JP2001259433A - Photocatalyst and method of manufacturing same - Google Patents

Photocatalyst and method of manufacturing same

Info

Publication number
JP2001259433A
JP2001259433A JP2000079897A JP2000079897A JP2001259433A JP 2001259433 A JP2001259433 A JP 2001259433A JP 2000079897 A JP2000079897 A JP 2000079897A JP 2000079897 A JP2000079897 A JP 2000079897A JP 2001259433 A JP2001259433 A JP 2001259433A
Authority
JP
Japan
Prior art keywords
photocatalyst
aluminum
alkoxide
light
titanium oxide
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2000079897A
Other languages
Japanese (ja)
Other versions
JP4449148B2 (en
Inventor
Ryuji Kojima
隆二 小島
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nok Corp
Original Assignee
Nok Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nok Corp filed Critical Nok Corp
Priority to JP2000079897A priority Critical patent/JP4449148B2/en
Publication of JP2001259433A publication Critical patent/JP2001259433A/en
Application granted granted Critical
Publication of JP4449148B2 publication Critical patent/JP4449148B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Abstract

PROBLEM TO BE SOLVED: To provide a photocatalyst essentially comprising titanium oxide and a method of manufacturing the photocatalyst which can be used in the visible ray region by shifting the optical absorption edge to the visible ray side. SOLUTION: The photocatalyst consists of titanium oxide containing 0.001 to 0.5 at.% aluminum. The photocatalyst is manufactured by preparing a gel from a sol of titanium alkoxide with addition of aluminum alkoxide and calcining the gel. The photocatalyst is obtained in a powdery state or film state.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、光触媒およびその
製造方法に関する。更に詳しくは、チタン酸化物を主成
分とする光触媒およびその製造方法に関する。
[0001] The present invention relates to a photocatalyst and a method for producing the same. More specifically, the present invention relates to a photocatalyst containing titanium oxide as a main component and a method for producing the same.

【0002】[0002]

【従来の技術】水質、大気、土壌の汚染などの環境問題
は年々重視されてきており、人為起源の化学物質、特に
有機溶剤、農薬、界面活性剤等の汚染物質や人体に悪影
響を及ぼすウイルス、細菌等の除去が望まれている。
2. Description of the Related Art Environmental problems such as water, air, and soil pollution have been increasing year by year, and pollutants such as chemicals of anthropogenic origin, particularly organic solvents, pesticides, and surfactants, and viruses that adversely affect the human body. It is desired to remove bacteria and the like.

【0003】これらの汚染物質や病原菌を除去するため
に、紫外線やオゾンで処理することが行われているが、
処理後に分解生成物が残存するなど、その分解能力は不
十分であり、また内分泌攪乱物質いわゆる環境ホルモン
を始めとする人体に悪影響を及ぼす物資の生成が懸念さ
れる。
[0003] In order to remove these contaminants and pathogens, treatment with ultraviolet rays or ozone is performed.
Degradation products remain after the treatment, and their decomposition ability is insufficient. In addition, there is a concern that endocrine disrupting substances, so-called environmental hormones, and other substances that adversely affect the human body may be produced.

【0004】一方、酸化チタンを代表とする光触媒を用
いてこれらの化学物質を分解する方法は、薬品等を用い
ないためクリーンであり、また太陽光などの光エネルギ
ーの利用が可能であるため、近年特に注目されている環
境浄化方法である。
On the other hand, a method of decomposing these chemical substances using a photocatalyst represented by titanium oxide is clean because no chemicals or the like are used, and can use light energy such as sunlight. This is an environmental purification method that has attracted particular attention in recent years.

【0005】光触媒として用いられる酸化チタンは、バ
ンドギャップが3eV程度であるため、これに相当する紫
外線領域よりも波長の短かい光だけを利用することが可
能である。太陽光ではこの波長域の成分は少なく、また
廉価な蛍光灯にもこの波長成分は少ない。このため、紫
外線の350nm付近に放射ピークを持つブラックライトブ
ルー蛍光灯が、光触媒用の光源として用いられることが
多い。
[0005] Since titanium oxide used as a photocatalyst has a band gap of about 3 eV, it is possible to use only light having a shorter wavelength than the corresponding ultraviolet region. Sunlight has less components in this wavelength range, and inexpensive fluorescent lamps have less this component. Therefore, a black light blue fluorescent lamp having an emission peak near 350 nm of ultraviolet light is often used as a light source for a photocatalyst.

