of the facility in a consumer including the monitoring control device of the photovoltaic power generation system which concerns on Example 2. FIG. 制御装置1Aの概略の制御ロジックを示す図。The figure which shows the schematic control logic of the control device 1A. 無効電力指令値算出器100Aの制御ロジックを示す図。The figure which shows the control logic of the reactive power command value calculator 100A. 有効電力上限算出器200Aの制御ロジックを示す図。The figure which shows the control logic of the active power upper limit calculator 200A. 実施例3に係る太陽光発電システムの監視制御装置を含む需要家内設備の全体構成例を示す図。The figure which shows the whole composition example of the consumer equipment including the monitoring control device of the photovoltaic power generation system which concerns on Example 3. FIG. 制御装置3の概略の制御ロジックを示す図。The figure which shows the schematic control logic of the control device 3. 実施例4に係る太陽光発電システムの監視制御装置を含む需要家内設備の全体構成例を示す図。The figure which shows the whole composition example of the facility in a consumer including the monitoring control device of the photovoltaic power generation system which concerns on Example 4. FIG. 蓄電池システム70の構成および制御ロジックを説明するための図。The figure for demonstrating the structure and control logic of a storage battery system 70.

以下本発明の実施例について図面を参照して詳細に説明する。 Hereinafter, examples of the present invention will be described in detail with reference to the drawings.

本発明の実施例1に係る太陽光発電システムの監視制御装置を含む需要家内設備の全体構成例を図1に示す。 FIG. 1 shows an example of the overall configuration of the consumer equipment including the monitoring and control device of the photovoltaic power generation system according to the first embodiment of the present invention.

図1において、本発明の制御が適用される需要家90は、少なくとも負荷50と太陽光パネル20を備え、負荷50は太陽光パネル20と交流系統から給電される。需要家90は、受電点80を介して図示しない交流系統より有効電力Ps、無効電力Qsを受電する。受電点80に接続される母線Busには負荷50およびインバータINVを介して太陽光パネル20が接続される。負荷50は、母線Busより消費電力である有効電力PL、無効電力QLを受電する。 In FIG. 1, the consumer 90 to which the control of the present invention is applied includes at least a load 50 and a solar panel 20, and the load 50 is supplied with power from the solar panel 20 and an AC system. The consumer 90 receives active power Ps and reactive power Qs from an AC system (not shown) via a power receiving point 80. The solar panel 20 is connected to the bus bus connected to the power receiving point 80 via the load 50 and the inverter INV. The load 50 receives the active power PL and the reactive power QL, which are power consumption, from the bus bus.

インバータINVの直流回路には太陽光パネル20が接続され、太陽光パネル20により発電された電力を交流に周波数変換し、交流電力Pgen、無効電力Qgenを母線Busに出力する。 A solar panel 20 is connected to the DC circuit of the inverter INV, the power generated by the solar panel 20 is frequency-converted to AC, and the AC power Pgen and the ineffective power Qgen are output to the bus bus.

上記した需要家90内設備の制御のために、本発明に係る太陽光発電システムの監視制御装置は、制御装置1とインバータ制御部10を含んで構成されている。このうち制御装置1は、実施例1では受電点80の電流を検出する電流検出器30、および母線Busの電圧を検出する電圧検出器31に接続されて無効電力指令値Qrefを定める。無効電力指令値Qrefは、通信線40を介してインバータ制御部10に入力され、インバータ制御部10は、インバータINVを制御して無効電力指令値Qrefに従い無効電力Qge、交流電力Pgenを出力する。 For the control of the above-mentioned equipment in the consumer 90, the monitoring control device of the photovoltaic power generation system according to the present invention includes the control device 1 and the inverter control unit 10. Of these, the control device 1 is connected to the current detector 30 for detecting the current at the power receiving point 80 and the voltage detector 31 for detecting the voltage of the bus bus in the first embodiment to determine the reactive power command value QRef. The reactive power command value Quref is input to the inverter control unit 10 via the communication line 40, and the inverter control unit 10 controls the inverter INV and outputs the reactive power Qge and the AC power Pgen according to the reactive power command value Quref.

太陽光発電システムの監視制御装置のうち、インバータ制御部10の詳細が図2に例示され、制御装置1の具体的な構成例が図3,図4,図5に例示されている。図1に示す実施例1の監視制御装置は、制御装置1側に特徴をする。このため、説明の都合上、まず図2を用いてインバータ制御部10の制御ロジックを説明する。なお、インバータ制御部10とインバータINVは、近接して設置されることが多く、これを総括的に表現するならば太陽光インバータシステムというのが相応しい。 Among the monitoring and control devices of the photovoltaic power generation system, the details of the inverter control unit 10 are illustrated in FIG. 2, and specific configuration examples of the control device 1 are illustrated in FIGS. 3, 4, and 5. The monitoring control device of the first embodiment shown in FIG. 1 is characterized on the control device 1 side. Therefore, for convenience of explanation, the control logic of the inverter control unit 10 will be described first with reference to FIG. The inverter control unit 10 and the inverter INV are often installed close to each other, and a solar inverter system is suitable for expressing this in a comprehensive manner.

図2は、インバータ制御部10とインバータINVを含む太陽光インバータシステムの構成例を示す図である。図2の太陽光インバータシステムでは、インバータ制御部10により算出される交流出力電圧指令値Vrefに従ってインバータINVが制御される。インバータINVは、半導体スイッチング素子で構成されるアセンブリおよび高調波フィルタ回路で構成される自励式インバータである。 FIG. 2 is a diagram showing a configuration example of a solar inverter system including an inverter control unit 10 and an inverter INV. In the solar inverter system of FIG. 2, the inverter INV is controlled according to the AC output voltage command value Vref calculated by the inverter control unit 10. The inverter INV is a self-excited inverter composed of an assembly composed of semiconductor switching elements and a harmonic filter circuit.

インバータ制御部10は通信インターフェース11を備え、通信線40を介して制御装置1から送信される有効電力上限値Plimおよび無効電力指令値Qrefを入力する。また、図示しないインバータINV内センサで検出される直流入力電圧Vdc、直流入力電流Idc、交流電圧Vac、交流出力電流Iacを入力する。 The inverter control unit 10 includes a communication interface 11, and inputs an active power upper limit value Plim and a reactive power command value Quref transmitted from the control device 1 via the communication line 40. Further, the DC input voltage Vdc, the DC input current Idc, the AC voltage Vac, and the AC output current Iac detected by the sensor in the inverter INV (not shown) are input.

インバータ制御部10は、これら入力値を用いてリミッタ付きMPPT(Maximum Power Point Tracking)と無効電力制御を実行し、交流出力電圧指令値Vrefを決定して、インバータINVに与え、これを制御する。なお、インバータINVにより定められた無効電力Qgen及び有効電力Pgenを、通信インターフェース17を介して制御装置1に伝送する。 The inverter control unit 10 executes MPPT (Maximum Power Point Tracking) with a limiter and reactive power control using these input values, determines the AC output voltage command value Vref, gives it to the inverter INV, and controls it. The reactive power Qgen and the active power Pgen defined by the inverter INV are transmitted to the control device 1 via the communication interface 17.

具体的な制御演算についてさらに説明する。直流入力電圧Vdcと直流入力電流Idcは、リミッタ付きMPPT演算器12に入力される。リミッタ付きMPPT演算器12は、直流入力電圧Vdcを調整することにより発電電力が最大となる点を自動探索する演算器であり、直流入力電圧Vdcを変化させるための有効電流指令値を算出し、電流制御器16に出力する。MPPT演算器12は当該分野では多用される演算器であるため、詳細の説明を省く。 The specific control calculation will be further described. The DC input voltage Vdc and the DC input current Idc are input to the MPPT calculator 12 with a limiter. The MPPT calculator 12 with a limiter is a calculator that automatically searches for the point where the generated power becomes maximum by adjusting the DC input voltage Vdc, calculates the effective current command value for changing the DC input voltage Vdc, and calculates the effective current command value. Output to the current controller 16. Since the MPPT calculator 12 is a calculator that is frequently used in the field, detailed description thereof will be omitted.

リミッタ付きMPPT演算器12は上限値として通信インターフェース11で入力する有効電力上限値Plimを上限値として入力する。MPPT演算器12は直流入力電力が有効電力上限値Plimを超えた場合は有効電流指令値を下げ補正することで入力電力が有効電力上限値Plim以下となるよう入力電力を制限する。 The MPPT calculator 12 with a limiter inputs the active power upper limit value Plim input by the communication interface 11 as the upper limit value as the upper limit value. When the DC input power exceeds the active power upper limit value Plim, the MPPT calculator 12 limits the input power so that the input power becomes equal to or less than the active power upper limit value Plim by lowering and correcting the active current command value.

無効電力制御は以下の演算器により無効電流指令値を算出する。まず交流電圧Vac、交流出力電流Iacは、有効電力・無効電力算出器13に入力される。有効電力・無効電力算出器13は、インバータINVが交流出力端子から出力する有効電力Pgen、無効電力Qgenを、交流電圧Vac、交流出力電流Iacから算出する。算出された有効電力Pgen、無効電力Qgenは通信インターフェース17に出力され、制御装置1側での処理に適宜利用される。また、無効電力Qgenは減算器14に入力され、減算器14は無効電力指令値Qregと計測した無効電力Qgenの差を算出し、その差を無効電力制御器15に出力する。 The reactive power control calculates the reactive current command value by the following arithmetic unit. First, the AC voltage Vac and the AC output current Iac are input to the active power / reactive power calculator 13. The active power / ineffective power calculator 13 calculates the active power Pgen and the ineffective power Qgen output from the AC output terminal of the inverter INV from the AC voltage Vac and the AC output current Iac. The calculated active power Pgen and reactive power Qgen are output to the communication interface 17 and appropriately used for processing on the control device 1 side. Further, the reactive power Qgen is input to the reactive power controller 14, and the reactive power Qgen calculates the difference between the reactive power command value Qreg and the measured reactive power Qgen, and outputs the difference to the reactive power controller 15.

