JP2001261432A - Porcelain composition for high-frequency and porcelain for high-frequency - Google Patents

Porcelain composition for high-frequency and porcelain for high-frequency

Info

Publication number
JP2001261432A
JP2001261432A JP2000078012A JP2000078012A JP2001261432A JP 2001261432 A JP2001261432 A JP 2001261432A JP 2000078012 A JP2000078012 A JP 2000078012A JP 2000078012 A JP2000078012 A JP 2000078012A JP 2001261432 A JP2001261432 A JP 2001261432A
Authority
JP
Japan
Prior art keywords
porcelain
glass
weight
frequency
crystal phase
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2000078012A
Other languages
Japanese (ja)
Other versions
JP3793559B2 (en
Inventor
Yoshitake Terashi
吉健 寺師
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kyocera Corp
Original Assignee
Kyocera Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kyocera Corp filed Critical Kyocera Corp
Priority to JP2000078012A priority Critical patent/JP3793559B2/en
Priority to US09/795,909 priority patent/US6753277B2/en
Priority to DE10109531A priority patent/DE10109531B4/en
Publication of JP2001261432A publication Critical patent/JP2001261432A/en
Application granted granted Critical
Publication of JP3793559B2 publication Critical patent/JP3793559B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/4805Shape
    • H01L2224/4809Loop shape
    • H01L2224/48091Arched
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01012Magnesium [Mg]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/0102Calcium [Ca]

Abstract

PROBLEM TO BE SOLVED: To obtains porcelain which is used as an insulating layer of a wiring board for high-frequency and capable of being fired at 800-1,000 deg.C and showing reduced dielectric loss in a high-frequency region, also to provide a production process of the porcelain and further to provide a porcelain composition for producing the porcelain. SOLUTION: The production process of this porcelain comprises: mixing 40-99 wt.% of glass which contains SiO2, Al2O3, MgO and CaO and from which a diopside-type crystalline phase (DI) can be crystallized out, with 1-60 wt.% of at least γ-alumina (Al2O3) to obtain a mixture; forming the mixture into a green body; and thereafter firing the green body at 800-1,000 deg.C to produce the objective porcelain which contains the diopside-type crystalline phase (DI) and at least a γ-alumina crystalline phase (Al) and also has a <=30×10-4 dielectric loss in the region of 60-77 GHz, a dielectric constant of <=10, >=250 MPa porcelain strength and a >=5×10-6/ deg.C thermal expansion coefficient in the range of room temperature to 400 deg.C.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、半導体素子収納用
パッケージや多層配線基板等に適用され、特に、マイク
ロ波やミリ波等の高周波帯で用いられる配線基板におけ
る絶縁基板として用いられる高周波用磁器組成物および
高周波用磁器並びに高周波用磁器の製造方法、さらには
高周波用磁器を絶縁基板とした配線基板に関するもので
ある。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention is applied to a package for housing a semiconductor element, a multilayer wiring board, and the like, and in particular, a high-frequency ceramic used as an insulating substrate in a wiring board used in a high-frequency band such as a microwave or a millimeter wave. The present invention relates to a composition, a high frequency porcelain, a method of manufacturing the high frequency porcelain, and a wiring substrate using the high frequency porcelain as an insulating substrate.

【0002】[0002]

【従来技術】従来、セラミック多層配線基板としては、
アルミナ質焼結体からなる絶縁基板の表面または内部に
タングステンやモリブデンなどの高融点金属からなる配
線層が形成されたものが最も普及している。
2. Description of the Related Art Conventionally, as a ceramic multilayer wiring board,
An insulating substrate made of an alumina-based sintered body having a wiring layer made of a refractory metal such as tungsten or molybdenum formed on the surface or inside thereof is most widely used.

【0003】また、最近に至り、高度情報化時代を迎
え、使用される周波数帯域はますます高周波化に移行し
つつある。このような、高周波の信号の伝送を必要とす
る高周波配線基板においては、高周波信号を損失なく伝
送する上で、配線層を形成する導体の抵抗が小さいこ
と、また絶縁基板の高周波領域での誘電損失が小さいこ
とが要求される。
Further, recently, with the era of advanced information, the frequency band to be used is shifting to higher and higher frequencies. In such a high-frequency wiring board that requires transmission of a high-frequency signal, in order to transmit a high-frequency signal without loss, the resistance of the conductor forming the wiring layer is small, and the dielectric of the insulating substrate in the high-frequency region is low. Low loss is required.

【0004】ところが、従来のタングステン(W)や、
モリブデン(Mo)などの高融点金属は導体抵抗が大き
く、信号の伝搬速度が遅く、また、1GHz以上の高周
波領域の信号伝搬も困難であることから、W、Moなど
の金属に代えて銅、銀、金などの低抵抗金属を使用する
ことが必要となっている。
However, conventional tungsten (W),
Refractory metals such as molybdenum (Mo) have high conductor resistance, have low signal propagation speeds, and have difficulty in signal propagation in the high-frequency region of 1 GHz or higher. It is necessary to use low resistance metals such as silver and gold.

【0005】このような低抵抗金属からなる配線層は、
融点が低く、アルミナと同時焼成することが不可能であ
るため、最近では、ガラス、またはガラスとセラミック
スとの複合材料からなる、いわゆるガラスセラミックス
を絶縁基板として用いた配線基板が開発されつつある。
例えば、特開昭60−240135号のように、ホウケ
イ酸亜鉛系ガラスに、Al23、ジルコニア、ムライト
などのフィラーを添加したものを低抵抗金属と同時焼成
した多層配線基板が提案されている。
A wiring layer made of such a low-resistance metal is
Since the melting point is low and it is impossible to co-fire with alumina, recently, a wiring board using glass or a composite material of glass and ceramic, that is, a so-called glass ceramic as an insulating substrate is being developed.
For example, as disclosed in Japanese Patent Application Laid-Open No. 60-240135, a multilayer wiring board is proposed in which a zinc borosilicate glass to which a filler such as Al 2 O 3 , zirconia, or mullite is added is co-fired with a low-resistance metal. I have.

【0006】そこで、例えば、特開平10−12043
6号公報、特開平11−49531号公報では、ディオ
プサイド結晶相を析出可能なガラス粉末70〜100重
量%に対して、アルミナ、ムライト等のセラミック粉末
0〜30重量%を添加、混合して焼成した磁器が提案さ
れ、2GHzの周波数での誘電損失を3〜7×10-4
低減できることが開示されている。
Accordingly, for example, Japanese Patent Application Laid-Open No. 10-12043 discloses
No. 6, JP-A-11-49531, 0 to 30% by weight of ceramic powder such as alumina or mullite is added and mixed with 70 to 100% by weight of glass powder capable of precipitating a diopside crystal phase. A sintered porcelain has been proposed and discloses that the dielectric loss at a frequency of 2 GHz can be reduced to 3 to 7 × 10 −4 .

【0007】[0007]

【発明が解決しようとする課題】しかしながら、MgC
aSi26、Ca(Mg,Al)(Si,Al)26
ディオプサイド型結晶相は、高周波帯における誘電損失
が低い結晶であるが、表面結晶化しやすくガラス原料粒
子内部にガラスが残存して磁器中のディオプサイド結晶
相の割合を高めることが難しい材料であることが知られ
ており、2GHzでの誘電損失を3〜7×10-4とする
ことはできるもののミリ波帯での誘電損失は高いもので
あり、特に、ディオプサイド型結晶相を析出可能なガラ
ス中にSrOを含有せしめた場合、低温での焼成によっ
て磁器を緻密化ができる反面、磁器中のディオプサイド
結晶相の結晶化度が低下して磁器中に誘電損失の大きな
ガラス相の割合が増大する結果、誘電損失が低下すると
いう問題があった。
SUMMARY OF THE INVENTION However, MgC
The diopside type crystal phase of aSi 2 O 6 and Ca (Mg, Al) (Si, Al) 2 O 6 is a crystal having a low dielectric loss in a high frequency band, but is easily crystallized on the surface, and the glass inside the glass raw material particles is glassy. It is known that it is difficult to increase the ratio of the diopside crystal phase in the porcelain due to the remaining, and the dielectric loss at 2 GHz can be 3 to 7 × 10 −4 , but the millimeter wave The dielectric loss in the band is high. In particular, when SrO is contained in a glass capable of precipitating a diopside type crystal phase, the porcelain can be densified by firing at a low temperature, but the dio in the porcelain can be reduced. As a result, the crystallinity of the puside crystal phase decreases and the proportion of the glass phase having a large dielectric loss in the porcelain increases, resulting in a problem that the dielectric loss decreases.

【0008】従って、本発明は、高周波領域における誘
電損失をさらに低減できる磁器およびその製造方法並び
にそれを作製可能な高周波用磁器組成物、さらにはそれ
を用いた配線基板を提供することを目的とする。
Accordingly, an object of the present invention is to provide a porcelain capable of further reducing dielectric loss in a high-frequency region, a method for producing the same, a high-frequency porcelain composition capable of producing the same, and a wiring board using the same. I do.

【0009】[0009]

【課題を解決するための手段】本発明者は、上記課題を
鋭意検討した結果、SiO2、Al23、MgO、Sr
OおよびCaOを含み、ディオプサイド型結晶相を析出
可能なガラスに対して、フィラーとして少なくともγ−
Al23を所定の比率で配合することによって、磁器中
のディオプサイド型結晶相の析出割合を高めることがで
きるとともに、誘電損失増加の原因となるガラスの残留
量を低減することができる結果、高周波領域における誘
電損失を大幅に低減できることを知見した。
Means for Solving the Problems As a result of diligent study of the above-mentioned problems, the present inventors have found that SiO 2 , Al 2 O 3 , MgO, Sr
For a glass containing O and CaO and capable of precipitating a diopside crystal phase, at least γ-
By blending Al 2 O 3 at a predetermined ratio, the precipitation ratio of the diopside crystal phase in the porcelain can be increased, and the residual amount of glass that causes an increase in dielectric loss can be reduced. As a result, it was found that the dielectric loss in the high frequency region can be significantly reduced.

【0010】即ち、本発明の高周波用磁器組成物は、S
iO2、Al23、MgO、SrOおよびCaOを含
み、ディオプサイド型結晶相を析出可能なガラス40〜
99重量%と、フィラーとして少なくともγ−Al23
を1〜60重量%との割合で含有することを特徴とする
ものである。
That is, the high frequency porcelain composition of the present invention has
Glass 40 containing iO 2 , Al 2 O 3 , MgO, SrO and CaO and capable of precipitating a diopside crystal phase
99% by weight and at least γ-Al 2 O 3
Is contained in a ratio of 1 to 60% by weight.

【0011】ここで、前記ガラスは、SiO230〜5
5重量%と、Al234〜15重量%と、MgO14〜
30重量%と、CaO5〜20重量%と、SrO10〜
25重量%とからなることが望ましい。
Here, the glass is made of SiO 2 30 to 5
5% by weight, 4 to 15% by weight of Al 2 O 3 ,
30% by weight, 5-20% by weight of CaO, 10% by weight of SrO10
It is desirably 25% by weight.

【0012】また、本発明の高周波用磁器は、少なくと
もMg、Ca、Si、Sr、Alを含むディオプサイド
型結晶相と、少なくともγ−Al23結晶相とを含有
し、且つ60〜77GHzでの誘電損失が30×10-4
以下であることを特徴とするものである。
Further, the high frequency porcelain of the present invention contains at least a diopside type crystal phase containing Mg, Ca, Si, Sr, and Al, and at least a γ-Al 2 O 3 crystal phase, and Dielectric loss at 77 GHz is 30 × 10 -4
It is characterized by the following.

【0013】なお、ガラス相を30重量%以下の割合で
含有すること、該ガラス相が少なくともSiを酸化物
(SiO2)換算で50重量%以上含有することが望ま
しい。
It is desirable that the glass phase contains 30% by weight or less of the glass phase, and that the glass phase contains at least 50% by weight or more of Si in terms of oxide (SiO 2 ).

【0014】また、室温から400℃における熱膨張係
数が5×10-6/℃以上、誘電率が10以下、磁器強度
250MPa以上であること、熱伝導率が3W/m・K
以上であることが望ましい。
The thermal expansion coefficient from room temperature to 400 ° C. is 5 × 10 −6 / ° C. or more, the dielectric constant is 10 or less, the porcelain strength is 250 MPa or more, and the thermal conductivity is 3 W / m · K.
It is desirable that this is the case.

【0015】また、本発明の高周波用磁器の製造方法
は、SiO2、Al23、MgO、SrOおよびCaO
を含み、ディオプサイド型結晶相を析出可能なガラス4
0〜99重量%と、フィラーとして少なくともγ−Al
23を1〜60重量%とからなる混合物を成形後、80
0〜1000℃の温度で焼成して、少なくともMg、C
a、Si、Sr、Alを含むディオプサイド型結晶相
と、少なくともγ−Al23結晶相と、を含有する磁器
を作製することを特徴とするものである。
The method for producing a high-frequency porcelain according to the present invention is characterized in that it comprises SiO 2 , Al 2 O 3 , MgO, SrO and CaO.
Containing a diopside crystal phase
0-99% by weight and at least γ-Al as a filler
After forming a mixture comprising 1 to 60% by weight of 2 O 3 , 80%
Firing at a temperature of 0 to 1000 ° C. to at least Mg, C
The present invention is characterized by producing a porcelain containing a diopside type crystal phase containing a, Si, Sr, and Al and at least a γ-Al 2 O 3 crystal phase.

【0016】さらに、本発明の配線基板は、上記高周波
用磁器からなる絶縁基板の表面および/または内部に、
特に、CuまたはAgを主成分とするメタライズ配線層
が配設されたものである。
Further, the wiring board of the present invention is provided on the surface and / or inside of the insulating substrate made of the high frequency porcelain.
Particularly, a metallized wiring layer mainly composed of Cu or Ag is provided.

【0017】[0017]

【発明の実施の形態】本発明の高周波用磁器組成物は、
SiO2、Al23、MgO、SrOおよびCaOを含
み、ディオプサイド型結晶相を析出可能なガラスを40
〜99重量%と、フィラーとして少なくともγ−Al2
3を1〜60重量%との割合で含有するものである。
BEST MODE FOR CARRYING OUT THE INVENTION The high frequency porcelain composition of the present invention comprises:
Glass containing SiO 2 , Al 2 O 3 , MgO, SrO and CaO and capable of precipitating a diopside crystal phase is 40
And at least γ-Al 2 as a filler.
O 3 and those containing at a ratio of 1 to 60 wt%.

【0018】各成分組成を上記の範囲に限定したのは、
上記ガラスが40重量%よりも少ないと、1000℃以
下の温度での焼成により磁器を緻密化させることが困難
であり、99重量%よりも多いと、磁器中の結晶化度が
低下し磁器の誘電損失が高くなるためである。ガラスの
特に望ましい範囲は、65〜97重量%、特に、80〜
95重量%である。
The reason for limiting each component composition to the above range is as follows.
If the amount of the glass is less than 40% by weight, it is difficult to densify the porcelain by firing at a temperature of 1000 ° C. or less. If the amount is more than 99% by weight, the crystallinity in the porcelain decreases, and This is because the dielectric loss increases. A particularly desirable range of glass is 65-97% by weight, especially 80-97% by weight.
95% by weight.

【0019】ここで、前記ガラスは、ガラスの軟化点が
500〜800℃であることが望ましく、ガラスの組成
は、SiO230〜55重量%、Al234〜15重量
%、MgO14〜30重量%、CaO5〜20重量%、
SrO10〜25重量%の割合であることが望ましい。
Here, the glass preferably has a softening point of 500 to 800 ° C., and the composition of the glass is 30 to 55% by weight of SiO 2 , 4 to 15% by weight of Al 2 O 3 , and 14 to 15% by weight of MgO. 30% by weight, 5-20% by weight of CaO,
Desirably, the ratio of SrO is 10 to 25% by weight.

【0020】上記ガラス成分のうち、SrOは磁器の緻
密化を促進させる働きをなし、磁器中に含有可能なフィ
ラー量を増加させて高価なガラス量を減らすことができ
ることから、原料コストを下げることができるととも
に、磁器の熱膨張係数向上、磁器の誘電率の調整、磁器
強度向上および熱伝導率向上等を図ることができる。
Among the above glass components, SrO has a function of accelerating the densification of porcelain, and can reduce the amount of expensive glass by increasing the amount of filler that can be contained in the porcelain. In addition to improving the thermal expansion coefficient of the porcelain, adjusting the dielectric constant of the porcelain, improving the strength of the porcelain, improving the thermal conductivity, and the like.

【0021】上記ディオプサイド型結晶相を析出可能な
ガラスは、焼結体中にガラス原料粒子の表面のみが結晶
化して中心部に誘電損失の大きなガラス相が残存しやす
いものであるが、本発明によれば、前記ガラスに対し
て、フィラーとして少なくともγ−Al23を所定の比
率で配合することによって、磁器中のディオプサイド型
結晶相の析出割合を高めることができ、特に1GHz以
上、さらに20GHz以上、さらには50GHz以上、
さらにまた70GHz以上の高周波領域における誘電損
失を大幅に低減できる。
In the glass capable of precipitating the diopside type crystal phase, only the surface of the glass material particles is crystallized in the sintered body, and a glass phase having a large dielectric loss tends to remain in the center. According to the present invention, by mixing at least γ-Al 2 O 3 as a filler at a predetermined ratio with respect to the glass, it is possible to increase the precipitation ratio of a diopside crystal phase in the porcelain, 1 GHz or more, further 20 GHz or more, furthermore 50 GHz or more,
Furthermore, dielectric loss in a high frequency region of 70 GHz or more can be significantly reduced.

【0022】また、上記のガラスからのディオプサイド
型結晶相の析出割合を高める上では、ガラス中における
CaOとMgOの合計量が35〜50重量%であること
が望ましい。
Further, in order to increase the precipitation ratio of the diopside type crystal phase from the glass, it is desirable that the total amount of CaO and MgO in the glass is 35 to 50% by weight.

【0023】一方、上記組成物中にフィラーとして配合
されるγ−Al23の含有量は、1〜60重量%である
ことが重要である。すなわち、γ−Al23の含有量が
1重量%よりも少ないと、磁器中の結晶化率が低下して
ガラス相の割合が高くなり磁器の誘電損失が高くなるた
めであり、逆に、γ−Al23の含有量が60重量%を
越えると、難焼結性となり、1000℃以下の焼成温度
で緻密化することができないためである。γ−Al23
の望ましい範囲は、低温焼成化の点で3〜35重量%、
特に5〜20重量%である。
On the other hand, it is important that the content of γ-Al 2 O 3 incorporated as a filler in the composition is 1 to 60% by weight. That is, when the content of γ-Al 2 O 3 is less than 1% by weight, the crystallization ratio in the porcelain decreases, the proportion of the glass phase increases, and the dielectric loss of the porcelain increases. If the content of γ-Al 2 O 3 exceeds 60% by weight, sintering becomes difficult, and densification cannot be performed at a firing temperature of 1000 ° C. or lower. γ-Al 2 O 3
Is preferably from 3 to 35% by weight in terms of low-temperature calcination,
In particular, it is 5 to 20% by weight.

【0024】また、上記組成物中にはフィラーとして、
γ−Al23以外にα−Al23(コランダム)、β−
Al23、MgAl24、ZnAl24、3Al23
2SiO2、Mg2Al4Si518、SiO2、TiO2
MgTiO3、SrTiO3、BaTiO3、CaTi
3、Zn2TiO4、CuO、Cu2O等、特に低誘電損
失化の点で、MgAl24、ZnAl24、MgTiO
3、SrTiO3、SiO 2、中でもSiO2、MgTiO
3、磁器強度の向上および熱伝導率の向上の点α−Al2
3(コランダム)、β−Al23、特にα−Al23
等の他の結晶相を含有してもよいが、上記組成物中のフ
ィラー成分はγ−Al23も含めて総量で60重量%以
下であることが望ましい。
In the above composition, as a filler,
γ-AlTwoOThreeOther than α-AlTwoOThree(Corundum), β-
AlTwoOThree, MgAlTwoOFour, ZnAlTwoOFour, 3AlTwoOThree
2SiOTwo, MgTwoAlFourSiFiveO18, SiOTwo, TiOTwo,
MgTiOThree, SrTiOThree, BaTiOThree, CaTi
OThree, ZnTwoTiOFour, CuO, CuTwoO, especially low dielectric loss
In terms of loss, MgAlTwoOFour, ZnAlTwoOFour, MgTiO
Three, SrTiOThree, SiO TwoEspecially SiOTwo, MgTiO
ThreeΑ-Al for improving porcelain strength and thermal conductivityTwo
OThree(Corundum), β-AlTwoOThreeEspecially α-AlTwoOThree
Other crystal phases such as
The filler component is γ-AlTwoOThree60% by weight or less
It is desirable to be below.

【0025】上記の態様の磁器組成物は、800〜10
00℃の温度範囲での焼成によって相対密度97%以
上、特に99%以上まで緻密化することができる。
The porcelain composition of the above embodiment has a composition of 800 to 10
By firing in a temperature range of 00 ° C., the relative density can be reduced to 97% or more, particularly to 99% or more.

【0026】また、本発明の高周波用磁器は、結晶相と
して、少なくともγ−Al23(γ−Al)と、少なく
ともMg、Ca、Si、Sr、Alを含むディオプサイ
ド型結晶相であるCa(Mg,Al)(Si,Sr,A
l)26(DI)とを含有するものである。
Further, the high frequency porcelain of the present invention has a diopside type crystal phase containing at least γ-Al 2 O 3 (γ-Al) and at least Mg, Ca, Si, Sr and Al as crystal phases. Certain Ca (Mg, Al) (Si, Sr, A
l) 2 O 6 (DI).

【0027】また、上記磁器は、上記ディオプサイド型
結晶相Ca(Mg,Al)(Si,Al)26(DI)
のガラスからの析出すること割合が高いことが望まし
く、また、それ以外に、Ca2MgSi27(aker
manite)、CaMgSiO4(monticel
lite)、Ca3MgSi28(merwinit
e)等の類似の相が析出してもよく、また、SrOから
(Ca,Sr)SiO3、SrSiO3等が析出してもよ
い。
Further, the porcelain comprises the diopside type crystal phase Ca (Mg, Al) (Si, Al) 2 O 6 (DI)
Is desirably high in the rate of precipitation from the glass. In addition, Ca 2 MgSi 2 O 7 (aker
manite), CaMgSiO 4 (monticel)
lite), Ca 3 MgSi 2 O 8 (merwinit
A similar phase such as e) may be precipitated, and (Ca, Sr) SiO 3 , SrSiO 3, etc. may be precipitated from SrO.

【0028】さらに、γ−Al23は、例えば、球状、
針状、不定形等の粒状をなし、磁器中に分散して存在す
ることが望ましく、また、焼成によってγ−Al23
一部が相変態したα−Al23が存在してもよい。
Further, γ-Al 2 O 3 is, for example, spherical,
It is desirable that the particles have a shape of a needle, an irregular shape, or the like and are dispersed in the porcelain, and that α-Al 2 O 3 in which a part of γ-Al 2 O 3 is transformed by firing is present. Is also good.

【0029】なお、磁器中には上記の結晶相の粒界に非
晶質ガラス(G)が残存するが、非晶質ガラス(G)は
誘電損失を低減するため、また磁器強度向上の点で磁器
中のガラスの存在割合を30重量%以下、望ましくは1
0重量%以下、特に5重量%以下、さらに2重量%以下
に低めること、また、誘電損失の低減の点でガラス中の
Si成分の含有量がSiO2換算で50重量%以上、特
に60重量%以上、さらに65重量%以上であることが
望ましい。
The amorphous glass (G) remains in the porcelain at the grain boundaries of the above-mentioned crystal phase. However, the amorphous glass (G) reduces the dielectric loss, and also has the problem of improving the strength of the porcelain. To reduce the proportion of glass in the porcelain to 30% by weight or less, preferably 1%.
From the viewpoint of reducing the content to 0% by weight or less, particularly 5% by weight or less, and further 2% by weight or less, and reducing the dielectric loss, the content of the Si component in the glass is 50% by weight or more, particularly 60% by weight, in terms of SiO 2. %, More preferably at least 65% by weight.

【0030】上記態様の磁器は、60〜77GHzにお
ける誘電損失が30×10-4以下、望ましくは15×1
-4以下、特に10×10-4以下の高周波帯で誘電損失
の小さいものであり、1GHz以上、特に20GHz以
上、さらには50GHz以上、またさらには70GHz
以上の高周波用配線基板の絶縁層を形成するのに好適な
磁器である。
The porcelain of the above embodiment has a dielectric loss of 30 × 10 −4 or less at 60 to 77 GHz, preferably 15 × 1 −4.
The dielectric loss is small in a high frequency band of 0 -4 or less, particularly 10 × 10 -4 or less, and 1 GHz or more, particularly 20 GHz or more, furthermore 50 GHz or more, and even 70 GHz.
This is a porcelain suitable for forming the insulating layer of the high-frequency wiring board described above.

【0031】また、上記磁器中のガラスの結晶化度を高
めるとともに、フィラー成分を添加することによって磁
器の熱伝導率を3W/m・K以上と高めることができ
る。
In addition to increasing the crystallinity of the glass in the porcelain, the thermal conductivity of the porcelain can be increased to 3 W / m · K or more by adding a filler component.

【0032】さらに、上記ディオプサイド型結晶相は、
約8〜9×10-6/℃の高熱膨張特性を有することか
ら、上記組成のガラスよりディオプサイド型結晶相を析
出させるとともに、少なくともγ−Al23を特定量添
加し、少なくともγ−Al23を析出させることによ
り、熱膨張係数を5×10-6/℃以上、7×10-6/℃
以上に高めるとともに、磁器の誘電率を10以下、特に
8以下と低く、磁器強度が250MPa以上、特に30
0MPa以上に高めることが可能である。
Further, the diopside type crystal phase is
Since it has a high thermal expansion characteristic of about 8 to 9 × 10 −6 / ° C., a diopside crystal phase is precipitated from glass having the above composition, and at least γ-Al 2 O 3 is added in a specific amount, and at least γ is added. by precipitating -Al 2 O 3, the thermal expansion coefficient of 5 × 10 -6 / ℃ or higher, 7 × 10 -6 / ℃
In addition to the above, the dielectric constant of the porcelain is as low as 10 or less, especially 8 or less, and the porcelain strength is 250 MPa or more, particularly 30
It can be increased to 0 MPa or more.

【0033】すなわち、磁器の熱膨張係数は、実装する
チップ部品等やプリント基板等の熱膨張係数に近似する
ように適宜調整することが望ましく、特に室温から40
0℃における熱膨張係数が5×10-6/℃以上、特に7
×10-6/℃以上、さらに8×10-6/℃以上であるこ
とが望ましい。これは、上記の磁器の熱膨張係数が実装
されるチップ部品等やプリント基板のそれと差がある場
合、半田実装時や半導体素子の作動停止による繰り返し
温度サイクルによって、チップ部品等やプリント基板と
パッケージとの実装部に熱膨張差に起因する応力が発生
し、実装部にクラック等が発生し、実装構造の信頼性を
損ねてしまうためである。
That is, the coefficient of thermal expansion of the porcelain is desirably adjusted appropriately so as to approximate the coefficient of thermal expansion of a chip component or a printed circuit board to be mounted.
The coefficient of thermal expansion at 0 ° C. is 5 × 10 −6 / ° C. or more, especially 7
× 10 -6 / ° C. or higher, it is desirable that further 8 × 10 -6 / ℃ above. This is because if the coefficient of thermal expansion of the porcelain is different from that of the mounted chip component or printed circuit board, the temperature of the chip component, printed circuit board and package may be increased by repeated temperature cycles during solder mounting or by stopping the operation of the semiconductor element. This is because stress due to the difference in thermal expansion is generated in the mounting portion, and cracks and the like are generated in the mounting portion, which impairs the reliability of the mounting structure.

【0034】具体的には、GaAs系のチップ部品との
整合を図る上ではGaAs系のチップ部品との熱膨張係
数の差が2×10-6/℃以下であり、一方、プリント基
板との整合を図る上では、プリント基板との熱膨張係数
の差が2×10-6/℃以下であることが望ましい。な
お、配線基板とプリント基板との実装については、ボー
ルグリッドアレイ(BGA)やランドグリッドアレイ
(LGA)等のように半田を介して直接プリント基板と
実装される場合にとくに有効である。
More specifically, in order to match with the GaAs-based chip component, the difference in thermal expansion coefficient from the GaAs-based chip component is 2 × 10 −6 / ° C. or less. In order to achieve matching, it is desirable that the difference in the coefficient of thermal expansion from the printed circuit board be 2 × 10 −6 / ° C. or less. The mounting of the wiring board and the printed board is particularly effective when the printed circuit board is directly mounted via solder, such as a ball grid array (BGA) or a land grid array (LGA).

【0035】さらに、本発明の磁器を配線基板の絶縁基
板として用いる場合、誘電率が10以下、特に8以下と
低いために高周波伝送線路やアンテナの伝送損失を低め
ることができる。
Further, when the porcelain of the present invention is used as an insulating substrate of a wiring board, the dielectric constant is as low as 10 or less, particularly 8 or less, so that the transmission loss of a high-frequency transmission line or an antenna can be reduced.

【0036】また、磁器強度が250MPa以上、特に
300MPa以上と高めることによって、半導体素子等
の電子部品の実装時、または入出力端子部に施すリード
接続時に磁器にかかる応力による破損等を防止すること
ができる。
Further, by increasing the strength of the porcelain to 250 MPa or more, particularly 300 MPa or more, it is possible to prevent breakage or the like due to stress applied to the porcelain at the time of mounting electronic components such as semiconductor elements or connecting leads to input / output terminals. Can be.

【0037】次に、本発明における高周波用磁器組成物
を用い磁器を製造する方法について説明する。
Next, a method for producing a porcelain using the high frequency porcelain composition of the present invention will be described.

【0038】まず、出発原料として、SiO2、Al2
3、MgO、CaO、SrOを含みディオプサイド型結
晶相を析出可能な結晶化ガラス粉末40〜99重量%
と、γ−Al23を1〜60重量%との割合で秤量混合
する。
First, as starting materials, SiO 2 , Al 2 O
3 , 40 to 99% by weight of crystallized glass powder containing MgO, CaO and SrO and capable of precipitating a diopside crystal phase
And γ-Al 2 O 3 are weighed and mixed at a ratio of 1 to 60% by weight.

【0039】なお、上記γ−Al23としては、球状、
針状、不定形状等の粉末状であることが望ましく、その
平均粒径が0.5μm以上、特に1〜30μm、さらに
1〜10μmであることが望ましく、該粉末中には低温
焼成化の点で、例えばSi、Mg、Ca、Sr等の不可
避不純物が8重量%以下、特に1重量%以下含有されて
いてもよい。
The γ-Al 2 O 3 is spherical,
It is desirable to be in the form of powder such as needles or irregular shapes, and the average particle size is 0.5 μm or more, particularly 1 to 30 μm, and more preferably 1 to 10 μm. For example, unavoidable impurities such as Si, Mg, Ca, and Sr may be contained in an amount of 8% by weight or less, particularly 1% by weight or less.

【0040】そして、この混合粉末を用いてドクターブ
レード法やカレンダーロール法、あるいは圧延法、プレ
ス成形法の周知の成型法により所定形状の成形体を作製
した後、該成形体を800〜1000℃の酸化性雰囲気
または不活性雰囲気中で焼成することにより作製するこ
とができる。
Then, a molded article having a predetermined shape is prepared using the mixed powder by a known molding method such as a doctor blade method, a calender roll method, a rolling method, or a press molding method. By baking in an oxidizing atmosphere or an inert atmosphere.

【0041】ここで、焼成温度を上記範囲に限定した理
由は、焼成温度が800℃より低いと、磁器を緻密化で
きないとともにガラスの結晶化度が低く、高周波領域で
の誘電損失が増大するためであり、逆に1000℃を越
えると、CuやAg等の低抵抗金属との同時焼成ができ
ないためである。なお、焼成時にγ−Al23の一部が
α−Al23に相変態してもよい。
The reason for limiting the firing temperature to the above range is that if the firing temperature is lower than 800 ° C., the porcelain cannot be densified, the crystallinity of the glass is low, and the dielectric loss in the high frequency region increases. Conversely, if the temperature exceeds 1000 ° C., simultaneous firing with a low-resistance metal such as Cu or Ag cannot be performed. Note that a part of γ-Al 2 O 3 may be transformed into α-Al 2 O 3 during firing.

【0042】また、メタライズ配線層を具備する配線基
板を作製するには、前記混合粉末に、適当な有機溶剤、
溶媒を用い混合してスラリーを調製し、これを従来周知
のドクターブレード法やカレンダーロール法、あるいは
圧延法、プレス成形法により、シート状に成形する。そ
して、このシート状成形体に所望によりスルーホールを
形成した後、スルーホール内に、銅、金、銀のうちの少
なくとも1種を含む金属ペーストを充填する。そして、
シート状成形体表面には、高周波信号が伝送可能な高周
波線路パターン等に前記金属ペーストまたは上記金属か
らなる金属箔を用いてスクリーン印刷法、グラビア印刷
法、転写法などによって配線層の厚みが5〜30μmと
なるように、印刷塗布または転写する。
In order to produce a wiring board having a metallized wiring layer, a suitable organic solvent,
A slurry is prepared by mixing with a solvent, and the slurry is formed into a sheet by a well-known doctor blade method, calender roll method, rolling method, or press molding method. Then, after a through-hole is formed in this sheet-like molded body as desired, the through-hole is filled with a metal paste containing at least one of copper, gold, and silver. And
On the surface of the sheet-like molded body, the thickness of the wiring layer is reduced to 5 by a screen printing method, a gravure printing method, a transfer method, or the like using the above-mentioned metal paste or a metal foil made of the above-mentioned metal in a high-frequency line pattern capable of transmitting a high-frequency signal. Print or transfer to a thickness of と 30 μm.

【0043】その後、複数のシート状成形体を位置合わ
せして積層圧着し、800〜1000℃の窒素ガスや窒
素−酸素混合ガス等の雰囲気で焼成することにより、高
周波用配線基板を作製することができる。
Thereafter, a plurality of sheet-shaped molded bodies are aligned, laminated and pressed, and fired in an atmosphere of nitrogen gas or a mixed gas of nitrogen and oxygen at 800 to 1000 ° C. to produce a high-frequency wiring substrate. Can be.

【0044】そして、この配線基板の表面には、適宜半
導体素子等のチップ部品が搭載され配線層と信号の伝達
が可能なように接続される。接続方法としては、配線層
上に直接搭載させて接続させたり、あるいは樹脂、Ag
−エポキシ、Ag−ガラス、Au−Si等の樹脂、金
属、セラミックス等の厚み50μm程度の接着剤により
チップ部品を絶縁基板表面に固着し、ワイヤーボンディ
ング、TABテープなどにより配線層と半導体素子とを
接続したりする。
A chip component such as a semiconductor element is appropriately mounted on the surface of the wiring board, and is connected to the wiring layer so that signals can be transmitted. As a connection method, a connection is made by directly mounting on the wiring layer, or resin, Ag, or the like.
-The chip component is fixed to the surface of the insulating substrate with an adhesive such as epoxy, Ag-glass, resin such as Au-Si, metal, ceramics, etc. having a thickness of about 50 μm, and the wiring layer and the semiconductor element are bonded by wire bonding, TAB tape or the like. Or connect.

【0045】なお、半導体素子としては、Si系やGa
As系等のチップ部品が使用できるが、特に熱膨張係数
の近似の点で、GaAs系のチップ部品の実装に有効で
ある。
As the semiconductor element, Si-based or Ga
Although As-based chip components can be used, they are particularly effective for mounting GaAs-based chip components in terms of approximation of the coefficient of thermal expansion.

【0046】さらに、半導体素子が搭載された配線基板
表面に、絶縁基板と同種の絶縁材料や、その他の絶縁材
料、あるいは放熱性が良好な金属等からなり、電磁波遮
蔽性を有するキャップをガラス、樹脂、ロウ材等の接着
剤により接合してもよく、これにより半導体素子を気密
に封止することができる。
Further, a cap made of the same kind of insulating material as the insulating substrate, another insulating material, or a metal having a good heat radiation property and having an electromagnetic wave shielding property is provided on the surface of the wiring board on which the semiconductor element is mounted, with glass, The semiconductor element may be hermetically sealed by bonding with an adhesive such as a resin or a brazing material.

【0047】(配線基板の構成)本発明の磁器組成物を
好適に使用しうる高周波用配線基板の一例である半導体
素子収納用パッケージの具体的な構造とその実装構造に
ついて図1をもとに説明する。図1は、半導体素子収納
用パッケージA、特に、接続端子がボール状端子からな
るボールグリッドアレイ(BGA)型パッケージの概略
断面図である。図1によれば、パッケージAは、絶縁材
料からなる絶縁基板1と蓋体2によりキャビティ3が形
成されており、そのキャビティ3内には、GaAs等の
チップ部品4が前述の接着剤等により実装されている。
(Structure of Wiring Board) A specific structure of a package for housing a semiconductor element, which is an example of a high-frequency wiring board in which the porcelain composition of the present invention can be suitably used, and a mounting structure thereof will be described with reference to FIG. explain. FIG. 1 is a schematic cross-sectional view of a package A for housing a semiconductor element, in particular, a ball grid array (BGA) type package in which connection terminals are ball-shaped terminals. According to FIG. 1, a package A has a cavity 3 formed by an insulating substrate 1 made of an insulating material and a lid 2, and a chip component 4 such as GaAs is formed in the cavity 3 by the above-mentioned adhesive or the like. Has been implemented.

【0048】また、絶縁基板1の表面および内部には、
チップ部品4と電気的に接続された配線層5が形成され
ている。この配線層5は、高周波信号の伝送時に導体損
失を極力低減するために、銅、銀あるいは金などの低抵
抗金属を主成分とすることが望ましい。また、この配線
層5に1GHz以上の高周波信号を伝送する場合には、
高周波信号が損失なく伝送されることが必要となるた
め、配線層5は周知のストリップ線路、マイクロストリ
ップ線路、コプレーナ線路、誘電体導波管線路のうちの
少なくとも1種から構成される。
Also, on the surface and inside of the insulating substrate 1,
A wiring layer 5 electrically connected to the chip component 4 is formed. The wiring layer 5 preferably contains a low-resistance metal such as copper, silver, or gold as a main component in order to minimize conductor loss during transmission of a high-frequency signal. When transmitting a high-frequency signal of 1 GHz or more to the wiring layer 5,
Since it is necessary to transmit a high-frequency signal without loss, the wiring layer 5 is formed of at least one of a known strip line, microstrip line, coplanar line, and dielectric waveguide line.

【0049】さらに、図1のパッケージAにおいて、絶
縁基板1の底面には、接続用電極層6が被着形成されて
おり、パッケージA内の配線層5と接続されている。そ
して、接続用電極層6には、半田などのロウ材7により
ボール状端子8が被着形成されている。
Further, in the package A of FIG. 1, a connection electrode layer 6 is formed on the bottom surface of the insulating substrate 1 and is connected to the wiring layer 5 in the package A. A ball-shaped terminal 8 is formed on the connection electrode layer 6 with a brazing material 7 such as solder.

【0050】また、上記パッケージAを外部回路基板に
実装するには、図1に示すように、ポリイミド樹脂、エ
ポキシ樹脂、フェノール樹脂などの有機樹脂を含む絶縁
材料からなる絶縁基板9の表面に配線導体10が形成さ
れた外部回路基板Bに対して、ロウ材を介して実装され
る。具体的には、パッケージAにおける絶縁基板1の底
面に取付けられているボール状端子8と、外部回路基板
Bの配線導体10とを当接させてPb−Snなどの半田
11によりロウ付けして実装される。また、ボール状端
子8自体を溶融させて配線導体10と接続させてもよ
い。
In order to mount the package A on an external circuit board, as shown in FIG. 1, wiring is formed on the surface of an insulating substrate 9 made of an insulating material containing an organic resin such as a polyimide resin, an epoxy resin, and a phenol resin. The external circuit board B on which the conductor 10 is formed is mounted via a brazing material. Specifically, the ball-shaped terminal 8 attached to the bottom surface of the insulating substrate 1 in the package A and the wiring conductor 10 of the external circuit board B are brought into contact with each other and soldered with solder 11 such as Pb-Sn. Implemented. Further, the ball-shaped terminal 8 itself may be melted and connected to the wiring conductor 10.

【0051】さらに、図1によれば、ボール状端子を用
いたが、本発明はこれに限られるものではなく、ボール
状端子を用いず半田にて直接パッケージAの底面に形成
された導体と外部回路基板Bの配線導体10とを接続す
ることもできる。
Further, according to FIG. 1, a ball-shaped terminal is used. However, the present invention is not limited to this, and a conductor formed directly on the bottom surface of the package A by soldering without using the ball-shaped terminal is used. It can also be connected to the wiring conductor 10 of the external circuit board B.

【0052】本発明によれば、GaAs等のチップ部品
4のロウ付けや接着剤により実装したり、このようなボ
ール状端子8を介在したロウ付けによりプリント基板等
の外部回路基板に実装されたりするような表面実装型パ
ッケージにおいて、GaAs等のチップ部品や外部回路
基板の絶縁基板との熱膨張差を従来のセラミック材料よ
りも小さくできることから、かかる実装構造に対して、
熱サイクルが印加された場合においても実装部での応力
の発生を抑制することができる結果、実装構造の長期信
頼性を高めることができる。
According to the present invention, the chip component 4 such as GaAs is mounted by brazing or an adhesive, or is mounted on an external circuit board such as a printed board by brazing with such ball-shaped terminals 8 interposed therebetween. In such a surface mount type package, the difference in thermal expansion between a chip component such as GaAs and an insulating substrate of an external circuit board can be made smaller than that of a conventional ceramic material.
Even when a thermal cycle is applied, the generation of stress in the mounting portion can be suppressed, and as a result, the long-term reliability of the mounting structure can be improved.

【0053】[0053]

【実施例】下記の組成 ガラスA:SiO250.2重量%−Al235.0重
量% −MgO16.1重量%−CaO15.1重量% −SrO13.6重量% ガラスB:SiO247.5重量%−Al234.8重
量% −MgO16.8重量%−CaO14.2重量% −SrO16.7重量% ガラスC:SiO252.0重量%−Al235.0重
量% −MgO18.0重量%−CaO25.0重量% ガラスD:SiO210.4重量%−Al232.5重
量% −B2345.3重量%−CaO35.2重量% −Na2O6.6重量% からなる平均粒径2μmのSrOを含みディオプサイド
結晶相析出可能なガラス粉末2種(ガラスA、B)と、
SrOを含まずディオプサイド結晶相析出可能なガラス
粉末Cと、ディオプサイド結晶相が析出しないガラス粉
末Dを準備した。
EXAMPLES Glass the following composition A: SiO 2 50.2 wt% -Al 2 O 3 5.0 wt% -MgO16.1 wt% -CaO15.1 wt% -SrO13.6 wt% Glass B: SiO 2 47.5 wt% -Al 2 O 3 4.8 wt% -MgO16.8 wt% -CaO14.2 wt% -SrO16.7 wt% glass C: SiO 2 52.0 wt% -Al 2 O 3 5. 0 wt% -MgO18.0 wt% -CaO25.0 wt% glass D: SiO 2 10.4 wt% -Al 2 O 3 2.5 wt% -B 2 O 3 45.3 wt% -CaO35.2 weight % -Na 2 O 6.6 wt% containing SrO having an average particle size of 2 μm and capable of precipitating a diopside crystal phase (glasses A and B);
Glass powder C containing no SrO and capable of precipitating a diopside crystal phase and glass powder D not precipitating a diopside crystal phase were prepared.

【0054】そして、上記ガラスに対して表1、2のフ
ィラー(純度99%)を添加した。なお、各フィラーの
平均粒径は、γ−Al23粉末については1μm、それ
以外については2μmの粉末を用いた。
Then, the fillers (purity: 99%) shown in Tables 1 and 2 were added to the above glass. The average particle size of each filler was 1 μm for the γ-Al 2 O 3 powder, and 2 μm for the others.

【0055】さらに、この混合物に有機バインダ、可塑
剤、トルエンを添加し、スラリーを調製した後、このス
ラリーを用いてドクターブレード法により厚さ300μ
mのグリーンシートを作製した。そして、このグリーン
シートを10〜15枚積層し、50℃の温度で10MP
aの圧力を加えて熱圧着した。得られた積層体を水蒸気
含有/窒素雰囲気中、700℃で脱バインダ処理を行っ
た後、乾燥窒素中で表1、2の焼成温度で2時間焼成し
絶縁基板用磁器を得た。
Further, an organic binder, a plasticizer, and toluene were added to the mixture to prepare a slurry.
m green sheets were produced. Then, 10 to 15 green sheets are laminated, and a temperature of 50 ° C. and a pressure of 10MP
A thermocompression bonding was performed by applying the pressure of a. The obtained laminate was subjected to a binder removal treatment in a steam-containing / nitrogen atmosphere at 700 ° C., and then fired in dry nitrogen at the firing temperatures shown in Tables 1 and 2 for 2 hours to obtain a porcelain for an insulating substrate.

【0056】得られた磁器について、アルキメデス法に
より気孔率を測定した後、誘電率、誘電損失を以下の方
法で評価した。測定は形状、直径2〜7mm、厚み1.
5〜2.5mmの形状に切り出し、60GHzにてネッ
トワークアナライザー、シンセサイズドスイーパーを用
いて誘電体円柱共振器法により行った。測定では、NR
Dガイド(非放射性誘電体線路)で、誘電体共振器の励
起を行い、TE021、TE031モードの共振特性より、誘
電率、誘電損失を算出した。
The porosity of the obtained porcelain was measured by the Archimedes method, and then the dielectric constant and the dielectric loss were evaluated by the following methods. Measurements were taken for shape, diameter 2-7 mm, thickness 1.
The sample was cut into a shape of 5 to 2.5 mm, and the shape was measured at 60 GHz by a dielectric cylinder resonator method using a network analyzer and a synthesized sweeper. In the measurement, NR
The dielectric resonator was excited by the D guide (non-radiative dielectric line), and the dielectric constant and the dielectric loss were calculated from the resonance characteristics of the TE 021 and TE 031 modes.

【0057】また、室温から400℃における熱膨張曲
線をとり、熱膨張係数を算出した。さらに、焼結体中に
おける結晶相をX線回折チャートから同定した。
Further, a thermal expansion curve from room temperature to 400 ° C. was taken to calculate a thermal expansion coefficient. Further, the crystal phase in the sintered body was identified from the X-ray diffraction chart.

【0058】また、磁器中のガラス相の比率をリートベ
ルト法より評価した。具体的には、評価する磁器を粉砕
した後、内部標準試料としてZnOを所定の比率で添加
し、エタノールを加えて湿式混合した。これを乾燥した
後、X線回折測定を行い、ZnOの添加比率と、リート
ベルト法によって得られるZnOと磁器中の結晶相との
比率から磁器中に存在するガラス相の比率を算出した。
また、TEMによりガラス相中のSiの比率を測定して
SiO2換算での比率を算出した。
The ratio of the glass phase in the porcelain was evaluated by the Rietveld method. Specifically, after the porcelain to be evaluated was pulverized, ZnO was added at a predetermined ratio as an internal standard sample, and ethanol was added thereto, followed by wet mixing. After drying, X-ray diffraction measurement was performed, and the ratio of the glass phase present in the porcelain was calculated from the addition ratio of ZnO and the ratio of ZnO and the crystal phase in the porcelain obtained by the Rietveld method.
The ratio of Si in the glass phase was measured by TEM to calculate the ratio in terms of SiO 2 .

【0059】さらに、JISR1601に基づいて磁器
の4点曲げ強度を測定し、1mm厚みの試料に対してレ
ーザーフラッシュ法により熱伝導率を測定した。また、
じSR1602−1995に準じて超音波パルス法によ
りヤング率を測定した。結果は表1、2に示した。
Further, the four-point bending strength of the porcelain was measured based on JISR1601, and the thermal conductivity of a 1 mm thick sample was measured by a laser flash method. Also,
The Young's modulus was measured by an ultrasonic pulse method according to SR1602-1995. The results are shown in Tables 1 and 2.

【0060】[0060]

【表1】 [Table 1]

【0061】[0061]

【表2】 [Table 2]

【0062】表1、2の結果から明らかなように、Si
2、Al23、MgO、CaO、SrOを含むガラス
A、Bの量が、40重量%より少ない試料No.1、2
0では、低温で焼結することが困難であり、相対密度9
7%以上には緻密化しなかった。
As is clear from the results in Tables 1 and 2, Si
Sample No. 3 in which the amount of glasses A and B containing O 2 , Al 2 O 3 , MgO, CaO and SrO is less than 40% by weight. One, two
0, it is difficult to sinter at a low temperature, and the relative density 9
It did not densify to more than 7%.

【0063】また、γ−Al23の添加量が1重量%よ
りも少ない試料No.10、24では、磁器中のガラス
相の比率が高く、誘電損失が高くなり、また磁器強度が
低下した。さらに、γ−Al23に代えてα−Al23
またはムライトのみを添加した試料No.11、12で
も、磁器中のガラス相の比率が高く、誘電損失の低いも
のであった。
The sample No. 1 in which the amount of γ-Al 2 O 3 added was less than 1% by weight. In Nos. 10 and 24, the ratio of the glass phase in the porcelain was high, the dielectric loss was high, and the porcelain strength was low. Further, instead of γ-Al 2 O 3 , α-Al 2 O 3
Or sample No. to which only mullite was added. In Examples 11 and 12, the ratio of the glass phase in the porcelain was high, and the dielectric loss was low.

【0064】また、ガラスとして、SrOを含まずディ
オプサイド結晶相析出可能なガラスCを用いた試料N
o.29では、1000℃以下の低温で磁器を緻密化さ
せることができず、B23を多く含むガラスDを用いた
試料No.30は溶融してしまい、また、試料No.3
1では、ホウ素を含むガラスが多く残留し、誘電損失が
大きくなる傾向にあった。
A sample N using glass C containing no SrO and capable of precipitating a diopside crystal phase was used as the glass.
o. In Sample No. 29, the porcelain could not be densified at a low temperature of 1000 ° C. or less, and Sample No. 29 using glass D containing a large amount of B 2 O 3 was used. Sample No. 30 was melted. Three
In No. 1, a large amount of glass containing boron remained, and the dielectric loss tended to increase.

【0065】これに対して、本発明に従い、特定量のγ
−Al23を添加した試料では、磁器中にγ−Al23
の析出が見られ、また、いずれも60GHzにおける誘
電損失が30×10-4以下、熱膨張係数が5×10-6
℃以上、誘電率8以上、磁器強度250MPa以上の優
れた特性を有するものであり、高周波信号を伝送するた
めの配線基板として、また、GaAs等のチップ部品お
よびプリント基板等への実装信頼性を高めることができ
ることがわかった。
On the other hand, according to the present invention, a specific amount of γ
-Al 2 O 3 -added sample, γ-Al 2 O 3
And a dielectric loss at 60 GHz of 30 × 10 −4 or less and a coefficient of thermal expansion of 5 × 10 −6 /
℃, dielectric constant of 8 or more, and porcelain strength of 250 MPa or more. As a wiring board for transmitting high-frequency signals, it also has high mounting reliability on chip parts such as GaAs and printed circuit boards. It turns out that it can be enhanced.

【0066】[0066]

【発明の効果】以上詳述した通り、本発明の高周波用磁
器組成物によれば、1000℃以下の低温にて焼成でき
ることから、銅などの低抵抗金属による配線層を形成で
き、しかも60〜77GHzでの誘電損失が30×10
-4以下と誘電損失が低いことから、1GHz以上の高周
波領域において高周波信号を極めて良好に損失なく伝送
することができる。
As described in detail above, according to the porcelain composition for high frequency wave of the present invention, since it can be fired at a low temperature of 1000 ° C. or less, a wiring layer made of a low-resistance metal such as copper can be formed. Dielectric loss at 77 GHz is 30 × 10
Since the dielectric loss is as low as −4 or less, a high-frequency signal can be transmitted very well without loss in a high-frequency region of 1 GHz or more.

【0067】しかも、この組成物を用いて得られる磁器
は、磁器強度が250MPa以上と高く、誘電率が10
以下で、かつGaAsチップあるいはプリント基板と近
似した熱膨張特性に制御できることから、特に配線基板
の絶縁基板として優れた特性を有するとともに、GaA
sチップを実装した場合、あるいは有機樹脂を含む絶縁
基板を具備するプリント基板などのマザーボードに対し
てロウ材等により実装した場合において優れた耐熱サイ
クル性を有し、高信頼性の実装構造を提供できる。
Further, the porcelain obtained using this composition has a high porcelain strength of 250 MPa or more and a dielectric constant of 10 MPa.
Since it can be controlled to a thermal expansion characteristic similar to that of a GaAs chip or a printed circuit board, it has excellent characteristics especially as an insulating substrate of a wiring board,
Provides a highly reliable mounting structure with excellent heat cycle resistance when mounted with s chips or when mounted on a motherboard such as a printed circuit board having an insulating substrate containing organic resin with a brazing material. it can.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の組成物を焼成した磁器を用いた高周波
用配線基板の一例である半導体素子収納用パッケージの
実装構造の一例を説明するための概略断面図である。
FIG. 1 is a schematic cross-sectional view for explaining an example of a mounting structure of a package for housing a semiconductor element, which is an example of a high-frequency wiring substrate using a porcelain obtained by firing a composition of the present invention.

【符号の説明】[Explanation of symbols]

A 半導体素子収納用パッケージ B 外部回路基板 1 絶縁基板 2 蓋体 3 キャビティ 4 チップ部品 5 配線層 6 接続用電極層 7 ロウ材 8 ボール状端子 9 絶縁基板 10 配線導体 11 ロウ材 Reference Signs List A semiconductor device storage package B external circuit board 1 insulating substrate 2 lid 3 cavity 4 chip component 5 wiring layer 6 connection electrode layer 7 brazing material 8 ball-shaped terminal 9 insulating substrate 10 wiring conductor 11 brazing material

Claims (11)

【特許請求の範囲】[Claims] 【請求項1】SiO2、Al23、MgO、SrOおよ
びCaOを含み、ディオプサイド型結晶相を析出可能な
ガラス40〜99重量%と、フィラーとして少なくとも
γ−Al23を1〜60重量%の割合で含有することを
特徴とする高周波用磁器組成物。
1. A glass containing SiO 2 , Al 2 O 3 , MgO, SrO and CaO, capable of precipitating a diopside type crystal phase, in an amount of 40 to 99% by weight, and at least γ-Al 2 O 3 as a filler. A high-frequency porcelain composition, characterized in that it is contained in an amount of up to 60% by weight.
【請求項2】前記ガラスが、SiO230〜55重量%
と、Al234〜15重量%と、MgO14〜30重量
%と、CaO5〜20重量%と、SrO10〜25重量
%とからなることを特徴とする請求項1記載の高周波用
磁器組成物。
2. The method according to claim 1, wherein said glass is 30 to 55% by weight of SiO 2.
When, Al 2 and O 3 4 to 15 wt%, and MgO14~30 wt%, and CaO5~20 wt%, high-frequency ceramic composition of claim 1, wherein the consisting of SrO10~25 wt% .
【請求項3】少なくともMg、Ca、Si、Sr、Al
を含むディオプサイド型結晶相と、少なくともγ−Al
23結晶相とを含有し、且つ60〜77GHzでの誘電
損失が30×10-4以下であることを特徴とする高周波
用磁器。
3. At least Mg, Ca, Si, Sr, Al
A diopside-type crystal phase containing at least γ-Al
A high frequency porcelain comprising a 2 O 3 crystal phase and having a dielectric loss of 30 × 10 −4 or less at 60 to 77 GHz.
【請求項4】ガラス相を30重量%以下の割合で含有す
ることを特徴とする請求項3記載の高周波用磁器。
4. The high frequency porcelain according to claim 3, wherein the glass phase is contained in a proportion of 30% by weight or less.
【請求項5】前記ガラス相が少なくともSiを酸化物
(SiO2)換算で50重量%以上含有することを特徴
とする請求項4記載の高周波用磁器。
5. The high frequency porcelain according to claim 4, wherein said glass phase contains at least 50% by weight of Si in terms of oxide (SiO 2 ).
【請求項6】室温から400℃における熱膨張係数が5
×10-6/℃以上、誘電率が10以下、磁器強度250
MPa以上であることを特徴とする請求項3乃至5のい
ずれか記載の高周波用磁器。
6. The thermal expansion coefficient from room temperature to 400 ° C. is 5
× 10 -6 / ° C or higher, dielectric constant of 10 or lower, porcelain strength 250
The high frequency porcelain according to any one of claims 3 to 5, wherein the porcelain is at least MPa.
【請求項7】熱伝導率が3W/m・K以上であることを
特徴とする請求項3乃至6のいずれか記載の高周波用磁
器。
7. The high frequency porcelain according to claim 3, wherein the thermal conductivity is 3 W / m · K or more.
【請求項8】SiO2、Al23、MgO、SrOおよ
びCaOを含み、ディオプサイド型結晶相を析出可能な
ガラス40〜99重量%と、フィラーとして少なくとも
γ−Al23を1〜60重量%とからなる混合物を成形
後、800〜1000℃の温度で焼成して、少なくとも
Mg、Ca、Si、Sr、Alを含むディオプサイド型
結晶相と、少なくともγ−Al23結晶相と、を含有す
る磁器を作製することを特徴とする高周波用磁器の製造
方法。
8. A glass containing SiO 2 , Al 2 O 3 , MgO, SrO and CaO and capable of precipitating a diopside-type crystal phase in an amount of 40 to 99% by weight, and at least γ-Al 2 O 3 as a filler. After shaping a mixture consisting of at least 60% by weight, the mixture is fired at a temperature of 800 to 1000 ° C., and a diopside type crystal phase containing at least Mg, Ca, Si, Sr and Al, and at least γ-Al 2 O 3 A method for producing a high-frequency porcelain, comprising producing a porcelain containing a crystal phase.
【請求項9】前記ガラスが、SiO230〜55重量%
と、Al234〜15重量%と、MgO14〜30重量
%と、CaO5〜20重量%と、SrO10〜25重量
%からなることを特徴とする請求項8記載の高周波用磁
器の製造方法。
9. The glass according to claim 1, wherein said glass is 30 to 55% by weight of SiO 2.
When the Al 2 O 3 4 to 15 wt%, and MgO14~30 wt%, and CaO5~20 wt%, the method of manufacturing the high-frequency ceramics of claim 8, wherein the consist SrO10~25 wt% .
【請求項10】絶縁基板の表面および/または内部に、
メタライズ配線層が配設された配線基板において、前記
絶縁基板が請求項3乃至7のいずれか記載の高周波用磁
器からなることを特徴とする配線基板。
10. The method according to claim 10, wherein:
8. A wiring board provided with a metallized wiring layer, wherein the insulating substrate is made of the high-frequency ceramic according to claim 3.
【請求項11】前記メタライズ配線層が、CuまたはA
gを主成分とすることを特徴とする請求項10記載の配
線基板。
11. The method according to claim 11, wherein said metallized wiring layer is made of Cu or A.
The wiring board according to claim 10, wherein g is a main component.
JP2000078012A 2000-02-29 2000-03-21 High frequency porcelain composition and high frequency porcelain Expired - Fee Related JP3793559B2 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2000078012A JP3793559B2 (en) 2000-03-21 2000-03-21 High frequency porcelain composition and high frequency porcelain
US09/795,909 US6753277B2 (en) 2000-02-29 2001-02-27 Ceramics having excellent high-frequency characteristics and method of producing the same
DE10109531A DE10109531B4 (en) 2000-02-29 2001-02-28 Ceramics with high frequency properties, process for their preparation and their use

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000078012A JP3793559B2 (en) 2000-03-21 2000-03-21 High frequency porcelain composition and high frequency porcelain

Publications (2)

Publication Number Publication Date
JP2001261432A true JP2001261432A (en) 2001-09-26
JP3793559B2 JP3793559B2 (en) 2006-07-05

Family

ID=18595480

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000078012A Expired - Fee Related JP3793559B2 (en) 2000-02-29 2000-03-21 High frequency porcelain composition and high frequency porcelain

Country Status (1)

Country Link
JP (1) JP3793559B2 (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006093484A (en) * 2004-09-27 2006-04-06 Kyocera Corp Glass ceramic multilayer wiring board with built-in capacitor
JP2007230821A (en) * 2006-02-28 2007-09-13 Kyocera Corp Dielectric porcelain
CN112194373A (en) * 2019-07-08 2021-01-08 Tdk株式会社 Glass ceramic sintered body and wiring board
CN112194374A (en) * 2019-07-08 2021-01-08 Tdk株式会社 Glass ceramic sintered body and wiring board
CN115432933A (en) * 2022-08-30 2022-12-06 电子科技大学 High bending strength glass ceramic material and preparation method thereof
CN115831880A (en) * 2023-02-13 2023-03-21 成都华兴大地科技有限公司 Novel chip integrated packaging structure

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6293704B2 (en) 2015-05-28 2018-03-14 スナップトラック・インコーポレーテッド Glass ceramic sintered body and wiring board

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006093484A (en) * 2004-09-27 2006-04-06 Kyocera Corp Glass ceramic multilayer wiring board with built-in capacitor
JP4688460B2 (en) * 2004-09-27 2011-05-25 京セラ株式会社 Glass ceramic multilayer wiring board with built-in capacitor
JP2007230821A (en) * 2006-02-28 2007-09-13 Kyocera Corp Dielectric porcelain
CN112194373A (en) * 2019-07-08 2021-01-08 Tdk株式会社 Glass ceramic sintered body and wiring board
CN112194374A (en) * 2019-07-08 2021-01-08 Tdk株式会社 Glass ceramic sintered body and wiring board
JP2021011412A (en) * 2019-07-08 2021-02-04 Tdk株式会社 Glass ceramic sintered compact and wiring board
JP2021011411A (en) * 2019-07-08 2021-02-04 Tdk株式会社 Glass ceramic sintered compact and wiring board
CN112194374B (en) * 2019-07-08 2022-10-21 Tdk株式会社 Glass ceramic sintered body and wiring board
CN112194373B (en) * 2019-07-08 2022-10-21 Tdk株式会社 Glass ceramic sintered body and wiring board
CN115432933A (en) * 2022-08-30 2022-12-06 电子科技大学 High bending strength glass ceramic material and preparation method thereof
CN115432933B (en) * 2022-08-30 2023-08-04 电子科技大学 Glass ceramic material with high bending strength and preparation method thereof
CN115831880A (en) * 2023-02-13 2023-03-21 成都华兴大地科技有限公司 Novel chip integrated packaging structure

Also Published As

Publication number Publication date
JP3793559B2 (en) 2006-07-05

Similar Documents

Publication Publication Date Title
JP3793560B2 (en) Low-temperature fired porcelain and manufacturing method thereof
US6753277B2 (en) Ceramics having excellent high-frequency characteristics and method of producing the same
JP2001240470A (en) Porcelain composition for high-frequency use, porcelain for high-frequency use and method for producing porcelain for high-frequency use
JP3793559B2 (en) High frequency porcelain composition and high frequency porcelain
JP2003342060A (en) Glass ceramic sintered compact and wiring board
JP3827491B2 (en) High frequency porcelain composition, high frequency porcelain and method for producing high frequency porcelain
JP2005101095A (en) Porcelain composition, porcelain, and its manufacturing method
JP3085667B2 (en) High frequency porcelain composition, high frequency porcelain and method for producing the same
JP3556475B2 (en) High frequency porcelain composition and method for producing high frequency porcelain
JP3865967B2 (en) Porcelain and wiring board using the same
JP3441924B2 (en) Wiring board and its mounting structure
JP3064273B2 (en) High frequency porcelain
JP2005179137A (en) Porcelain having excellent high frequency transmission characteristics
JP3793558B2 (en) High frequency porcelain
JP3131191B2 (en) High frequency porcelain composition and high frequency porcelain
JP2002255636A (en) Porcelain fired at low temperature and method of producing the same
JP3441950B2 (en) Wiring board and its mounting structure
JP2005015284A (en) Low temperature-fired porcelain, its production method, and wiring board
JP3085669B1 (en) High frequency porcelain composition, high frequency porcelain and method for producing the same
JP3610226B2 (en) Wiring board and its mounting structure
JP3663335B2 (en) High frequency porcelain composition, high frequency porcelain and method for producing the same
JP3764626B2 (en) Wiring board
JP2004115290A (en) Multiple oxide sintered compact and its production process and wiring board
JP2003165765A (en) Glass ceramic composition and method for making glass ceramic and method for making wiring board
JP3466545B2 (en) High frequency wiring board

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20051213

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20051220

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060220

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20060404

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20060408

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090414

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100414

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110414

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110414

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120414

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120414

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130414

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140414

Year of fee payment: 8

LAPS Cancellation because of no payment of annual fees