JP4560657B2 - Uninterruptible power system - Google Patents

Uninterruptible power system Download PDF

Info

Publication number
JP4560657B2
JP4560657B2 JP2000374539A JP2000374539A JP4560657B2 JP 4560657 B2 JP4560657 B2 JP 4560657B2 JP 2000374539 A JP2000374539 A JP 2000374539A JP 2000374539 A JP2000374539 A JP 2000374539A JP 4560657 B2 JP4560657 B2 JP 4560657B2
Authority
JP
Japan
Prior art keywords
power
capacitor
voltage
converter
output
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2000374539A
Other languages
Japanese (ja)
Other versions
JP2002176782A (en
Inventor
高広 佐伯
Original Assignee
レシップ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by レシップ株式会社 filed Critical レシップ株式会社
Priority to JP2000374539A priority Critical patent/JP4560657B2/en
Publication of JP2002176782A publication Critical patent/JP2002176782A/en
Application granted granted Critical
Publication of JP4560657B2 publication Critical patent/JP4560657B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Stand-By Power Supply Arrangements (AREA)
  • Inverter Devices (AREA)

Description

【0001】
【発明の属する技術分野】
この発明は、商用電力をAC−DCコンバータにより直流電力に変換してコンデンサに充電し、そのコンデンサの出力をインバータにより交流電力に変換して負荷へ供給し、停電時に蓄電池の出力をDC−DCコンバータを通じて上記コンデンサへ供給する無停電電源装置に関する。
【0002】
【従来の技術】
この種の従来の無停電電源装置を図1を参照して説明する。入力端子11及び12間に商用電源13が接続され、入力端子11及び12間に入力された商用電力はAC−DCコンバータ14により直流電力に変換されてコンデンサ15に対する充電が行われる。このコンデンサ15に充電された電力はインバータ16により交流電力に変換されて出力端子17及び18を通じて例えばパーソナルコンピュータなどの負荷19へ供給される。インバータ16をその出力電圧が一定になるように制御することにより、商用電力が変動しても、一定電圧の電力を負荷19へ供給することができる。商用電力により充電器21を通じて蓄電池22に対して充電が行われる。
【0003】
商用電力が停電すると、入力端子11及び12間に接続された停電復電検出器23がこれを検出し、その検出出力が制御器24へ供給され、制御器24はAC−DCコンバータ14の動作を停止させると共に、DC−DCコンバータ25を起動し、蓄電池22の電力をDC−DCコンバータ25を通じてコンデンサ15に充電し、この電力がインバータ16により交流電力とされて負荷19へ供給される。このようにして商用電力の供給から蓄電池電力の供給へ切替えられる。
商用電力が復電すると、これを停電復電検出器23が検出し、その検出出力が制御器24へ入力されて、制御器24はDC−DCコンバータ25の動作を停止し、AC−DCコンバータ14を起動する。AC−DCコンバータ14及びDC−DCコンバータ25に対する起動、停止の制御は制御器24からそれぞれ制御線26及び27を通じて行う。
【0004】
所で停電時にDC−DCコンバータ25を直ちに起動させるが、DC−DCコンバータ25が正常な動作状態になるのにわずかな時間T1を必要とし、この間は、コンデンサ15に充電されている電荷をインバータ16へ供給して、負荷19への電力の供給が瞬断されることがないようにされている。また復電時においても、インバータ16への電力供給をDC−DCコンバータ25からAC−DCコンバータ14に切替えて、AC−DCコンバータ14が正常な動作状態になるまでのわずかな時間T2の間、インバータ16への電力供給が断になる。この間もコンデンサ15にも充電されている電荷をインバータ16へ供給して、負荷19への電力の供給が瞬断されることがないようにされる。これらの点からインバータ16から例えば100V、10Aの電力を負荷19へ供給する場合に、コンデンサ15の電圧を例えばV1=190V程度にしておき、かつコンデンサ15の容量もそれ相応のものとしていた。
【0005】
【発明が解決しようとする課題】
しかし、復電した直後に再び停電になると、両コンバータ14,15から電力供給が断になる時間は、長い場合は復電時の瞬断時間T2と、停電時の瞬断時間T1との和の時間T2+T1となる。しかし、従来においては、コンデンサ15の電圧と容量は停電時の瞬断時間T1またはT2による電力供給の瞬断がないように選定されているため、前述のように瞬断時間がT1+T2になると、コンデンサ15からインバータ16へ十分な電力の供給が行われず、負荷19への電力供給が瞬断したり、定格以下の電力を供給するおそれがあった。
【0006】
また、従来においてはコンデンサ15の電圧を常に一定としていたため、停電時にDC−DCコンバータ25で多くの電力を消費し、蓄電池からの電力供給時間が短くなるおそれがあった。
【0007】
【課題を解決するための手段】
この発明によれば、復電時に、コンデンサの電圧を商用電力受電時におけるコンデンサ電圧よりも高い電圧にした後、負荷への電力供給を蓄電池の電力から、商用電力に切替える制御手段が設けられる。
また、好ましくは、蓄電池の電力を供給中は、コンデンサの電圧を、商用電力の供給中におけるコンデンサの電圧よりも低く保持する制御手段が設けられる。
【0008】
【発明の実施の形態】
この発明の実施形態を図1に示す。先に説明した従来技術とは、制御器24からDC−DCコンバータ25の出力電圧を制御する制御線31が設けられている点が異なり、制御器24の制御動作が異なる。
この実施形態における制御動作の例を図2に示す。制御器24においては、今商用電力を受電中であるとする。この状態で停電になったか否かをチェックしている(S1)。なおこの状態においてはコンデンサ15の電圧は図3に示すようにVc、例えば190VになるようにAC−DCコンバータ14から電力を出力している。
【0009】
停電が検出されると、AC−DCコンバータ14に対し動作停止制御の指示を行い(S2)、これと共にDC−DCコンバータ25に対し起動指示を行う(S3)。またコンデンサ15の電圧がVcより小さいが、インバータ16から定格の電力を負荷19に供給できる範囲でなるべく低い電圧Vb、例えば170Vになるように、DC−DCコンバータ25の出力電圧を制御線31を通じて設定する(S4)。DC−DCコンバータ25の出力電圧を制御する場合に、その目標電圧になるべく円滑に、かつ速くなるように、適当な速度でその目標電圧に近づけるのが一般であるが、この場合も、DC−DCコンバータ25の出力電圧が目標値Vbに徐々に近づける。停電から、DC−DCコンバータ25の出力電圧が目標値Vbになるまでの間、コンデンサ15の電荷により不足分の補充がインバータ16に対して行われ、停電になってもインバータ16から定格の出力を出し続ける。
【0010】