無効電力制御器15は、比例積分制御器で構成され、入力された差を低減するようインバータINVの出力する無効電流指令値を算出する。 The reactive power controller 15 is composed of a proportional integration controller, and calculates a reactive current command value output by the inverter INV so as to reduce the input difference.

MPPT演算器12により算出された有効電流指令値と、無効電力制御器15により算出された無効電流指令値と、そして交流出力電流Iacは、電流制御器16に入力され、電流制御器16は交流電流Iacの有効成分および無効成分が入力された指令値に追従するよう自励式のインバータINVの交流出力電圧指令値Vrefを算出し、インバータINVに出力する。 The effective current command value calculated by the MPPT calculator 12, the invalid current command value calculated by the invalid power controller 15, and the AC output current Iac are input to the current controller 16, and the current controller 16 is AC. The AC output voltage command value Vref of the self-excited inverter INV is calculated so that the active component and the ineffective component of the current Iac follow the input command value, and is output to the inverter INV.

次に、制御装置1による受電点力率改善動作について説明する。まず図1の全体構成図を用い、制御装置1の入出力を説明する。図1において需要家90の受電点80には受電点の電流を検出する電流検出器30、および母線電圧を検出する電圧検出器31が備えられ、それら検出器の出力は制御装置1に入力される。制御装置1の出力は通信インターフェースを介して通信線40に接続され、インバータ制御部10に有効電力上限値Plimと無効電力指令値Qrefを出力する。 Next, the operation of improving the power receiving point power factor by the control device 1 will be described. First, the input / output of the control device 1 will be described with reference to the overall configuration diagram of FIG. In FIG. 1, the power receiving point 80 of the consumer 90 is provided with a current detector 30 for detecting the current at the power receiving point and a voltage detector 31 for detecting the bus voltage, and the output of these detectors is input to the control device 1. To. The output of the control device 1 is connected to the communication line 40 via the communication interface, and outputs the active power upper limit value Plim and the reactive power command value Quref to the inverter control unit 10.

制御装置1の概略の制御ロジックを図3に示す。制御装置1は、その内部機能を簡便に述べると、無効電力指令値算出器100と有効電力上限値算出器200により構成されている。 The schematic control logic of the control device 1 is shown in FIG. To briefly describe its internal function, the control device 1 is composed of a reactive power command value calculator 100 and an active power upper limit value calculator 200.

制御装置1は電圧検出値入力インターフェース500、電流検出値入力インターフェース501を備え、受電点において受電する交流電圧Vs、交流電流Isを入力する。交流電圧Vs、交流電流Isは無効電力指令値算出器100に入力される。無効電力指令値算出器100は、受電点80における力率を所定の値より大きくするためにインバータINVから出力されるべき無効電力の目標値を無効電力指令値Qrefとして算出し、通信インターフェース502と有効電力上限値算出器200に出力する。 The control device 1 includes a voltage detection value input interface 500 and a current detection value input interface 501, and inputs AC voltage Vs and AC current Is to be received at the power receiving point. The AC voltage Vs and the AC current Is are input to the reactive power command value calculator 100. The reactive power command value calculator 100 calculates the target value of the reactive power to be output from the inverter INV in order to make the power factor at the power receiving point 80 larger than a predetermined value as the reactive power command value Quref, and uses the communication interface 502. Output to the reactive power upper limit calculator 200.

無効電力指令値算出器100は、無効電力指令値Qrefに加え、系統から受電点80で受電する有効電力算出値Pscalを算出し、有効電力上限値算出器200に出力する。有効電力上限値200は受電点80からの逆潮流防止と太陽光インバータ10の過負荷停止を両立するための有効電力上限値Plimを算出し、通信インターフェース502に出力する。 In addition to the reactive power command value Quref, the reactive power command value calculator 100 calculates the active power calculation value Pscal received from the grid at the power receiving point 80 and outputs it to the reactive power upper limit value calculator 200. The active power upper limit value 200 calculates the active power upper limit value Plim for both preventing reverse power flow from the power receiving point 80 and stopping the overload of the solar inverter 10, and outputs it to the communication interface 502.

無効電力指令値算出器100の制御ロジックを、図4を用いて説明する。交流電圧Vsと交流電流Isは、有効電力・無効電力算出器101に入力される。有効電力・無効電力算出器101は、受電点80において受電する有効電力算出値Pscalと無効電力算出値Qscalを演算する。有効電力算出値Pscalは力率遵守用無効電力算出器102、103、および有効電力上限算出器200に出力される。無効電力算出値Qscalは減算器106に出力される。 The control logic of the reactive power command value calculator 100 will be described with reference to FIG. The AC voltage Vs and the AC current Is are input to the active power / reactive power calculator 101. The active power / reactive power calculator 101 calculates the active power calculation value Pscal and the reactive power calculation value Qscal to be received at the power receiving point 80. The active power calculation value Pscal is output to the reactive power calculators 102 and 103 for power factor compliance and the active power upper limit calculator 200. The reactive power calculation value Qscal is output to the subtractor 106.

減算器106は、無効電力指令値Qref(ローパスフィルタ104の出力)とインバータINVの出力する無効電力出力推定値(無効電力算出値Qscal)との差を算出し、負荷50の消費する無効電力推定値QLcalを算出する。 The subtractor 106 calculates the difference between the reactive power command value Qref (output of the low-pass filter 104) and the reactive power output estimated value (reactive power calculated value Qscal) output by the inverter INV, and estimates the reactive power consumed by the load 50. Calculate the value QLcal.

なお上記無効電力推定値QLcalを算出するにあたり、無効電力指令値QrefはインバータINVに出力する無効電力指令値Qrefを遅延器105で遅延させ、さらにその出力をインバータINVの無効電力制御応答と等しい時定数を有するローパスフィルタ演算をローパスフィルタ104で施すことにより算出するのがよい。 In calculating the reactive power estimated value QLcal, the reactive power command value Quref delays the reactive power command value Quref to be output to the inverter INV by the delay device 105, and the output is equal to the reactive power control response of the inverter INV. It is preferable to calculate by performing a low-pass filter operation having a constant with the low-pass filter 104.

力率遵守用無効電力算出器102は、有効電力算出値Pscalに加え、所定の値である受電点80における遅れ力率制限値PFlagを入力し、受電力率が遅れ力率制限値PFlagとなるときの受電点における無効電力Qlimlagを(1)式に従い算出する。 The reactive power calculator 102 for power factor compliance inputs the delayed power factor limit value PFlag at the power receiving point 80, which is a predetermined value, in addition to the active power calculated value Pscal, and the power factor receives the delayed power factor limit value PFlag. The reactive power Qlimmag at the receiving point at the time is calculated according to the equation (1).

Figure 2020182276
Figure 2020182276

同様に、力率遵守用無効電力算出器103は、有効電力算出値Pscalおよび所定の値である受電点80における進み力率制限値PFleadを入力し、受電力率が進み力率制限値PFleadとなるときの受電点における無効電力Qlimleadを(2)式に従い算出する。 Similarly, the reactive power calculator 103 for power factor compliance inputs the active power calculation value Pscal and the leading power factor limit value PFlead at the power receiving point 80, which is a predetermined value, and the power factor is advanced, and the power factor limit value PFlead is input. The reactive power Qlimlead at the receiving point when becomes is calculated according to the equation (2).

Figure 2020182276
Figure 2020182276

ここで、本実施例では遅れ力率制限値PFlagおよび進み力率制限値PFleadは所定の値としたが、これらの値は外部通信により可変の値としても良い。 Here, in this embodiment, the delay power factor limit value PFlag and the advance power factor limit value PFlead are set to predetermined values, but these values may be variable values by external communication.

受電力率が遅れ力率制限値PFlagとなるときの受電点における無効電力Qlimlagは、減算器107に、受電力率が進み力率制限値PFleadとなるときの受電点における無効電力Qlimleadは減算器109に入力され、負荷50の消費する無効電力推定値QLcalとの差を算出する。 The reactive power Qlimmag at the power receiving point when the power receiving rate reaches the delayed power factor limit value PFlag is sent to the subtractor 107, and the reactive power Qlimlead at the power receiving point when the power receiving rate advances and becomes the power factor limit value PFLad is the subtractor. The difference from the reactive power estimated value QLcal input to 109 and consumed by the load 50 is calculated.

減算器107の出力はリミッタ108に出力され、リミッタ108は減算器107の出力をゼロ以上Qmax以下に制限し、該制限値を加算器1010に出力する。 The output of the subtractor 107 is output to the limiter 108, and the limiter 108 limits the output of the subtractor 107 to zero or more and Qmax or less, and outputs the limit value to the adder 1010.

同様に、減算器109の出力はリミッタ111に出力され、リミッタ111は減算器109の出力を−Qmax以上ゼロ以下に制限し、該制限値を加算器110に出力する。 Similarly, the output of the subtractor 109 is output to the limiter 111, and the limiter 111 limits the output of the subtractor 109 to −Qmax or more and zero or less, and outputs the limit value to the adder 110.

加算器110はリミッタ108と111の出力の和を算出し、その出力をインバータINVの出力すべき無効電力指令値Qrefとして通信インターフェース502に出力する。 The adder 110 calculates the sum of the outputs of the limiter 108 and 111, and outputs the output to the communication interface 502 as the reactive power command value Quref to be output by the inverter INV.

上記構成により、無効電力推定値QLcalが、受電力率が遅れ力率制限値PFlagとなるときの受電点における無効電力Qlimlagより大きい場合は、超過分の無効電力をインバータINVより供給することにより受電点の力率を遅れ力率制限値PFlag以上に維持することができる。 According to the above configuration, if the reactive power estimated value QLcal is larger than the reactive power Qlimmag at the receiving point when the receiving power factor becomes the delayed power factor limit value PFlag, the excess reactive power is supplied from the inverter INV to receive power. The power factor of the points can be maintained above the delayed power factor limit value PFlag.

