JP2001262277A - Low thermal expansion alloy excellent in machinability and its producing method - Google Patents

Low thermal expansion alloy excellent in machinability and its producing method

Info

Publication number
JP2001262277A
JP2001262277A JP2000075213A JP2000075213A JP2001262277A JP 2001262277 A JP2001262277 A JP 2001262277A JP 2000075213 A JP2000075213 A JP 2000075213A JP 2000075213 A JP2000075213 A JP 2000075213A JP 2001262277 A JP2001262277 A JP 2001262277A
Authority
JP
Japan
Prior art keywords
thermal expansion
alloy
less
machinability
weight
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2000075213A
Other languages
Japanese (ja)
Other versions
JP4253100B2 (en
Inventor
Akira Kato
彰 加藤
Takuo Handa
卓雄 半田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Chuzo Co Ltd
Original Assignee
Nippon Chuzo Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Chuzo Co Ltd filed Critical Nippon Chuzo Co Ltd
Priority to JP2000075213A priority Critical patent/JP4253100B2/en
Publication of JP2001262277A publication Critical patent/JP2001262277A/en
Application granted granted Critical
Publication of JP4253100B2 publication Critical patent/JP4253100B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Heat Treatment Of Steel (AREA)
  • Treatment Of Steel In Its Molten State (AREA)

Abstract

PROBLEM TO BE SOLVED: To obtain an invar series low thermal expansion material whose thermal expansion coefficient at ordinary temperatures is made minimum by making the chemical composition a ppropviate in accordance with the content of expensive Co. SOLUTION: This low thermal expansion alloy excellent in machinability has a composition comprising, by weight, <=0.05% C, <=0.3% Si, 0.45 to 1.2% Mn, <=0.5% P, 0.015 to 0.035% S, 33.0 to 34.5% Ni and 3.0 to 4.0% Co, and the balance substantially iron. In the case [Mn] is defined as the weight % of Mn, and [S] is defined as the weight % of S, [Mn]/[S] is made to satisfy >=15, so that the average thermal expansion coefficient at ordinary temperatures falls in a range of <=1.0×10-6/ deg.C.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【産業上の利用分野】本発明は、熱膨張が小さいことを
要求される精密機械部品等の用途に適した、被削性に優
れた低熱膨張合金およびその製造方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a low-thermal-expansion alloy excellent in machinability and suitable for use in precision machine parts and the like that require low thermal expansion and a method for producing the same.

【0002】[0002]

【従来の技術】現在、低熱膨張を目的として利用される
実用金属材料の中でスーパーインバーおよびインバー
は、20〜100℃の温度範囲での熱膨張率αが、前者
では0〜1×10−6/℃、後者では1〜2×10−6
/℃であり、熱膨張が非常に小さいという特性を持って
いる。これらは、主として塑性加工によって成形され、
線、板、棒等の素材で供給されている。従って、完成部
品とするには、多くの機械加工が必要となるが、被削性
が低く、多大な費用を要するため、利用範囲が制限され
ている。
2. Description of the Related Art Among practical metal materials currently used for the purpose of low thermal expansion, Super Invar and Invar have a thermal expansion coefficient α in a temperature range of 20 to 100 ° C., and the former has a thermal expansion coefficient α of 0 to 1 × 10 −. 6 / ° C., 1-2 × 10 −6 for the latter
/ ° C, and has a characteristic that thermal expansion is very small. These are formed mainly by plastic working,
It is supplied in materials such as wires, plates, bars, etc. Therefore, a lot of machining is required to make a finished part, but the machinability is low and the cost is high, so the range of use is limited.

【0003】スーパーインバーおよびインバーの被削性
が低いのは、(1)高切削抵抗による発熱のため、
(2)工具寿命が短い、(3)切り屑処理性が低い、
(4)加工硬化しやすい等によるものと考えられてい
る。
The low machinability of Super Invar and Invar is due to (1) heat generation due to high cutting resistance.
(2) short tool life, (3) low chip controllability,
(4) It is considered to be due to easy work hardening.

【0004】この問題を解決する手段として、S,C
a,Pb,Zr,Se等を添加し、快削性を付与した材
料が提供されているが、機械的性質の低下、熱膨張率の
増加、製造法の複雑化を伴なう欠点がある。
As means for solving this problem, S, C
Although materials having free cutting properties are provided by adding a, Pb, Zr, Se, etc., there are disadvantages associated with a decrease in mechanical properties, an increase in thermal expansion coefficient, and a complicated manufacturing method. .

【0005】一方、スーパーインバーに鋳造性を付与し
た特公昭60−51547号公報記載の材料や、同じく
インバーに鋳造性を付与したASTM.A−436,T
ype5及び同A−439,Type D−5は、凝固
過程で組織中に黒鉛を生ずるため、スーパーインバーお
よびインバーに比較して被削性が改善されているが、そ
れぞれ3.0×10−6/℃前後の熱膨張係数の増大を
伴ない、尚一層の高精度を要求される用途に対しては不
十分であり、スーパーインバーおよびインバーと同程度
の熱膨張係数を有し、かつ、被削性に優れた低熱膨張合
金が望まれている。
On the other hand, a material disclosed in Japanese Patent Publication No. 60-51547, in which castability is imparted to Super Invar, and ASTM. A-436, T
Type 5 and Type A-439 and Type D-5 have improved machinability compared to Super Invar and Invar because graphite is generated in the tissue during the coagulation process, but are 3.0 × 10 −6 respectively. It is insufficient for applications requiring even higher precision, with an increase in the coefficient of thermal expansion of around / ° C, and has a thermal expansion coefficient similar to that of Super Invar and Invar. A low thermal expansion alloy excellent in machinability is desired.

【0006】これらの諸問題を解決するために発明され
た特開平3−90541号公報に記載されている低熱膨
張合金があるが、高価なCoを多量に含有しているため
コストが高くなってしまうという欠点がある。
[0006] There is a low thermal expansion alloy described in JP-A-3-90541 invented in order to solve these problems, but the cost is high because it contains a large amount of expensive Co. There is a disadvantage that it will.

