WO2017056379A1 - Power control system and power control method - Google Patents

Power control system and power control method Download PDF

Info

Publication number
WO2017056379A1
WO2017056379A1 PCT/JP2016/003844 JP2016003844W WO2017056379A1 WO 2017056379 A1 WO2017056379 A1 WO 2017056379A1 JP 2016003844 W JP2016003844 W JP 2016003844W WO 2017056379 A1 WO2017056379 A1 WO 2017056379A1
Authority
WO
WIPO (PCT)
Prior art keywords
power
output
power supply
type
control
Prior art date
Application number
PCT/JP2016/003844
Other languages
French (fr)
Japanese (ja)
Inventor
田米 正樹
Original Assignee
パナソニックIpマネジメント株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by パナソニックIpマネジメント株式会社 filed Critical パナソニックIpマネジメント株式会社
Publication of WO2017056379A1 publication Critical patent/WO2017056379A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J3/00Circuit arrangements for ac mains or ac distribution networks
    • H02J3/38Arrangements for parallely feeding a single network by two or more generators, converters or transformers
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J3/00Circuit arrangements for ac mains or ac distribution networks
    • H02J3/38Arrangements for parallely feeding a single network by two or more generators, converters or transformers
    • H02J3/46Controlling of the sharing of output between the generators, converters, or transformers

Definitions

  • the present invention relates to a power control system and a power control method for controlling a power supply system that supplies power to a power grid that distributes power to customers.
  • an object of the present invention is to provide a power control system for stably supplying power from a plurality of power sources (distributed power sources) that may include natural energy power generation facilities and the like. Another object of the present invention is to provide a power control method used in this power control system.
  • a power control system includes a power from a first type power supply system having a stabilization function that suppresses output fluctuation and a second type that does not have the stabilization function.
  • a power control system that combines output power with power from a power supply system, and includes a detection unit that detects an output power amount indicating the amount of the output power, and the output power amount detected by the detection unit. And a control unit that performs control related to the output by determining the sharing amount for the output power, which is shared by each of the first type power supply system and the second type power supply system.
  • a power control method includes: power from a first type power supply system having a stabilization function that suppresses fluctuation of output; A power control method used in a power control system which combines output power with power from a two-type power supply system, and according to an output power amount indicating the amount of the output power, the first-type power supply system And determining a sharing amount for the output power, which is shared by each of the second type power supply systems.
  • a power control system and a power control method according to an aspect of the present invention can stably supply power from a plurality of power supplies (distributed power supplies).
  • FIG. 1 is a schematic configuration diagram of a power control system according to an embodiment.
  • FIG. 2 is a flowchart showing power control processing in the power control system according to the first embodiment.
  • FIG. 3 is a diagram showing temporal changes in the output of each power converter and the amount of output power from the entire power control system.
  • FIG. 4 is a flowchart showing power control processing in the power control system according to the second embodiment.
  • FIG. 5 is a schematic configuration diagram of a power control system according to a modification.
  • Embodiment 1 Hereinafter, a power control system according to an embodiment of the present invention will be described.
  • FIG. 1 is a diagram showing an example of the configuration of a power control system 1000 according to the first embodiment.
  • the power control system 1000 uses the power control method to combine and supply power from each power source (distributed power source) to the power network 30 for supplying power to a facility (house etc.) of the user using the power. It is a system having a function.
  • facilities such as houses
  • the customers 40a and 40b use (consume) the power supplied from the power network 30 by the load of various electric devices and the like.
  • the power control system 1000 includes a plurality of power supply systems (ie, the first type power supply system 10 and the second type power supply systems 20a to 20c) and the power control apparatus 100.
  • the power supply system is divided into two types, a type 1 power supply system having a stabilization function contributing to stabilization of the power network by suppressing fluctuations in the output, and a type 2 power supply system having no stabilization function. It is different.
  • the first kind power supply system 10 includes a direct current power supply 11 and a first kind power converter 12, and the second kind power supply systems 20a to 20c respectively include direct current power (that is, direct current power supplies 21a to 21c) and a second kind power converter. (Ie, the second type power converters 22a to 22c).
  • the DC power supplies 11, 21a to 21c are power supplies (distributed power supplies) such as natural energy power generation equipment such as solar cells, fuel cells, secondary batteries etc. which output DC power.
  • the first-type power converter 12 is a power converter (inverter) that converts the power of the direct current power supply 11 from direct current to alternating current and outputs the power to the power grid 30.
  • the first-class power converter 12 includes a secondary battery as a temporary power storage device, a capacitor, etc., and a computer for controlling charging / discharging of the power storage device, etc. It has a stabilization function to stabilize power by suppressing fluctuations.
  • the computer includes a processor (microprocessor), a memory, a communication interface (I / F), and the like.
  • the stabilization function of the first type power converter is realized, for example, by virtual synchronous generator (VSG: Virtual Synchronous Generator) control using the above-described power storage device, computer or the like (see Non-Patent Document 1).
  • VSG Virtual Synchronous Generator
  • the synchronous generator has a characteristic to suppress the fluctuation of the output by the inertial force of the rotor, etc.
  • the distributed power supply linked with the inverter is made to have the same characteristic as the synchronous generator in a pseudo manner. That is, in VSG control, transient characteristics of a synchronous generator are simulated by an inverter using an equation of motion of a rotating machine, and transient energy is absorbed by an electric power storage device equivalent to the inertia of the generator to control output. .
  • VSG control for example, the degree of output stabilization can be adjusted by adjusting the parameters of pseudo inertia force.
  • the first type power converter 12 specifies the rotation of a virtual synchronous generator (VSG) based on, for example, the output share of the first type power supply system 10, and the phase of the rotor is the phase of the AC voltage.
  • VSG virtual synchronous generator
  • Each of the second-class power converters 22a to 22c is a power converter (inverter) that converts the power from any one of the corresponding DC power supplies 21a to 21c from direct current to alternating current and outputs the converted power to the power network 30. There is no stabilization function to stabilize the power of 30.
  • the second power converter 22a of the second power system 20a outputs AC power based on the output sharing amount of the second power system 20a.
  • the power control apparatus 100 is an apparatus that determines the output sharing of each power supply system with respect to the output power amount synthesized and output to the power network 30, and controls the output of each power supply system according to the output sharing.
  • the power control apparatus 100 appropriately sets the output sharing of each power supply system when starting and stopping power supply to the power network 30 in the power control system 1000, thereby smoothly starting and stopping the power supply.
  • the power control apparatus 100 is configured by, for example, a computer including a processor, a memory, a communication I / F, and the like.
  • the memory is a ROM holding a program and data in advance, a RAM for storing data etc. when the program is executed, or the like, and may include, for example, a non-volatile memory.
  • the processor executes, for example, a control program stored in the memory to control, for example, the communication I / F and perform various processes.
  • the communication I / F is a communication circuit for exchanging data with each power supply system (power converter etc.).
  • the power control apparatus 100 configured by hardware such as a computer includes a detection unit 110 and a control unit 120 in terms of functions.
  • the detection unit 110 is realized by a communication I / F, a processor that executes a program, or the like, and has a function of detecting an output power amount indicating the amount of output power synthesized from each power supply system and notifying the control unit 120 of it.
  • the detection of the output power amount can be realized, for example, by measuring the output power output from the power control system 1000 to the power network 30 using a power meter or the like.
  • the detection unit 110 may also realize detection of the amount of output power from the power control system 1000 by arithmetic processing such as adding up the output power of each power supply system according to the output sharing.
  • the detection unit 110 may also detect the output power amount by acquiring information related to the power consumption (demand amount) from the consumers 40a, 40b, etc.
  • the information related to the amount of power consumption is derived based on, for example, a measured value by a watt-hour meter installed at customers 40a, 40b or the like, or a measured value measured by using a current sensor etc. provided at a distribution board. obtain.
  • the control unit 120 is realized by a communication I / F, a processor that executes a program, or the like.
  • Control unit 120 is configured to share the amount of output power (amount of output sharing) shared by first type power supply system 10 and second type power supply systems 20a to 20c according to the amount of output power detected by detection unit 110.
  • Control (power control processing) related to combined output of power is performed by determining. Specifically, when the output power amount detected by the detection unit 110 is smaller than the predetermined threshold, the control unit 120 sets the sharing amount of the first type power supply system 10 to zero (0 W) to cause the second type power supply system 20 a. It is controlled to supply only the output from 20c to the power network 30.
  • the state in which the amount of output power is smaller than a predetermined threshold is not a steady state, but is a transient state such as at the start and stop of power supply.
  • a predetermined threshold for example, 5 kW
  • the power control system 1000 continuously supplies power of relatively large output power (for example, 10 kW, 5 kW or more) to the power network 30 for a relatively long time.
  • the control of the output of each power supply system according to the determined sharing amount by the control unit 120 is executed by transmitting control information (control signal) indicating the sharing amount to each power supply system.
  • Each power supply system outputs power according to the sharing amount indicated by the control information (control signal).
  • the power converter in each power supply system receives power from the DC power supply and outputs power according to the sharing amount indicated by the control information.
  • the first type power supply system 10 having the stabilization function can stabilize the power of the electric power network in a steady state in which an output of a predetermined amount or more is performed, for example, by a power converter having the stabilization function such as VSG control.
  • a power converter having the stabilization function such as VSG control.
  • the control unit 120 makes the sharing amount of the first type power supply system 10 having the stabilization function zero and does not output it, thereby adversely affecting the stabilization function.
  • the power control system 1000 can smoothly start and stop the power supply to the power grid 30, and can provide stable power supply at the time of start and stop.
  • FIG. 2 is a flowchart illustrating the power control process performed by the power control apparatus 100.
  • the power control process is repeatedly performed in the power control apparatus 100.
  • the operation of the power control apparatus 100 will be described with reference to FIG.
  • the detection unit 110 of the power control apparatus 100 is an amount of power output from the power control system 1000 by combining the powers supplied from the respective power supply systems (the first type power supply system 10 and the second type power supply systems 20a to 20c). An output power amount is acquired (step S11). The detection unit 110 transmits the acquired output power amount to the control unit 120.
  • the control unit 120 determines whether the output power amount is smaller than a predetermined threshold (step S12), and determines the sharing amount of each power supply system by a predetermined distribution algorithm A when it is not smaller than the predetermined threshold (step S13). ).
  • the allocation algorithm A is an arbitrary algorithm for apportioning the output power amount to each power supply system appropriately to some extent, for example, to divide the output power amount using the ratio of the maximum output, the average output, etc. of each power supply system Is an algorithm for calculating the share of each power supply system. Further, in the allocation algorithm A, the control unit 120 may collect measurement results of power that can be supplied from each power supply system, and calculate a sharing amount of each power supply system based on the measurement results.
  • the control unit 120 determines the sharing amount of each power supply system by a predetermined distribution algorithm B (step S14).
  • the allocation algorithm B is an arbitrary algorithm for allocating the amount of output power to each of the second-type power supply systems 20a to 20c appropriately to some extent, with the allocation of the first-type power supply system 10 being zero. That is, the distribution algorithm B is an algorithm that makes the amount of sharing of the first type power supply system 10 zero, and for example, the ratio of the maximum output, the average output, etc. of each of the second type power systems 20a to 20c, or It is an algorithm which calculates the share of each type 2 power supply system so that output electric energy may be distributed using ratios, such as a measurement result of possible electric power.
  • control unit 120 After determining the share of each power supply system in step S13 or step S14, the control unit 120 transmits control information (control signal) indicating the corresponding share to each power supply system (step S15).
  • FIG. 3 shows an example of the temporal change in the output of each power converter and the amount of output power from the power control system 1000 at the time of stopping the power supply by the power control system 1000.
  • the output of the first type power converter 12 is suppressed, and the combined output of the second type power converters 22a to 22c. Only to the power grid 30.
  • the power control system 1000 according to the first embodiment has the same configuration as that of the power control system 1000 described in the first embodiment, and therefore, the components will be described using the same reference numerals.
  • the power control process performed by the power control apparatus 100 is different from that of the first embodiment. Note that the points not described here are the same as in the first embodiment.
  • FIG. 4 is a flowchart showing the power control process performed by the power control apparatus 100 according to the present embodiment. This power control process is repeatedly performed.
  • the operation of the power control apparatus 100 will be described with reference to FIG.
  • the detection unit 110 of the power control apparatus 100 is an amount of power that the power control system 1000 combines and outputs the power supplied from each power supply system (the first type power supply system 10 and the second type power supply systems 20a to 20c).
  • the output power amount is acquired and transmitted to the control unit 120 (step S21).
  • the control unit 120 determines the share of each power supply system according to a predetermined distribution algorithm C based on the output power amount transmitted from the detection unit 110 (step S22).
  • the allocation algorithm C is a total of the share of the type 2 power system (that is, the total of the share of each of the type 2 power systems 20a to 20c) of the share of the type 1 power system (that is, the share of the type 1 power system 10).
  • the ratio R may be determined to be proportional to the amount of output power.
  • the allocation algorithm C is an arbitrary algorithm except that the ratio R is reduced as the output power amount decreases.
  • the distribution algorithm C uses, for example, the ratio of the maximum output, the average output, etc. of each of the second type power supply systems 20a to 20c, or the ratio of the measurement results of the power that can be supplied.
  • the amount of sharing among the members may be calculated.
  • Such distribution algorithm C suppresses the adverse effect of the stabilization function by relatively reducing the sharing amount of the type 1 power supply system 10 having the stabilization function when the output power amount is relatively small. Work as it is.
  • control unit 120 After determining the sharing amount of each power supply system in step S22, the control unit 120 transmits control information (control signal) indicating the corresponding sharing amount to each power supply system (step S23).
  • Such power control processing is sequentially and repeatedly performed by the power control apparatus 100, so that even in a transient state where the amount of output power is relatively small, such as when starting and stopping power supply to the power network 30, Stable power supply will be achieved.
  • the first type power supply system 10 and the second type power supply systems 20a to 20c (see FIG. 1) in the power control system 1000 described above are merely representative examples of the power supply system. Therefore, the number of each of the first type power system and the second type power system controlled by the power control system 1000 may be any number as long as it is one or more.
  • the power control system 1000 described above may be modified to be the power control system 1000a shown in FIG.
  • the power control system 1000a does not include the above-described second type power supply systems 20b and 20c, and further includes a first type power supply system 10a including a diesel generator (synchronous generator) 11a in addition to the above-described first type power supply system 10. Is equipped.
  • the diesel generator (synchronous generator) 11a has a stabilization function to suppress the fluctuation of the output by the inertial force of the rotor or the like, and outputs AC power. Even with such a configuration, stable power supply is realized by the power control process (see FIGS. 2 and 4) in the power control apparatus 100. In the steady state as shown in FIG. 5, the diesel generator (synchronous generator) can be stabilized by the first-class power supply system including the first-class power converter 12 having the VSG control function contributing to stabilization. The burden on the stabilization of 11a is reduced, and the fuel cost can be reduced accordingly.
  • the power control system 1000 includes the plurality of power supply systems (the first type power supply system 10 and the second type power supply systems 20a to 20c). However, all or part of the plurality of power supply systems may be present outside the power control system 1000.
  • control unit 120 described in the first embodiment determines that the output power amount is smaller than the predetermined threshold in step S12, the VSG control function of the first-type power converter 12 executing the VSG control function is performed. It may be controlled to stop the execution of The control unit 120 may handle the first type power converter 12 as a second type power converter which does not execute the stabilization function by stopping the execution of the VSG control function.
  • a 2nd type power converter is not limited to what does not have a stabilization function at all, and also includes a power converter in the state which does not perform a stabilization function.
  • a power supply system having a power converter which has stopped the execution of the VSG control function is no longer treated as a type 1 power supply system, not a type 1 power supply system having a stabilization function.
  • the control unit 120 treats the first type power supply system 10 as a second type power supply system by setting the first type power converter 12 not to execute the VSG control function, and the second type power supply The system can be made to share the output by dividing the amount of output power.
  • control unit 120 described above transmits the determined sharing amount of output to each power supply system
  • each power supply system is configured to output according to the determined sharing amount. Any means may be used to adjust the amount of power output by the
  • the execution order of the operation procedure (the power control process of FIG. 2, FIG. 4, etc.) of the above-mentioned power control apparatus 100 is not necessarily limited to the order as described above, and does not deviate from the scope of the invention Then, it is possible to change the execution order or omit some of them.
  • all or part of the operation procedure of the power control apparatus 100 may be executed by an apparatus such as a computer (memory, processor or the like) in the power supply system provided in the power control system 1000.
  • a part of the operation procedure of the power control apparatus 100 may be executed by an external device (for example, a server apparatus or the like) capable of communicating with the power control apparatus 100.
  • a device or an external device in the power supply system may take on the function of either the detection unit 110 or the control unit 120 instead of the power control device 100.
  • all or part of the above-described operation procedure may be realized by the power control apparatus 100, an apparatus in the power supply system, or hardware of an external apparatus, or may be realized using software.
  • the processing by software is realized by the processor included in the power control apparatus 100, the apparatus in the power supply system, or the external apparatus executing a control program stored in the memory.
  • the control program may be recorded on a recording medium and distributed or distributed. For example, installing the distributed control program in the device and causing the processor of the device to execute the program causes the device to perform all or part of the operation (power control processing) of the power control device 100 described above, for example. Is possible.
  • various aspects of the present invention include one or more combinations of an apparatus, a system, a method, an integrated circuit, a computer program, a computer readable recording medium, and the like.
  • the power control system is configured to control the power from the type 1 power supply system (for example, the type 1 power supply system 10, 10a) having a stabilization function that suppresses output fluctuation.
  • a power control system for example, power control systems 1000, 1000a, etc.
  • the first type power supply system and the second type power supply system share the functions according to the detection unit 110 that detects the output power amount indicating the amount of the combined output power, and the output power amount detected by the detection unit 110
  • the control unit 120 performs control relating to combined output of power by determining the amount of sharing for output power.
  • the power control systems 1000, 1000a, etc. can determine the sharing amount by reflecting the output power amount, and thus have the possibility of stably supplying power from the plurality of power supply systems to the power grid.
  • the power control system 1000 includes the first type power supply system 10 and the second type power supply system 20a, and the first type power supply system 10 includes the DC power supply 11 and a virtual synchronous generator as a stabilization function ( VSG)
  • VSG virtual synchronous generator as a stabilization function
  • a first-class power converter 12 having a control function to convert direct-current power from the direct-current power source 11 into alternating-current power and outputting the same
  • the second-class power source system 20a includes: a direct-current power source 21a;
  • a second type power converter 22a may be provided which has no function and converts DC power from the DC power supply 21a into AC power and outputs the AC power.
  • the power control system 1000 can supply power to the power network 30 without receiving power from the outside.
  • control unit 120 decreases the ratio of the sharing amount of the first type power supply system 10 to the sharing amounts of the second type power supply systems 20a to 20c.
  • control related to combined output of electric power may be performed by determining the sharing amount of each power supply system.
  • the control unit 120 sets the sharing amount of the first type power supply system 10 to zero and the second type power supply systems 20a to 20c.
  • the control relating to the combined output of the power may be performed such that only the output power is the output power.
  • the adverse effect of the stabilization function can be suppressed in a state where the amount of output power is smaller than a predetermined threshold, such as at the start and stop of the power supply, the power supply to the power network 30 can be stably performed.
  • the power control method includes the power from the first type power supply system 10 having the stabilization function to suppress the fluctuation of the output and the second type power supply system 20a having no stabilization function.
  • 20c is a power control method used in a power control system 1000 that combines the power from 20c and outputs an output power, and according to an output power amount indicating the amount of combined output power, the first type power supply system 10 And the second type power supply systems 20a to 20c are respectively determined to share the output power (for example, steps S12 to S14).

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Supply And Distribution Of Alternating Current (AREA)

Abstract

In order to supply power to a power grid in a stable manner, a power control system (1000) for synthesizing power from a first-type power supply system (10) having a stabilization function for suppressing fluctuation of output and second-type power supply systems (20a-20c) lacking a stabilization function, and outputting output power, is provided with: a detection unit (110) for detecting the output power amount indicating the amount of the synthesized output power; and a control unit (120) for determining, according to the output power amount detected by the detection unit (110), the apportion amount regarding the output power to be outputted to the power network (30) apportioned to each of the first-type power supply system (10) and the second-type power supply systems (20a-20c), and thereby performing a control relating to output.

Description

電力制御システム及び電力制御方法POWER CONTROL SYSTEM AND POWER CONTROL METHOD
 本発明は、需要家へ配電する電力網に対して電力を供給する電源システムを制御するための電力制御システム及び電力制御方法に関する。 The present invention relates to a power control system and a power control method for controlling a power supply system that supplies power to a power grid that distributes power to customers.
 近年、環境保護等のために電力供給源(電源)として太陽光発電、風力発電といった自然エネルギー発電設備等の分散電源の導入が促進されつつある。自然エネルギーに由来する電源は気象条件等により出力の周波数、電圧等の変動を生じ易い。系統電力と自然エネルギーによる電力とを受電して、高品質の電力を要求する需要家と低品質の電力でもよい需要家との各々に対して、制御された電力を供給する電力設備接続装置が知られている(特許文献1参照)。特許文献1の技術では、周波数等の変動等に対して電力潮流が安定する方向に低品質の電力系統の受電量を制限する制御を行う。また、出力調整が可能な分散電源が、自律的に特定範囲内の需要(負荷電力)を計測して負荷に応じた発電(負荷追従運転)を行う系統安定化装置が知られている(特許文献2参照)。 In recent years, the introduction of distributed power sources such as natural energy power generation facilities such as solar power generation and wind power generation has been promoted as a power supply source (power source) for environmental protection and the like. Power sources derived from natural energy are prone to fluctuations in output frequency, voltage, etc. due to weather conditions and the like. A power facility connection device that receives system power and natural energy power and supplies controlled power to each of a customer who requires high-quality power and a customer who may be low-quality power It is known (refer patent document 1). In the technology of Patent Document 1, control is performed to limit the amount of received power of a low-quality power system in the direction in which power flow is stabilized against fluctuations in frequency and the like. In addition, there is known a system stabilization device in which a distributed power supply whose output can be adjusted autonomously measures demand (load power) within a specific range and performs power generation (load following operation) according to the load (patented Reference 2).
特開2006-288079号公報JP, 2006-288079, A 特開2007-020361号公報JP, 2007-020361, A
 自然エネルギー発電設備(例えば太陽電池)等の電圧、周波数等の変動を生じ得る電源(分散電源)を電力網に複数接続して、電力を安定的に供給することは、容易でない。例えば、特許文献2の技術では、各分散電源が負荷追従運転を行うため出力の干渉が生じて電力の安定的な供給ができない。 It is not easy to stably supply power by connecting a plurality of power sources (distributed power sources) that can cause fluctuations in voltage, frequency, etc. of natural energy power generation facilities (for example, solar cells) to a power grid. For example, in the technique of Patent Document 2, since each distributed power supply performs load following operation, output interference occurs and stable supply of power can not be performed.
 そこで、本発明は、自然エネルギー発電設備等を含み得る複数の電源(分散電源)から電力を安定的に供給するための電力制御システムを提供することを目的とする。また、本発明は、この電力制御システムにおいて用いられる電力制御方法を提供することを目的とする。 Therefore, an object of the present invention is to provide a power control system for stably supplying power from a plurality of power sources (distributed power sources) that may include natural energy power generation facilities and the like. Another object of the present invention is to provide a power control method used in this power control system.
 上記目的を達成するために本発明の一態様に係る電力制御システムは、出力の変動を抑制する安定化機能を有する第1種電源システムからの電力と前記安定化機能を有さない第2種電源システムからの電力とを合成して出力電力を出力する電力制御システムであって、前記出力電力の量を示す出力電力量を検出する検出部と、前記検出部により検出された前記出力電力量に応じて、前記第1種電源システム及び前記第2種電源システムそれぞれが分担する、前記出力電力についての分担量を決定することで前記出力に係る制御を行う制御部とを備える。 In order to achieve the above object, a power control system according to an aspect of the present invention includes a power from a first type power supply system having a stabilization function that suppresses output fluctuation and a second type that does not have the stabilization function. A power control system that combines output power with power from a power supply system, and includes a detection unit that detects an output power amount indicating the amount of the output power, and the output power amount detected by the detection unit. And a control unit that performs control related to the output by determining the sharing amount for the output power, which is shared by each of the first type power supply system and the second type power supply system.
 また、上記目的を達成するために本発明の一態様に係る電力制御方法は、出力の変動を抑制する安定化機能を有する第1種電源システムからの電力と前記安定化機能を有さない第2種電源システムからの電力とを合成して出力電力を出力する電力制御システムにおいて用いられる電力制御方法であって、前記出力電力の量を示す出力電力量に応じて、前記第1種電源システム及び前記第2種電源システムそれぞれが分担する、前記出力電力についての分担量を決定する。 Further, in order to achieve the above object, a power control method according to an aspect of the present invention includes: power from a first type power supply system having a stabilization function that suppresses fluctuation of output; A power control method used in a power control system which combines output power with power from a two-type power supply system, and according to an output power amount indicating the amount of the output power, the first-type power supply system And determining a sharing amount for the output power, which is shared by each of the second type power supply systems.
 本発明の一態様に係る電力制御システム及び電力制御方法は、複数の電源(分散電源)から電力を安定的に供給し得る。 A power control system and a power control method according to an aspect of the present invention can stably supply power from a plurality of power supplies (distributed power supplies).
図1は、実施の形態に係る電力制御システムの概略構成図である。FIG. 1 is a schematic configuration diagram of a power control system according to an embodiment. 図2は、実施の形態1に係る電力制御システムにおける電力制御処理を示すフローチャートである。FIG. 2 is a flowchart showing power control processing in the power control system according to the first embodiment. 図3は、各電力変換機の出力及び電力制御システム全体からの出力電力量の時間的変化を示す図である。FIG. 3 is a diagram showing temporal changes in the output of each power converter and the amount of output power from the entire power control system. 図4は、実施の形態2に係る電力制御システムにおける電力制御処理を示すフローチャートである。FIG. 4 is a flowchart showing power control processing in the power control system according to the second embodiment. 図5は、変形例に係る電力制御システムの概略構成図である。FIG. 5 is a schematic configuration diagram of a power control system according to a modification.
 以下、実施の形態について、図面を参照しながら説明する。ここで示す実施の形態は、いずれも本発明の一具体例を示すものである。従って、以下の実施の形態で示される数値、形状、材料、構成要素、構成要素の配置及び接続形態、並びに、ステップ(工程)及びステップの順序等は、一例であって本発明を限定するものではない。以下の実施の形態における構成要素のうち、独立請求項に記載されていない構成要素については、任意に付加可能な構成要素である。また、各図は、模式図であり、必ずしも厳密に図示されたものではない。 Embodiments will be described below with reference to the drawings. Each embodiment shown here shows one specific example of the present invention. Accordingly, the numerical values, shapes, materials, components, arrangement and connection forms of the components, and the order of steps (steps) and steps etc. shown in the following embodiments are merely examples and limit the present invention. is not. Among the components in the following embodiments, components not described in the independent claims are components that can be added arbitrarily. Further, each drawing is a schematic view, and is not necessarily illustrated exactly.
 (実施の形態1)
 以下、本発明の一実施形態に係る電力制御システムについて説明する。
Embodiment 1
Hereinafter, a power control system according to an embodiment of the present invention will be described.
 (構成)
 図1は、実施の形態1に係る電力制御システム1000の構成の一例を示す図である。電力制御システム1000は、電力制御方法を用い、電力を使用する者の施設(住宅等)への電力供給用の電力網30に対して、各電源(分散電源)からの電力を合成して供給する機能を有するシステムである。図1では、電力使用に係る施設(住宅等)について需要家40a、40bとして表している。需要家40a、40bでは、各種電気機器等の負荷により、電力網30から供給される電力を使用(消費)する。
(Constitution)
FIG. 1 is a diagram showing an example of the configuration of a power control system 1000 according to the first embodiment. The power control system 1000 uses the power control method to combine and supply power from each power source (distributed power source) to the power network 30 for supplying power to a facility (house etc.) of the user using the power. It is a system having a function. In FIG. 1, facilities (such as houses) related to the use of electric power are represented as customers 40 a and 40 b. The customers 40a and 40b use (consume) the power supplied from the power network 30 by the load of various electric devices and the like.
 図1に示すように、電力制御システム1000は、複数の電源システム(即ち第1種電源システム10及び第2種電源システム20a~20c)並びに電力制御装置100を含んで構成される。ここでは、電源システムを、出力の変動を抑制して電力網の安定化に資する安定化機能を有する第1種電源システムと、安定化機能を有さない第2種電源システムとの2種類に大別している。第1種電源システム10は、直流電源11及び第1種電力変換機12を備え、第2種電源システム20a~20cはそれぞれ、直流電源(つまり直流電源21a~21c)及び第2種電力変換機(つまり第2種電力変換機22a~22c)を備える。直流電源11、21a~21cは、直流電力を出力する、例えば太陽電池等の自然エネルギー発電設備、燃料電池、二次電池等の電源(分散電源)である。 As shown in FIG. 1, the power control system 1000 includes a plurality of power supply systems (ie, the first type power supply system 10 and the second type power supply systems 20a to 20c) and the power control apparatus 100. Here, the power supply system is divided into two types, a type 1 power supply system having a stabilization function contributing to stabilization of the power network by suppressing fluctuations in the output, and a type 2 power supply system having no stabilization function. It is different. The first kind power supply system 10 includes a direct current power supply 11 and a first kind power converter 12, and the second kind power supply systems 20a to 20c respectively include direct current power (that is, direct current power supplies 21a to 21c) and a second kind power converter. (Ie, the second type power converters 22a to 22c). The DC power supplies 11, 21a to 21c are power supplies (distributed power supplies) such as natural energy power generation equipment such as solar cells, fuel cells, secondary batteries etc. which output DC power.
 第1種電力変換機12は、直流電源11の電力を直流から交流に変換して電力網30に出力する電力変換機(インバータ)である。第1種電力変換機12は、一時的な電力貯蔵装置としての二次電池、キャパシタ等と、電力貯蔵装置の充放電等を制御するためのコンピュータとを含み、電力網30の周波数、電圧等の変動を抑制して電力を安定化させるための安定化機能を有する。コンピュータは、プロセッサ(マイクロプロセッサ)、メモリ、通信インタフェース(I/F)等を備える。第1種電力変換機の安定化機能は、例えば、上述の電力貯蔵装置、コンピュータ等を用いた仮想同期発電機(VSG:Virtual Synchronous Generator)制御により実現される(非特許文献1参照)。同期発電機は、回転子の慣性力等により出力の変動を抑制する特性を有するところ、VSG制御では、インバータ連係の分散電源に擬似的に同期発電機と同じ特性を持たせる。即ち、VSG制御では、回転機の運動方程式を用いて同期発電機の過渡特性をインバータで模擬し、過渡的なエネルギーを発電機の慣性に相当する電力貯蔵装置で吸収させて、出力を制御する。VSG制御では、例えば擬似的な慣性力のパラメータを調整することよって、出力の安定化の度合いを調整し得る。このVSG制御により第1種電力変換機12は、例えば、第1種電源システム10の出力分担量に基づいて仮想同期発電機(VSG)の回転を特定し、回転子の位相を交流電圧の位相として用いて交流電力の出力を行う。 The first-type power converter 12 is a power converter (inverter) that converts the power of the direct current power supply 11 from direct current to alternating current and outputs the power to the power grid 30. The first-class power converter 12 includes a secondary battery as a temporary power storage device, a capacitor, etc., and a computer for controlling charging / discharging of the power storage device, etc. It has a stabilization function to stabilize power by suppressing fluctuations. The computer includes a processor (microprocessor), a memory, a communication interface (I / F), and the like. The stabilization function of the first type power converter is realized, for example, by virtual synchronous generator (VSG: Virtual Synchronous Generator) control using the above-described power storage device, computer or the like (see Non-Patent Document 1). The synchronous generator has a characteristic to suppress the fluctuation of the output by the inertial force of the rotor, etc. In the VSG control, the distributed power supply linked with the inverter is made to have the same characteristic as the synchronous generator in a pseudo manner. That is, in VSG control, transient characteristics of a synchronous generator are simulated by an inverter using an equation of motion of a rotating machine, and transient energy is absorbed by an electric power storage device equivalent to the inertia of the generator to control output. . In VSG control, for example, the degree of output stabilization can be adjusted by adjusting the parameters of pseudo inertia force. With this VSG control, the first type power converter 12 specifies the rotation of a virtual synchronous generator (VSG) based on, for example, the output share of the first type power supply system 10, and the phase of the rotor is the phase of the AC voltage. The output of AC power is used as
 第2種電力変換機22a~22cのそれぞれは、対応する直流電源21a~21cのいずれかからの電力を、直流から交流に変換して電力網30に出力する電力変換機(インバータ)であり、電力網30の電力を安定化させるための安定化機能を有さない。例えば第2種電源システム20aの第2種電力変換機22aは、第2種電源システム20aの出力分担量に基づいた交流電力の出力を行う。 Each of the second-class power converters 22a to 22c is a power converter (inverter) that converts the power from any one of the corresponding DC power supplies 21a to 21c from direct current to alternating current and outputs the converted power to the power network 30. There is no stabilization function to stabilize the power of 30. For example, the second power converter 22a of the second power system 20a outputs AC power based on the output sharing amount of the second power system 20a.
 電力制御装置100は、電力網30に合成して出力される出力電力量に対する各電源システムの出力分担を決定して、その出力分担に応じて各電源システムの出力の制御を行う装置である。電力制御装置100は、電力制御システム1000における電力網30への電力供給の開始及び停止の際に、適切に各電源システムの出力分担を定めることで、円滑(スムーズ)な電力供給の開始及び停止を実現する。電力制御装置100は、例えば、プロセッサ、メモリ、通信I/F等を備えるコンピュータ等により構成される。メモリは、プログラム及びデータを予め保持しているROM、プログラムの実行に際してデータ等の記憶に利用するためのRAM等であり、例えば不揮発性メモリを含んでいてもよい。プロセッサは、メモリに格納された制御プログラム等を実行することにより例えば通信I/F等を制御して各種処理を行う。通信I/Fは、各電源システム(電力変換機等)とデータの送受を行うための通信回路である。コンピュータ等のハードウェアで構成される電力制御装置100は、図1に示すように、機能面において検出部110及び制御部120を備える。 The power control apparatus 100 is an apparatus that determines the output sharing of each power supply system with respect to the output power amount synthesized and output to the power network 30, and controls the output of each power supply system according to the output sharing. The power control apparatus 100 appropriately sets the output sharing of each power supply system when starting and stopping power supply to the power network 30 in the power control system 1000, thereby smoothly starting and stopping the power supply. To realize. The power control apparatus 100 is configured by, for example, a computer including a processor, a memory, a communication I / F, and the like. The memory is a ROM holding a program and data in advance, a RAM for storing data etc. when the program is executed, or the like, and may include, for example, a non-volatile memory. The processor executes, for example, a control program stored in the memory to control, for example, the communication I / F and perform various processes. The communication I / F is a communication circuit for exchanging data with each power supply system (power converter etc.). As shown in FIG. 1, the power control apparatus 100 configured by hardware such as a computer includes a detection unit 110 and a control unit 120 in terms of functions.
 検出部110は、通信I/F、プログラムを実行するプロセッサ等で実現され、各電源システムから合成された出力電力の量を示す出力電力量を検出して制御部120に通知する機能を有する。出力電力量の検出は、例えば、電力計等を用いて電力制御システム1000から電力網30に出力される出力電力を測定することで実現可能である。また、検出部110は、出力分担に応じた各電源システムの出力電力を合計する等の演算処理によって、電力制御システム1000からの出力電力量の検出を実現してもよい。また、検出部110は、負荷側である需要家40a、40b等から電力使用量(需要量)に係る情報を通信によって取得することで、出力電力量を検出してもよい。電力使用量に係る情報は、例えば需要家40a、40b等に設置された電力量計による測定値、或いは、分電盤に設けた電流センサ等を用いて測定される測定値に基づいて導出され得る。 The detection unit 110 is realized by a communication I / F, a processor that executes a program, or the like, and has a function of detecting an output power amount indicating the amount of output power synthesized from each power supply system and notifying the control unit 120 of it. The detection of the output power amount can be realized, for example, by measuring the output power output from the power control system 1000 to the power network 30 using a power meter or the like. The detection unit 110 may also realize detection of the amount of output power from the power control system 1000 by arithmetic processing such as adding up the output power of each power supply system according to the output sharing. The detection unit 110 may also detect the output power amount by acquiring information related to the power consumption (demand amount) from the consumers 40a, 40b, etc. on the load side by communication. The information related to the amount of power consumption is derived based on, for example, a measured value by a watt-hour meter installed at customers 40a, 40b or the like, or a measured value measured by using a current sensor etc. provided at a distribution board. obtain.
 制御部120は、通信I/F、プログラムを実行するプロセッサ等で実現される。制御部120は、検出部110により検出された出力電力量に応じて、第1種電源システム10及び第2種電源システム20a~20cが分担する、出力電力についての分担量(出力分担量)を決定することで電力の合成出力に係る制御(電力制御処理)を行う。具体的には、制御部120は、検出部110により検出された出力電力量が所定閾値より小さい場合において、第1種電源システム10の分担量をゼロ(0W)にして第2種電源システム20a~20cからの出力のみを電力網30に供給するように制御する。出力電力量が所定閾値(例えば5kW)より小さい状態は、例えば、定常状態ではなく、電力供給の開始及び停止の際等といった過渡的な状態である。定常状態は、例えば、電力制御システム1000で電力網30へ比較的大きな出力電力量(例えば10kW、5kW以上等)の電力供給を比較的長期に亘り継続的に行っている状態である。なお、制御部120による、決定した分担量に応じた各電源システムの出力の制御は、分担量を示す制御用情報(制御信号)を各電源システムへと送信することにより実行される。各電源システムにおいては、制御用情報(制御信号)が示す分担量に応じた電力を出力する。例えば各電源システムにおける電力変換機が、直流電源からの電力を受けて制御用情報が示す分担量に応じた電力を出力する。 The control unit 120 is realized by a communication I / F, a processor that executes a program, or the like. Control unit 120 is configured to share the amount of output power (amount of output sharing) shared by first type power supply system 10 and second type power supply systems 20a to 20c according to the amount of output power detected by detection unit 110. Control (power control processing) related to combined output of power is performed by determining. Specifically, when the output power amount detected by the detection unit 110 is smaller than the predetermined threshold, the control unit 120 sets the sharing amount of the first type power supply system 10 to zero (0 W) to cause the second type power supply system 20 a. It is controlled to supply only the output from 20c to the power network 30. The state in which the amount of output power is smaller than a predetermined threshold (for example, 5 kW) is not a steady state, but is a transient state such as at the start and stop of power supply. In the steady state, for example, the power control system 1000 continuously supplies power of relatively large output power (for example, 10 kW, 5 kW or more) to the power network 30 for a relatively long time. The control of the output of each power supply system according to the determined sharing amount by the control unit 120 is executed by transmitting control information (control signal) indicating the sharing amount to each power supply system. Each power supply system outputs power according to the sharing amount indicated by the control information (control signal). For example, the power converter in each power supply system receives power from the DC power supply and outputs power according to the sharing amount indicated by the control information.
 安定化機能を有する第1種電源システム10は、例えばVSG制御等の安定化機能を有する電力変換機により、一定量以上の出力を行っている定常状態において電力網の電力を安定させ得る。しかし、出力電力量が所定閾値より小さい過渡的な状態(電力供給の開始の際の上昇傾向にある状態又は電力供給の停止の際の下降傾向にある状態)においては、変動を抑制する安定化機能が逆に悪影響を及ぼして、安定した電力供給の実現を阻害し得る。このため、制御部120は、出力電力量が所定閾値より小さい場合に、安定化機能を有する第1種電源システム10の分担量をゼロにして出力させなくすることで、その安定化機能の悪影響を抑制している。これにより、電力制御システム1000は電力網30への電力供給の開始及び停止を円滑に行い、開始及び停止の際に安定した電力供給を行い得る。 The first type power supply system 10 having the stabilization function can stabilize the power of the electric power network in a steady state in which an output of a predetermined amount or more is performed, for example, by a power converter having the stabilization function such as VSG control. However, in the transitional state where the output power amount is smaller than the predetermined threshold (the upward trend at the start of the power supply or the downward trend at the stop of the power supply), stabilization is performed to suppress the fluctuation. Function may adversely affect the realization of stable power supply. For this reason, when the output power amount is smaller than the predetermined threshold value, the control unit 120 makes the sharing amount of the first type power supply system 10 having the stabilization function zero and does not output it, thereby adversely affecting the stabilization function. To suppress. Thus, the power control system 1000 can smoothly start and stop the power supply to the power grid 30, and can provide stable power supply at the time of start and stop.
 (動作)
 以下、上述の構成を備える電力制御システム1000の動作例について説明する。
(Operation)
Hereinafter, an operation example of the power control system 1000 having the above-described configuration will be described.
 図2は、電力制御装置100が実行する電力制御処理を示すフローチャートである。この電力制御処理は、電力制御装置100において繰り返し実行される。以下、図2に即して電力制御装置100の動作を説明する。 FIG. 2 is a flowchart illustrating the power control process performed by the power control apparatus 100. The power control process is repeatedly performed in the power control apparatus 100. Hereinafter, the operation of the power control apparatus 100 will be described with reference to FIG.
 電力制御装置100の検出部110は、各電源システム(第1種電源システム10及び第2種電源システム20a~20c)から供給される電力を合成して電力制御システム1000が出力する電力量である出力電力量を、取得する(ステップS11)。なお、検出部110は、取得した出力電力量を制御部120に伝える。 The detection unit 110 of the power control apparatus 100 is an amount of power output from the power control system 1000 by combining the powers supplied from the respective power supply systems (the first type power supply system 10 and the second type power supply systems 20a to 20c). An output power amount is acquired (step S11). The detection unit 110 transmits the acquired output power amount to the control unit 120.
 制御部120は、出力電力量が所定閾値より小さいかを判断し(ステップS12)、所定閾値より小さくない場合には、所定の配分アルゴリズムAにより、各電源システムの分担量を決定する(ステップS13)。配分アルゴリズムAは、出力電力量をある程度適切に各電源システムに分担させるための任意のアルゴリズムであり、例えば各電源システムの最大出力、平均出力等の比を用いて、出力電力量を按分するように各電源システムの分担量を算定するアルゴリズムである。また、配分アルゴリズムAでは、制御部120が各電源システムから供給可能な電力の測定結果を収集して、その測定結果に基づいて各電源システムの分担量を算定するようにしてもよい。 The control unit 120 determines whether the output power amount is smaller than a predetermined threshold (step S12), and determines the sharing amount of each power supply system by a predetermined distribution algorithm A when it is not smaller than the predetermined threshold (step S13). ). The allocation algorithm A is an arbitrary algorithm for apportioning the output power amount to each power supply system appropriately to some extent, for example, to divide the output power amount using the ratio of the maximum output, the average output, etc. of each power supply system Is an algorithm for calculating the share of each power supply system. Further, in the allocation algorithm A, the control unit 120 may collect measurement results of power that can be supplied from each power supply system, and calculate a sharing amount of each power supply system based on the measurement results.
 ステップS12で出力電力量が所定閾値より小さいと判断した場合には、制御部120は、所定の配分アルゴリズムBにより、各電源システムの分担量を決定する(ステップS14)。配分アルゴリズムBは、第1種電源システム10の分担量をゼロにした上で、第2種電源システム20a~20cの各々に出力電力量をある程度適切に分担させるための任意のアルゴリズムである。即ち、配分アルゴリズムBは、第1種電源システム10の分担量をゼロにするアルゴリズムであり、かつ、例えば、第2種電源システム20a~20cの各々の最大出力、平均出力等の比、或いは供給可能な電力の測定結果等の比を用いて、出力電力量を按分するように各第2種電源システムの分担量を算定するアルゴリズムである。 When it is determined in step S12 that the output power amount is smaller than the predetermined threshold value, the control unit 120 determines the sharing amount of each power supply system by a predetermined distribution algorithm B (step S14). The allocation algorithm B is an arbitrary algorithm for allocating the amount of output power to each of the second-type power supply systems 20a to 20c appropriately to some extent, with the allocation of the first-type power supply system 10 being zero. That is, the distribution algorithm B is an algorithm that makes the amount of sharing of the first type power supply system 10 zero, and for example, the ratio of the maximum output, the average output, etc. of each of the second type power systems 20a to 20c, or It is an algorithm which calculates the share of each type 2 power supply system so that output electric energy may be distributed using ratios, such as a measurement result of possible electric power.
 ステップS13或いはステップS14で各電源システムの分担量を決定した後、制御部120は、各電源システムに、対応する分担量を示す制御用情報(制御信号)を送信する(ステップS15)。 After determining the share of each power supply system in step S13 or step S14, the control unit 120 transmits control information (control signal) indicating the corresponding share to each power supply system (step S15).
 このような電力制御処理が電力制御装置100により逐次繰り返して実行されることにより、電力網30への電力供給の開始及び停止の際等といった過渡的な状態においても安定的な電力供給がなされるようになる。図3に、電力制御システム1000による電力供給の停止の際の、各電力変換機の出力及び電力制御システム1000からの出力電力量の時間的変化の一例を示す。図3に示すように、電力制御システム1000の出力電力量が所定閾値を下回った時点以降において、第1種電力変換機12の出力が抑止され、第2種電力変換機22a~22cの合成出力のみが電力網30へと出力されるようになる。 By performing such power control processing sequentially and repeatedly by power control apparatus 100, stable power supply can be performed even in a transient state such as at the start and stop of power supply to power network 30. become. FIG. 3 shows an example of the temporal change in the output of each power converter and the amount of output power from the power control system 1000 at the time of stopping the power supply by the power control system 1000. As shown in FIG. 3, after the time when the output power amount of the power control system 1000 falls below the predetermined threshold, the output of the first type power converter 12 is suppressed, and the combined output of the second type power converters 22a to 22c. Only to the power grid 30.
 (実施の形態2)
 以下、実施の形態1に係る電力制御システム1000を部分的に変形した実施の形態について説明する。本実施の形態に係る電力制御システムは、実施の形態1で示した電力制御システム1000と同様の構成を有するため、ここでは構成要素に同じ符号を用いて説明する。本実施の形態では、電力制御装置100の実行する電力制御処理が、実施の形態1とは異なる。なお、ここで、説明しない点については実施の形態1と同様である。
Second Embodiment
Hereinafter, an embodiment in which the power control system 1000 according to the first embodiment is partially modified will be described. The power control system according to the present embodiment has the same configuration as that of the power control system 1000 described in the first embodiment, and therefore, the components will be described using the same reference numerals. In the present embodiment, the power control process performed by the power control apparatus 100 is different from that of the first embodiment. Note that the points not described here are the same as in the first embodiment.
 図4は、本実施の形態に係る電力制御装置100が実行する電力制御処理を示すフローチャートである。この電力制御処理は、繰り返し実行される。以下、図4に即して電力制御装置100の動作を説明する。 FIG. 4 is a flowchart showing the power control process performed by the power control apparatus 100 according to the present embodiment. This power control process is repeatedly performed. Hereinafter, the operation of the power control apparatus 100 will be described with reference to FIG.
 電力制御装置100の検出部110は、電力制御システム1000が各電源システム(第1種電源システム10及び第2種電源システム20a~20c)から供給される電力を合成して出力する電力量である出力電力量を、取得して制御部120に伝える(ステップS21)。 The detection unit 110 of the power control apparatus 100 is an amount of power that the power control system 1000 combines and outputs the power supplied from each power supply system (the first type power supply system 10 and the second type power supply systems 20a to 20c). The output power amount is acquired and transmitted to the control unit 120 (step S21).
 制御部120は、検出部110から伝えられた出力電力量に基づいて、所定の配分アルゴリズムCにより、各電源システムの分担量を決定する(ステップS22)。配分アルゴリズムCは、第1種電源システムの分担量(つまり第1種電源システム10の分担量)の第2種電源システムの分担量(つまり第2種電源システム20a~20c各々の分担量の合計)に対する比Rを、出力電力量が小さいほど、小さくするように各電源システムの分担量を算定するアルゴリズムである。例えば比Rは、出力電力量に比例するように定められてもよい。なお、配分アルゴリズムCは、出力電力量が小さいほど比Rを小さくする点以外に関しては任意のアルゴリズムである。配分アルゴリズムCは、例えば、各第2種電源システム20a~20cの最大出力、平均出力等の比、或いは供給可能な電力の測定結果等の比を用いて、第2種電源システム20a~20cの間での分担量を算定するものであってもよい。このような配分アルゴリズムCは、出力電力量が比較的小さい場合に、安定化機能を有する第1種電源システム10の分担量を相対的に小さくすることで、その安定化機能の悪影響を抑制するように働く。 The control unit 120 determines the share of each power supply system according to a predetermined distribution algorithm C based on the output power amount transmitted from the detection unit 110 (step S22). The allocation algorithm C is a total of the share of the type 2 power system (that is, the total of the share of each of the type 2 power systems 20a to 20c) of the share of the type 1 power system (that is, the share of the type 1 power system 10). ) Is an algorithm for calculating the share of each power supply system so as to reduce the ratio R to the smaller the output power amount. For example, the ratio R may be determined to be proportional to the amount of output power. The allocation algorithm C is an arbitrary algorithm except that the ratio R is reduced as the output power amount decreases. The distribution algorithm C uses, for example, the ratio of the maximum output, the average output, etc. of each of the second type power supply systems 20a to 20c, or the ratio of the measurement results of the power that can be supplied. The amount of sharing among the members may be calculated. Such distribution algorithm C suppresses the adverse effect of the stabilization function by relatively reducing the sharing amount of the type 1 power supply system 10 having the stabilization function when the output power amount is relatively small. Work as it is.
 ステップS22で各電源システムの分担量を決定した後、制御部120は、各電源システムに、対応する分担量を示す制御用情報(制御信号)を送信する(ステップS23)。 After determining the sharing amount of each power supply system in step S22, the control unit 120 transmits control information (control signal) indicating the corresponding sharing amount to each power supply system (step S23).
 このような電力制御処理が電力制御装置100により逐次繰り返して実行されることにより、電力網30への電力供給の開始及び停止の際等といった、出力電力量が比較的小さい過渡的な状態においても、安定的な電力供給がなされるようになる。 Such power control processing is sequentially and repeatedly performed by the power control apparatus 100, so that even in a transient state where the amount of output power is relatively small, such as when starting and stopping power supply to the power network 30, Stable power supply will be achieved.
 (他の実施の形態等)
 以上、実施の形態1、2により電力制御装置100を備える電力制御システム1000について説明したが、上述した実施の形態は一例にすぎず、各種の変更、付加、省略等が可能であることは言うまでもない。
(Other embodiments etc.)
Although the power control system 1000 including the power control apparatus 100 has been described in the first and second embodiments, the above-described embodiment is merely an example, and various modifications, additions, omissions, and the like can be made. Yes.
 上述した電力制御システム1000における第1種電源システム10及び第2種電源システム20a~20c(図1参照)は、電源システムの代表例を示したにすぎない。このため、電力制御システム1000が制御する第1種電源システム、第2種電源システムそれぞれの数は、1以上であればいくつであってもよい。例えば、上述した電力制御システム1000を変形して、図5に示す電力制御システム1000aのようにしてもよい。電力制御システム1000aでは、上述の第2種電源システム20b、20cを備えず、また、上述した第1種電源システム10に加えてディーゼル発電機(同期発電機)11aを含む第1種電源システム10aを備えている。なお、ディーゼル発電機(同期発電機)11aは、回転子の慣性力等により出力の変動を抑制する安定化機能を有し、交流電力を出力する。このような構成であっても、電力制御装置100における電力制御処理(図2、図4参照)により、安定的な電力供給が実現される。なお、図5のような構成で、定常状態においては、VSG制御機能を有する第1種電力変換機12を含む第1種電源システムが安定化に寄与することで、ディーゼル発電機(同期発電機)11aの安定化への負担が低減され、その分、燃料コストが低下し得る。 The first type power supply system 10 and the second type power supply systems 20a to 20c (see FIG. 1) in the power control system 1000 described above are merely representative examples of the power supply system. Therefore, the number of each of the first type power system and the second type power system controlled by the power control system 1000 may be any number as long as it is one or more. For example, the power control system 1000 described above may be modified to be the power control system 1000a shown in FIG. The power control system 1000a does not include the above-described second type power supply systems 20b and 20c, and further includes a first type power supply system 10a including a diesel generator (synchronous generator) 11a in addition to the above-described first type power supply system 10. Is equipped. The diesel generator (synchronous generator) 11a has a stabilization function to suppress the fluctuation of the output by the inertial force of the rotor or the like, and outputs AC power. Even with such a configuration, stable power supply is realized by the power control process (see FIGS. 2 and 4) in the power control apparatus 100. In the steady state as shown in FIG. 5, the diesel generator (synchronous generator) can be stabilized by the first-class power supply system including the first-class power converter 12 having the VSG control function contributing to stabilization. The burden on the stabilization of 11a is reduced, and the fuel cost can be reduced accordingly.
 また、上述の実施の形態では、電力制御システム1000が複数の電源システム(第1種電源システム10及び第2種電源システム20a~20c)を備える構成を示した。しかし、その複数の電源システムの全部又は一部が、電力制御システム1000の外部に存在することとしてもよい。 Further, in the above-described embodiment, the power control system 1000 includes the plurality of power supply systems (the first type power supply system 10 and the second type power supply systems 20a to 20c). However, all or part of the plurality of power supply systems may be present outside the power control system 1000.
 また、実施の形態1で示した制御部120は、ステップS12で出力電力量が所定閾値より小さいと判断した場合に、VSG制御機能を実行している第1種電力変換機12についてVSG制御機能の実行を停止させるように制御してもよい。制御部120は、VSG制御機能の実行を停止することで、第1種電力変換機12を、安定化機能を実行しない第2種電力変換機として取り扱うこととしてもよい。なお、第2種電力変換機は、安定化機能を全く有さないものに限定されず、安定化機能を実行しない状態の電力変換機をも含む。VSG制御機能の実行を停止させた電力変換機を有する電源システムはもはや安定化機能を有する第1種電源システムではなく第2種電源システムとして取り扱われる。この場合には、制御部120は、第1種電力変換機12にVSG制御機能を実行させない状態にすることで、第1種電源システム10を第2種電源システムとして取り扱い、その第2種電源システムに、出力電力量の按分等により出力分担を担わせ得る。 In addition, when control unit 120 described in the first embodiment determines that the output power amount is smaller than the predetermined threshold in step S12, the VSG control function of the first-type power converter 12 executing the VSG control function is performed. It may be controlled to stop the execution of The control unit 120 may handle the first type power converter 12 as a second type power converter which does not execute the stabilization function by stopping the execution of the VSG control function. In addition, a 2nd type power converter is not limited to what does not have a stabilization function at all, and also includes a power converter in the state which does not perform a stabilization function. A power supply system having a power converter which has stopped the execution of the VSG control function is no longer treated as a type 1 power supply system, not a type 1 power supply system having a stabilization function. In this case, the control unit 120 treats the first type power supply system 10 as a second type power supply system by setting the first type power converter 12 not to execute the VSG control function, and the second type power supply The system can be made to share the output by dividing the amount of output power.
 また、上述した制御部120が、決定した出力の分担量を各電源システムに伝えることとしたが、電力制御システム1000では、その決定された分担量に応じた出力がなされるように各電源システムの出力する電力量を調整するためのいかなる手段を用いてもよい。 In addition, although the control unit 120 described above transmits the determined sharing amount of output to each power supply system, in the power control system 1000, each power supply system is configured to output according to the determined sharing amount. Any means may be used to adjust the amount of power output by the
 また、上述の電力制御装置100の動作手順(図2、図4の電力制御処理等)の実行順序は、必ずしも、上述した通りの順序に制限されるものではなく、発明の要旨を逸脱しない範囲で、実行順序を入れ替えたりその一部を省略したりすることができる。また、電力制御装置100の動作手順の全部又は一部を、電力制御システム1000が備える電源システムにおけるコンピュータ(メモリ、プロセッサ等)等の装置に実行させてもよい。また、電力制御装置100の動作手順の一部を、電力制御装置100と通信可能な外部装置(例えばサーバ装置等)に実行させてもよい。この場合に、電力制御装置100の代わりに、電源システムにおける装置或いは外部装置が検出部110及び制御部120のいずれかの機能を担い得る。また、上述の動作手順の全部又は一部は、電力制御装置100、電源システムにおける装置、或いは外部装置のハードウェアにより実現されても、ソフトウェアを用いて実現されてもよい。なお、ソフトウェアによる処理は、電力制御装置100、電源システムにおける装置或いは外部装置に含まれるプロセッサがメモリに記憶された制御プログラムを実行することにより実現されるものである。また、その制御プログラムを記録媒体に記録して頒布や流通させてもよい。例えば、頒布された制御プログラムを装置にインストールして、装置のプロセッサに実行させることで、その装置に、例えば上述した電力制御装置100の動作(電力制御処理)の全部又は一部を行わせることが可能となる。 Moreover, the execution order of the operation procedure (the power control process of FIG. 2, FIG. 4, etc.) of the above-mentioned power control apparatus 100 is not necessarily limited to the order as described above, and does not deviate from the scope of the invention Then, it is possible to change the execution order or omit some of them. In addition, all or part of the operation procedure of the power control apparatus 100 may be executed by an apparatus such as a computer (memory, processor or the like) in the power supply system provided in the power control system 1000. Further, a part of the operation procedure of the power control apparatus 100 may be executed by an external device (for example, a server apparatus or the like) capable of communicating with the power control apparatus 100. In this case, a device or an external device in the power supply system may take on the function of either the detection unit 110 or the control unit 120 instead of the power control device 100. In addition, all or part of the above-described operation procedure may be realized by the power control apparatus 100, an apparatus in the power supply system, or hardware of an external apparatus, or may be realized using software. The processing by software is realized by the processor included in the power control apparatus 100, the apparatus in the power supply system, or the external apparatus executing a control program stored in the memory. In addition, the control program may be recorded on a recording medium and distributed or distributed. For example, installing the distributed control program in the device and causing the processor of the device to execute the program causes the device to perform all or part of the operation (power control processing) of the power control device 100 described above, for example. Is possible.
 また、上述した実施の形態で示した構成要素及び機能を任意に組み合わせることで実現される形態も本発明の範囲に含まれる。 Further, an embodiment realized by arbitrarily combining the components and the functions shown in the above-described embodiment is also included in the scope of the present invention.
 なお、本発明の包括的又は具体的な各種態様には、装置、システム、方法、集積回路、コンピュータプログラム、コンピュータで読み取り可能な記録媒体等の1つ又は複数の組み合わせが含まれる。 Note that various aspects of the present invention include one or more combinations of an apparatus, a system, a method, an integrated circuit, a computer program, a computer readable recording medium, and the like.
 以下、本発明の一態様に係る電力制御システム及び電力制御方法の構成、変形態様、効果等について示す。 Hereinafter, configurations, modifications, effects, and the like of the power control system and the power control method according to an aspect of the present invention will be described.
 (1)本発明の一態様に係る電力制御システムは、出力の変動を抑制する安定化機能を有する第1種電源システム(例えば第1種電源システム10、10a)からの電力と安定化機能を有さない第2種電源システム(例えば第2種電源システム20a~20c)からの電力とを合成して出力電力を出力する電力制御システム(例えば電力制御システム1000、1000a等)であって、その合成した出力電力の量を示す出力電力量を検出する検出部110と、検出部110により検出された出力電力量に応じて、第1種電源システム及び第2種電源システムそれぞれが分担する、前記出力電力についての分担量を決定することで電力の合成出力に係る制御を行う制御部120とを備える。 (1) The power control system according to an aspect of the present invention is configured to control the power from the type 1 power supply system (for example, the type 1 power supply system 10, 10a) having a stabilization function that suppresses output fluctuation. A power control system (for example, power control systems 1000, 1000a, etc.) that combines output power with a second type power system (for example, second type power systems 20a to 20c) that does not have it and outputs output power. The first type power supply system and the second type power supply system share the functions according to the detection unit 110 that detects the output power amount indicating the amount of the combined output power, and the output power amount detected by the detection unit 110 The control unit 120 performs control relating to combined output of power by determining the amount of sharing for output power.
 これにより、電力制御システム1000、1000a等は、出力電力量を反映して分担量を決定し得るため、複数の電源システムから電力網へ電力を安定的に供給できる可能性を有する。 Thus, the power control systems 1000, 1000a, etc. can determine the sharing amount by reflecting the output power amount, and thus have the possibility of stably supplying power from the plurality of power supply systems to the power grid.
 (2)例えば、電力制御システム1000は、第1種電源システム10及び第2種電源システム20aを備え、第1種電源システム10は、直流電源11と、安定化機能としての仮想同期発電機(VSG)制御機能を有して直流電源11からの直流電力を交流電力に変換して出力する第1種電力変換機12とを備え、第2種電源システム20aは、直流電源21aと、安定化機能を有さず直流電源21aからの直流電力を交流電力に変換して出力する第2種電力変換機22aとを備えることとしてもよい。 (2) For example, the power control system 1000 includes the first type power supply system 10 and the second type power supply system 20a, and the first type power supply system 10 includes the DC power supply 11 and a virtual synchronous generator as a stabilization function ( VSG) A first-class power converter 12 having a control function to convert direct-current power from the direct-current power source 11 into alternating-current power and outputting the same; the second-class power source system 20a includes: a direct-current power source 21a; A second type power converter 22a may be provided which has no function and converts DC power from the DC power supply 21a into AC power and outputs the AC power.
 これにより、電力制御システム1000は、外部から電力を受電せずに電力網30に電力の供給を行い得る。 Thus, the power control system 1000 can supply power to the power network 30 without receiving power from the outside.
 (3)例えば、制御部120は、検出部110により検出された出力電力量が小さいほど、第1種電源システム10の分担量の第2種電源システム20a~20cの分担量に対する比が小さくなるように各電源システムの分担量を決定することにより、電力の合成出力に係る制御を行うこととしてもよい。 (3) For example, as the output power amount detected by the detection unit 110 decreases, the control unit 120 decreases the ratio of the sharing amount of the first type power supply system 10 to the sharing amounts of the second type power supply systems 20a to 20c. As described above, control related to combined output of electric power may be performed by determining the sharing amount of each power supply system.
 これにより、電力供給の開始及び停止の際等といった、出力電力量が比較的小さい状態において安定化機能の悪影響を抑制し得るため、安定的に電力網30への電力供給を行い得る。 As a result, since the adverse effect of the stabilization function can be suppressed in a state where the amount of output power is relatively small, such as at the start and stop of power supply, power can be stably supplied to the power network 30.
 (4)例えば、制御部120は、検出部110により検出された出力電力量が所定閾値より小さい場合において、第1種電源システム10の分担量をゼロにして第2種電源システム20a~20cからの電力のみを出力電力とするように、電力の合成出力に係る制御を行うこととしてもよい。 (4) For example, in the case where the output power amount detected by the detection unit 110 is smaller than the predetermined threshold, the control unit 120 sets the sharing amount of the first type power supply system 10 to zero and the second type power supply systems 20a to 20c. The control relating to the combined output of the power may be performed such that only the output power is the output power.
 これにより、電力供給の開始及び停止の際等といった、出力電力量が所定閾値より小さい状態において安定化機能の悪影響を抑制し得るため、安定的に電力網30への電力供給を行い得る。 Thereby, since the adverse effect of the stabilization function can be suppressed in a state where the amount of output power is smaller than a predetermined threshold, such as at the start and stop of the power supply, the power supply to the power network 30 can be stably performed.
 (5)本発明の一態様に係る電力制御方法は、出力の変動を抑制する安定化機能を有する第1種電源システム10からの電力と安定化機能を有さない第2種電源システム20a~20cからの電力とを合成して出力電力を出力する電力制御システム1000において用いられる電力制御方法であって、合成された出力電力の量を示す出力電力量に応じて、第1種電源システム10及び第2種電源システム20a~20cそれぞれが分担する、前記出力電力についての分担量を決定する(例えばステップS12~S14)。 (5) The power control method according to an aspect of the present invention includes the power from the first type power supply system 10 having the stabilization function to suppress the fluctuation of the output and the second type power supply system 20a having no stabilization function. 20c is a power control method used in a power control system 1000 that combines the power from 20c and outputs an output power, and according to an output power amount indicating the amount of combined output power, the first type power supply system 10 And the second type power supply systems 20a to 20c are respectively determined to share the output power (for example, steps S12 to S14).
 これにより、複数の電源システムから電力網へ電力を安定的に供給し得る。 Thus, power can be stably supplied from the plurality of power supply systems to the power grid.
 10、10a 第1種電源システム
 11、21a~21c 直流電源
 12 第1種電力変換機
 20a~20c 第2種電源システム
 22a~22c 第2種電力変換機
 110 検出部
 120 制御部
 1000、1000a 電力制御システム
10, 10a Type 1 power supply system 11, 21a to 21c DC power supply 12 Type 1 power converter 20a to 20c Type 2 power supply system 22a to 22c Type 2 power converter 110 Detection unit 120 Control unit 1000, 1000a Power control system

Claims (5)

  1.  出力の変動を抑制する安定化機能を有する第1種電源システムからの電力と前記安定化機能を有さない第2種電源システムからの電力とを合成して出力電力を出力する電力制御システムであって、
     前記出力電力の量を示す出力電力量を検出する検出部と、
     前記検出部により検出された前記出力電力量に応じて、前記第1種電源システム及び前記第2種電源システムそれぞれが分担する、前記出力電力についての分担量を決定することで前記出力に係る制御を行う制御部とを備える
     電力制御システム。
    A power control system which combines output power from a first type power supply system having a stabilization function to suppress output fluctuation with power from a second type power supply system not having the stabilization function and outputs output power There,
    A detection unit that detects an output power amount indicating the amount of the output power;
    The control related to the output by determining the sharing amount for the output power, which is shared by each of the first type power supply system and the second type power supply system, according to the output power amount detected by the detection unit And a control unit for performing the control.
  2.  前記電力制御システムは、前記第1種電源システム及び前記第2種電源システムを備え、
     前記第1種電源システムは、
     直流電源と、
     前記安定化機能としての仮想同期発電機制御機能を有し、前記直流電源からの直流電力を交流電力に変換して出力する第1種電力変換機とを備え、
     前記第2種電源システムは、
     直流電源と、
     前記安定化機能を有さず、前記直流電源からの直流電力を交流電力に変換して出力する第2種電力変換機とを備える
     請求項1記載の電力制御システム。
    The power control system includes the first type power system and the second type power system.
    The first type power system is
    DC power supply,
    It has a virtual synchronous generator control function as the stabilization function, and includes a first type power converter that converts DC power from the DC power source into AC power and outputs it.
    The second type power system is
    DC power supply,
    The power control system according to claim 1, further comprising: a second type power converter that does not have the stabilization function and converts DC power from the DC power source into AC power and outputs the AC power.
  3.  前記制御部は、前記検出部により検出された前記出力電力量が小さいほど、前記第1種電源システムの分担量の、前記第2種電源システムの分担量に対する比が小さくなるように、当該各分担量を決定することにより前記制御を行う
     請求項1又は2記載の電力制御システム。
    The control unit is configured such that the ratio of the sharing amount of the first type power supply system to the sharing amount of the second type power supply system decreases as the output power amount detected by the detection unit decreases. The power control system according to claim 1, wherein the control is performed by determining a sharing amount.
  4.  前記制御部は、前記検出部により検出された前記出力電力量が所定閾値より小さい場合において、前記第1種電源システムの分担量をゼロにして前記第2種電源システムからの電力のみを前記出力電力とするように前記制御を行う
     請求項1又は2記載の電力制御システム。
    When the output power amount detected by the detection unit is smaller than a predetermined threshold value, the control unit outputs only the power from the second type power supply system with zero share of the first type power supply system. The power control system according to claim 1, wherein the control is performed so as to be electric power.
  5.  出力の変動を抑制する安定化機能を有する第1種電源システムからの電力と前記安定化機能を有さない第2種電源システムからの電力とを合成して出力電力を出力する電力制御システムにおいて用いられる電力制御方法であって、
     前記出力電力の量を示す出力電力量に応じて、前記第1種電源システム及び前記第2種電源システムそれぞれが分担する、前記出力電力についての分担量を決定する
     電力制御方法。
    In a power control system which combines output power from a first type power supply system having a stabilization function to suppress output fluctuation and power from a second type power supply system not having the stabilization function and outputs output power The power control method used,
    A power control method, comprising: determining a sharing amount for the output power shared by each of the first type power supply system and the second type power supply system according to an output power amount indicating an amount of the output power.
PCT/JP2016/003844 2015-09-30 2016-08-24 Power control system and power control method WO2017056379A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2015-195261 2015-09-30
JP2015195261A JP2017070129A (en) 2015-09-30 2015-09-30 Power control system and power control method

Publications (1)

Publication Number Publication Date
WO2017056379A1 true WO2017056379A1 (en) 2017-04-06

Family

ID=58423170

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2016/003844 WO2017056379A1 (en) 2015-09-30 2016-08-24 Power control system and power control method

Country Status (2)

Country Link
JP (1) JP2017070129A (en)
WO (1) WO2017056379A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112913102A (en) * 2018-10-26 2021-06-04 株式会社九电工 Power supply apparatus using renewable energy

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7119732B2 (en) * 2018-08-07 2022-08-17 東京電力ホールディングス株式会社 Solar power system
US20240128754A1 (en) * 2021-02-19 2024-04-18 Kabushiki Kaisha Toshiba Microgrid startup method and startup program

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004080980A (en) * 2002-08-22 2004-03-11 Hitachi Ltd System-linking system inverter device
JP2013046503A (en) * 2011-08-25 2013-03-04 Waseda Univ Power storage system and control method thereof
JP2013162623A (en) * 2012-02-03 2013-08-19 Toshiba Corp Power supply system

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004080980A (en) * 2002-08-22 2004-03-11 Hitachi Ltd System-linking system inverter device
JP2013046503A (en) * 2011-08-25 2013-03-04 Waseda Univ Power storage system and control method thereof
JP2013162623A (en) * 2012-02-03 2013-08-19 Toshiba Corp Power supply system
EP2822163A1 (en) * 2012-02-03 2015-01-07 Kabushiki Kaisha Toshiba Power supply system

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112913102A (en) * 2018-10-26 2021-06-04 株式会社九电工 Power supply apparatus using renewable energy
CN112913102B (en) * 2018-10-26 2024-02-23 株式会社九电工 Power supply apparatus using renewable energy

Also Published As

Publication number Publication date
JP2017070129A (en) 2017-04-06

Similar Documents

Publication Publication Date Title
EP3565080B1 (en) Combined cycle power generation system
JP6194042B2 (en) Power converter, power control system, and power control method
JP5520365B2 (en) System stabilization system, power supply system, centralized management device control method, and centralized management device program
EP2673870B1 (en) Control arrangement and method for regulating the output voltage of a dc source power converter connected to a multi-source dc system
EP2328259A1 (en) System and method for power management in a photovoltaic installation
US20150015179A1 (en) Charge power control apparatus, charge power control method, program, and solar power generation system
JP6398414B2 (en) Power storage system, power conversion device, self-sustaining operation system, and power storage system control method
WO2011118766A1 (en) Electric power supply system, central management device, power system stabilization system, central management device control method, and central management device control program
JP2017099148A (en) Power management system and power management method
JP2012130146A (en) Self-supporting power supply system adjustment device and adjustment method for self-supporting power supply system
US9531191B2 (en) Method and apparatus for power imbalance correction in a multi-phase power generator
JP2012143018A (en) System stabilization apparatus and system stabilization method
WO2017056379A1 (en) Power control system and power control method
KR102264862B1 (en) System and Method for Controlling Inertial of Energy Storage System
JP2017189005A (en) Power storage device
JP6410520B2 (en) Wide area system controller
WO2012081174A1 (en) Adjustment apparatus for independent power-supply system, and method of adjusting independent power-supply system
EP3149841A1 (en) A multi-function power regulator for prioritizing functions and allocating resources thereof
JP5846141B2 (en) Automatic power factor control system and automatic power factor control method
JP2012241576A (en) Control system and method of wind power generator group
WO2011093419A1 (en) Power supply method, computer-readable recording medium, and power generation system
KR20170104809A (en) Apparatus and method for stabilizing voltage for direct current distribution system
KR20170021606A (en) The battery energy storage system and reactive power compensation method using thereof
JP6299860B2 (en) Distributed power storage system, power control method, and program
KR20170013773A (en) Energy storage system

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16850562

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 16850562

Country of ref document: EP

Kind code of ref document: A1