また、無効電力推定値QLcalが、受電力率が進み力率制限値PFleadとなるときの受電点における無効電力Qlimleadより小さい場合は、不足分の無効電力をインバータINVで吸収することにより受電点の力率を進み力率制限値PFlead以上に維持することができる。 If the reactive power estimated value QLcal is smaller than the reactive power Qlimlead at the power receiving point when the power receiving rate advances and becomes the power factor limit value PFlead, the insufficient reactive power is absorbed by the inverter INV to reach the power receiving point. It is possible to advance the power factor and maintain the power factor limit value PFread or higher.

次に、有効電力上限算出器200の制御ロジックを、図5を用いて説明する。有効電力上限算出器200は、無効電力指令値算出器100より入力する無効電力指令値Qref、受電点80で受電する有効電力算出値Pscalを入力し、インバータINVが無効電力を出力しつつ過負荷運転状態を回避するための有効電力上限値Plimを算出し、通信インターフェース502に出力する。 Next, the control logic of the active power upper limit calculator 200 will be described with reference to FIG. The active power upper limit calculator 200 inputs the invalid power command value Quref input from the invalid power command value calculator 100 and the active power calculated value Pscal received at the power receiving point 80, and the inverter INV outputs the invalid power and overloads. The active power upper limit value Plim for avoiding the operating state is calculated and output to the communication interface 502.

具体的には、インバータ動作マップテーブル201に無効電力指令値Qrefを入力し、インバータの過負荷を防ぐことのできる有効電力上限値Pmaxを算出する。 Specifically, the reactive power command value QRef is input to the inverter operation map table 201, and the active power upper limit value Pmax that can prevent the inverter from being overloaded is calculated.

図6には、インバータ動作マップテーブル201の動作マップ例を示す。図6の横軸は出力可能な無効電力Q、縦軸は発電可能な有効電力Pを示し、太字の実線がインバータINVの運転可能な領域を示す有効電力・無効電力の動作マップを示す。有効電力出力が小さい領域では、無効電力は±Qmaxの範囲で出力が可能である。一方、有効電力がP1を超えた領域では出力皮相電力が1puを超えない範囲に供給可能な無効電力が制限される。逆に言えば無効電力を出力するためには有効電力をP1まで抑制することにより出力可能な無効電力を増やすことができる。 FIG. 6 shows an example of an operation map of the inverter operation map table 201. The horizontal axis of FIG. 6 shows the reactive power Q that can be output, the vertical axis shows the active power P that can generate power, and the solid line in bold shows the operation map of the active power / reactive power showing the operable area of the inverter INV. In the region where the active power output is small, the reactive power can be output in the range of ± Qmax. On the other hand, in the region where the active power exceeds P1, the reactive power that can be supplied is limited within the range where the output apparent power does not exceed 1 pu. Conversely, in order to output reactive power, the reactive power that can be output can be increased by suppressing the active power to P1.

図5のインバータ動作マップテーブル201は、入力した無効電力指令値Qrefを出力可能な最大有効電力P1を、図6に示される動作マップから算出し、その算出値Pmaxを上限値として比例積分制御器203に出力する。なおインバータ動作マップテーブル201はあらかじめ記憶しておいてもよいし、外部からデータとして入力するインターフェースを備えてもよい。 In the inverter operation map table 201 of FIG. 5, the maximum active power P1 capable of outputting the input reactive power command value QRef is calculated from the operation map shown in FIG. 6, and the calculated value Pmax is set as the upper limit value of the proportional integration controller. Output to 203. The inverter operation map table 201 may be stored in advance, or may be provided with an interface for inputting data from the outside.

図5に戻り、有効電力上限算出器200の制御ロジック説明を続ける。比例積分制御器203は有効電力算出値Pscalを入力し、上限値がPmax、下限がゼロである比例積分演算を施し、その出力をインバータINVの有効電力上限値Plimとして通信インターフェース502に出力する。 Returning to FIG. 5, the explanation of the control logic of the active power upper limit calculator 200 will be continued. The proportional integration controller 203 inputs the calculated active power value Pscal, performs a proportional integration operation in which the upper limit value is Pmax and the lower limit is zero, and outputs the output to the communication interface 502 as the active power upper limit value Plim of the inverter INV.

受電点における有効電力算出値Pscalが十分大きい場合は、インバータINVの有効電力上限値Plimは大きな値となりインバータINVは大きな電力を出力することができる。一方、有効電力算出値Pscalがゼロを下回ると比例積分制御器203の出力であるインバータINVの有効電力上限値Plimは小さくなり、インバータINVの出力が抑制される。 When the calculated active power value Pscal at the receiving point is sufficiently large, the upper limit value Plim of the active power of the inverter INV becomes a large value, and the inverter INV can output a large amount of power. On the other hand, when the calculated active power value Pscal is less than zero, the upper limit value Plim of the active power of the inverter INV, which is the output of the proportional integration controller 203, becomes small, and the output of the inverter INV is suppressed.

以上の動作により、実施例1の制御装置は、需要家90の受電点80における力率を所定の範囲に抑制することができる。また、このときにインバータ動作マップテーブルで発電上限値を制限することによりインバータINVの過負荷と受電点80での逆潮流の回避が可能となる。 By the above operation, the control device of the first embodiment can suppress the power factor of the consumer 90 at the power receiving point 80 within a predetermined range. Further, at this time, by limiting the power generation upper limit value in the inverter operation map table, it is possible to avoid the overload of the inverter INV and the reverse power flow at the power receiving point 80.

次に本発明による効果を具体的な図示により説明する。まず図7(a)、図7(b)は、インバータINVが有効電力Pgenのみを与える場合を想定する。従ってこの事例は、無効電力指令がゼロである、従来技術での自家消費太陽光発電による需要家での運用例を示している。 Next, the effect of the present invention will be described with specific illustration. First, FIGS. 7 (a) and 7 (b) assume a case where the inverter INV gives only the active power Pgen. Therefore, this case shows an example of operation by a consumer by self-consumed photovoltaic power generation in the prior art, in which the reactive power command is zero.

図7(a)は、無効電力制御をしない負荷運用例を示す図であり、横軸に1日の0:00から24:00までの時間、縦軸に負荷50の最大消費有効電力を100%とした電力の大きさを示している。まず、自家消費太陽光発電による発電量は、有効電力Pgenが日中の時間帯(たとえば8:00から16:00)にのみ発生する。ただし、従来方式では、インバータINVは力率100%で運転しているため、無効電力Qgenは常にゼロである。これに対し、負荷50の消費有効電力PLと消費無効電力QLは、操業開始時間に合わせて増加し、操業終了時間に減少する。ただし、負荷の電力PL、QLは、太陽光による電力Pgen,Qgenに比べて十分に大きく、太陽光による電力Pgen,Qgenが負荷の電力PL、QLを超過することを想定していない。 FIG. 7A is a diagram showing a load operation example in which reactive power control is not performed. The horizontal axis represents the time from 0:00 to 24:00 of the day, and the vertical axis represents the maximum active power consumption of the load 50 of 100. It shows the magnitude of electric power as%. First, the amount of power generated by self-consumed photovoltaic power generation is generated only during the daytime hours (for example, from 8:00 to 16:00) when the active power Pgen is generated. However, in the conventional method, since the inverter INV is operated at a power factor of 100%, the reactive power Qgen is always zero. On the other hand, the active power consumption PL and the reactive power consumption QL of the load 50 increase in accordance with the operation start time and decrease in the operation end time. However, the load power PL and QL are sufficiently larger than the solar power Pgen and Qgen, and it is not assumed that the solar power Pgen and Qgen exceed the load power PL and QL.

このときの受電点80における力率PFが図7(b)に示されている。横軸は図7(a)と同じ時間帯の時間、縦軸は受電力率PFを示す。これによれば、インバータINVからの発電開始に伴い、受電点力率PFが低下する。負荷の電力PL、QLの増加により一時的に力率PFは回復するも、昼に向い再度力率PFが低下し、午後のインバータINVからの発電電力低下に伴い力率PFが回復する。 The power factor PF at the power receiving point 80 at this time is shown in FIG. 7 (b). The horizontal axis represents the time in the same time zone as in FIG. 7A, and the vertical axis represents the power receiving rate PF. According to this, the power receiving point power factor PF decreases with the start of power generation from the inverter INV. Although the power factor PF temporarily recovers due to the increase in the power PL and QL of the load, the power factor PF decreases again toward noon, and the power factor PF recovers as the generated power from the inverter INV decreases in the afternoon.

このように、力率一定の考え方により無効電力を発生させない従来の太陽光発電方式によれば、重負荷となる日中に受電点力率PFが極端に低下し、系統電圧の管理に支障をきたすおそれがある。 In this way, according to the conventional photovoltaic power generation method that does not generate reactive power based on the concept of constant power factor, the power receiving point power factor PF drops extremely during the daytime when it becomes a heavy load, which hinders the management of system voltage. There is a risk of causing it.

これに対し、本発明の実施例1の制御装置1を適用することにより、受電点での力率PFは大きく改善される。図8(a)に本発明の実施例1に係る制御を実行した時の各部電力の関係を示している。 On the other hand, by applying the control device 1 of the first embodiment of the present invention, the power factor PF at the power receiving point is greatly improved. FIG. 8A shows the relationship between the electric power of each part when the control according to the first embodiment of the present invention is executed.

図8(a)によれば、負荷50の消費有効電力PLと消費無効電力QLは、図7(a)と同様に操業開始時間に合わせて増加し、操業終了時間に減少するものとする。これに対し、図7(a)で一定であった太陽光による無効電力Qgenは、太陽光による有効電力Pgenに対して、例えば比例的に増減するものとされる。ただし、本発明の実施例1に係る制御では、太陽光による無効電力Qgenは最大値がQmaxに制限される。 According to FIG. 8A, the active power consumption PL and the reactive power consumption QL of the load 50 are assumed to increase in accordance with the operation start time and decrease in the operation end time as in FIG. 7A. On the other hand, the reactive power Qgen due to sunlight, which was constant in FIG. 7A, is assumed to increase or decrease in proportion to the active power Pgen due to sunlight, for example. However, in the control according to the first embodiment of the present invention, the maximum value of the reactive power Qgen due to sunlight is limited to Qmax.

図示の例では、インバータINVの発電電力Pgenの増加にやや遅れて無効電力Qgenが増加する。無効電力Qgenが制限電力Qmaxに到達すると、発電される有効電力Pgenは受電力率を遅れ力率制限値PFlag以上に保つために制限される。ここでは、無効電力Qgenの最大値Qmaxを最大負荷消費電力の30%としている。 In the illustrated example, the reactive power Qgen increases slightly later than the increase in the generated power Pgen of the inverter INV. When the reactive power Qgen reaches the limit power Qmax, the generated active power Pgen is limited in order to keep the receiving power factor at or above the delay power factor limit value PFlag. Here, the maximum value Qmax of the reactive power Qgen is set to 30% of the maximum load power consumption.

このときの受電点80における力率PFの変化が図8(b)に示されている。ここで、遅れ力率制限値PFlagは0.9としている。図8(b)によれば、インバータINVが発電を開始する前は、負荷50の力率である0.92が受電点力率となる。インバータINVが発電を開始すると、受電する有効電力PLが低下し、他方無効電力QLが変わらないため受電点における力率PFが低下する。 The change in the power factor PF at the power receiving point 80 at this time is shown in FIG. 8 (b). Here, the delay power factor limit value PFlag is set to 0.9. According to FIG. 8B, before the inverter INV starts power generation, the power factor of the load 50, 0.92, is the power receiving point power factor. When the inverter INV starts power generation, the active power PL to be received decreases, while the reactive power QL does not change, so the power factor PF at the receiving point decreases.

受電点力率PFが遅れ力率制限値PFlagまで低下すると、制御装置1によりゼロ以上の無効電力指令QrefがインバータINVに出力され、受電点80で系統から受電する無効電力Qsが低下する。これにより力率が0.9で維持される。 When the power receiving point power factor PF drops to the delay power factor limit value PFlag, the control device 1 outputs a reactive power command QRef of zero or more to the inverter INV, and the reactive power Qs received from the system at the power receiving point 80 decreases. This keeps the power factor at 0.9.

以下の図9(a)、図9(b)では、さらに無効電力制御をしない逆潮流阻止のための負荷運用例と力率変動について説明する。なお、これらの図において示される所量は、今までに述べたものと同じである。ここでは、期間Tにおいて、逆潮流が発生し得る状態となったことを表している。つまり、この状態では、負荷50が太陽光発電量を下回る可能性がある。 In FIGS. 9 (a) and 9 (b) below, a load operation example for preventing reverse power flow without reactive power control and a power factor fluctuation will be described. The amounts shown in these figures are the same as those described so far. Here, it represents that the reverse power flow can occur in the period T. That is, in this state, the load 50 may be less than the amount of photovoltaic power generation.

図9(a)は、無効電力制御をしない逆潮流阻止のための負荷運用例を示す図である。この図を図7(a)と比較すると、例えば負荷50が消費する有効電力PL、無効電力QLが、図7(a)に比べて比較的に少なく、例えば太陽光発電量である有効電力Pgenが急増するタイミングで、負荷が消費する有効電力PLを超過する結果として、逆潮流を発生することを表している。なお従来における負荷運用例では太陽光発電の力率一定制御が実施されており、太陽光による無効電力Qgenはゼロのままである。 FIG. 9A is a diagram showing an example of load operation for preventing reverse power flow without reactive power control. Comparing this figure with FIG. 7A, for example, the active power PL and the active power QL consumed by the load 50 are relatively smaller than those in FIG. 7A, for example, the active power Pgen which is the amount of photovoltaic power generation. It shows that reverse power flow is generated as a result of exceeding the active power PL consumed by the load at the timing of the rapid increase. In the conventional load operation example, the power factor of photovoltaic power generation is constantly controlled, and the reactive power Qgen due to photovoltaic power generation remains zero.

係る無効電力制御をしない逆潮流阻止のための負荷運用例では、負荷50が消費する有効電力PLが太陽光の定格発電電力Pgenを下回る場合における逆潮流を防止するため、太陽光発電量である有効電力Pgenは負荷が消費する有効電力PL以下に抑制される。これにより逆潮流となることを阻止している。なお図示においては、正午近辺の期間Tにおいて、有効電力PLが太陽光の発電電力Pgenを下回ったものとする。 In the load operation example for preventing reverse power flow without such invalid power control, the amount of solar power generation is used to prevent reverse power flow when the active power PL consumed by the load 50 is lower than the rated power generation power Pgen of solar power. The active power Pgen is suppressed to be equal to or less than the active power PL consumed by the load. This prevents reverse power flow. In the figure, it is assumed that the active power PL is lower than the photovoltaic power generation power Pgen in the period T near noon.

図9(b)は、無効電力制御をしない逆潮流阻止のための負荷運用時の力率変動を示す図である。ここで受電点力率PFは、(3)式で表すことができる。 FIG. 9B is a diagram showing a power factor fluctuation during load operation for preventing reverse power flow without reactive power control. Here, the power receiving point power factor PF can be expressed by Eq. (3).

Figure 2020182276
Figure 2020182276

(3)式と図9(a)に示す有効電力PLと無効電力QL、並びに太陽光発電量である有効電力Pgenと無効電力Qgen(=0)の変化傾向から明らかなように、有効電力PLと無効電力QL、並びに有効電力Pgenと無効電力Qgenの差分に応じて定まる受電点力率PFは、太陽光発電の発生により低下し、太陽光発電システムから無効電力の補償をする機構を備えない従来例では、有効電力PLが太陽光の発電電力Pgenを下回る正午近辺の期間Tにおいて受電点力率PFがゼロまで落ちることになる。 As is clear from the change tendency of the active power PL and the ineffective power QL shown in the equation (3) and FIG. 9 (a), and the active power Pgen and the ineffective power Qgen (= 0) which are the amount of solar power generation, the active power PL The power receiving point power rate PF, which is determined according to the difference between the active power Pgen and the invalid power Qgen, decreases due to the occurrence of solar power generation, and does not have a mechanism for compensating for the invalid power from the solar power generation system. In the conventional example, the power receiving point power rate PF drops to zero in the period T near noon when the active power PL is lower than the generated power Pgen of solar power.

これに対し、太陽光発電システムから無効電力の補償をする機構を備えた本発明の場合における、逆潮流阻止のための負荷運用例と力率変動について、図10(a)、図10(b)を用いて説明する。 On the other hand, in the case of the present invention provided with a mechanism for compensating reactive power from the photovoltaic power generation system, load operation examples for preventing reverse power flow and power factor fluctuations are shown in FIGS. 10 (a) and 10 (b). ) Will be described.

まず図10(a)は、本発明の実施例1における逆潮流阻止のための負荷運用例を示す図である。本発明の実施例1では、まずは受電電力Ps[kW]から許容される無効電力を算出し、負荷の無効電力QLが許容範囲の無効電力を逸脱した分を太陽光発電システムから補償する。また、太陽光発電システム内のインバータが上記補償分の無効電力を出力できるよう、有効電力の制限値を算出する。 First, FIG. 10A is a diagram showing a load operation example for preventing reverse power flow in the first embodiment of the present invention. In the first embodiment of the present invention, first, the allowable reactive power is calculated from the received power Ps [kW], and the amount of the reactive power QL of the load deviating from the allowable range of reactive power is compensated from the photovoltaic power generation system. In addition, the limit value of active power is calculated so that the inverter in the photovoltaic power generation system can output the reactive power for the compensation.

このため、太陽光発電システムからは有効電力Pgenとともに、これに相当する無効電力Qgenが供給されており、逆潮流の発生が抑止されている。本ケースでは、上記制限値が有効電力PLより小さいため、12時近傍でPL≠Pgenとなっている。 Therefore, the photovoltaic power generation system supplies the active power Pgen and the corresponding invalid power Qgen, and the occurrence of reverse power flow is suppressed. In this case, since the above limit value is smaller than the active power PL, PL ≠ Pgen near 12 o'clock.

さらに図10(b)は、本発明の実施例1における逆潮流阻止のための負荷運用時の力率変動を示す図である。実施例1によれば、例えば受電点力率PFを0.9以上に保つための無効電力Qgenを太陽光発電システムから出力するため、受電点力率PFは略0.9以上に維持される。またフィードバック系で無効電力Qgenは制御される。なお、有効電力の変動が大きいタイミングでは、過渡的に受電点力率PFが0.9未満になるタイミングが生じる。 Further, FIG. 10B is a diagram showing a power factor fluctuation during load operation for preventing reverse power flow in the first embodiment of the present invention. According to the first embodiment, for example, since the reactive power Qgen for keeping the power receiving point power factor PF at 0.9 or more is output from the photovoltaic power generation system, the power receiving point power factor PF is maintained at about 0.9 or more. .. The reactive power Qgen is controlled by the feedback system. At the timing when the fluctuation of the active power is large, the timing at which the power receiving point power factor PF becomes less than 0.9 occurs transiently.

以上述べたように本発明の実施例1によれば、自家消費用太陽光を導入しても受電点力率を所定の値より大きく保ちながら逆潮流および過負荷を避けた太陽光インバータの運用が可能となる。受電力率を所定の値より高く維持することにより、系統電圧の管理が容易となる。 As described above, according to the first embodiment of the present invention, the operation of a solar inverter that avoids reverse power flow and overload while keeping the power receiving point power factor larger than a predetermined value even when sunlight for self-consumption is introduced. Is possible. By keeping the power receiving rate higher than a predetermined value, the system voltage can be easily managed.

本発明の実施例2について、図11から図14を用いて説明する。なお、本発明の実施例1と同一要素には同じ符号をつけ、重複説明を避ける。 Example 2 of the present invention will be described with reference to FIGS. 11 to 14. The same elements as those in the first embodiment of the present invention are designated by the same reference numerals to avoid duplicate explanations.

まず図11は、実施例2に係る太陽光発電システムの監視制御装置を含む需要家内設備の全体構成例を示す図である。図11において実施例2と実施例1との差は、電流検出器30が負荷電流ILを検出する母線Busに設けられた点である。受電点80での電流ではなく、負荷電流ILを直接検出することにより、負荷の消費する有効電力PL、無効電力QLを直接検出することができるため、本発明の制御装置の備える制御ロジックを簡略化できる。 First, FIG. 11 is a diagram showing an overall configuration example of in-customer equipment including a monitoring and control device for the photovoltaic power generation system according to the second embodiment. In FIG. 11, the difference between the second embodiment and the first embodiment is that the current detector 30 is provided on the bus bus that detects the load current IL. By directly detecting the load current IL instead of the current at the power receiving point 80, the active power PL and reactive power QL consumed by the load can be directly detected, so that the control logic provided in the control device of the present invention is simplified. Can be changed.

また実施例2と実施例1との差は、上記変更点に関連して制御装置1の処理内容が一部変更されていることである。このため実施例2における制御装置1を制御装置1Aとして表記、説明する。実施例2の太陽光発電システムの監視制御装置では、インバータ制御部10の詳細は図2に例示されているように変更はなく、制御装置1Aの具体的な構成例が図12,図13,図14に例示されている。 Further, the difference between the second embodiment and the first embodiment is that the processing contents of the control device 1 are partially changed in relation to the above changes. Therefore, the control device 1 in the second embodiment will be described and described as the control device 1A. In the monitoring control device of the photovoltaic power generation system of the second embodiment, the details of the inverter control unit 10 are not changed as illustrated in FIG. 2, and specific configuration examples of the control device 1A are shown in FIGS. 12 and 13. Illustrated in FIG.

図11において、制御装置1Aは電流検出器30、電圧検出器31の検出値を受取り、実施例1と同様にインバータINVの有効電力上限値Plimおよび無効電力指令値Qrefを、通信線40を介してインバータ制御部10に送信する。 In FIG. 11, the control device 1A receives the detected values of the current detector 30 and the voltage detector 31, and similarly to the first embodiment, the active power upper limit value Plim and the reactive power command value Quref of the inverter INV are transmitted via the communication line 40. Is transmitted to the inverter control unit 10.

制御装置1Aの概略の制御ロジックを図12に示す。制御装置1Aは、その内部機能を簡便に述べると、無効電力指令値算出器100Aと有効電力上限値算出器200Aにより構成されている。 The schematic control logic of the control device 1A is shown in FIG. To briefly describe its internal function, the control device 1A is composed of a reactive power command value calculator 100A and a reactive power upper limit value calculator 200A.

制御装置1Aの無効電力指令値算出器100Aは、受電電圧検出値Vs、負荷電流ILを電圧検出値インターフェース500、電流検出値インターフェース501から入力し、またインバータINVの発電電力Pgenを通信インターフェース502より入力し、インバータINVの無効電力指令値Qrefおよび負荷50の消費する有効電力算出値PLcalを算出する。制御装置1Aの有効電力上限値算出器200Aは、無効電力指令値Qrefおよび有効電力算出値PLcalから、逆潮流の防止と太陽光インバータ10INVの過負荷を回避するための有効電力上限値Plimを算出する。 The invalid power command value calculator 100A of the control device 1A inputs the received voltage detection value Vs and the load current IL from the voltage detection value interface 500 and the current detection value interface 501, and inputs the generated power Pgen of the inverter INV from the communication interface 502. Input and calculate the invalid power command value QRef of the inverter INV and the active power calculation value PLcal consumed by the load 50. The active power upper limit value calculator 200A of the control device 1A calculates the active power upper limit value Plim for preventing reverse power flow and avoiding the overload of the photovoltaic inverter 10INV from the invalid power command value Queue and the active power calculation value PLcal. To do.

無効電力指令値Qref、有効電力上限値Plimは、通信インターフェース502、および通信線40を介してインバータ制御部10に送信される。インバータ制御部10は、本発明の実施例1と同様に、例えば図2の処理を実行して無効電力指令値Qref、有効電力上限値Plimに従い系統に出力する有効電力、無効電力を制御する。 The reactive power command value Quref and the active power upper limit value Plim are transmitted to the inverter control unit 10 via the communication interface 502 and the communication line 40. Similar to the first embodiment of the present invention, the inverter control unit 10 executes, for example, the process of FIG. 2 to control the reactive power and reactive power output to the system according to the reactive power command value Quref and the active power upper limit value Plim.

図13を用いて無効電力指令値算出器100Aの制御ロジックを説明する。図4に示した実施例1の無効電力指令値算出器100との差は、負荷50の消費する有効電力算出値PLcalを算出する点と、負荷50の消費する無効電力を直接算出する点と、受電点80で受電する有効電力をPLcalとPgenから算出する点が異なる。なお図11から図14において、実施例1と実施例2で機能的に相違する処理を行う部分には記号に「A」を付与することで、相違点を明示している。 The control logic of the reactive power command value calculator 100A will be described with reference to FIG. The difference from the reactive power command value calculator 100 of the first embodiment shown in FIG. 4 is that the active power calculation value PLcal consumed by the load 50 is calculated and the reactive power consumed by the load 50 is directly calculated. The difference is that the active power received at the power receiving point 80 is calculated from PLcal and Pgen. In addition, in FIGS. 11 to 14, the difference is clarified by adding "A" to the symbol to the portion where the processing functionally different between the first embodiment and the second embodiment is performed.

受電点電圧検出値Vsと負荷電流検出値ILは、有効電力・無効電力算出器101Aに入力され、負荷50の消費する有効電力算出値PLcal、無効電力算出値QLcalを算出する。負荷電流ILを直接検出することにより、負荷の消費する無効電力QLcalをインバータINVの応答を算出するためのロジックを不要とできる。また、制御応答は系統切換などによりインバータINVから見込んだ系統インピーダンスが変化すると応答速度が変わる。本実施例ではインバータINVの無効電力制御応答の模擬を不要とするため、本発明の実施例1に比べて系統切換を含む系統操作に対してロバスト性を改善できる。 The receiving point voltage detection value Vs and the load current detection value IL are input to the active power / reactive power calculator 101A, and the active power calculation value PLcal and the reactive power calculation value QLcal consumed by the load 50 are calculated. By directly detecting the load current IL, it is possible to eliminate the logic for calculating the response of the inverter INV for the reactive power QLcal consumed by the load. In addition, the response speed of the control response changes when the system impedance expected from the inverter INV changes due to system switching or the like. Since it is not necessary to simulate the reactive power control response of the inverter INV in this embodiment, robustness can be improved for system operation including system switching as compared with Example 1 of the present invention.

負荷50の消費する有効電力算出値PLcalは減算器112と有効電力上限算出器250に出力され、無効電力QLcalは減算器107、109に出力される。 The calculated active power PLcal consumed by the load 50 is output to the subtractor 112 and the active power upper limit calculator 250, and the reactive power QLcal is output to the subtractors 107 and 109.

負荷50の消費する有効電力算出値PLcalとインバータINVの有効電力Pgenは減算器112に入力され、受電点80で受電する有効電力の算出値Pscalを算出する。受電点80で受電する有効電力の算出値Pscalを用いた無効電力指令値Qrefの算出ロジックは、実施例1と同様であるため、重複説明を省略する。 The calculated active power PLcal consumed by the load 50 and the active power Pgen of the inverter INV are input to the subtractor 112, and the calculated active power Pscal received at the receiving point 80 is calculated. Since the calculation logic of the reactive power command value Quref using the calculated value Pscal of the active power received at the power receiving point 80 is the same as that in the first embodiment, duplicate description will be omitted.

有効電力上限値算出器200Aの制御ロジックを、図14を用いて説明する。有効電力上限値算出器200Aは、無効電力指令値算出器100Aにより算出された、負荷50の消費有効電力算出値PLcalと無効電力指令値Qrefを入力し、それら入力からインバータINVの出力する有効電力上限値Plimを算出し、図12の通信インターフェース502に出力する。 The control logic of the active power upper limit value calculator 200A will be described with reference to FIG. The active power upper limit value calculator 200A inputs the reactive power consumption calculated value PLcal of the load 50 and the reactive power command value Quref calculated by the reactive power command value calculator 100A, and the active power output by the inverter INV from these inputs. The upper limit value Plim is calculated and output to the communication interface 502 of FIG.

図14において、インバータ動作マップテーブル201は実施例1と同様に、無効電力指令値Qrefを入力とし、インバータINVの過負荷を回避しながら無効電力指令値Qrefに追従した無効電力を出力できる有効電力の上限値Pmaxをテーブル参照で算出し、最小値算出器202に該上限値を出力する。 In FIG. 14, the inverter operation map table 201 receives the reactive power command value Qref as the input, and can output the reactive power following the reactive power command value QRef while avoiding the overload of the inverter INV, as in the first embodiment. The upper limit value Pmax of is calculated by referring to the table, and the upper limit value is output to the minimum value calculator 202.

最小値算出器202には有効電力の上限値Pmaxと消費有効電力算出値PLcalが入力され、値の小さいほうがインバータINVの有効電力上限値Plimとして図12の通信インターフェース502に出力される。 The upper limit value Pmax of the active power and the calculated active power consumption value PLcal are input to the minimum value calculator 202, and the smaller value is output to the communication interface 502 of FIG. 12 as the active power upper limit value Plim of the inverter INV.

以上より、本実施例の制御装置1Aを用いることで、受電点80での力率改善と逆潮流を防止しつつインバータINVの過負荷運用を回避できる。 From the above, by using the control device 1A of this embodiment, it is possible to avoid overload operation of the inverter INV while improving the power factor at the power receiving point 80 and preventing reverse power flow.

また、本実施例の無効電力指令値算出器100Aを用いることにより、系統操作に対するロバスト性を維持しながら受電点での力率を所望の値以上に維持することができる。 Further, by using the reactive power command value calculator 100A of this embodiment, the power factor at the power receiving point can be maintained at a desired value or higher while maintaining robustness against system operation.

さらに、本実施例の有効電力上限算出器200Aは比例積分制御器を必要としないため、実施例1に記載の有効電力上限算出器200に比べて演算を簡素化できる。 Further, since the active power upper limit calculator 200A of this embodiment does not require a proportional integration controller, the calculation can be simplified as compared with the active power upper limit calculator 200 described in the first embodiment.

本発明の実施例3を、図15、図16を用いて説明する。 Example 3 of the present invention will be described with reference to FIGS. 15 and 16.

まず図15は、実施例3に係る太陽光発電システムの監視制御装置を含む需要家内設備の全体構成例を示す図である。実施例3と実施例1、2との差は、受電点80における力率を制御する制御装置1の機能とインバータ制御部10の機能を併せ持つ制御装置3を構成し、これを太陽光インバータシステムの一部として組み込んだものである。別な言い方をすると、系統の電圧、電流情報をアナログ値のまま取り込み、通信を排除したものということができる。ここでは、受電点電圧検出値Vs、負荷電流検出値Isをアナログ信号で受け取り、受電点力率制御とインバータINVの有効電力上限演算、そしてインバータINVの波形制御を制御装置3内部の制御器で一括演算することにより、通信による遅れを回避できる。 First, FIG. 15 is a diagram showing an overall configuration example of in-customer equipment including a monitoring control device for the photovoltaic power generation system according to the third embodiment. The difference between the third embodiment and the first and second embodiments constitutes a control device 3 having both the function of the control device 1 for controlling the power factor at the power receiving point 80 and the function of the inverter control unit 10, which is a solar inverter system. It was incorporated as part of. In other words, it can be said that the voltage and current information of the system is taken in as analog values and communication is excluded. Here, the power receiving point voltage detection value Vs and the load current detection value Is are received as analog signals, and the power receiving point power factor control, the active power upper limit calculation of the inverter INV, and the waveform control of the inverter INV are performed by the controller inside the control device 3. By performing batch calculation, delay due to communication can be avoided.

本実施例の制御装置3は受電点電圧を検出するための電圧検出器30、および負荷電流を計測する電流検出器31の出力信号を受取る。 The control device 3 of this embodiment receives the output signals of the voltage detector 30 for detecting the receiving point voltage and the current detector 31 for measuring the load current.

制御装置3の概略の制御ブロックを図16に示す。制御装置3は、電圧検出値インターフェース500と、電流検出値インターフェース501を備え、電圧検出器30から受電点電圧検出値Vsを、電流検出器31から電流検出値ILを、それぞれ入力する。図12の制御装置1Aと同様の演算を無効電力指令値算出器100A、有効電力上限値算出器200Aで実施する。無効電力指令値算出器100Aで求めた負荷の消費有効電力算出値PLcalは有効電力上限値算出器200Aに出力され、受電点80における力率を維持するための無効電力指令値Qrefは減算器14に出力される。 A schematic control block of the control device 3 is shown in FIG. The control device 3 includes a voltage detection value interface 500 and a current detection value interface 501, and inputs a power receiving point voltage detection value Vs from the voltage detector 30 and a current detection value IL from the current detector 31. The same calculation as that of the control device 1A of FIG. 12 is performed by the reactive power command value calculator 100A and the active power upper limit value calculator 200A. The reactive power consumption calculated value PLcal of the load obtained by the reactive power command value calculator 100A is output to the active power upper limit value calculator 200A, and the reactive power command value Quref for maintaining the power factor at the power receiving point 80 is the subtractor 14. Is output to.

図16の各機能(リミッタ付きMPPT12、有効電力・無効電力算出器13、減算器14、無効電力制御器15)は本発明の実施例1と同様の演算を施すため、重複説明を省略する。 Since each function of FIG. 16 (MPPT12 with limiter, active power / reactive power calculator 13, subtractor 14, reactive power controller 15) performs the same calculation as in the first embodiment of the present invention, duplicate description will be omitted.

以上より、本実施例に拠れば、実施例2で示した制御機能を、通信を介さずに実装できるため、通信による遅延を回避でき、より精度の高い力率制御および有効電力制御が可能となる。 From the above, according to the present embodiment, since the control function shown in the second embodiment can be implemented without communication, delay due to communication can be avoided, and more accurate power factor control and active power control can be performed. Become.

本発明の実施例4を、図17、図18を用いて説明する。 Example 4 of the present invention will be described with reference to FIGS. 17 and 18.

実施例4と実施例1から3の違いは、自家消費用太陽光インバータシステムが、太陽光インバータに加えて蓄電池システムを備えられる点にある。 The difference between the fourth embodiment and the first to third embodiments is that the photovoltaic inverter system for private consumption is provided with a storage battery system in addition to the photovoltaic inverter.

制御装置1とインバータINVが位置的に離れており、通信で有効電力上限値Plim、無効電力指令値Qrefを送信せざるを得ない場合がある。一般に、通信には数十ms〜数百msの時間を要する。一方、最低負荷に対して大容量の自家消費用太陽光発電設備を導入した場合は受電点に系統運営者より逆潮流防止リレーを設けるよう要求される可能性がある。逆潮流防止リレーは、逆潮流を100ms程度で検出し遮断器に開放指令を出す物もある。そのため、通信による逆潮流防止制御が過渡的に間に合わず、該逆潮流防止リレーが作動して遮断器を開放する虞がある。 The control device 1 and the inverter INV may be positioned apart from each other, and the active power upper limit value Plim and the reactive power command value Quref may have to be transmitted by communication. Generally, communication takes several tens of ms to several hundred ms. On the other hand, when a large-capacity photovoltaic power generation facility for private consumption is introduced for the minimum load, the grid operator may request a reverse power flow prevention relay at the receiving point. Some reverse power flow prevention relays detect reverse power flow in about 100 ms and issue an opening command to the circuit breaker. Therefore, the reverse power flow prevention control by communication may not be in time transiently, and the reverse power flow prevention relay may operate to open the circuit breaker.

本実施例では、通信によるインバータINVの出力抑制に加え、受電点の電力をアナログ情報で検出する蓄電池システムを備える。本蓄電池システムにより、通信遅延による逆潮流期間を上記逆潮流防止リレーの作動時間より短くすることで遮断器開放を回避し、高比率の自家消費太陽光発電システムを実現する。 In this embodiment, in addition to suppressing the output of the inverter INV by communication, a storage battery system that detects the power at the receiving point with analog information is provided. With this storage battery system, the reverse power flow period due to communication delay is made shorter than the operating time of the reverse power flow prevention relay, thereby avoiding the opening of the circuit breaker and realizing a high-ratio self-consumption photovoltaic power generation system.

図17には、本発明の実施例4に係る太陽光発電システムの監視制御装置を含む需要家内設備の全体構成例を示している。実施例2との差は、受電点の電力を検出して逆潮流が発生した場合には遮断器CBを開放する逆潮流リレー35が備えられた点と、受電点の潮流を、アナログ信号を元に算出し、短時間の逆潮流を防止する蓄電池システム70および該蓄電池システムに接続される蓄電池25を備える点である。蓄電池システム70の交流端子は、負荷50およびインバータINVと同じ交流母線Busに接続される。なお図17において、32は電流検出器、33は電圧検出器である。 FIG. 17 shows an example of the overall configuration of the in-house equipment including the monitoring and control device of the photovoltaic power generation system according to the fourth embodiment of the present invention. The difference from the second embodiment is that a reverse power flow relay 35 is provided to detect the power at the power receiving point and open the breaker CB when a reverse power flow occurs, and the power flow at the power receiving point is an analog signal. The point is that the storage battery system 70, which is calculated based on the above and prevents reverse power flow for a short time, and the storage battery 25 connected to the storage battery system are provided. The AC terminal of the storage battery system 70 is connected to the same AC bus bus as the load 50 and the inverter INV. In FIG. 17, 32 is a current detector and 33 is a voltage detector.

図18を用いて蓄電池システム70の構成および制御ロジックを説明する。蓄電池システム70は、蓄電池インバータ波形制御器70Cおよび蓄電池インバータ70INVにより構成される。蓄電池インバータ波形制御器70Cは受電点の交流電圧検出値Vs、交流電流検出値Isを電圧検出値インターフェース700、電流検出値インターフェース701を介して取得し、図示しない蓄電池システム70の連系点電圧検出値Vac2、連系点出力電流検出値Iac2をもとに、短期間の逆潮流を防止する有効電力を出力するよう蓄電池インバータ70INVの電圧指令値Vref2を算出する。 The configuration and control logic of the storage battery system 70 will be described with reference to FIG. The storage battery system 70 includes a storage battery inverter waveform controller 70C and a storage battery inverter 70 INV. The storage battery inverter waveform controller 70C acquires the AC voltage detection value Vs and the AC current detection value Is at the power receiving point via the voltage detection value interface 700 and the current detection value interface 701, and detects the interconnection point voltage of the storage battery system 70 (not shown). Based on the value Vac2 and the interconnection point output current detection value Iac2, the voltage command value Vref2 of the storage battery inverter 70INV is calculated so as to output the active power that prevents the backflow in a short period of time.

電圧検出値Vsおよび電流検出値Isは有効電力・無効電力算出器702に入力され、受電点における有効電力Pscalを算出する。 The voltage detection value Vs and the current detection value Is are input to the active power / reactive power calculator 702, and the active power Pscal at the receiving point is calculated.

Pscalはハイパスフィルタ703に入力される。ハイパスフィルタ703は、通信遅延により太陽光インバータシステム10の出力抑制が間に合わない高周波成分の逆潮流をPscalから抽出する。 Pscal is input to the high-pass filter 703. The high-pass filter 703 extracts the reverse power flow of the high-frequency component from Pscal, which the output suppression of the solar inverter system 10 cannot keep up with due to the communication delay.

ハイパスフィルタ703の出力はリミッタ704に入力され、リミッタ704は入力値をゼロ以下に制限し、受電電力の負成分である逆潮流成分を抽出する。リミッタ704の出力は乗算器705に入力され、符号反転された後に蓄電池システムの出力する有効電力指令値を算出する。 The output of the high-pass filter 703 is input to the limiter 704, and the limiter 704 limits the input value to zero or less and extracts the reverse power flow component which is a negative component of the received power. The output of the limiter 704 is input to the multiplier 705, and after the sign is inverted, the active power command value output by the storage battery system is calculated.

上記有効電力指令値と電圧検出値Vac2、出力電流検出値Iac2は有効電力制御器706に入力され、蓄電池インバータ70INVの出力する有効電力が、有効電力指令値に追従するよう蓄電池インバータ70INVの出力電圧指令値Vref2を補正し、インバータ70INVに出力する。 The active power command value, the voltage detection value Vac2, and the output current detection value Iac2 are input to the active power controller 706, and the output voltage of the storage battery inverter 70INV so that the active power output by the storage battery inverter 70INV follows the active power command value. The command value Vref2 is corrected and output to the inverter 70INV.

本実施例では、受電点の電力を検出する手段としてアナログ信号を用いるが、太陽光インバータシステム10と制御装置1の間の通信に比べて高頻度な通信レートを備える制御装置により蓄電池システム70を制御しても良い。 In this embodiment, an analog signal is used as a means for detecting the power at the receiving point, but the storage battery system 70 is provided by a control device having a communication rate higher than that of the communication between the solar inverter system 10 and the control device 1. You may control it.

以上より、本発明の実施例4によれば、受電点での力率を所望の値に保ちつつ、逆潮流を高精度に防止しながら太陽光インバータの過負荷を回避することができる。 From the above, according to the fourth embodiment of the present invention, it is possible to avoid an overload of the solar inverter while maintaining the power factor at the power receiving point at a desired value and preventing reverse power flow with high accuracy.

1、1A、3:制御装置
20:太陽光パネル
25:蓄電池
30、32:電流検出器
31、33:電圧検出器
35:逆潮流防止リレー
40:通信線
50:負荷
70:蓄電池インバータシステム
80:受電点
90:需要家設備
100、100A:無効電力指令値算出器
200、200A:有効電力上限値算出器
500、700:電圧検出値入力インターフェース
501、701:電流検出値入力インターフェース
502、11、17:通信インターフェース
101、101A、702、13:有効電力無効電力算出器
102、103:力率遵守用無効電力算出器
104:ローパスフィルタ
105:遅延器
106、107、109、14:減算器
110:加算器
108、111、704:リミッタ
201:インバータ動作マップテーブル
202:最小値算出器
203:比例積分制御器
12:リミッタ付きMPPT演算器
15:無効電力制御器
16、706:電流制御器
INV:太陽光インバータ
70:蓄電池システム
70C:蓄電池インバータ波形制御器
703:ハイパスフィルタ
705:乗算器
70INV:蓄電池インバータ
1, 1A, 3: Control device 20: Solar panel 25: Storage battery 30, 32: Current detector 31, 33: Voltage detector 35: Reverse power flow prevention relay 40: Communication line 50: Load 70: Storage battery Inverter system 80: Power receiving point 90: Consumer equipment 100, 100A: Invalid power command value calculator 200, 200A: Active power upper limit value calculator 500, 700: Voltage detection value input interface 501, 701: Current detection value input interface 502, 11, 17 : Communication interfaces 101, 101A, 702, 13: Active power Invalid power calculator 102, 103: Invalid power calculator for power factor compliance 104: Low pass filter 105: Delayer 106, 107, 109, 14: Subtractor 110: Addition Units 108, 111, 704: Limiter 201: Inverter operation map table 202: Minimum value calculator 203: Proportional integration controller 12: MPPT calculator with limiter 15: Invalid power controller 16, 706: Current controller INV: Sunlight Inverter 70: Storage battery system 70C: Storage battery inverter Wave controller 703: High-pass filter 705: Multiplier 70INV: Storage battery inverter

Claims (12)

交流系統と太陽光発電設備を接続する母線から負荷に給電する需要家における太陽光発電設備の監視制御装置であって、
監視制御装置は、交流系統と需要家の連系点の力率を算出するための状態量を検出し、交流系統と需要家の連系点の力率を所定力率以上とするために必要なインバータの出力する無効電力を前記状態量に基づいて算出する演算部と、前記無効電力を無効電力指令として前記インバータを制御するインバータ制御部を備えることを特徴とする太陽光発電設備の監視制御装置。
It is a monitoring and control device for photovoltaic power generation equipment in consumers who supply power to the load from the bus that connects the AC system and the photovoltaic power generation equipment.
The monitoring and control device is necessary to detect the state quantity for calculating the power factor of the interconnection point between the AC system and the consumer, and to make the power factor of the interconnection point between the AC system and the consumer equal to or higher than the predetermined power factor. Monitoring control of a solar power generation facility including a calculation unit that calculates the reactive power output from the inverter based on the state quantity, and an inverter control unit that controls the inverter using the reactive power as a reactive power command. apparatus.
請求項1に記載の太陽光発電設備の監視制御装置であって、
前記連系点の力率を算出するための状態量が、前記需要家内に備えられる負荷の消費する有効電力と無効電力を算出することのできる電気量であることを特徴とする太陽光発電設備の監視制御装置。
The monitoring and control device for the photovoltaic power generation facility according to claim 1.
A photovoltaic power generation facility characterized in that the state quantity for calculating the power factor of the interconnection point is the amount of electricity that can calculate the active power and reactive power consumed by the load provided in the customer. Monitoring and control device.
請求項1から請求項2のいずれか1項に記載の太陽光発電設備の監視制御装置であって、
前記連系点の力率を算出するための状態量が、前記連系点の有効電力と無効電力を算出することのできる電気量と、前記太陽光発電設備の出力する有効電力を算出することのできる電気量と、を含むことを特徴とする太陽光発電設備の監視制御装置。
The monitoring and control device for the photovoltaic power generation facility according to any one of claims 1 to 2.
The amount of state for calculating the power factor of the interconnection point is the amount of electricity that can calculate the active power and the ineffective power of the interconnection point, and the active power output by the photovoltaic power generation facility. A monitoring and control device for photovoltaic power generation equipment, which is characterized by including the amount of electricity that can be produced.
請求項1から請求項3のいずれか1項に記載の太陽光発電設備の監視制御装置であって、
前記演算部は、前記インバータの出力する有効電力を算出して前記インバータ制御部に与え前記インバータを制御するとともに、前記インバータの出力する有効電力を前記需要家内に備えられる負荷の消費する有効電力以下に制限することを特徴とする太陽光発電設備の監視制御装置。
The monitoring and control device for the photovoltaic power generation facility according to any one of claims 1 to 3.
The calculation unit calculates the active power output by the inverter and supplies it to the inverter control unit to control the inverter, and the active power output by the inverter is equal to or less than the active power consumed by the load provided in the consumer. A monitoring and control device for photovoltaic power generation equipment, which is characterized by being limited to.
請求項1から請求項4のいずれか1項に記載の太陽光発電設備の監視制御装置であって、
前記演算部は、前記インバータの出力する有効電力を算出して前記インバータ制御部に与え前記インバータを制御するとともに、前記無効電力から設定した上限値に前記有効電力を制限することを特徴とする太陽光発電設備の監視制御装置。
The monitoring and control device for the photovoltaic power generation facility according to any one of claims 1 to 4.
The calculation unit calculates the active power output by the inverter and supplies it to the inverter control unit to control the inverter, and limits the active power to an upper limit value set from the reactive power. Monitoring and control device for photovoltaic power generation equipment.
前記交流系統と需要家の連系点に遮断器を設置して連系点の逆潮流により前記遮断器を開放するようにされた請求項1から請求項5のいずれか1項に記載の太陽光発電設備の監視制御装置であって、
第2のインバータを介して蓄電池を母線に接続し、前記連系点の逆潮流に先立ち、前記蓄電池の充放電を制御し、前記連系点の逆潮流を防止することを特徴とする太陽光発電設備の監視制御装置。
The sun according to any one of claims 1 to 5, wherein a circuit breaker is installed at the interconnection point between the AC system and the consumer to open the circuit breaker by reverse power flow at the interconnection point. It is a monitoring and control device for photovoltaic power generation equipment.
Solar power is characterized in that a storage battery is connected to a bus via a second inverter, charge / discharge of the storage battery is controlled prior to reverse power flow at the interconnection point, and reverse power flow at the interconnection point is prevented. Monitoring and control device for power generation equipment.
請求項1から請求項6のいずれか1項に記載の太陽光発電設備の監視制御装置であって、
前記演算部と前記インバータ制御部が通信手段により接続されたことを特徴とする太陽光発電設備の監視制御装置。
The monitoring and control device for the photovoltaic power generation facility according to any one of claims 1 to 6.
A monitoring and control device for photovoltaic power generation equipment, wherein the calculation unit and the inverter control unit are connected by a communication means.
請求項1から請求項7のいずれか1項に記載の太陽光発電設備の監視制御装置であって、
前記演算部は、前記インバータの出力する有効電力を算出して前記インバータ制御部に与え前記インバータを制御するとともに、前記有効電力を前記需要家内に備えられる負荷の消費する有効電力以下である第1の上限値に制限する第1の手段と、前記無効電力から設定した第2の上限値に前記有効電力を制限する第2の手段とを備え、有効電力の上限値が小さいほうで有効電力を制御することを特徴とする太陽光発電設備の監視制御装置。
The monitoring and control device for the photovoltaic power generation facility according to any one of claims 1 to 7.
The calculation unit calculates the active power output by the inverter and supplies it to the inverter control unit to control the inverter, and the active power is equal to or less than the active power consumed by the load provided in the customer. A first means for limiting the upper limit value of the active power and a second means for limiting the active power to the second upper limit value set from the invalid power are provided, and the active power is set to the smaller upper limit value of the active power. A monitoring and control device for solar power generation equipment, which is characterized by being controlled.
請求項1から請求項8のいずれか1項に記載の太陽光発電設備の監視制御装置であって、
インバータの動作可能範囲を定めたインバータ動作マップテーブルを、インターフェースを介して得、前記演算部は前記インバータ動作マップテーブルを参照して連系点の力率を所定力率以上とするために必要な前記インバータの出力する無効電力を算出することを特徴とする太陽光発電設備の監視制御装置。
The monitoring and control device for the photovoltaic power generation facility according to any one of claims 1 to 8.
An inverter operation map table that defines the operable range of the inverter is obtained via the interface, and the calculation unit is required to refer to the inverter operation map table and set the power factor of the interconnection point to a predetermined power factor or more. A monitoring and control device for photovoltaic power generation equipment, characterized in that the reactive power output by the inverter is calculated.
交流系統と太陽光発電設備を接続する母線から負荷に給電する需要家における太陽光発電設備の監視制御方法であって、
交流系統と需要家の連系点の力率を算出するための状態量を検出し、交流系統と需要家の連系点の力率を所定力率以上とするために必要なインバータの出力する無効電力を前記状態量に基づいて算出し、前記インバータを制御することを特徴とする太陽光発電設備の監視制御方法。
It is a monitoring and control method for photovoltaic power generation equipment in consumers who supply power to the load from the bus that connects the AC system and the photovoltaic power generation equipment.
Detects the state quantity for calculating the power factor of the interconnection point between the AC system and the consumer, and outputs the inverter required to make the power factor of the interconnection point between the AC system and the consumer equal to or higher than the predetermined power factor. A monitoring and control method for photovoltaic power generation equipment, which comprises calculating reactive power based on the state quantity and controlling the inverter.
請求項10に記載の太陽光発電設備の監視制御方法であって、
前記インバータの出力する有効電力を算出して前記インバータを制御するとともに、前記需要家内に備えられる負荷の消費する有効電力以下である上限値に前記有効電力を制限することを特徴とする太陽光発電設備の監視制御方法。
The method for monitoring and controlling a photovoltaic power generation facility according to claim 10.
Photovoltaic power generation characterized in that the active power output by the inverter is calculated to control the inverter, and the active power is limited to an upper limit value equal to or less than the active power consumed by the load provided in the customer. Equipment monitoring and control method.
請求項10または請求項11に記載の太陽光発電設備の監視制御方法であって、
前記インバータの出力する有効電力を算出して前記インバータを制御するとともに、前記有効電力を前記需要家内に備えられる負荷の消費する有効電力以下である第1の上限値と、前記無効電力から設定した第2の上限値のうち、有効電力の上限値が小さいほうで有効電力を制御することを特徴とする太陽光発電設備の監視制御方法。
The method for monitoring and controlling a photovoltaic power generation facility according to claim 10 or 11.
The active power output by the inverter is calculated to control the inverter, and the active power is set from the first upper limit value which is equal to or less than the active power consumed by the load provided in the customer and the reactive power. A monitoring and control method for solar power generation equipment, wherein the active power is controlled by the smaller upper limit of the active power among the second upper limit values.
JP2019082609A 2019-04-24 2019-04-24 MONITORING AND CONTROLLING DEVICE AND CONTROL METHOD FOR SOLAR POWER GENERATOR Active JP7202963B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2019082609A JP7202963B2 (en) 2019-04-24 2019-04-24 MONITORING AND CONTROLLING DEVICE AND CONTROL METHOD FOR SOLAR POWER GENERATOR

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2019082609A JP7202963B2 (en) 2019-04-24 2019-04-24 MONITORING AND CONTROLLING DEVICE AND CONTROL METHOD FOR SOLAR POWER GENERATOR

Publications (2)

Publication Number Publication Date
JP2020182276A true JP2020182276A (en) 2020-11-05
JP7202963B2 JP7202963B2 (en) 2023-01-12

Family

ID=73024756

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2019082609A Active JP7202963B2 (en) 2019-04-24 2019-04-24 MONITORING AND CONTROLLING DEVICE AND CONTROL METHOD FOR SOLAR POWER GENERATOR

Country Status (1)

Country Link
JP (1) JP7202963B2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112510737A (en) * 2020-11-25 2021-03-16 国网湖南省电力有限公司 Grid-connected and off-grid cooperative control method and system for photovoltaic energy storage charging station
CN113671313A (en) * 2021-08-12 2021-11-19 国网安徽省电力有限公司 Anti-misoperation method, device and system for remote coordination of low-frequency low-voltage device receiving
JP2023002994A (en) * 2021-06-23 2023-01-11 愛知電機株式会社 Method for controlling power factor by using self-excited reactive power compensator
CN115829168A (en) * 2023-02-16 2023-03-21 苏州洪昇新能源科技有限公司 Remote coordination operation and maintenance management system for new energy equipment based on data analysis

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20120262960A1 (en) * 2009-10-14 2012-10-18 Acciona Energia, S.A. Solar generation method and system
JP2014222992A (en) * 2013-05-14 2014-11-27 三菱電機株式会社 System stabilization device and system stabilization method
JP2015192567A (en) * 2014-03-28 2015-11-02 京セラ株式会社 Power wiring switching method, power wiring switching device, and power control device
JP2016167954A (en) * 2015-03-10 2016-09-15 シンフォニアテクノロジー株式会社 Power generating installation and power-factor control device thereof
JP2018182847A (en) * 2017-04-07 2018-11-15 株式会社ダイヘン System interconnection system and electric power system

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20120262960A1 (en) * 2009-10-14 2012-10-18 Acciona Energia, S.A. Solar generation method and system
JP2014222992A (en) * 2013-05-14 2014-11-27 三菱電機株式会社 System stabilization device and system stabilization method
JP2015192567A (en) * 2014-03-28 2015-11-02 京セラ株式会社 Power wiring switching method, power wiring switching device, and power control device
JP2016167954A (en) * 2015-03-10 2016-09-15 シンフォニアテクノロジー株式会社 Power generating installation and power-factor control device thereof
JP2018182847A (en) * 2017-04-07 2018-11-15 株式会社ダイヘン System interconnection system and electric power system

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112510737A (en) * 2020-11-25 2021-03-16 国网湖南省电力有限公司 Grid-connected and off-grid cooperative control method and system for photovoltaic energy storage charging station
CN112510737B (en) * 2020-11-25 2023-05-23 国网湖南省电力有限公司 Photovoltaic energy storage charging station grid-connected and off-grid cooperative control method and system
JP2023002994A (en) * 2021-06-23 2023-01-11 愛知電機株式会社 Method for controlling power factor by using self-excited reactive power compensator
CN113671313A (en) * 2021-08-12 2021-11-19 国网安徽省电力有限公司 Anti-misoperation method, device and system for remote coordination of low-frequency low-voltage device receiving
CN113671313B (en) * 2021-08-12 2024-02-27 国网安徽省电力有限公司 Error prevention method, device and system for receiving remote coordination by low-frequency low-voltage device
CN115829168A (en) * 2023-02-16 2023-03-21 苏州洪昇新能源科技有限公司 Remote coordination operation and maintenance management system for new energy equipment based on data analysis
CN115829168B (en) * 2023-02-16 2023-09-08 长峡数字能源科技(湖北)有限公司 New energy equipment remote coordination operation and maintenance management system based on data analysis

Also Published As

Publication number Publication date
JP7202963B2 (en) 2023-01-12

Similar Documents

Publication Publication Date Title
JP7202963B2 (en) MONITORING AND CONTROLLING DEVICE AND CONTROL METHOD FOR SOLAR POWER GENERATOR
US7582986B2 (en) Compensated inverse-time undervoltage load shedding systems
JP3352662B2 (en) Power system stabilizing apparatus and power system stabilizing method using secondary battery system
TWI517547B (en) Frequency-converting and speed regulating system and method of the same
WO2013008413A1 (en) Power conversion apparatus directed to combined-cycle power generation system
CN105262096B (en) The active distribution network electric voltage frequency method of adjustment of meter and photovoltaic maximal power tracing
US8560136B2 (en) System stabilizing device
JP2008228454A (en) Control method and controller of inverter system device for distributed power supply
JP2008228454A5 (en)
JP2011055671A (en) Control method of distributed power supply
WO2013142553A2 (en) System and method for islanding detection and protection
KR102264862B1 (en) System and Method for Controlling Inertial of Energy Storage System
JP2006067760A (en) Distributed power supply unit
JP5469624B2 (en) Reactive power compensator
JP6651891B2 (en) Reactive power output device, control method of reactive power output device, and power system
JP6419977B2 (en) Voltage fluctuation suppressing apparatus and method
JP4794523B2 (en) Voltage fluctuation suppression device for renewable energy power generation
JP2008125218A (en) Distributed power supply control system
JP2006060983A (en) Power supply device
US10411469B2 (en) Reactive power control integrated with renewable energy power invertor
KR20170104809A (en) Apparatus and method for stabilizing voltage for direct current distribution system
JP2015132988A (en) power conditioner system
JP2022047022A (en) Power system stabilization system and power system stabilization method
KR102457332B1 (en) Energy storage system photovoltaic inverter for low voltage ride through
US10491034B2 (en) System and methods of grid stabilization

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20211208

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20220926

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20221004

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20221122

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20221206

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20221226

R150 Certificate of patent or registration of utility model

Ref document number: 7202963

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150