【0007】[0007]

【発明が解決しようとする課題】本発明は、前述のスー
パーインバー、インバー及び低熱膨張合金等の諸問題、
すなわち、(1)スーパーインバーおよびインバーにお
ける、被削性が低く、また素材形状に制限があるという
問題、(2)低熱膨張鋳鉄における熱膨張係数が高いこ
と、(3)素材のコストが高くなる問題等を解決するも
のであり、被削性、熱膨張性、鋳造性のいずれの面にも
優れ、特に鋳造合金に適した低コストの低熱膨張合金お
よびその製造方法を提供することを目的とする。
SUMMARY OF THE INVENTION The present invention has been made to solve the above-mentioned problems such as Super Invar, Invar and low thermal expansion alloy,
That is, (1) the problems of low machinability and limited material shape in Super Invar and Invar, (2) high thermal expansion coefficient of low thermal expansion cast iron, and (3) high material cost It is intended to solve the problems and the like, and to provide a low-cost low-thermal-expansion alloy excellent in machinability, thermal expansion, and castability, and particularly suitable for a cast alloy, and a method for producing the same. I do.

【0008】[0008]

【課題を解決するための手段】本発明は、スーパーイン
バー及びインバーと同等の低熱膨張性を有し、かつ被削
性に優れ、低熱膨張鋳鉄のように鋳造性にも優れ、低コ
ストで製造できる低熱膨張合金を提供するものである。
すなわち、第一の発明は、重量%で、C:0.05%以
下、Si:0.3%以下、Mn:0.45〜1.2%、
P:0.5%以下、S:0.015〜0.035%、N
i:33.0〜34.5%、Co:3.0〜4.0%で
あり、残部が実質的に鉄からなり、かつ[Mn]をMn
の重量%、[S]をSの重量%とした場合に[Mn]/
[S]:15以上であることを特徴とする常温での平均
熱膨張係数が1.0×10−6/℃以下の熱膨張係数を
有する被削性に優れた低熱膨張合金を提供する。
SUMMARY OF THE INVENTION The present invention has a low thermal expansion property equivalent to that of Super Invar and Invar, has excellent machinability, has excellent castability like low thermal expansion cast iron, and is manufactured at low cost. The present invention provides a low thermal expansion alloy that can be used.
That is, in the first invention, C: 0.05% or less, Si: 0.3% or less, Mn: 0.45 to 1.2% by weight,
P: 0.5% or less, S: 0.015 to 0.035%, N
i: 33.0 to 34.5%, Co: 3.0 to 4.0%, the balance is substantially composed of iron, and [Mn] is Mn.
%, And [M]] / [M]
[S]: Provided is a low-thermal-expansion alloy excellent in machinability, having an average thermal expansion coefficient at room temperature of 1.0 × 10 −6 / ° C. or less, characterized by being 15 or more.

【0009】また、第二の発明は、重量%で、C:0.
05%以下、Si:0.3%以下、Mn:0.45〜
1.2%、P:0.5%以下、S:0.015〜0.0
35%、Ni:33.5〜35.5%、Co:2.0〜
3.0%であり、残部が実質的に鉄からなり、かつ[M
n]をMnの重量%、[S]をSの重量%とした場合に
[Mn]/[S]:15以上であることを特徴とする常
温での平均熱膨張係数が1.5×10−6/℃以下の熱
膨張係数を有する被削性に優れた低熱膨張合金を提供す
る。
In the second invention, C: 0.
05% or less, Si: 0.3% or less, Mn: 0.45-
1.2%, P: 0.5% or less, S: 0.015 to 0.0
35%, Ni: 33.5 to 35.5%, Co: 2.0 to
3.0% with the balance substantially consisting of iron and [M
[Mn] / [S]: 15 or more when [n] is% by weight of Mn and [S] is% by weight of S, and the average coefficient of thermal expansion at room temperature is 1.5 × 10 A low thermal expansion alloy having a thermal expansion coefficient of −6 / ° C. or less and excellent in machinability.

【0010】さらに、第三の発明は、重量%で、C:
0.05%以下、Si:0.3%以下、Mn:0.45
〜1.2%、P:0.5%以下、S:0.015〜0.
035%、Ni:34.0〜36.5%、Co:1.0
〜2.0%であり、残部が実質的に鉄からなり、かつ
[Mn]をMnの重量%、[S]をSの重量%とした場
合に[Mn]/[S]:15以上であることを特徴とす
る常温での平均熱膨張係数が2.0×10−6/℃以下
の熱膨張係数を有する被削性に優れた低熱膨張合金を提
供する。
[0010] Further, a third aspect of the present invention relates to a method for preparing C:
0.05% or less, Si: 0.3% or less, Mn: 0.45
1.21.2%, P: 0.5% or less, S: 0.015-0.
035%, Ni: 34.0-36.5%, Co: 1.0
[Mn] / [S]: 15 or more where [Mn] is the weight% of Mn and [S] is the weight% of S. An object of the present invention is to provide a low-thermal-expansion alloy excellent in machinability, having an average thermal expansion coefficient at room temperature of 2.0 × 10 −6 / ° C. or less.

【0011】さらにまた、第四の発明は、第一から第三
の発明のいずれかの組成を有する合金を700〜950
℃の温度範囲で加熱後、5℃/sec以上の冷却速度で
450℃以下まで冷却することを特徴とする被削性に優
れた低熱膨張合金の製造方法を提供する。
Furthermore, a fourth invention provides an alloy having any one of the first to third inventions having a composition of 700 to 950.
A method for producing a low-thermal-expansion alloy excellent in machinability, characterized in that the alloy is cooled to 450 ° C. or less at a cooling rate of 5 ° C./sec or more after heating in a temperature range of ° C.

【0012】[0012]

【発明の実施の形態】本発明は、快削性(すなわち被削
性に優れること)と低熱膨張性を両立させるために最適
な組成範囲を規定するものであり、また、さらに当該組
成の合金に最適な熱処理条件を規定するものである。
BEST MODE FOR CARRYING OUT THE INVENTION The present invention defines an optimum composition range for achieving both free-cutting properties (that is, excellent machinability) and low thermal expansion properties. This specifies the optimum heat treatment conditions.

【0013】本発明における合金の組成は、重量%で、
C:0.05%以下、Si:0.3%以下、Mn:0.
45〜1.2%、P:0.5%以下、S:0.015〜
0.035%、残部が実質的に鉄からなり、かつ[M
n]をMnの重量%、[S]をSの重量%とした場合に
[Mn]/[S]:15以上であり、NiおよびCo
を、Ni:33.0〜34.5%およびCo:3.0
〜4.0%、Ni:33.5〜35.5%およびC
o:2.0〜3.0%、Ni:34.0〜36.5%
およびCo:1.0〜2.0%の3つのレベルのうちの
いずれかとする。
The composition of the alloy according to the present invention is expressed in terms of% by weight:
C: 0.05% or less, Si: 0.3% or less, Mn: 0.
45 to 1.2%, P: 0.5% or less, S: 0.015 to
0.035%, with the balance substantially consisting of iron and [M
[Mn] / [S]: 15 or more when [n] is the weight% of Mn and [S] is the weight% of S, and Ni and Co
With Ni: 33.0 to 34.5% and Co: 3.0
-4.0%, Ni: 33.5-35.5% and C
o: 2.0 to 3.0%, Ni: 34.0 to 36.5%
And Co: any one of three levels of 1.0 to 2.0%.

【0014】C:0.05%以下 Cは、マトリクス中に固溶していると熱膨張係数に著し
い影響を与え、0.05%を超えると、熱膨張係数が大
きくなって所望の低熱膨張性が得られなくなる。したが
って、C量を0.05%以下とする。
C: 0.05% or less C has a significant effect on the coefficient of thermal expansion when it is dissolved in a matrix, and when it exceeds 0.05%, the coefficient of thermal expansion becomes large, and a desired low thermal expansion is obtained. The property cannot be obtained. Therefore, the C content is set to 0.05% or less.

【0015】Si:0.3%以下 Siは、脱酸元素として鋼中に添加するが、Cと同様マ
トリクス中の固溶量が多くなると熱膨張係数が大きくな
ってしまうことから、0.3%以下とする。
Si: 0.3% or less Si is added to steel as a deoxidizing element. However, as in the case of C, if the amount of solid solution in the matrix increases, the coefficient of thermal expansion increases. % Or less.

【0016】Mn:0.45〜1.2% Mnは、後述のようにSと化合物を形成し、被削性の向
上に重要な役割を果たす。0.45%未満では、Mnと
Sとの化合物を形成しにくく、被削性が劣り、かつ、鋳
造割れを生じ易くなる。一方、1.2%を超えるとC,
Siと同様に熱膨張係数が大きくなってしまうことか
ら、Mn量を0.45〜1.2%とする。
Mn: 0.45 to 1.2% Mn forms a compound with S as described later and plays an important role in improving machinability. If it is less than 0.45%, it is difficult to form a compound of Mn and S, the machinability is inferior, and casting cracks are liable to occur. On the other hand, if it exceeds 1.2%, C,
Since the coefficient of thermal expansion increases like Si, the Mn content is set to 0.45 to 1.2%.

【0017】P:0.5%以下 Pは鋼中に不純物として含有されるが、多量に含まれる
と粒界に存在し、材料の強度低下をもたらすため、その
含有量は少ない方が望ましい。このような強度低下はP
含有量が0.5%を超えると顕著となるため、P含有量
の上限を0.5%とする。
P: 0.5% or less P is contained as an impurity in steel. However, if P is contained in a large amount, it will be present at the grain boundary and cause a reduction in the strength of the material. Therefore, the content of P is preferably small. Such a decrease in strength is caused by P
When the content exceeds 0.5%, the content becomes remarkable, so the upper limit of the P content is set to 0.5%.

【0018】S:0.015〜0.035% SはMnと化合物を形成し、被削性向上に寄与する元素
であるが、鋼中に多量に含まれると強度低下をもたら
す。0.015%未満のS含有量では、被削性の向上に
有効なMnとの化合物の生成量が十分でなく被削性改善
の効果が得られず、0.035%を超えると強度低下を
もたらす。このため、S含有量を0.015〜0.03
5%とする。
S: 0.015 to 0.035% S is an element that forms a compound with Mn and contributes to the improvement of machinability. However, when contained in a large amount in steel, the strength is reduced. If the S content is less than 0.015%, the amount of the compound with Mn effective for improving machinability is not sufficient, and the effect of improving machinability cannot be obtained. If the S content exceeds 0.035%, the strength decreases. Bring. Therefore, the S content is set to 0.015 to 0.03.
5%.

【0019】[Mn]/[S]:15以上 [Mn]/[S]は、MnとSとの化合物生成量を左右
する重要なパラメータである。MnおよびSの含有量に
ついては前述の通りであるが、[Mn]/[S]の値が
15未満であると、過剰なSがマトリクス中の主要元素
であるFeと化合物を形成し、低融点のFeSを生じて
しまい、凝固中に割れを生じ易くなるため、特に鋳物を
製造する場合は不都合である。[Mn]/[S]の値が
15以上であると、Sは主にMnとの化合物となり、有
害なFeSが生じにくく、凝固割れが発生し難い。この
ため、[Mn]/[S]の値を15以上とする。ただ
し、製品形状、大きさによっては、[Mn]/[S]を
30以上とすることが好ましい。
[Mn] / [S]: 15 or more [Mn] / [S] is an important parameter that affects the amount of the compound formed between Mn and S. Although the contents of Mn and S are as described above, if the value of [Mn] / [S] is less than 15, excess S forms a compound with Fe which is a main element in the matrix, Since FeS having a melting point is generated and cracks are easily generated during solidification, it is inconvenient especially when a casting is manufactured. When the value of [Mn] / [S] is 15 or more, S is mainly a compound with Mn, and harmful FeS hardly occurs, and solidification cracking hardly occurs. For this reason, the value of [Mn] / [S] is set to 15 or more. However, depending on the product shape and size, [Mn] / [S] is preferably set to 30 or more.

【0020】Ni:33.0〜34.5%およびC
o:3.0〜4.0% Ni:33.5〜35.5%およびCo:2.0〜
3.0% Ni:34.0〜36.5%およびCo:1.0〜
2.0% Ni,Coは熱膨張率に最も影響を与える重要な元素で
ある。本発明においては、Ni量およびCo量を、数々
の実験を通じて得られた最適な組み合わせとすることに
より、優れた低熱膨張性を有する合金を達成する。Co
は要求される熱膨張性、コスト等によって1.0〜4.
0%の範囲で添加されるが、Co量のレベルに応じてN
i量を限定することで熱膨張率を極小化することができ
る。すなわち、Co量が3.0〜4.0%の場合には、
Ni量を33.0%〜34.5%とすることにより熱膨
張性が極小となり、常温での平均熱膨張係数を1.0×
10−6/℃以下とすることができる。なお、Co量が
2.0〜3.0%の場合には、Ni量を33.5〜3
5.5%とすることにより熱膨張性が極小となり、常温
での平均熱膨張係数を1.5×10−6/℃以下とする
ことができる。また、Co量が1.0〜2.0%の場合
には、Ni量を34.0〜36.5%とすることにより
熱膨張性が極小となり、常温での平均熱膨張係数を2.
0×10−6/℃以下とすることができる。いずれのC
o量のレベルにおいても、Ni量がこれらの範囲を外れ
ると所望の低熱膨張性が得られない。このように、高価
なCo量のレベルに応じて、最適な量のNiを添加する
ので、Coによる熱膨張係数の低減効果を最大限に発揮
させることができ、最小限のコストで優れた特性の合金
を得ることができる。
Ni: 33.0-34.5% and C
o: 3.0 to 4.0% Ni: 33.5 to 35.5% and Co: 2.0 to
3.0% Ni: 34.0-36.5% and Co: 1.0-
2.0% Ni, Co is an important element that most affects the coefficient of thermal expansion. In the present invention, an alloy having excellent low thermal expansion is achieved by setting the Ni amount and the Co amount to the optimum combination obtained through various experiments. Co
Is from 1.0 to 4. depending on required thermal expansion properties, cost, and the like.
0%, but depending on the level of Co, N
By limiting the amount of i, the coefficient of thermal expansion can be minimized. That is, when the amount of Co is 3.0 to 4.0%,
By setting the Ni content to 33.0% to 34.5%, the thermal expansion property is minimized, and the average thermal expansion coefficient at room temperature is 1.0 ×
It can be 10 −6 / ° C. or less. When the Co amount is 2.0 to 3.0%, the Ni amount is 33.5 to 3%.
By setting it to 5.5%, the thermal expansion property is minimized, and the average thermal expansion coefficient at room temperature can be 1.5 × 10 −6 / ° C. or less. When the amount of Co is 1.0 to 2.0%, the thermal expansion is minimized by setting the amount of Ni to 34.0 to 36.5%, and the average thermal expansion coefficient at normal temperature is 2.
It can be 0 × 10 −6 / ° C. or less. Any C
Even at the level of the amount of o, if the amount of Ni is out of these ranges, the desired low thermal expansion property cannot be obtained. As described above, the optimum amount of Ni is added in accordance with the level of the expensive Co amount, so that the effect of reducing the coefficient of thermal expansion due to Co can be maximized, and excellent characteristics can be obtained at a minimum cost. Alloy can be obtained.

【0021】上記組成を有する本発明における合金の残
部は、実質的に鉄からなる。すなわち、不可避的不純物
や、本発明の効果を損なわない範囲の微量添加元素は許
容される。
The balance of the alloy of the present invention having the above composition substantially consists of iron. That is, unavoidable impurities and trace addition elements within the range not impairing the effects of the present invention are allowed.

【0022】以上のような本発明の合金は、上記組成を
有する溶融金属を鋳型に鋳込んで製造される鋳造合金に
好適であるが、鋳塊または鋳片とした後に、圧延や鍛造
等の塑性加工を施して使用される合金であってもよい。
また、製造条件は特に限定されるものではない。ただ
し、本発明においては、所定の形状に製造した素材を7
00〜950℃に加熱した後、5℃/sec以上の冷却
速度で450℃以下まで冷却する熱処理を施すことが好
ましい。このような熱処理により、常温における熱膨張
率をさらに低減することができる。特に鋳物を製造する
場合は、合金元素の均質化のために、当該熱処理が有効
である。
The alloy of the present invention as described above is suitable for a cast alloy produced by casting a molten metal having the above-mentioned composition into a casting mold. An alloy used after being subjected to plastic working may be used.
The manufacturing conditions are not particularly limited. However, in the present invention, a material manufactured in a predetermined shape is
After heating to 00 to 950 ° C, it is preferable to perform a heat treatment of cooling to 450 ° C or less at a cooling rate of 5 ° C / sec or more. Such heat treatment can further reduce the coefficient of thermal expansion at room temperature. In particular, when producing a casting, the heat treatment is effective for homogenizing the alloy elements.

【0023】この場合に、加熱温度が700℃未満で
は、合金元素の拡散による均質化に要する時間が長くな
り不経済である。また、950℃を超える加熱温度で
は、結晶粒の粗大化による機械的性質の劣化を招き、ま
た同時にスケールの生成が激しくなりスケール除去のた
めの工程が煩雑になるばかりか、エネルギーの観点でも
不経済となることから、加熱温度は700〜950℃と
した。
In this case, if the heating temperature is lower than 700 ° C., the time required for homogenization by diffusion of alloy elements becomes long, which is uneconomical. If the heating temperature exceeds 950 ° C., the mechanical properties are deteriorated due to the coarsening of the crystal grains. At the same time, the scale generation becomes intense and the process for removing the scale becomes complicated. From the viewpoint of economy, the heating temperature was set to 700 to 950 ° C.

【0024】さらに、加熱後の冷却速度が常温での熱膨
張率に及ぼす影響が大きく、700〜950℃に加熱後
5℃/sec未満の冷却速度では、所望の熱膨張率が得
られないことから、加熱後の冷却速度を5℃/sec以
上とした。
Further, the cooling rate after heating has a great influence on the coefficient of thermal expansion at room temperature. If the cooling rate is less than 5 ° C./sec after heating to 700 to 950 ° C., the desired coefficient of thermal expansion cannot be obtained. Therefore, the cooling rate after heating was set to 5 ° C./sec or more.

【0025】[0025]

【実施例】[実施例1]以下、本発明の実施例について
説明する。30kVA高周波電気炉により、表1に示す
成分を有し、残部が鉄からなる供試材料を溶解し、CO
ケイ砂型で、JIS G 5122B号試験片(以下
B号試験片と記述)と25×60×250mmの被削性
試験片を鋳造した。B号試験片からは、表1に記載の熱
処理を施した後、機械加工でφ8×100mmの熱膨張
係数測定試験片(以下熱膨張試験片と記述)を採取し、
20〜25℃での平均熱膨張係数(以下、室温近傍での
平均熱膨張係数と記述)を押棒式横形熱膨張計を用いて
測定した。被削性試験片は、60×250mmの二面を
研削盤にて表面を平滑に加工した後、ドリル穿孔試験を
行った。ドリル穿孔試験は、φ5mmの高速度鋼ドリル
を用いて、回転数1274RPM、送り0.2mm/
回、潤滑なし、穴深さ10mmの試験条件で実施し、5
0個以上穿孔可能であった場合に被削性が良好であると
した。なお、表1中、「合金レベル」の欄には、実施例
においてNi:33.0〜34.5%およびCo:
3.0〜4.0%を満たすものを1、Ni:33.5
〜35.5%およびCo:2.0〜3.0%を満たすも
のを2、Ni:34.0〜36.5%およびCo:
1.0〜2.0%を満たすものを3としている。
[Embodiment 1] An embodiment of the present invention will be described below. Using a 30 kVA high-frequency electric furnace, a test material having the components shown in Table 1 and the balance consisting of iron was dissolved,
A JIS G 5122B test piece (hereinafter referred to as No. B test piece) and a machinability test piece of 25 × 60 × 250 mm were cast using a 2- silica sand mold. From the No. B test piece, after performing the heat treatment shown in Table 1, a φ8 × 100 mm thermal expansion coefficient measurement test piece (hereinafter referred to as a thermal expansion test piece) was collected by machining.
The average coefficient of thermal expansion at 20 to 25 ° C (hereinafter referred to as the average coefficient of thermal expansion near room temperature) was measured using a push-rod type horizontal thermal dilatometer. The machinability test piece was subjected to a drilling test after two surfaces of 60 × 250 mm were smoothed with a grinder. The drilling test was performed using a high-speed steel drill having a diameter of 5 mm and rotating at 1274 RPM at a feed rate of 0.2 mm /
Times, without lubrication, under the test conditions of hole depth 10mm, 5
When 0 or more holes could be drilled, the machinability was determined to be good. In addition, in the column of "alloy level" in Table 1, Ni: 33.0 to 34.5% and Co:
1 that satisfies 3.0 to 4.0%, Ni: 33.5
2 that satisfy 〜35.5% and Co: 2.0-3.0%, Ni: 34.0-36.5% and Co:
The one satisfying 1.0 to 2.0% is designated as 3.

【0026】[0026]

【表1】 [Table 1]

【0027】表1に示すように、本発明例である合金1
〜11は、熱膨張係数が合金レベルに応じた所望の値
(合金レベルが1の場合には1.0×10−6/℃以
下、合金レベルが2の場合には1.5×10−6/℃以
下、合金レベルが3の場合には2.0×10−6/℃以
下)であり、また、いずれの場合も被削性が良好であっ
た。
As shown in Table 1, the alloy 1 of the present invention was
To 11, the desired value of the thermal expansion coefficient corresponding to the alloy level (hereinafter 1.0 × 10 -6 / ° C. If the alloy level is 1, 1.5 × when the alloy level is 2 10 - 6 / ° C or lower, and 2.0 × 10 −6 / ° C or lower when the alloy level is 3), and the machinability was good in each case.

【0028】これに対して、比較例である合金12〜1
9は、いずれかの特性が劣っていた。具体的には、合金
12は、Cの含有量が本発明の範囲よりも大きいため熱
膨張係数が所望の値より大きく、さらにSの含有量が本
発明の範囲よりも少ないため被削性が良くない。合金1
3および14は、Sの含有量が本発明の範囲よりも少な
いため被削性が良くない。合金15は、Coが重量%で
4.0%含まれているにも関わらず、Niの含有量が本
発明の範囲よりも大きいため熱膨張係数が所望の値より
大きい。合金16はCoが重量%で2.5%含まれてい
るにも関わらず、Niの含有量が本発明の範囲よりも少
ないため熱膨張係数が所望の値より大きい。合金17
は、Coが重量%で1.6%含まれているにも関わら
ず、Niの含有量が本発明の範囲よりも少ないため熱膨
張係数が所望の値より大きい。合金18は、Si含有量
が本発明の範囲よりも大きいため、熱膨張係数が所望の
値より大きい。合金19は、Coが重量%で1.8%含
まれているにも関わらず、Niの含有量が本発明の範囲
よりも多いため熱膨張係数が所望の値より大きい。
On the other hand, alloys 12 to 1 as comparative examples
No. 9 was inferior in either property. Specifically, the alloy 12 has a C content larger than the range of the present invention, so that the coefficient of thermal expansion is larger than a desired value. Further, since the S content is smaller than the range of the present invention, the machinability is low. Not good. Alloy 1
Nos. 3 and 14 have poor machinability because the S content is less than the range of the present invention. Although the alloy 15 contains 4.0% by weight of Co, the coefficient of thermal expansion is larger than a desired value because the content of Ni is larger than the range of the present invention. Although the alloy 16 contains 2.5% by weight of Co, the content of Ni is smaller than the range of the present invention, so that the coefficient of thermal expansion is larger than a desired value. Alloy 17
Has a thermal expansion coefficient larger than a desired value because the content of Ni is smaller than the range of the present invention, although 1.6% by weight of Co is contained. The alloy 18 has a larger coefficient of thermal expansion than the desired value because the Si content is larger than the range of the present invention. Although the alloy 19 contains 1.8% by weight of Co, the thermal expansion coefficient is larger than a desired value because the content of Ni is larger than the range of the present invention.

【0029】[実施例2]次に、本発明のもう一つの実
施例について説明する。30kVA高周波電気炉によ
り、表2に示す成分を有し、残部が鉄からなる供試材料
を溶解し、COケイ砂型で、B号試験片と図2に示す
形状の割れ試験片を鋳造した。B号試験片からは、所定
の熱処理を施した後、機械加工でφ8×100mmの熱
膨張試験片を採取し、室温付近での平均熱膨張係数を押
棒式横形熱膨張計を用いて測定した。割れ試験片では、
図2中A点(R=2mmおよびR=4mm)での割れを
目視および染色浸透探傷検査法にて割れの有無を確認し
た。なお、表2に示した「合金レベル」は表1のものと
同様である。
Embodiment 2 Next, another embodiment of the present invention will be described. A 30 kVA high-frequency electric furnace was used to melt a test material having the components shown in Table 2 and the balance being iron, and cast a No. B test piece and a crack test piece having the shape shown in FIG. 2 using a CO 2 silica sand mold. . After performing a predetermined heat treatment from the No. B test piece, a thermal expansion test piece of φ8 × 100 mm was sampled by machining, and the average thermal expansion coefficient near room temperature was measured using a push-rod type horizontal thermal dilatometer. . In the crack specimen,
Cracks at point A (R = 2 mm and R = 4 mm) in FIG. 2 were visually inspected and the presence or absence of cracks was confirmed by dye penetrant inspection. The “alloy level” shown in Table 2 is the same as that in Table 1.

【0030】[0030]

【表2】 [Table 2]

【0031】表2に示すように、本発明例である合金2
0〜合金28は、熱膨張係数がCo量のレベルに応じた
所望の値(Co:3.0%〜4.0%の場合には1.0
×10−6/℃以下、Co:2.0%〜3.0%の場合
には1.5×10−6/℃以下、Co:1.0%〜2.
0%の場合には2.0×10−6/℃以下)よりも低
く、優れた低熱膨張性を有しており、また、いずれの場
合も割れ試験片のR=4mmのA点で割れが確認され
ず、凝固割れの発生が抑制されていた。さらに、本発明
例のうち[Mn]/[S]を30以上とした合金20〜
24では、割れ試験片のR=2mmのA点でも割れは確
認されず、凝固割れの発生が極めて低く抑制されてい
た。
As shown in Table 2, the alloy 2 of the present invention was
0-alloy 28 has a desired value of thermal expansion coefficient according to the level of Co (Co: 3.0% to 4.0% in the case of 3.0% to 4.0%).
× 10 −6 / ° C. or less, Co: 2.0% to 3.0%, 1.5 × 10 −6 / ° C. or less, Co: 1.0% to 2.0%.
0% at 2.0% × 10 −6 / ° C. or less), and has excellent low thermal expansion properties. Was not confirmed, and the occurrence of solidification cracking was suppressed. Furthermore, alloys 20 to 30 of which [Mn] / [S] is 30 or more in the examples of the present invention.
In No. 24, no crack was confirmed even at the point A of R = 2 mm of the crack test piece, and the occurrence of solidification crack was suppressed to an extremely low level.

【0032】これに対して、比較例である合金29〜合
金35では、いずれかの特性が劣っていた。具体的に
は、合金29は合金20と、合金30は合金22と、合
金31は合金23とそれぞれ化学組成は同じであるが、
冷却速度が本発明の範囲よりも小さいため、熱膨張係数
が所望の値より大きい。合金32は合金20と化学組成
が同じであるが、加熱温度が本発明の範囲よりも低いた
め、常温付近での熱膨張係数が所望の値より大きい。合
金33はMnの含有量が本発明の範囲よりも低く、[M
n]/[S]も本発明の範囲より小さくなり、凝固割れ
を生じた。合金34は[Mn]/[S]は本発明の範囲
にあるものの、Mnの含有量が本発明の範囲よりも低い
ため、凝固割れを生じた。一方、合金35は、[Mn]
/[S]の値のみが本発明範囲よりも小さく、凝固割れ
を生じた。
On the other hand, alloys 29 to 35 as comparative examples were inferior in any of the characteristics. Specifically, alloy 29 has the same chemical composition as alloy 20, alloy 30 has alloy 22, and alloy 31 has the same chemical composition as alloy 23.
Because the cooling rate is less than the scope of the present invention, the coefficient of thermal expansion is greater than desired. Although the alloy 32 has the same chemical composition as the alloy 20, the heating temperature is lower than the range of the present invention, so that the coefficient of thermal expansion near normal temperature is larger than a desired value. Alloy 33 has a Mn content lower than the range of the present invention, and [M
n] / [S] was smaller than the range of the present invention, and solidification cracking occurred. Alloy 34 had solidification cracking because [Mn] / [S] was within the range of the present invention, but the Mn content was lower than the range of the present invention. On the other hand, the alloy 35 has [Mn]
Only the value of / [S] was smaller than the range of the present invention, and solidification cracking occurred.

【0033】本実施例の合金における凝固割れの発生に
ついて、SとMnの含有量に基づいて整理し、図1に示
す。図1の斜線を施した部位がMnとSに関する本発明
の範囲である。表2および図1から、本発明によれば割
れを発生することなく、Coの含有量に応じて、常温で
の熱膨張係数の小さい所望の低熱膨張合金を製造できる
ことがわかる。
FIG. 1 shows the occurrence of solidification cracks in the alloy according to the present embodiment, organized based on the contents of S and Mn. The shaded portion in FIG. 1 is the range of the present invention relating to Mn and S. From Table 2 and FIG. 1, it can be seen that according to the present invention, a desired low thermal expansion alloy having a small thermal expansion coefficient at room temperature can be produced according to the Co content without causing cracks.

【0034】[0034]

【発明の効果】以上より、本発明によれば従来の技術に
比べて、被削性に優れた低熱膨張合金を低コストで提供
することが可能となった。
As described above, according to the present invention, it is possible to provide a low-thermal-expansion alloy excellent in machinability at low cost as compared with the prior art.

【図面の簡単な説明】[Brief description of the drawings]

【図1】実施例2の合金における凝固割れの発生を、横
軸にS含有量をとり、縦軸にMn含有量をとった座標平
面に整理して示したグラフ。
FIG. 1 is a graph showing the occurrence of solidification cracking in the alloy of Example 2 arranged on a coordinate plane with the S content on the horizontal axis and the Mn content on the vertical axis.

【図2】実施例2における割れ試験片の形状を示す図
面。
FIG. 2 is a drawing showing the shape of a crack test piece in Example 2.

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】 重量%で、C:0.05%以下、Si:
0.3%以下、Mn:0.45〜1.2%、P:0.5
%以下、S:0.015〜0.035%、Ni:33.
0〜34.5%、Co:3.0〜4.0%であり、残部
が実質的に鉄からなり、かつ[Mn]をMnの重量%、
[S]をSの重量%とした場合に[Mn]/[S]:1
5以上であることを特徴とする常温での平均熱膨張係数
が1.0×10−6/℃以下の熱膨張係数を有する被削
性に優れた低熱膨張合金。
C .: 0.05% or less by weight, Si:
0.3% or less, Mn: 0.45 to 1.2%, P: 0.5
%, S: 0.015 to 0.035%, Ni: 33.%.
0 to 34.5%, Co: 3.0 to 4.0%, the balance substantially consisting of iron, and [Mn] is the weight% of Mn,
[Mn] / [S]: 1 when [S] is expressed as% by weight of S
A low-thermal-expansion alloy excellent in machinability, having an average coefficient of thermal expansion at room temperature of 1.0 × 10 −6 / ° C. or less, characterized by being 5 or more.
【請求項2】 重量%で、C:0.05%以下、Si:
0.3%以下、Mn:0.45〜1.2%、P:0.5
%以下、S:0.015〜0.035%、Ni:33.
5〜35.5%、Co:2.0〜3.0%であり、残部
が実質的に鉄からなり、かつ[Mn]をMnの重量%、
[S]をSの重量%とした場合に[Mn]/[S]:1
5以上であることを特徴とする常温での平均熱膨張係数
が1.5×10−6/℃以下の熱膨張係数を有する被削
性に優れた低熱膨張合金。
2. In% by weight, C: 0.05% or less, Si:
0.3% or less, Mn: 0.45 to 1.2%, P: 0.5
%, S: 0.015 to 0.035%, Ni: 33.%.
5 to 35.5%, Co: 2.0 to 3.0%, the balance substantially consisting of iron, and [Mn] is the weight% of Mn,
[Mn] / [S]: 1 when [S] is expressed as% by weight of S
A low thermal expansion alloy excellent in machinability, having an average coefficient of thermal expansion at room temperature of 1.5 × 10 −6 / ° C. or less, characterized by being 5 or more.
【請求項3】 重量%で、C:0.05%以下、Si:
0.3%以下、Mn:0.45〜1.2%、P:0.5
%以下、S:0.015〜0.035%、Ni:34.
0〜36.5%、Co:1.0〜2.0%であり、残部
が実質的に鉄からなり、かつ[Mn]をMnの重量%、
[S]をSの重量%とした場合に[Mn]/[S]:1
5以上であることを特徴とする常温での平均熱膨張係数
が2.0×10−6/℃以下の熱膨張係数を有する被削
性に優れた低熱膨張合金。
3. The method according to claim 1, wherein C: 0.05% or less, Si:
0.3% or less, Mn: 0.45 to 1.2%, P: 0.5
% Or less, S: 0.015 to 0.035%, Ni: 34.
0 to 36.5%, Co: 1.0 to 2.0%, the balance substantially consisting of iron, and [Mn] is the weight% of Mn,
[Mn] / [S]: 1 when [S] is expressed as% by weight of S
A low-thermal-expansion alloy excellent in machinability, having an average coefficient of thermal expansion at room temperature of 2.0 × 10 −6 / ° C. or less, characterized by being 5 or more.
【請求項4】 請求項1から請求項3のいずれか1項に
記載の組成を有する合金を700〜950℃の温度範囲
で加熱後、5℃/sec以上の冷却速度で450℃以下
まで冷却することを特徴とする被削性に優れた低熱膨張
合金の製造方法。
4. An alloy having a composition according to any one of claims 1 to 3 is heated in a temperature range of 700 to 950 ° C., and then cooled to 450 ° C. or less at a cooling rate of 5 ° C./sec or more. A method for producing a low thermal expansion alloy having excellent machinability.
JP2000075213A 2000-03-17 2000-03-17 Low thermal expansion alloy with excellent machinability and manufacturing method thereof Expired - Fee Related JP4253100B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2000075213A JP4253100B2 (en) 2000-03-17 2000-03-17 Low thermal expansion alloy with excellent machinability and manufacturing method thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000075213A JP4253100B2 (en) 2000-03-17 2000-03-17 Low thermal expansion alloy with excellent machinability and manufacturing method thereof

Publications (2)

Publication Number Publication Date
JP2001262277A true JP2001262277A (en) 2001-09-26
JP4253100B2 JP4253100B2 (en) 2009-04-08

Family

ID=18593133

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000075213A Expired - Fee Related JP4253100B2 (en) 2000-03-17 2000-03-17 Low thermal expansion alloy with excellent machinability and manufacturing method thereof

Country Status (1)

Country Link
JP (1) JP4253100B2 (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014113599A (en) * 2012-12-06 2014-06-26 Nippon Chuzo Co Ltd Component for precision instrument, and method of manufacturing the same
CN105296846A (en) * 2014-07-02 2016-02-03 新报国制铁株式会社 Low thermal expansion cast steel product and manufacture method thereof
CN105296844A (en) * 2014-07-02 2016-02-03 新报国制铁株式会社 Casting with high rigidity and low thermal expansion and manufacture method thereof
JP2016027187A (en) * 2014-07-02 2016-02-18 新報国製鉄株式会社 High-rigidity low-thermal expansion casting and method for producing the same
KR20160131997A (en) * 2014-03-10 2016-11-16 니폰추조 가부시키가이샤 Low thermal expansion casting alloy and method for producing same
WO2019025177A1 (en) * 2017-07-31 2019-02-07 Schuler Pressen Gmbh Press and method for cold working a blank to form a hollow body
JP6978650B1 (en) * 2020-09-14 2021-12-08 株式会社エヌ・ティ・ティ・データ・ザムテクノロジーズ Heat treatment method for laminated model and manufacturing method for low thermal expansion alloy model
WO2024014484A1 (en) * 2022-07-12 2024-01-18 新報国マテリアル株式会社 Low thermal expansion alloy

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014113599A (en) * 2012-12-06 2014-06-26 Nippon Chuzo Co Ltd Component for precision instrument, and method of manufacturing the same
KR20160131997A (en) * 2014-03-10 2016-11-16 니폰추조 가부시키가이샤 Low thermal expansion casting alloy and method for producing same
KR102077297B1 (en) * 2014-03-10 2020-02-13 니폰추조 가부시키가이샤 Low thermal expansion casting alloy and method for producing same
CN105296846A (en) * 2014-07-02 2016-02-03 新报国制铁株式会社 Low thermal expansion cast steel product and manufacture method thereof
CN105296844A (en) * 2014-07-02 2016-02-03 新报国制铁株式会社 Casting with high rigidity and low thermal expansion and manufacture method thereof
JP2016027187A (en) * 2014-07-02 2016-02-18 新報国製鉄株式会社 High-rigidity low-thermal expansion casting and method for producing the same
WO2019025177A1 (en) * 2017-07-31 2019-02-07 Schuler Pressen Gmbh Press and method for cold working a blank to form a hollow body
JP6978650B1 (en) * 2020-09-14 2021-12-08 株式会社エヌ・ティ・ティ・データ・ザムテクノロジーズ Heat treatment method for laminated model and manufacturing method for low thermal expansion alloy model
JP2022047833A (en) * 2020-09-14 2022-03-25 株式会社エヌ・ティ・ティ・データ・ザムテクノロジーズ Method for heat-treating laminated molding and method for producing low thermal expansion alloy molding
WO2024014484A1 (en) * 2022-07-12 2024-01-18 新報国マテリアル株式会社 Low thermal expansion alloy

Also Published As

Publication number Publication date
JP4253100B2 (en) 2009-04-08

Similar Documents

Publication Publication Date Title
JP4424503B2 (en) Steel bar and wire rod
JP6046591B2 (en) Austenitic heat-resistant cast steel
EP0343292B1 (en) Low thermal expansion casting alloy
JP2001262277A (en) Low thermal expansion alloy excellent in machinability and its producing method
JPH0321622B2 (en)
JP5618466B2 (en) High rigidity high damping capacity cast iron
JPH08100239A (en) Alloy tool steel
JP3749922B2 (en) High strength and high damping capacity Fe-Cr-Mn-Co alloy and method for producing the same
JP5893659B2 (en) Low thermal expansion cast alloy and manufacturing method thereof
JP5323369B2 (en) Case-hardened steel with excellent machinability and grain coarsening prevention properties
JPH07278743A (en) Precipitation hardening type high hardness mold material
JP4213901B2 (en) Low thermal expansion casting alloy having excellent hardness and strength at room temperature and low cracking susceptibility during casting, and method for producing the same
JP3563311B2 (en) Copper alloy electrode material for resistance welding and method for producing the same
JP6753850B2 (en) High-strength, low-heat expansion casting alloys for high temperatures, their manufacturing methods, and castings for turbines
JPH09202938A (en) Chromium-molybdenum cast steel excellent in machinability
JPH04111962A (en) Production of high-speed tool steel
JP2585014B2 (en) Free-cutting high-strength low-thermal-expansion cast alloy and method for producing the same
JP4253101B2 (en) High vibration damping cast steel with excellent machinability and manufacturing method thereof
JPS6013050A (en) Heat-resistant alloy
JP2006057139A (en) Spheroidal graphite cast iron having excellent machinability and mechanical property
JPS61563A (en) Nonmagnetic steel for drill collar and its manufacture
JPH0258337B2 (en)
JP5518244B1 (en) Low thermal expansion casting
JPH116042A (en) High speed tool steel improved in hot workability, and its production
JP3287541B2 (en) Free-cutting cast steel for molds and molds

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20061213

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20080709

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080805

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20081003

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20090113

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20090123

R150 Certificate of patent or registration of utility model

Ref document number: 4253100

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120130

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120130

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150130

Year of fee payment: 6

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees