JP2014222992A - System stabilization device and system stabilization method - Google Patents

System stabilization device and system stabilization method Download PDF

Info

Publication number
JP2014222992A
JP2014222992A JP2013102199A JP2013102199A JP2014222992A JP 2014222992 A JP2014222992 A JP 2014222992A JP 2013102199 A JP2013102199 A JP 2013102199A JP 2013102199 A JP2013102199 A JP 2013102199A JP 2014222992 A JP2014222992 A JP 2014222992A
Authority
JP
Japan
Prior art keywords
reactive power
inverter
synchronous generator
power
amount
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2013102199A
Other languages
Japanese (ja)
Inventor
雄介 高口
Yusuke Takaguchi
雄介 高口
小島 康弘
Yasuhiro Kojima
康弘 小島
古塩 正展
Masanobu Koshio
正展 古塩
マルタ マルミローリ
Malta Marumiroori
マルタ マルミローリ
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP2013102199A priority Critical patent/JP2014222992A/en
Publication of JP2014222992A publication Critical patent/JP2014222992A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E40/00Technologies for an efficient electrical power generation, transmission or distribution
    • Y02E40/30Reactive power compensation

Landscapes

  • Supply And Distribution Of Alternating Current (AREA)
  • Control Of Eletrric Generators (AREA)
  • Inverter Devices (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a system stabilization device and a system stabilization method, in which power control is appropriately performed in consideration of operation condition of an existing power generator.SOLUTION: A system stabilization device 14 of the present invention is a system stabilization device which stabilizes voltage of a bus bar 1 connected with a synchronous generator 4 and connected with a storage battery 5 via an inverter 6, and includes: a system information measurement section for measuring system information containing at least a power flow from the synchronous generator to the bus bar and a power flow from the inverter to the bus bar; a reactive power supply quantity determination section for determining the total value of values of respective reactive power quantities of the synchronous generator and the inverter requiring for stabilization as a reactive power supply quantity based on the system information; a reactive power share quantity determination section for determining a reactive power share quantity, which is a share quantity of the reactive power supply quantity, for the respective synchronous generator and inverter based on a total power loss of the synchronous generator and the inverter; and a control signal transmission section for transmitting control signal indicating the reactive power share quantity of the inverter to the inverter.

Description

この発明は、系統安定化装置及び系統安定化方法に関する発明であって、特に、再生可能エネルギーが導入された場合に電力系統の安定化を図る系統安定化装置及び系統安定化方法に関するものである。   The present invention relates to a system stabilization apparatus and a system stabilization method, and particularly to a system stabilization apparatus and a system stabilization method for stabilizing an electric power system when renewable energy is introduced. .

電力系統内に再生可能エネルギー由来の発電装置(以下、再生エネルギー設備)が導入された場合、特に離島等の小規模電力系統では、出力変動の他、電圧変動が大きく既設発電機への負担が増加する。出力変動や電圧変動が大きくなると、既設発電機のみでは電力系統を安定化することができない。   When a power generator derived from renewable energy (hereinafter referred to as “renewable energy equipment”) is introduced in the power grid, especially in small-scale power grids such as remote islands, in addition to output fluctuations, voltage fluctuations are large and the burden on existing generators is large. To increase. When output fluctuations and voltage fluctuations become large, it is not possible to stabilize the power system using only the existing generator.

そこで、再生エネルギー設備容量が電力系統規模に対して大きくなると、蓄電池等を導入することにより電力系統内の出力変動および電圧変動を吸収し安定化を図ることが従来なされている。例えば、特許文献1では、分散電源等による有効電力変動の短周期成分から有効電力制御量を算出し、周波数変動を抑制し、有効電力の長周期成分と無効電力変動量に基づいて、無効電力制御量を算出し電圧変動を抑制している。   Therefore, when the renewable energy equipment capacity becomes larger than the scale of the power system, it is conventionally attempted to stabilize by absorbing the output fluctuation and voltage fluctuation in the power system by introducing a storage battery or the like. For example, in Patent Document 1, an active power control amount is calculated from a short period component of active power fluctuation due to a distributed power source or the like, frequency fluctuation is suppressed, and reactive power is calculated based on the long period component of active power and reactive power fluctuation amount. Control amount is calculated to suppress voltage fluctuation.

特許第3108054号公報Japanese Patent No. 3108054

しかし、従来の系統安定化方法では、既設発電機の運転状況とは関係なく無効電力制御量を算出しているため、電力損失や既設発電機の無効電力制御可能範囲などが考慮されていない。そのため、無駄な電力を消費する場合がある。   However, in the conventional system stabilization method, the reactive power control amount is calculated regardless of the operation state of the existing generator, and therefore, the power loss, the reactive power controllable range of the existing generator, and the like are not considered. Therefore, useless power may be consumed.

本発明は上述の問題点に鑑み、既設発電機の運転状況を考慮して適切に電力制御を行う、系統安定化装置および系統安定化方法の提供を目的とする。   In view of the above-described problems, an object of the present invention is to provide a system stabilizing device and a system stabilizing method that appropriately perform power control in consideration of the operating state of an existing generator.