このようにして蓄電池22の電力がDC−DCコンバータ25を通じてインバータ16へ供給する状態になる。この状態において制御器24は復電になったかをチェックしている(S5)。復電になるとDC−DCコンバータ25の出力電圧、つまりコンデンサ15の電圧が、商用電力受電中の電圧Vcよりも高い電圧Vi、例えば210Vになるように制御線31を通じて制御する(S6)。つまりDC−DCコンバータ25の出力電圧の目標値をViとする。この場合も通常の動作と同様に出力電圧をVcからViへ徐々に上げてゆく。この電圧Viの値は、停電時の瞬断時間T1と復電時の停電時間T2との和の時間、両コンバータ14,25からの電力供給が停止されても、コンデンサ15からインバータ16に電力を供給し、インバータ16から定格電力を出力できるよう選定される。つまりコンデンサ15に高い電圧を加えることにより、より多くの電荷を蓄え、T1よりも長い時間T1+T2程度、コンデンサ15からの電荷によりインバータ16が定格電力を出力することができるようにされる。
【0011】
コンデンサ15の電圧、つまりDC−DCコンバータ25の出力電圧がほぼ目標値Viになると(S7)、DC−DCコンバータ25の動作停止を指示し(S8)、その後、AC−DCコンバータ14を起動してその出力をコンデンサ15へ供給してステップS1に戻る(S9)。このコンバータの出力切替えが行われると、AC−DCコンバータ14の出力に応じて、コンデンサ15は電圧Vcに徐々になる。
このように構成されているため、復電が検出された後、直ぐ停電になっても、DC−DCコンバータ25の出力からAC−DCコンバータ14の出力への切替えはコンデンサ15の電圧がほぼViになった後に行われるため、つまり、コンデンサ15への電力供給がほぼT1+T2の間断になってもコンデンサ15の電荷によりインバータ16から定格電力を出力し続けることができ、このT1+T2の間にDC−DCコンバータ25から電圧Vbの電力をコンデンサ15へ供給できるようになり、負荷19には連続して、定格電力が供給される。
【0012】
【発明の効果】
以上述べたように、この発明によれば復電時に、商用電力受電中の電圧Vbより高い電圧ViになってからAC−DCコンバータの出力をコンデンサ15へ供給するようにしているため、復電後、直ぐに停電になっても、負荷へ定格電力を瞬断なく供給し続けることができる。しかも、このようにすることによりコンデンサ15として容量が比較的小さい小形で安価なものを使用することができる。
またDC−DCコンバータ25の出力をコンデンサ15へ供給中はコンデンサ電圧を商用電力受電中よりも低い値Vbとする場合は、それだけインバータ16における電力消費が少なく、蓄電池22が、長い停電に耐えることができる。
【図面の簡単な説明】
【図1】この発明の実施の形態を示すブロック図。
【図2】この発明の実施形態における制御器24の動作手順の例を示す流れ図。
【図3】この発明を適用した場合のコンデンサ15の電圧の変化の様子を示す図。
[0001]
BACKGROUND OF THE INVENTION
In the present invention, commercial power is converted to DC power by an AC-DC converter and charged to a capacitor, and the output of the capacitor is converted to AC power by an inverter and supplied to a load. The present invention relates to an uninterruptible power supply that supplies the capacitor through a converter.
[0002]
[Prior art]
A conventional uninterruptible power supply of this type will be described with reference to FIG. A commercial power supply 13 is connected between the input terminals 11 and 12, and commercial power input between the input terminals 11 and 12 is converted into DC power by the AC-DC converter 14 and charging of the capacitor 15 is performed. The power charged in the capacitor 15 is converted into AC power by the inverter 16 and supplied to a load 19 such as a personal computer through output terminals 17 and 18. By controlling the inverter 16 so that its output voltage becomes constant, even if the commercial power fluctuates, it is possible to supply constant voltage power to the load 19. The storage battery 22 is charged through the charger 21 with commercial power.
[0003]
When commercial power is interrupted, the power failure / recovery detector 23 connected between the input terminals 11 and 12 detects this, and the detected output is supplied to the controller 24. The controller 24 operates the AC-DC converter 14. Is stopped, the DC-DC converter 25 is started, the power of the storage battery 22 is charged into the capacitor 15 through the DC-DC converter 25, and this power is converted to AC power by the inverter 16 and supplied to the load 19. In this way, the supply is switched from the supply of commercial power to the supply of battery power.
When the commercial power is restored, the power failure / recovery detector 23 detects this, and the detected output is input to the controller 24. The controller 24 stops the operation of the DC-DC converter 25, and the AC-DC converter. 14 is started. The start and stop of the AC-DC converter 14 and the DC-DC converter 25 are controlled from the controller 24 through control lines 26 and 27, respectively.
[0004]