【0006】より光源の利用効率を上げ、さらに低価格
な製品を製造するためには、バンドギャップを狭く、す
なわち光吸収端を可視光側に移動させるという可視光化
が要求されている。これに関連して、例えば酸化チタン
へのクロム原子のイオン注入法(特開平11-197512号公報
など)、酸化チタン光触媒の酸素組成比を制御する方
法、プラズマ処理法などによる可視光化が試みられてい
るが、これらの方法は高価な装置を必要とするばかりで
はなく、製造工程の複雑化、後処理工程が必要となる場
合が多いなどの難点がみられる。
[0006] In order to further increase the utilization efficiency of the light source and to manufacture a low-priced product, it is required to make the bandgap narrow, that is, to move the light absorption end to the visible light side to make the light visible. In this connection, for example, ion implantation of chromium atoms into titanium oxide (JP-A-11-197512, etc.), a method of controlling the oxygen composition ratio of a titanium oxide photocatalyst, and visualization by a plasma treatment method have been attempted. However, these methods not only require expensive equipment, but also have drawbacks such as a complicated manufacturing process and a need for a post-processing step in many cases.

【0007】[0007]

【発明が解決しようとする課題】本発明の目的は、チタ
ン酸化物を主成分とする光触媒であって、その光吸収端
を可視光側へ移動させ、可視光化したものおよびその製
造方法を提供することにある。
SUMMARY OF THE INVENTION An object of the present invention is to provide a photocatalyst containing titanium oxide as a main component, the light absorption end of which is moved to the visible light side to make it visible, and a method for producing the same. To provide.

【0008】[0008]

【課題を解決するための手段】かかる本発明の目的は、
アルミニウムを0.001〜0.5原子%含有するチタン酸化物
からなる光触媒によって達成され、それの製造は、チタ
ンアルコキシドにアルミニウムアルコキシドを添加した
ゾルから調製したゲルを焼成することによって行われ、
光触媒は粉末状または膜状物として得られる。
SUMMARY OF THE INVENTION The object of the present invention is as follows.
Achieved by a photocatalyst consisting of titanium oxide containing 0.001 to 0.5 atomic% of aluminum, the production of which is carried out by calcining a gel prepared from a sol obtained by adding aluminum alkoxide to titanium alkoxide,
The photocatalyst is obtained as a powder or a film.

【0009】[0009]

【発明の実施の形態】光触媒の製造に際しては、まずチ
タンアルコキシドにアルミニウムアルコキシドを添加し
たゾルの形成が行われる。チタンアルコキシドとして
は、例えばテトラメトキシチタン、テトラエトキシチタ
ン、テトライソプロポキシチタン、テトラn-プロポキシ
チタン、テトライソブトキシチタン、テトラn-ブトキシ
チタン等のテトラ低級アルコキシチタンが用いられる。
また、アルミニウムアルコキシドとしては、トリメトキ
シアルミニウム、トリエトキシアルミニウム、トリイソ
プロポキシアルミニウム、トリn-ブトキシアルミニウム
等のトリ低級アルキルアルミニウムが用いられる。
DESCRIPTION OF THE PREFERRED EMBODIMENTS In producing a photocatalyst, first, a sol in which an aluminum alkoxide is added to a titanium alkoxide is formed. As the titanium alkoxide, for example, tetra-lower alkoxytitanium such as tetramethoxytitanium, tetraethoxytitanium, tetraisopropoxytitanium, tetra-n-propoxytitanium, tetraisobutoxytitanium, or tetra-n-butoxytitanium is used.
As the aluminum alkoxide, tri-lower alkyl aluminum such as trimethoxy aluminum, triethoxy aluminum, triisopropoxy aluminum and tri-n-butoxy aluminum is used.

【0010】これらのチタンアルコキシドとアルミニウ
ムアルコキシドとは、最終的に得られる光触媒中のアル
ミニウム組成比が0.001〜0.5原子%、好ましくは約0.01
〜0.3原子%となるような割合で混合して用いられる。
The titanium alkoxide and the aluminum alkoxide have an aluminum composition ratio of 0.001 to 0.5 atomic%, preferably about 0.01%, in the finally obtained photocatalyst.
It is used by mixing at a ratio of up to 0.3 atomic%.

【0011】これらのアルコキシド類の溶媒としては、
メタノール、エタノール、イソプロパノール、2-メトキ
シエタノール等のアルコール類が用いられる。2種類の
アルコキシド類は、チタンアルコキシドのアルコール
溶媒にアルミニウムアルコキシドを添加する方法、チ
タンアルコキシドとアルミニウムアルコキシドの混合物
をアルコール溶媒中に溶解させる方法、チタンアルコ
キシドのアルコール溶液とアルミニウムアルコキシドの
アルコール溶液とを混合する方法など任意の方法でアル
コキシド混合物溶液とした後、塩酸、酢酸等の酸触媒の
存在下で加水分解されてゾルを形成させる。これらの触
媒もまた、アルコール溶液などとして用いられる。ゾル
形成に際しては、そこにさらにジエタノールアミン、ト
リエタノールアミン等のアルコールアミン類やポリビニ
ルピロリドンの如き水溶性高分子を添加して用いること
もでき、これによって均一でかつ安定な加水分解ゾルを
得ることができる。
The solvents for these alkoxides include:
Alcohols such as methanol, ethanol, isopropanol and 2-methoxyethanol are used. The two types of alkoxides include a method of adding an aluminum alkoxide to an alcohol solvent of titanium alkoxide, a method of dissolving a mixture of titanium alkoxide and aluminum alkoxide in an alcohol solvent, and mixing an alcohol solution of titanium alkoxide and an alcohol solution of aluminum alkoxide. After the alkoxide mixture solution is formed by an arbitrary method such as the above method, it is hydrolyzed in the presence of an acid catalyst such as hydrochloric acid or acetic acid to form a sol. These catalysts are also used as alcohol solutions and the like. In forming the sol, an alcoholamine such as diethanolamine or triethanolamine or a water-soluble polymer such as polyvinylpyrrolidone can be added and used, whereby a uniform and stable hydrolyzed sol can be obtained. it can.

【0012】得られたゾルは、この状態で乾燥させてゲ
ル化させ、それを粉砕した後、約300〜700℃、好ましく
は約400〜700℃で約10分間乃至約3時間程度加熱処理す
ると、粉末状の光触媒が得られる。また、このゾルを、
板状、棒状、管状、ビーズ状などの耐熱性基板(担体)上
に浸漬法、噴霧法、コピンコート法などによって付着さ
せ、上記の如き加熱条件下で焼成すると、膜状の光触媒
が得られる。
The obtained sol is dried and gelled in this state, pulverized, and then heat-treated at about 300 to 700 ° C., preferably about 400 to 700 ° C. for about 10 minutes to about 3 hours. Thus, a powdery photocatalyst is obtained. In addition, this sol
A film-shaped photocatalyst can be obtained by attaching it on a heat-resistant substrate (carrier) such as a plate, a rod, a tube, or a bead by a dipping method, a spraying method, a copin coating method, or the like, and firing it under the above-described heating conditions.

【0013】焼成して得られた粉末状または薄膜状の光
触媒は、アルミニウムの組成比(X線光電子分光によるTi
2p、O1s、Al2s軌道のピーク面積から算出)が約0.001〜
0.5原子%、好ましくは約0.01〜0.3原子%となるように調
整される。アルミニウムの組成比がこれ以下でも、また
これ以上でも、得られる光触媒のX線回析パターンはア
ナターゼ型であり、光吸収スペクトルによって測定した
光透過率の減少は約360nmまたは約375nmで始まり、それ
以下の波長で吸収が大きくなるにすぎない。
The powdery or thin-film photocatalyst obtained by calcination has a composition ratio of aluminum (Ti by X-ray photoelectron spectroscopy).
2p, O1s, calculated from peak area of Al2s orbit)
It is adjusted to be 0.5 atomic%, preferably about 0.01 to 0.3 atomic%. Regardless of the composition ratio of aluminum below or above, the X-ray diffraction pattern of the resulting photocatalyst is of the anatase type, and the decrease in light transmittance measured by the light absorption spectrum starts at about 360 nm or about 375 nm, The absorption only increases at the following wavelengths.

【0014】粉末状または薄膜状の光触媒は、チタン酸
化物に由来する結晶構造を保持し、アルミニウム化合物
部分が結晶構造を有しないものであって、太陽光、蛍光
灯、ブラックライト、UVランプ、水銀灯、キセノンラン
プ等を光源とする光の照射により、通常の手段で形成さ
れる光触媒よりも多くの光を吸収し、光触媒に生成した
電子と正孔の酸化還元作用によって、水中に溶解してい
る内分泌攪乱物質、有機溶剤、アンモニア等の窒素化合
物、含塩素、臭素またはヨウ素化合物のような環境を汚
染している物質、あるいは大気中などの気相における有
害物質を効果的に分解させる。
The photocatalyst in the form of a powder or a thin film has a crystal structure derived from titanium oxide and has no aluminum compound portion, and is composed of sunlight, fluorescent light, black light, UV lamp, By irradiating light using a mercury lamp, xenon lamp, or the like as a light source, it absorbs more light than a photocatalyst formed by ordinary means, and is dissolved in water by the redox effect of electrons and holes generated in the photocatalyst. It effectively decomposes endocrine disruptors, organic solvents, nitrogen compounds such as ammonia, pollutants of the environment such as chlorine-containing, bromine or iodine compounds, or harmful substances in the gas phase such as the atmosphere.

【0015】[0015]

【発明の効果】一般的なゾルゲル法を用いて光触媒を製
造するに際し、ゾル中にアルミニウムアルコキシドを添
加することによって、0.5原子%以下のアルミニウムが結
晶構造を主成分そのままに保持した状態で添加可能とな
り、得られた粉末状または薄膜状の光触媒は、その光吸
収端が長波長側にシフトする可視光化を達成させてい
る。これにより、この光触媒は太陽光、蛍光灯、UVラン
プ等を光源とする光をより多く吸収することができると
いう効果を奏する。
According to the present invention, when producing a photocatalyst using a general sol-gel method, by adding aluminum alkoxide to the sol, aluminum of 0.5 atomic% or less can be added in a state where the crystal structure is maintained as a main component as it is. Thus, the obtained powder or thin film photocatalyst achieves visible light in which the light absorption edge shifts to the longer wavelength side. Thereby, this photocatalyst has an effect that it can absorb more light using sunlight, a fluorescent lamp, a UV lamp or the like as a light source.

【0016】実施例 次に、実施例について本発明を説明する。EXAMPLES Next, the present invention will be described with reference to examples.

【0017】実施例 トリイソプロポキシアルミニウム0.12gを2-メトキシエ
タノール81.07mlに溶解させた溶液に、テトライソプロ
ポキシ16.88mlを添加した。この溶液(97.95ml)と2-メト
キシエタノール20ml、1.2N塩酸2.05mlとを混合し、光触
媒調製用ゾルAを得た。これらの混合は、すべて攪拌条
件下で室温で行われた。
EXAMPLE To a solution of 0.12 g of aluminum triisopropoxy in 81.07 ml of 2-methoxyethanol, 16.88 ml of tetraisopropoxy was added. This solution (97.95 ml) was mixed with 20 ml of 2-methoxyethanol and 2.05 ml of 1.2N hydrochloric acid to obtain a sol A for preparing a photocatalyst. All of these mixings were performed at room temperature under stirring conditions.

【0018】ゾルAをシャーレ上に注入し、室温条件下
で乾燥させてゲル化を行ない、ゲル化物を乳鉢で粉砕し
た後、大気中、500℃で1時間焼成し、光触媒粉末Aを得
た。これのX線回折パターンは、アナターゼ型であっ
た。
The sol A was poured into a petri dish, dried under room temperature conditions to perform gelation, the gelled product was pulverized in a mortar, and calcined at 500 ° C. for 1 hour in the air to obtain a photocatalyst powder A. . Its X-ray diffraction pattern was of the anatase type.

【0019】また、ゾルAを石英ガラス板上にディップ
コートし、室温条件下で乾燥させてゲル膜を形成させ、
大気中、500℃で1時間焼成し、光触媒薄膜Aを得た。こ
れの光吸収スペクトルを測定すると、光透過率の減少は
約430nmから始まり、それ以下の波長では吸収が大きく
なった。X線光電子分光によるTi2p、O1s、Al2s軌道のピ
ーク面積から算出した組成比で、アルミニウムは0.28原
子%であった。
Further, sol A is dip-coated on a quartz glass plate and dried under room temperature conditions to form a gel film,
It was baked at 500 ° C. for 1 hour in the air to obtain a photocatalytic thin film A. When the light absorption spectrum was measured, the decrease in light transmittance started at about 430 nm, and the absorption increased at wavelengths lower than that. The composition ratio calculated from the peak areas of the Ti2p, O1s, and Al2s orbitals by X-ray photoelectron spectroscopy indicated that aluminum was 0.28 atomic%.

【0020】比較例1 実施例において、トリイソプロポキシアルミニウム量を
0.24gに変更すると、同様の手順で得られた光触媒粉末B
は、X線回析パターンがアナターゼ型であり、また光触
媒薄膜Bは、光吸収スペクトルでの光透過率の減少は約3
75nmから始まり、それ以下の波長では吸収が大きくな
り、X線光電子分光によるTi2p、O1s、Al2s軌道のピーク
面積から算出した組成比で、アルミニウムは0.51原子%
であった。
Comparative Example 1 The amount of triisopropoxyaluminum was
Changing to 0.24 g, photocatalyst powder B obtained by the same procedure
Indicates that the X-ray diffraction pattern is of an anatase type, and that the photocatalytic thin film B has a light transmittance decrease of about 3 in the light absorption spectrum.
Starting from 75 nm, absorption becomes larger at wavelengths shorter than that, and aluminum is 0.51 atomic% in the composition ratio calculated from the peak area of Ti2p, O1s, Al2s orbitals by X-ray photoelectron spectroscopy.
Met.

【0021】比較例2 実施例において、トリイソプロポキシアルミニウムを用
いないと、同様の手順で得られた光触媒粉末Cは、X線回
析パターンがアナターゼ型であり、また光触媒薄膜C
は、光吸収スペクトルでの光透過率の減少が約360nmか
ら始まり、それ以下の波長では吸収が大きくなった。
COMPARATIVE EXAMPLE 2 The photocatalyst powder C obtained in the same procedure as described in Example 1 except that triisopropoxyaluminum was not used had an anatase type X-ray diffraction pattern.
The decrease in light transmittance in the light absorption spectrum began at about 360 nm, and absorption increased at wavelengths below that.

【図面の簡単な説明】[Brief description of the drawings]

【図1】実施例および各比較例で得られた光触媒粉末
A、BおよびCのX線回析パターンである。なお、図中の数
字は、結晶面を示している。
FIG. 1 shows photocatalyst powders obtained in Examples and Comparative Examples
It is an X-ray diffraction pattern of A, B and C. The numbers in the figure indicate crystal planes.

【図2】実施例および各比較例で得られた光触媒薄膜
A、BおよびCの光吸収特性を示すグラフである。
FIG. 2 shows photocatalytic thin films obtained in Examples and Comparative Examples.
4 is a graph showing light absorption characteristics of A, B and C.

───────────────────────────────────────────────────── フロントページの続き Fターム(参考) 4D048 AA21 AB03 BA03X BA03Y BA07X BA07Y BA41X BA41Y EA01 4G069 AA03 AA08 AA11 BA04A BA04B BA04C BA37 BA38 BC16A BC16B BE06A BE06B BE06C CA10 CA11 EA01X EA01Y EA07 EC22Y FB08 FB23  ──────────────────────────────────────────────────の Continued on the front page F term (reference) 4D048 AA21 AB03 BA03X BA03Y BA07X BA07Y BA41X BA41Y EA01 4G069 AA03 AA08 AA11 BA04A BA04B BA04C BA37 BA38 BC16A BC16B BE06A BE06B BE06C CA10 CA11 EA0123 EA07 EA07 EA07

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】 アルミニウムを0.001〜0.5原子%含有す
るチタン酸化物からなる光触媒。
1. A photocatalyst comprising a titanium oxide containing 0.001 to 0.5 atomic% of aluminum.
【請求項2】 チタン酸化物に由来する結晶構造を保持
し、アルミニウム化合物部分が結晶構造を有しない請求
項1記載の光触媒。
2. The photocatalyst according to claim 1, wherein a crystal structure derived from the titanium oxide is retained, and the aluminum compound portion has no crystal structure.
【請求項3】 チタンアルコキシドにアルミニウムアル
コキシドを添加したゾルを用いて調製したゲルを焼成す
ることを特徴とする請求項1または2記載の粉末状光触
媒の製造方法。
3. The method for producing a powdery photocatalyst according to claim 1, wherein the gel prepared by using a sol obtained by adding aluminum alkoxide to titanium alkoxide is calcined.
【請求項4】 チタンアルコキシドにアルミニウムアル
コキシドを添加したゾルを耐熱性担体上に塗布し、乾燥
させて得られたゲル膜を焼成することを特徴とする請求
項1または2記載の膜状光触媒の製造方法。
4. The film-shaped photocatalyst according to claim 1, wherein a sol obtained by adding an aluminum alkoxide to a titanium alkoxide is applied onto a heat-resistant carrier, and the gel film obtained by drying is dried. Production method.
JP2000079897A 2000-03-22 2000-03-22 Photocatalyst production method Expired - Fee Related JP4449148B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2000079897A JP4449148B2 (en) 2000-03-22 2000-03-22 Photocatalyst production method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000079897A JP4449148B2 (en) 2000-03-22 2000-03-22 Photocatalyst production method

Publications (2)

Publication Number Publication Date
JP2001259433A true JP2001259433A (en) 2001-09-25
JP4449148B2 JP4449148B2 (en) 2010-04-14

Family

ID=18597083

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000079897A Expired - Fee Related JP4449148B2 (en) 2000-03-22 2000-03-22 Photocatalyst production method

Country Status (1)

Country Link
JP (1) JP4449148B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013212089A (en) * 2012-04-03 2013-10-17 Seiken-Kyushu Corp Pet house

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013212089A (en) * 2012-04-03 2013-10-17 Seiken-Kyushu Corp Pet house

Also Published As

Publication number Publication date
JP4449148B2 (en) 2010-04-14

Similar Documents

Publication Publication Date Title
US5897958A (en) Modified titanium oxide sol, photocatalyst composition and photocatalyst composition-forming agent
Li et al. Synthesis of nitrogen-containing ZnO powders by spray pyrolysis and their visible-light photocatalysis in gas-phase acetaldehyde decomposition
JP4803180B2 (en) Titanium oxide photocatalyst, its production method and use
ES2725153T3 (en) Photocatalytic powder production method comprising titanium dioxide and manganese dioxide active under ultraviolet and visible light
US20030167878A1 (en) Titanium-containing materials
AU2001282711A1 (en) Titanium-containing materials
JP2004507421A5 (en)
TWI359698B (en) Method for producing catalyst for wastewater treat
US11597657B2 (en) Nitrogen-doped TiO2 nanoparticles and the use thereof in photocatalysis
KR101804327B1 (en) Hybrid photocatalyst film using titanium dioxide and method for maunfacturing thereof
Cimieri et al. Novel sol–gel preparation of V-TiO2 films for the photocatalytic oxidation of ethanol in air
KR20010073712A (en) Method for preparing Titanium dioxide film on polymer substrate
JPH10167727A (en) Modified titanium oxide sol, photocatalyst composition and its forming agent
JP2001259433A (en) Photocatalyst and method of manufacturing same
JP2003252626A (en) Titanium dioxide precursor, manufacturing method of the same and titanium dioxide and its manufacturing method using the same
KR101855747B1 (en) Manufacturing of visible-light active photocatalyst titanium dioxide and titanium dioxide manufactured therefrom
JP3799822B2 (en) Manufacturing method of complex oxide thin film
JPH10128110A (en) Photocatalyst composition and its forming agent
JP2004181296A (en) Photocatalyst, its precursor sol solution and manufacturing method for the photocatalyst
KR102060521B1 (en) Water proofing material comprising visible light active photocatalyst for air cleaning
JP2008114178A (en) Method for producing black titanium dioxide anatase composite powder for visible light-responsive photocatalyst and method for producing solution composition for producing the powder
CN100408185C (en) Method for preparing nitrogen-doped nanometer titanium dioxide catalyst with high activity for visible light range
KR102089491B1 (en) Clay concrete comprising visible light active photocatalys
CN108325511B (en) Preparation method and application of nano metastable state/anatase mixed crystal titanium oxide hydrosol
KR101326314B1 (en) Visible ray reaction type photocatalyst and preparation method thereof

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060307

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080715

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080818

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080924

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080924

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20090224

AA91 Notification that invitation to amend document was cancelled

Free format text: JAPANESE INTERMEDIATE CODE: A971091

Effective date: 20090324

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20100105

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20100118

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130205

Year of fee payment: 3

LAPS Cancellation because of no payment of annual fees