本発明の系統安定化装置は、同期発電機が接続され、且つ蓄電池がインバータを介して接続された系統の電圧を安定化する系統安定化装置であって、同期発電機から系統に流れる潮流と、インバータから系統に流れる潮流とを少なくとも含む系統情報を計測する系統情報計測部と、系統情報に基づき、安定化に必要な同期発電機及びインバータの無効電力量の合計値を無効電力供給量として決定する無効電力供給量決定部と、同期発電機とインバータの総電力損失に基づき、無効電力供給量の分担量である無効電力分担量を同期発電機とインバータの夫々について決定する無効電力分担量決定部と、インバータの無効電力分担量を示す制御信号をインバータに送出する制御信号送出部と、を備える。   The system stabilization device of the present invention is a system stabilization device that stabilizes the voltage of a system to which a synchronous generator is connected and a storage battery is connected via an inverter, and a power flow that flows from the synchronous generator to the system. A system information measuring unit that measures system information including at least current flowing from the inverter to the system, and based on the system information, the total value of the reactive power amount of the synchronous generator and the inverter necessary for stabilization is used as the reactive power supply amount. Reactive power sharing amount that determines the reactive power sharing amount for each reactive power generator and inverter based on the total power loss of the reactive power supply determining unit and the synchronous generator and inverter. A determination unit; and a control signal sending unit that sends a control signal indicating the reactive power share of the inverter to the inverter.

本発明の系統安定化装置は、同期発電機が接続され、且つ蓄電池がインバータを介して接続された系統の電圧を安定化する系統安定化装置であって、同期発電機から系統に流れる潮流と、インバータから系統に流れる潮流とを少なくとも含む系統情報を計測する系統情報計測部と、系統情報に基づき、安定化に必要な同期発電機及びインバータの無効電力量の合計値を無効電力供給量として決定する無効電力供給量決定部と、同期発電機とインバータの総電力損失に基づき、無効電力供給量の分担量である無効電力分担量を同期発電機とインバータの夫々について決定する無効電力分担量決定部と、インバータの無効電力分担量を示す制御信号をインバータに送出する制御信号送出部と、を備える。従って、既設発電機の運転状況を考慮して適切に電力制御を行う。   The system stabilization device of the present invention is a system stabilization device that stabilizes the voltage of a system to which a synchronous generator is connected and a storage battery is connected via an inverter, and a power flow that flows from the synchronous generator to the system. A system information measuring unit that measures system information including at least current flowing from the inverter to the system, and based on the system information, the total value of the reactive power amount of the synchronous generator and the inverter necessary for stabilization is used as the reactive power supply amount. Reactive power sharing amount that determines the reactive power sharing amount for each reactive power generator and inverter based on the total power loss of the reactive power supply determining unit and the synchronous generator and inverter. A determination unit; and a control signal sending unit that sends a control signal indicating the reactive power share of the inverter to the inverter. Therefore, the power control is appropriately performed in consideration of the operation status of the existing generator.

本発明における系統安定化装置の構成図である。It is a block diagram of the system | strain stabilization apparatus in this invention. 本発明における系統安定化装置のハードウェア構成を示すブロック図である。It is a block diagram which shows the hardware constitutions of the system | strain stabilization apparatus in this invention. 同期発電機の無効電力出力可能範囲を示す特性図である。It is a characteristic view which shows the reactive power output possible range of a synchronous generator. インバータの無効電力出力可能範囲を示す特性図である。It is a characteristic view which shows the reactive power output possible range of an inverter. 本発明における系統安定化方法のフローチャートである。It is a flowchart of the system | strain stabilization method in this invention. 電力損失のインバータ無効電力特性を示す図である。It is a figure which shows the inverter reactive power characteristic of electric power loss. 実施の形態1の変形例におけるインバータの無効電力出力可能範囲を示す図である。It is a figure which shows the reactive power output possible range of the inverter in the modification of Embodiment 1. FIG.

<A.実施の形態1>
<A−1.構成>
図1は、実施の形態1の電力系統システムの構成図である。実施の形態1の電力系統システムは、同期発電機4、蓄電池5、負荷7、風力発電機8、系統安定化装置14を備える。同期発電機4は母線1に接続され、蓄電池5もインバータ6を介して母線1に接続される。母線1は連系点3で送電線2と接続し、送電線2の先には負荷7や風力発電機8が接続される。インバータ6と母線1との接続線には、インバータ6から系統に流れる潮流を計測するためのセンサである電流変成器9Aが設けられる。また、同期発電機4と母線1の接続線には、同期発電機4から系統に流れる潮流を計測するためのセンサである電流変成器9Bが設けられる。電流変成器9A,9Bの計測結果は、入力ケーブル11Aを通って系統安定化装置14に入力される。
<A. Embodiment 1>
<A-1. Configuration>
FIG. 1 is a configuration diagram of a power system of the first embodiment. The power system of the first embodiment includes a synchronous generator 4, a storage battery 5, a load 7, a wind power generator 8, and a system stabilizing device 14. The synchronous generator 4 is connected to the bus 1, and the storage battery 5 is also connected to the bus 1 via the inverter 6. The bus 1 is connected to the power transmission line 2 at the interconnection point 3, and a load 7 and a wind power generator 8 are connected to the tip of the power transmission line 2. A connecting line between the inverter 6 and the bus 1 is provided with a current transformer 9A which is a sensor for measuring a power flow flowing from the inverter 6 to the system. The connecting line between the synchronous generator 4 and the bus 1 is provided with a current transformer 9B that is a sensor for measuring a power flow flowing from the synchronous generator 4 to the system. The measurement results of the current transformers 9A and 9B are input to the system stabilizing device 14 through the input cable 11A.

また、母線1の電圧は、計測用変圧器10により計測され、入力ケーブル11Bを通って系統安定化装置14に入力される。   The voltage of the bus 1 is measured by the measuring transformer 10 and input to the system stabilizing device 14 through the input cable 11B.

系統安定化装置14は、上述の入力ケーブル11A,11Bにより情報を取得する他、通信路13により給電指令所等から発電機の特性やその他の情報を取得する。そして、これらの情報に基づきインバータ6の無効電力を制御することにより、母線1の電圧の安定化を図る。   The system stabilizing device 14 acquires information by the above-described input cables 11A and 11B, and also acquires the characteristics of the generator and other information from the power supply command station by the communication path 13. Then, the voltage of the bus 1 is stabilized by controlling the reactive power of the inverter 6 based on these pieces of information.

系統安定化装置14は、センサ入力部141、無効電力供給量決定部142、無効電力分担量決定部143、制御信号出力部144を備えている。センサ入力部141は、上述の入力ケーブル11A,11Bにより系統情報を取得する他、通信路13により給電指令所等から発電機の特性や系統情報を取得する。ここで系統情報には、同期発電機4の潮流値、インバータ6の潮流値、インバータ6から母線1までのインピーダンス、同期発電機4から母線1までのインピーダンス、インバータ6の変換損失率、同期発電機4の発電損失率が含まれる。   The system stabilizing device 14 includes a sensor input unit 141, a reactive power supply amount determination unit 142, a reactive power sharing amount determination unit 143, and a control signal output unit 144. The sensor input unit 141 acquires system information from the input cables 11A and 11B described above, and acquires the generator characteristics and system information from the power supply command center and the like through the communication path 13. Here, the system information includes the power flow value of the synchronous generator 4, the power flow value of the inverter 6, the impedance from the inverter 6 to the bus 1, the impedance from the synchronous generator 4 to the bus 1, the conversion loss rate of the inverter 6, the synchronous power generation The power generation loss rate of the machine 4 is included.

無効電力供給量決定部142は、センサ入力部141が取得した情報に基づき無効電力供給量を決定する。無効電力供給量とは、同期発電機4とインバータ6に割り当てる無効電力分担量の総和である。無効電力分担量決定部143は、無効電力供給量から同期発電機4、インバータ6夫々の無効電力分担量を決定する。   The reactive power supply amount determination unit 142 determines the reactive power supply amount based on the information acquired by the sensor input unit 141. The reactive power supply amount is the sum of reactive power sharing amounts allocated to the synchronous generator 4 and the inverter 6. The reactive power sharing amount determination unit 143 determines the reactive power sharing amount of each of the synchronous generator 4 and the inverter 6 from the reactive power supply amount.

制御信号出力部144は、インバータ6の無効電力分担量を示す制御信号を、出力ケーブル12を介してインバータ6に送出する。インバータ6は、受けた制御信号に従って無効電力量を調整する。   The control signal output unit 144 sends a control signal indicating the amount of reactive power shared by the inverter 6 to the inverter 6 via the output cable 12. The inverter 6 adjusts the reactive power amount according to the received control signal.

図2は、系統安定化装置14のハードウェア構成を示すブロック図である。センサ入力部141は、各種情報が入力される入力インタフェースである入力装置201として構成される。また、制御信号出力部144は、インバータ6に制御信号を出力する出力インタフェースである出力装置204として構成される。無効電力供給量決定部142、無効電力分担量決定部143は、主記憶装置203に格納されたプログラムを、随時必要なデータを二次記憶装置202に読み書きしながら動作することにより実現する。   FIG. 2 is a block diagram showing a hardware configuration of the system stabilizing device 14. The sensor input unit 141 is configured as an input device 201 that is an input interface through which various types of information are input. The control signal output unit 144 is configured as an output device 204 that is an output interface that outputs a control signal to the inverter 6. The reactive power supply amount determination unit 142 and the reactive power sharing amount determination unit 143 are realized by operating a program stored in the main storage device 203 while reading and writing necessary data from and to the secondary storage device 202 as needed.

<A−2.動作>
無効電力供給量決定部142における無効電力供給量の決定方法には、例えば、同期発電機4の無効電力量とインバータ6の無効電力量の総和を無効電力供給量とする方法がある。また、同期発電機4のAVR機能と同様に、系統情報である母線1の電圧値から無効電力供給量を算出しても良い。
<A-2. Operation>
As a method for determining the reactive power supply amount in the reactive power supply determining unit 142, for example, there is a method in which the sum of the reactive power amount of the synchronous generator 4 and the reactive power amount of the inverter 6 is used as the reactive power supply amount. Similarly to the AVR function of the synchronous generator 4, the reactive power supply amount may be calculated from the voltage value of the bus 1 that is system information.

無効電力分担量決定部143は、電力損失が最小となるように無効電力分担量を決定する。センサ入力部141によって入力された系統情報のうち、同期発電機4が接続された母線1の電圧をV、安定化対象母線の電圧をV、同期発電機4の有効電力出力をP、同期発電機4の無効電力分担量をQ、インバータ6の有効電力出力をP、インバータ6の無効電力分担量をQ、同期発電機4から連系点3までのインピーダンスの抵抗分をR、インバータ6から連系点3までのインピーダンスの抵抗分をR、同期発電機4の発電損失率をη、インバータ6の変換損失率をη、とすると、同期発電機4の生成損失A、送電損失A、インバータ6の生成損失B、送電損失Bは、夫々、(1)〜(4)式で表される。 The reactive power sharing amount determining unit 143 determines the reactive power sharing amount so that the power loss is minimized. Of the system information input by the sensor input unit 141, the voltage of the bus 1 to which the synchronous generator 4 is connected is V 1 , the voltage of the stabilization target bus is V 2 , and the active power output of the synchronous generator 4 is P 1. , The reactive power sharing amount of the synchronous generator 4 is Q 1 , the active power output of the inverter 6 is P 2 , the reactive power sharing amount of the inverter 6 is Q 2 , and the impedance resistance component from the synchronous generator 4 to the interconnection point 3 Is R 1 , R 2 is the resistance of the impedance from the inverter 6 to the connection point 3, η 1 is the power generation loss rate of the synchronous generator 4, and η 2 is the conversion loss rate of the inverter 6. The generation loss A 1 , the transmission loss A 2 , the generation loss B 1 of the inverter 6, and the transmission loss B 2 are expressed by the equations (1) to (4), respectively.

Figure 2014222992
Figure 2014222992

Figure 2014222992
Figure 2014222992

Figure 2014222992
Figure 2014222992

Figure 2014222992
Figure 2014222992

また、電力損失Cは同期発電機4、インバータ6の生成損失及び送電損失の総和であるから、(1)〜(4)式より、以下のように表される。   Further, since the power loss C is the sum of the generation loss and the transmission loss of the synchronous generator 4 and the inverter 6, it is expressed as follows from the equations (1) to (4).

Figure 2014222992
Figure 2014222992

ここで、本実施の形態では、同期発電機4が接続する母線1と安定化対象母線は同一であるため、V=Vである。また、母線1の電圧Vが高く、送電損失が十分に小さい場合は、生成損失の総和のみを電力損失として、以下の式で表すことができる。 Here, in the present embodiment, the bus 1 to which the synchronous generator 4 is connected and the bus to be stabilized are the same, so V 1 = V 2 . Further, when the voltage V 1 of the bus 1 is high and the transmission loss is sufficiently small, only the sum of the generation loss can be expressed as the power loss by the following expression.

Figure 2014222992
Figure 2014222992

なお、無効電力分担量Q,Qの和は、無効電力供給量Qとして一定値になるため、電力損失Cは(6)式に示すようにQの関数としても良いし、Qの関数としても良い。 Since the sum of reactive power sharing amounts Q 1 and Q 2 becomes a constant value as reactive power supply amount Q, power loss C may be a function of Q 1 as shown in equation (6), or Q 2 It may be a function of

図3は、同期発電機4の無効電力Qの制御可能範囲を、有効電力Pとの関係で示している。図3には、無効電力の温度限界Fと、最小励磁限界Fを示している。同期発電機4の無効電力分担量Qは、図3の温度限界Fと最小励磁限界Fで囲まれた領域の中の値に設定する。例えば、運転点は図3のAになる。 FIG. 3 shows the controllable range of the reactive power Q of the synchronous generator 4 in relation to the active power P. FIG. 3 shows a temperature limit F 1 and a minimum excitation limit F 2 for reactive power. The reactive power sharing amount Q 1 of the synchronous generator 4 is set to a value in the region surrounded by the temperature limit F 1 and the minimum excitation limit F 2 in FIG. For example, the operating point is A in FIG.

図4は、インバータ6の無効電力Qの制御可能範囲を、有効電力Pとの関係で示している。図4に示す無効電力Qの制御限界F3は、インバータ6の出力限界によって定まる。インバータ6の無効電力分担量Qは、制御限界F3により規定される制御可能範囲内の値に設定する。例えば、運転点は図4のBになる。 FIG. 4 shows the controllable range of the reactive power Q of the inverter 6 in relation to the active power P. The control limit F3 of the reactive power Q shown in FIG. 4 is determined by the output limit of the inverter 6. Reactive power allocation amount Q 2 of the inverter 6 is set to a value within a controllable range defined by the control limits F3. For example, the operating point is B in FIG.

無効電力分担量Q,Qは、無効電力供給量Qが図3,4に示す制御可能範囲内にあり、かつ電力損失Cが最小となる値に設定する。例えば、最急降下法を用いて、(6)式を最小化する無効電力分担量Q,Qを求めることができる。これは、(6)式が単峰性であり、電力損失Cが最小値をとる条件と、電力損失Cの微分値が0に近くなる条件とが同値となるためである。 The reactive power sharing amounts Q 1 and Q 2 are set to values at which the reactive power supply amount Q is within the controllable range shown in FIGS. 3 and 4 and the power loss C is minimized. For example, the reactive power sharing amounts Q 1 and Q 2 that minimize Equation (6) can be obtained by using the steepest descent method. This is because the condition (6) is unimodal, and the condition where the power loss C takes the minimum value and the condition where the differential value of the power loss C is close to 0 are the same.

図5は、最急降下法によるインバータ6の無効電力分担量Qの算出方法のフローチャートである。無効電力分担量決定部143は、まず探索点の初期値を設定する(ステップS1)。任意の所定値を設定可能であるが、例えば、同期発電機4およびインバータ6の無効電力供給可能量の比例配分を用いる。次に、評価関数である電力損失Cの探索点における勾配ベクトルを計算する(ステップS2)。次に、ステップS2で求めた勾配ベクトルが十分小さくなっているか否かを判定する(ステップS3)。十分小さくなっていれば探索点を解とし、探索を終了する。勾配ベクトルが十分小さくなっていなければ、勾配ベクトルの方向に探索点を移動し(ステップS4)、ステップS2に戻る。以上の探索により、電力損失を低減させる無効電力分担量Q,Qを算出できる。 Figure 5 is a flow chart of a method of calculating the reactive power sharing amount Q 2 of the inverter 6 by the steepest descent method. The reactive power sharing amount determination unit 143 first sets an initial value of a search point (step S1). Although an arbitrary predetermined value can be set, for example, proportional distribution of the reactive power supply possible amount of the synchronous generator 4 and the inverter 6 is used. Next, a gradient vector at the search point for the power loss C, which is an evaluation function, is calculated (step S2). Next, it is determined whether or not the gradient vector obtained in step S2 is sufficiently small (step S3). If it is sufficiently small, the search point is taken as a solution and the search is terminated. If the gradient vector is not sufficiently small, the search point is moved in the direction of the gradient vector (step S4), and the process returns to step S2. Through the above search, reactive power sharing amounts Q 1 and Q 2 that reduce power loss can be calculated.

ここで、同期発電機4の有効電力出力Pを2000kW,同期発電機4の発電損失ηを20%、インバータ6の有効電力出力Pを8000kW、インバータ6の発電損失ηを6%、系統安定化のために必要な無効電力供給量Q=Q+Qを500kWとする。インバータ6の無効電力供給量Qと電力損失Cは図6に示す関係となる。上述の方法で無効電力分担量Q,Qを決定することにより、図6に点Cで示す最適点にインバータ6の無効電力供給量Qを設定することができ、電力損失を低減することができる。 Here, the active power output P 1 of the synchronous generator 4 is 2000 kW, the power generation loss η 1 of the synchronous generator 4 is 20%, the active power output P 2 of the inverter 6 is 8000 kW, and the power generation loss η 2 of the inverter 6 is 6%. The reactive power supply amount Q = Q 1 + Q 2 necessary for system stabilization is set to 500 kW. Reactive power supply amount Q 2 and power loss C of the inverter 6 is a relationship shown in FIG. By determining the reactive power sharing amounts Q 1 and Q 2 by the above-described method, the reactive power supply amount Q 2 of the inverter 6 can be set to the optimum point indicated by the point C in FIG. 6, and the power loss is reduced. be able to.

ところで、無効電力分担量決定部143は、同期発電機4とインバータ6の無効電力分担量Q,Qを算出するが、無効電力分担量の制御指令はインバータ6のみに実施する。同期発電機4は自身のAVR機能により、インバータ6の無効電力出力に合わせて無効電力供給量Qに達するだけの無効電力を出力することが可能である。したがって、同期発電機4への無効電力分担量Qの指令が不要である。 By the way, the reactive power sharing amount determination unit 143 calculates the reactive power sharing amounts Q 1 and Q 2 of the synchronous generator 4 and the inverter 6, but the reactive power sharing amount control command is executed only to the inverter 6. The synchronous generator 4 can output reactive power sufficient to reach the reactive power supply amount Q in accordance with the reactive power output of the inverter 6 by its own AVR function. Accordingly, the command of the reactive power sharing amount to Q 1 to a synchronous generator 4 is not necessary.

<A−3.変形例>
なお、同期発電機4の無効電力分担量Qを決定する際、各種温度限界F1と最小励磁限界F2により定まる無効電力の制御可能範囲よりも狭い範囲(図7参照)で決定することにより、無効電力を制御する余力を残すことができる。すなわち、同期発電機4の運転点を図7のAではなくA’とする。特に、無効電力供給量決定処理において、同期発電機4とインバータ6の無効電力供給量の総和から無効電力供給量Qを算出する場合、系統の電圧変動が発生した時に、先に安定化動作を開始するのはAVR機能を持つ同期発電機4であるため、無効電力制御の余力を同期発電機4に持たせておくことにより、電圧の安定化能力を維持した状態で運転することが可能となる。
<A-3. Modification>
Incidentally, by determining in determining the reactive power allocation amount to Q 1 synchronous generator 4, various temperature limit F1 and minimum narrower range than the control range of the reactive power determined by the excitation limit F2 (see FIG. 7), It is possible to leave room for controlling reactive power. That is, the operating point of the synchronous generator 4 is set to A ′ instead of A in FIG. In particular, when the reactive power supply amount Q is calculated from the sum of the reactive power supply amounts of the synchronous generator 4 and the inverter 6 in the reactive power supply amount determination process, when the voltage fluctuation of the system occurs, the stabilization operation is performed first. Since the synchronous generator 4 having the AVR function is started, by allowing the synchronous generator 4 to have a surplus power for reactive power control, it is possible to operate with the voltage stabilization capability maintained. Become.

<A−4.効果>
本実施の形態の系統安定化装置は、同期発電機4が接続され、且つ蓄電池5がインバータ6を介して接続された母線1(系統)の電圧を安定化する系統安定化装置であって、同期発電機4から母線1に流れる潮流と、インバータ6から母線1に流れる潮流とを少なくとも含む系統情報を計測するセンサ入力部141(系統情報計測部)と、系統情報に基づき、安定化に必要な同期発電機4及びインバータ6の無効電力量の合計値を無効電力供給量Qとして決定する無効電力供給量決定部142と、同期発電機4とインバータ6の総電力損失Cに基づき、無効電力供給量Qの分担量である無効電力分担量Q,Qを同期発電機4とインバータ6の夫々について決定する無効電力分担量決定部143と、インバータ6の無効電力分担量Qを示す制御信号をインバータ6に送出する制御信号出力部144と、を備える。従って、系統の電圧を安定化させるために必要な無効電力を供給する上で、同期発電機4とインバータ6との適切な供給分担を実現し、電力損失を低減することが可能である。
<A-4. Effect>
The system stabilization device of the present embodiment is a system stabilization device that stabilizes the voltage of the bus 1 (system) to which the synchronous generator 4 is connected and the storage battery 5 is connected via the inverter 6. Necessary for stabilization based on the system information and the sensor input unit 141 (system information measurement unit) that measures system information including at least the power flow from the synchronous generator 4 to the bus 1 and the power flow from the inverter 6 to the bus 1 The reactive power supply amount determining unit 142 that determines the total reactive power amount of the synchronous generator 4 and the inverter 6 as the reactive power supply amount Q, and the reactive power based on the total power loss C of the synchronous generator 4 and the inverter 6 The reactive power sharing amount determination unit 143 that determines the reactive power sharing amounts Q 1 and Q 2 that are the sharing amounts of the supply amount Q for the synchronous generator 4 and the inverter 6 respectively, and the reactive power sharing amount Q 2 of the inverter 6 And a control signal output unit 144 for sending the control signal shown to the inverter 6. Therefore, when supplying the reactive power necessary for stabilizing the system voltage, it is possible to realize an appropriate supply sharing between the synchronous generator 4 and the inverter 6 and reduce the power loss.

また、無効電力分担量決定部143は、温度限界F1及び最小励磁限界F2により定まる有効電力P−無効電力Q特性の制御可能範囲内で、同期発電機4の無効電力分担量Qを決定することにより、実際に制御可能な無効電力分担量Qを設定することが可能である。 Moreover, reactive power sharing amount determining unit 143 in the control range of the active power P- reactive power Q characteristics determined by the temperature limit F1 and minimum excitation limit F2, determining the reactive power allocation amount to Q 1 synchronous generator 4 it makes it possible to set the reactive power allocation amount Q 1 can actually be controlled.

また、無効電力分担量決定部143は、有効電力−無効電力特性の制御可能範囲よりも狭い範囲内で、同期発電機4の無効電力分担量を決定すれば、無効電力制御の余力を同期発電機4に持たせ、電圧の安定化能力を維持した状態で運転することができる。   Further, the reactive power sharing amount determination unit 143 determines the reactive power sharing amount of the synchronous generator 4 within a range narrower than the controllable range of the active power-reactive power characteristics, and generates the remaining power of the reactive power control by synchronous power generation. It can be operated in a state where it is held in the machine 4 and the voltage stabilization capability is maintained.

本実施の形態の系統安定化方法は、同期発電機4が接続され、且つ蓄電池5がインバータ6を介して接続された母線1(系統)の電圧を安定化する系統安定化方法であって、(a)同期発電機4から母線1に流れる潮流と、インバータ6から母線1に流れる潮流とを少なくとも含む系統情報を計測するステップと、(b)系統情報に基づき、安定化に必要な同期発電機4及びインバータ6の無効電力量の合計値を無効電力供給量Qとして決定するステップと、(c)同期発電機4とインバータ6の総電力損失Cに基づき、無効電力供給量Qの分担量である無効電力分担量Q,Qを同期発電機4とインバータ6の夫々について決定するステップと、(d)インバータ6の無効電力分担量Qを示す制御信号をインバータ6に送出するステップと、を備える。従って、系統の電圧を安定化させるために必要な無効電力を供給する上で、同期発電機4とインバータ6との適切な供給分担を実現し、電力損失を低減することが可能である。 The system stabilization method of the present embodiment is a system stabilization method for stabilizing the voltage of the bus 1 (system) to which the synchronous generator 4 is connected and the storage battery 5 is connected via the inverter 6. (A) a step of measuring system information including at least the power flow flowing from the synchronous generator 4 to the bus 1 and the power flow flowing from the inverter 6 to the bus 1, and (b) synchronous power generation necessary for stabilization based on the system information. A step of determining the total value of reactive power amount of the machine 4 and the inverter 6 as the reactive power supply amount Q, and (c) a share of the reactive power supply amount Q based on the total power loss C of the synchronous generator 4 and the inverter 6 A step of determining the reactive power sharing amounts Q 1 and Q 2 for the synchronous generator 4 and the inverter 6, and (d) a step of sending a control signal indicating the reactive power sharing amount Q 2 of the inverter 6 to the inverter 6. And. Therefore, when supplying the reactive power necessary for stabilizing the system voltage, it is possible to realize an appropriate supply sharing between the synchronous generator 4 and the inverter 6 and reduce the power loss.

また、ステップ(c)では、温度限界F1及び最小励磁限界F2により定まる有効電力P−無効電力Q特性の制御可能範囲内で、同期発電機4の無効電力分担量Qを決定するので、実際に制御可能な無効電力分担量Qを設定することが可能である。 In step (c), within the controllable range of the active power P- reactive power Q characteristics determined by the temperature limit F1 and minimum excitation limit F2, because it determines the reactive power allocation amount to Q 1 synchronous generator 4, the actual it is possible to set the controllable reactive power sharing amount Q 1 in.

また、ステップ(c)では、有効電力P−無効電力Q特性の制御可能範囲よりも狭い範囲内で、同期発電機4の前記無効電力分担量Qを決定するので、実際に制御可能な無効電力分担量Qを設定することが可能である。 In step (c), within a range narrower than the controllable range of the active power P- reactive power Q characteristic, because it determines the reactive power allocation amount to Q 1 synchronous generator 4 actually controllable invalid it is possible to set the power sharing amount Q 1.

なお、本発明は、その発明の範囲内において、実施の形態を適宜、変形、省略することが可能である。   In the present invention, the embodiments can be appropriately modified and omitted within the scope of the invention.

1 母線、2 送電線、3 連系点、4 同期発電機、5 蓄電池、6 インバータ、7 負荷、8 風力発電機、9A,9B 電流変成器、10 計測用変圧器、11A,11B 入力ケーブル、12 出力ケーブル、13 通信路、14 系統安定化装置、141 センサ入力部、142 無効電力供給量決定部、143 無効電力分担量決定部、144 制御信号出力部、201 入力装置、202 二次記憶装置、203 主記憶装置、204 出力装置、205 CPU。   1 busbar, 2 transmission line, 3 interconnection point, 4 synchronous generator, 5 storage battery, 6 inverter, 7 load, 8 wind power generator, 9A, 9B current transformer, 10 measuring transformer, 11A, 11B input cable, 12 output cable, 13 communication path, 14 system stabilizing device, 141 sensor input unit, 142 reactive power supply amount determining unit, 143 reactive power sharing amount determining unit, 144 control signal output unit, 201 input device, 202 secondary storage device , 203 Main storage device, 204 output device, 205 CPU.

Claims (6)

同期発電機が接続され、且つ蓄電池がインバータを介して接続された系統の電圧を安定化する系統安定化装置であって、
前記同期発電機から系統に流れる潮流と、前記インバータから系統に流れる潮流とを少なくとも含む系統情報を計測する系統情報計測部と、
前記系統情報に基づき、前記安定化に必要な前記同期発電機及び前記インバータの無効電力量の合計値を無効電力供給量として決定する無効電力供給量決定部と、
前記同期発電機と前記インバータの総電力損失に基づき、前記無効電力供給量の分担量である無効電力分担量を前記同期発電機と前記インバータの夫々について決定する無効電力分担量決定部と、
前記インバータの前記無効電力分担量を示す制御信号を前記インバータに送出する制御信号送出部と、
を備える系統安定化装置。
A system stabilizing device for stabilizing a voltage of a system to which a synchronous generator is connected and a storage battery is connected via an inverter,
A system information measuring unit that measures system information including at least a power flow flowing from the synchronous generator to the system and a power flow flowing from the inverter to the system;
Based on the grid information, a reactive power supply amount determining unit that determines a total value of reactive power amounts of the synchronous generator and the inverter necessary for the stabilization as a reactive power supply amount;
Based on the total power loss of the synchronous generator and the inverter, a reactive power sharing amount determining unit that determines a reactive power sharing amount that is a sharing amount of the reactive power supply amount for each of the synchronous generator and the inverter;
A control signal sending unit for sending a control signal indicating the reactive power sharing amount of the inverter to the inverter;
A system stabilization device comprising:
前記無効電力分担量決定部は、温度限界及び最小励磁限界により定まる有効電力−無効電力特性の制御可能範囲内で、前記同期発電機の前記無効電力分担量を決定する、
請求項1に記載の系統安定化装置。
The reactive power sharing amount determination unit determines the reactive power sharing amount of the synchronous generator within a controllable range of active power-reactive power characteristics determined by a temperature limit and a minimum excitation limit.
The system stabilizing device according to claim 1.
前記無効電力分担量決定部は、前記有効電力−無効電力特性の前記制御可能範囲よりも狭い範囲内で、前記同期発電機の前記無効電力分担量を決定する、
請求項2に記載の系統安定化装置。
The reactive power sharing amount determination unit determines the reactive power sharing amount of the synchronous generator within a range narrower than the controllable range of the active power-reactive power characteristics.
The system stabilizing device according to claim 2.
同期発電機が接続され、且つ蓄電池がインバータを介して接続された系統(系統)の電圧を安定化する系統安定化方法であって、
(a)前記同期発電機から系統に流れる潮流と、前記インバータから系統に流れる潮流とを少なくとも含む系統情報を計測するステップと、
(b)前記系統情報に基づき、前記安定化に必要な前記同期発電機及び前記インバータの無効電力量の合計値を無効電力供給量として決定するステップと、
(c)前記同期発電機と前記インバータの総電力損失に基づき、前記無効電力供給量の分担量である無効電力分担量を前記同期発電機と前記インバータの夫々について決定するステップと、
(d)前記インバータの前記無効電力分担量を示す制御信号を前記インバータに送出するステップと、
を備える系統安定化方法。
A system stabilization method for stabilizing a voltage of a system (system) to which a synchronous generator is connected and a storage battery is connected via an inverter,
(A) measuring system information including at least a power flow flowing from the synchronous generator to the system and a power flow flowing from the inverter to the system;
(B) determining a total value of reactive power amounts of the synchronous generator and the inverter necessary for the stabilization based on the system information as a reactive power supply amount;
(C) determining a reactive power sharing amount for each of the synchronous generator and the inverter based on a total power loss of the synchronous generator and the inverter;
(D) sending a control signal indicating the amount of reactive power shared by the inverter to the inverter;
A system stabilization method comprising:
前記ステップ(c)は、温度限界及び最小励磁限界により定まる有効電力−無効電力特性の制御可能範囲内で、前記同期発電機の前記無効電力分担量を決定するステップである、
請求項4に記載の系統安定化方法。
The step (c) is a step of determining the reactive power sharing amount of the synchronous generator within a controllable range of active power-reactive power characteristics determined by a temperature limit and a minimum excitation limit.
The system stabilization method according to claim 4.
前記ステップ(c)は、前記有効電力−無効電力特性の前記制御可能範囲よりも狭い範囲内で、前記同期発電機の前記無効電力分担量を決定するステップである、
請求項5に記載の系統安定化方法。
The step (c) is a step of determining the reactive power sharing amount of the synchronous generator within a range narrower than the controllable range of the active power-reactive power characteristics.
The system stabilization method according to claim 5.
JP2013102199A 2013-05-14 2013-05-14 System stabilization device and system stabilization method Pending JP2014222992A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2013102199A JP2014222992A (en) 2013-05-14 2013-05-14 System stabilization device and system stabilization method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2013102199A JP2014222992A (en) 2013-05-14 2013-05-14 System stabilization device and system stabilization method

Publications (1)

Publication Number Publication Date
JP2014222992A true JP2014222992A (en) 2014-11-27

Family

ID=52122247

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2013102199A Pending JP2014222992A (en) 2013-05-14 2013-05-14 System stabilization device and system stabilization method

Country Status (1)

Country Link
JP (1) JP2014222992A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019033613A (en) * 2017-08-09 2019-02-28 株式会社ダイヘン Inverter device
JP2020182276A (en) * 2019-04-24 2020-11-05 株式会社日立製作所 Monitoring and controlling device and control method for photovoltaic power generation facility

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5836200A (en) * 1981-08-28 1983-03-03 Toshiba Corp Exciter for generator
JPS60241734A (en) * 1984-05-15 1985-11-30 株式会社東芝 System controller
JPH11146560A (en) * 1997-11-04 1999-05-28 Hitachi Ltd Controller for loose coupling power system
JP2002044870A (en) * 2000-07-27 2002-02-08 Nippon Telegr & Teleph Corp <Ntt> Dispersed energy community system and control method
JP2007129845A (en) * 2005-11-04 2007-05-24 Mitsubishi Electric Corp Power quality maintaining controller
JP2007288847A (en) * 2006-04-13 2007-11-01 Mitsubishi Electric Corp Generator controller
JP2008067469A (en) * 2006-09-06 2008-03-21 Kansai Electric Power Co Inc:The Power system controller using secondary battery and method therfor, power generation planing unit, real-time controller, and power system control system
JP2008199848A (en) * 2007-02-15 2008-08-28 Mitsubishi Electric Corp Excitation controller of synchronous power generator
WO2014181454A1 (en) * 2013-05-10 2014-11-13 株式会社 日立製作所 Rotating electrical machine system or wind power generation system

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5836200A (en) * 1981-08-28 1983-03-03 Toshiba Corp Exciter for generator
JPS60241734A (en) * 1984-05-15 1985-11-30 株式会社東芝 System controller
JPH11146560A (en) * 1997-11-04 1999-05-28 Hitachi Ltd Controller for loose coupling power system
JP2002044870A (en) * 2000-07-27 2002-02-08 Nippon Telegr & Teleph Corp <Ntt> Dispersed energy community system and control method
JP2007129845A (en) * 2005-11-04 2007-05-24 Mitsubishi Electric Corp Power quality maintaining controller
JP2007288847A (en) * 2006-04-13 2007-11-01 Mitsubishi Electric Corp Generator controller
JP2008067469A (en) * 2006-09-06 2008-03-21 Kansai Electric Power Co Inc:The Power system controller using secondary battery and method therfor, power generation planing unit, real-time controller, and power system control system
JP2008199848A (en) * 2007-02-15 2008-08-28 Mitsubishi Electric Corp Excitation controller of synchronous power generator
WO2014181454A1 (en) * 2013-05-10 2014-11-13 株式会社 日立製作所 Rotating electrical machine system or wind power generation system

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019033613A (en) * 2017-08-09 2019-02-28 株式会社ダイヘン Inverter device
JP2020182276A (en) * 2019-04-24 2020-11-05 株式会社日立製作所 Monitoring and controlling device and control method for photovoltaic power generation facility
JP7202963B2 (en) 2019-04-24 2023-01-12 株式会社日立製作所 MONITORING AND CONTROLLING DEVICE AND CONTROL METHOD FOR SOLAR POWER GENERATOR

Similar Documents

Publication Publication Date Title
JP5893544B2 (en) Voltage control device, voltage control method, power adjustment device, and voltage control program
JP2015167461A (en) Control method for photovoltaic power generation system
US9991718B2 (en) Power interchange system, power transmitting/receiving device, power interchange method, and program
JP7191046B2 (en) Method for operating island network and island network
CN111512513B (en) Power control method and device for hybrid power device
JP6903882B2 (en) Controls, control methods, and programs
US9389631B2 (en) System and method for reactive power compensation
JP2016194849A (en) Tidal flow calculation device, tidal flow calculation method, and program
KR20140041089A (en) A control device for distributed generators
JP6693595B1 (en) Grid interconnection device
KR20160001883A (en) Microgrid system, control apparatus for the system and control method for the system
JP6189092B2 (en) Multi-purpose control device for grid storage battery
JP2014222992A (en) System stabilization device and system stabilization method
Jha et al. An adaptive vector control method for inverter‐based stand‐alone microgrids considering voltage reduction and load shedding schemes
KR20170021606A (en) The battery energy storage system and reactive power compensation method using thereof
Araujo et al. Distributed generation: Voltage stability analysis
CN107240960B (en) Hybrid power storage device
JPWO2016189756A1 (en) Power generation control device, control device, control method, and program
WO2017056379A1 (en) Power control system and power control method
JP2021125912A (en) Battery control device, and energy management system
JP2018014775A (en) Integrated controller, integrated control system, integrated control method and integrated control program
JP2017005845A (en) Power control method and power control device
JP6119877B2 (en) Control device, power generation control method, and control program
KR102044226B1 (en) Energy storage apparatus having monitoring function for power
KR101126174B1 (en) Voltage management system and voltage management method

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20151014

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20160616

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20160621

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20161220