In this case, the DC-DC converter 25 is immediately started at the time of a power failure. However, a short time T1 is required for the DC-DC converter 25 to be in a normal operation state. 16 so that the supply of electric power to the load 19 is not momentarily interrupted. Further, even during power recovery, the power supply to the inverter 16 is switched from the DC-DC converter 25 to the AC-DC converter 14, and during a short time T2 until the AC-DC converter 14 becomes a normal operating state, The power supply to the inverter 16 is cut off. During this time, the electric charge charged in the capacitor 15 is supplied to the inverter 16 so that the supply of power to the load 19 is not interrupted. From these points, for example, when 100 V, 10 A of electric power is supplied from the inverter 16 to the load 19, the voltage of the capacitor 15 is set to, for example, about V1 = 190 V, and the capacity of the capacitor 15 is set accordingly.
[0005]
[Problems to be solved by the invention]
However, if a power failure occurs again immediately after power recovery, if the power supply from both converters 14 and 15 is long, the sum of instantaneous power interruption time T2 at power recovery and instantaneous power interruption time T1 at power failure is long. Time T2 + T1. However, in the past, the voltage and capacity of the capacitor 15 are selected so that there is no instantaneous interruption of power supply due to the instantaneous interruption time T1 or T2 at the time of a power failure, so when the instantaneous interruption time becomes T1 + T2 as described above, Sufficient power is not supplied from the capacitor 15 to the inverter 16, and power supply to the load 19 may be momentarily interrupted or power less than the rating may be supplied.
[0006]
Further, since the voltage of the capacitor 15 is always constant in the related art, a large amount of power is consumed by the DC-DC converter 25 at the time of a power failure, and there is a possibility that the power supply time from the storage battery is shortened.
[0007]
[Means for Solving the Problems]
According to the present invention, the control means is provided for switching the power supply to the load from the power of the storage battery to the commercial power after making the voltage of the capacitor higher than the capacitor voltage at the time of receiving the commercial power at the time of power recovery.
Preferably, a control unit is provided that keeps the voltage of the capacitor lower than the voltage of the capacitor during the supply of commercial power while the power of the storage battery is being supplied.
[0008]
DETAILED DESCRIPTION OF THE INVENTION
An embodiment of the present invention is shown in FIG. It differs from the prior art described above in that a control line 31 for controlling the output voltage of the DC-DC converter 25 is provided from the controller 24, and the control operation of the controller 24 is different.
An example of the control operation in this embodiment is shown in FIG. It is assumed that the controller 24 is currently receiving commercial power. It is checked whether or not a power failure occurs in this state (S1). In this state, power is output from the AC-DC converter 14 so that the voltage of the capacitor 15 becomes Vc, for example, 190 V, as shown in FIG.
[0009]
When a power failure is detected, an operation stop control instruction is given to the AC-DC converter 14 (S2), and at the same time, a start instruction is given to the DC-DC converter 25 (S3). Although the voltage of the capacitor 15 is smaller than Vc, the output voltage of the DC-DC converter 25 is controlled through the control line 31 so that the voltage Vb is as low as possible, for example 170 V, within a range where rated power can be supplied from the inverter 16 to the load 19. Set (S4). When the output voltage of the DC-DC converter 25 is controlled, the target voltage is generally brought close to the target voltage at an appropriate speed so that the target voltage becomes as smooth and as fast as possible. The output voltage of the DC converter 25 gradually approaches the target value Vb. From the power failure until the output voltage of the DC-DC converter 25 reaches the target value Vb, the shortage is replenished to the inverter 16 by the charge of the capacitor 15, and even if a power failure occurs, the rated output from the inverter 16 Keep out.
[0010]
Thus, the power of the storage battery 22 is supplied to the inverter 16 through the DC-DC converter 25. In this state, the controller 24 checks whether power is restored (S5). When power is restored, control is performed through the control line 31 so that the output voltage of the DC-DC converter 25, that is, the voltage of the capacitor 15, becomes a voltage Vi higher than the voltage Vc during commercial power reception, for example, 210V (S6). That is, the target value of the output voltage of the DC-DC converter 25 is Vi. In this case, the output voltage is gradually increased from Vc to Vi as in the normal operation. The value of the voltage Vi is the sum of the instantaneous interruption time T1 at the time of power failure and the power failure time T2 at the time of power recovery, even if the power supply from both the converters 14 and 25 is stopped, the power is supplied from the capacitor 15 to the inverter 16. Is selected so that the rated power can be output from the inverter 16. That is, by applying a high voltage to the capacitor 15, more charge is stored, and the inverter 16 can output the rated power by the charge from the capacitor 15 for a time T1 + T2 longer than T1.
[0011]
When the voltage of the capacitor 15, that is, the output voltage of the DC-DC converter 25 becomes substantially the target value Vi (S7), the operation stop of the DC-DC converter 25 is instructed (S8), and then the AC-DC converter 14 is started. The output is supplied to the capacitor 15 and the process returns to step S1 (S9). When the output of the converter is switched, the capacitor 15 gradually becomes the voltage Vc according to the output of the AC-DC converter 14.
Thus, even if a power failure occurs immediately after power recovery is detected, switching from the output of the DC-DC converter 25 to the output of the AC-DC converter 14 causes the voltage of the capacitor 15 to be approximately Vi. In other words, even if the power supply to the capacitor 15 is substantially interrupted by T1 + T2, the rated power can continue to be output from the inverter 16 by the electric charge of the capacitor 15, and during this T1 + T2, the DC− The power of the voltage Vb can be supplied from the DC converter 25 to the capacitor 15, and the rated power is continuously supplied to the load 19.
[0012]
【The invention's effect】
As described above, according to the present invention, at the time of power recovery, the output of the AC-DC converter is supplied to the capacitor 15 after the voltage Vi becomes higher than the voltage Vb during commercial power reception. Later, even if a power failure occurs immediately, the rated power can be continuously supplied to the load without interruption. In addition, by doing so, a small and inexpensive capacitor 15 having a relatively small capacity can be used.
Further, when the output of the DC-DC converter 25 is supplied to the capacitor 15, when the capacitor voltage is set to a value Vb lower than that during commercial power reception, the power consumption in the inverter 16 is reduced accordingly, and the storage battery 22 can withstand a long power failure. Can do.
[Brief description of the drawings]
FIG. 1 is a block diagram showing an embodiment of the present invention.
FIG. 2 is a flowchart showing an example of an operation procedure of a controller 24 in the embodiment of the present invention.
FIG. 3 is a diagram showing a change in voltage of a capacitor 15 when the present invention is applied.

Claims (2)

商用電力を、AC−DCコンバータにより直流電力に変換してコンデンサに充電し、
そのコンデンサの出力をインバータにより交流電力に変換して負荷へ供給し、
停電時に、蓄電池の出力をDC−DCコンバータを通じて上記コンデンサへ供給する無停電電源装置において、
復電時に、上記コンデンサの電圧を、上記商用電力受電時における上記コンデンサ電圧よりも高い電圧にした後、上記負荷への電力供給を上記蓄電池の電力から商用電力に切替える制御手段が設けられていることを特徴とする無停電電源装置。
Commercial power is converted to DC power by an AC-DC converter and charged to a capacitor.
The output of the capacitor is converted into AC power by an inverter and supplied to the load.
In an uninterruptible power supply that supplies the output of the storage battery to the capacitor through a DC-DC converter at the time of a power failure,
Control means is provided for switching the power supply to the load from the power of the storage battery to the commercial power after making the voltage of the capacitor higher than the capacitor voltage at the time of receiving the commercial power at the time of power recovery. An uninterruptible power supply.
上記蓄電池の電力を供給中は、上記コンデンサの電圧を、商用電力の供給中における上記コンデンサの電圧よりも低く保持する制御手段が設けられていることを特徴とする請求項1記載の無停電電源装置。2. The uninterruptible power supply according to claim 1, further comprising a control unit that holds the voltage of the capacitor lower than the voltage of the capacitor during supply of commercial power while the power of the storage battery is being supplied. apparatus.
JP2000374539A 2000-12-08 2000-12-08 Uninterruptible power system Expired - Fee Related JP4560657B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2000374539A JP4560657B2 (en) 2000-12-08 2000-12-08 Uninterruptible power system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000374539A JP4560657B2 (en) 2000-12-08 2000-12-08 Uninterruptible power system

Publications (2)

Publication Number Publication Date
JP2002176782A JP2002176782A (en) 2002-06-21
JP4560657B2 true JP4560657B2 (en) 2010-10-13

Family

ID=18843715

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000374539A Expired - Fee Related JP4560657B2 (en) 2000-12-08 2000-12-08 Uninterruptible power system

Country Status (1)

Country Link
JP (1) JP4560657B2 (en)

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4493460B2 (en) * 2004-10-06 2010-06-30 三菱電機株式会社 Power converter
JP2010252574A (en) * 2009-04-17 2010-11-04 Yutaka Denki Seisakusho:Kk Uninterruptible power supply device, program for uninterruptible power supply device, and method of controlling uninterruptible power supply device
JP5313810B2 (en) * 2009-08-19 2013-10-09 三菱電機株式会社 Uninterruptible power system
JP5569249B2 (en) * 2009-08-21 2014-08-13 三菱電機株式会社 Uninterruptible power system
JP4920774B2 (en) * 2010-07-02 2012-04-18 シャープ株式会社 DC / DC converter, its control method, and DC power supply system
CN102629776A (en) * 2012-03-26 2012-08-08 深圳市禾望电气有限公司 Auxiliary power supply system for power converter and method
CN103117591A (en) * 2013-01-29 2013-05-22 浪潮电子信息产业股份有限公司 Power supply system of data center
JP5941495B2 (en) * 2014-05-29 2016-06-29 日本電信電話株式会社 Power switching circuit

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0479734A (en) * 1990-07-18 1992-03-13 Mitsubishi Electric Corp Inverter device
JPH069346U (en) * 1992-06-29 1994-02-04 横河電機株式会社 Power system backup circuit
JPH1118319A (en) * 1997-06-24 1999-01-22 Hitachi Ltd Electric power storage power convertor
JP2000102195A (en) * 1998-09-25 2000-04-07 Sanyo Electric Works Ltd Uninterruptible power supply

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0479734A (en) * 1990-07-18 1992-03-13 Mitsubishi Electric Corp Inverter device
JPH069346U (en) * 1992-06-29 1994-02-04 横河電機株式会社 Power system backup circuit
JPH1118319A (en) * 1997-06-24 1999-01-22 Hitachi Ltd Electric power storage power convertor
JP2000102195A (en) * 1998-09-25 2000-04-07 Sanyo Electric Works Ltd Uninterruptible power supply

Also Published As

Publication number Publication date
JP2002176782A (en) 2002-06-21

Similar Documents

Publication Publication Date Title
US7671487B2 (en) Uninterruptible power supply and method for controlling same
US9331523B2 (en) Power control device and power control method
JP2003235252A (en) Power circuit
JPH09191565A (en) Dc distribution system
CN115066819B (en) Power supply management system and method for use with one or more different utility agents
JP2001095179A (en) Electricity storing system and electric power feeding system
JP4560657B2 (en) Uninterruptible power system
JP2003134691A (en) Power supply system
KR100322859B1 (en) Method for charging secondary batteries in high-speed and charging apparatus therefor
JP5288954B2 (en) Uninterruptible power system
JP2000059993A (en) Condensed system
JP3292489B2 (en) Power supply control system for consumers
JP5350734B2 (en) Secondary battery discharge circuit, secondary battery discharge method and information processing apparatus
JPH0965582A (en) Power supply system utilizing solar cell
JP2000323365A (en) Dc supplying device
JP2001178024A (en) Emergency power supply unit
JP4349773B2 (en) Battery charging method and backup power supply apparatus for implementing the charging method
JPH114549A (en) Battery charger
JP2000245074A (en) Method for avoiding capacity decrease of battery
JP2867395B2 (en) Uninterruptible power system
JPH07170677A (en) Charging circuit of storage battery for uninterruptible power-supply apparatus
JP2003169424A (en) Secondary battery charging method and charging device
JP2001286076A (en) Control method of system stabilization device
US20230335996A1 (en) Power supply control system and control method thereof
JP7438255B2 (en) Power system, control method, and program

Legal Events

Date Code Title Description
RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20060329

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20071003

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100521

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20100601

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20100609

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20100708

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130806

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4560657

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130806

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R360 Written notification for declining of transfer of rights

Free format text: JAPANESE INTERMEDIATE CODE: R360

R370 Written measure of declining of transfer procedure

Free format text: JAPANESE INTERMEDIATE CODE: R370

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees