JP2008114178A - Method for producing black titanium dioxide anatase composite powder for visible light-responsive photocatalyst and method for producing solution composition for producing the powder - Google Patents

Method for producing black titanium dioxide anatase composite powder for visible light-responsive photocatalyst and method for producing solution composition for producing the powder Download PDF

Info

Publication number
JP2008114178A
JP2008114178A JP2006301534A JP2006301534A JP2008114178A JP 2008114178 A JP2008114178 A JP 2008114178A JP 2006301534 A JP2006301534 A JP 2006301534A JP 2006301534 A JP2006301534 A JP 2006301534A JP 2008114178 A JP2008114178 A JP 2008114178A
Authority
JP
Japan
Prior art keywords
visible light
producing
titanium dioxide
powder
composite powder
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2006301534A
Other languages
Japanese (ja)
Inventor
Hitoshi Matsui
倫 松井
Hiromi Nagai
裕己 永井
Chihiro Kiyono
千尋 清野
Terubumi Sato
光史 佐藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tftech
TFTECH KK
Original Assignee
Tftech
TFTECH KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tftech, TFTECH KK filed Critical Tftech
Priority to JP2006301534A priority Critical patent/JP2008114178A/en
Publication of JP2008114178A publication Critical patent/JP2008114178A/en
Withdrawn legal-status Critical Current

Links

Images

Landscapes

  • Inorganic Compounds Of Heavy Metals (AREA)
  • Catalysts (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a method for producing black titanium dioxide anatase composite powder for a visible light-responsive photocatalyst, which powder is developed on the ground that the scope of application of a photocatalyst product is expanded into ultraviolet light-poor places where solar energy is utilized effectively, exhibits a photocatalytic function to visible light and ultraviolet light and has a black hue unpublished up to now and to provide a method for producing a solution composition for producing the black titanium dioxide anatase composite powder. <P>SOLUTION: The solution composition suitable for producing the visible light-responsive black titanium dioxide anatase composite powder can be synthesized from an organic solvent containing an anionic complex obtained by coordinating a carbonate ion and a peroxide ion to titanium and an amine cation. The visible light-responsive black titanium dioxide anatase composite powder can be obtained by heat-treating the powder, which is obtained by removing the organic solvent from the solution composition, in an air atmosphere. <P>COPYRIGHT: (C)2008,JPO&INPIT

Description

本発明は可視光応答光触媒用黒色二酸化チタンアナターゼ複合物粉体の製造方法および該粉体作成用の溶液組成物製造方法に関する。   The present invention relates to a method for producing a black titanium dioxide anatase composite powder for visible light responsive photocatalyst and a method for producing a solution composition for producing the powder.

アナターゼ型の二酸化チタンは紫外線の照射下で光触媒機能を発現することが知られており多くの注目を集めている(例えば非特許文献1)。アナターゼ型結晶構造の二酸化チタンは太陽光に含まれる数%の紫外線しか利用できない。このため紫外線がほとんど無い室内などでは光触媒効果は発現できないため適用範囲に制限がある。太陽エネルギーの有効利用と光触媒製品の適用範囲の拡大の点からアナターゼ型の二酸化チタンの光触媒の可視光応答化はとても重要である。   Anatase-type titanium dioxide is known to exhibit a photocatalytic function under ultraviolet irradiation, and has attracted much attention (for example, Non-Patent Document 1). Titanium dioxide with anatase type crystal structure can use only a few percent of ultraviolet rays contained in sunlight. For this reason, the application range is limited because the photocatalytic effect cannot be exhibited in a room where there is almost no ultraviolet rays. The visible light response of anatase-type titanium dioxide photocatalyst is very important in terms of effective use of solar energy and expansion of the application range of photocatalytic products.

最近、物理的方法や化学的方法も用いて二酸化チタンを修飾することにより紫外線以外に可視光にも応答するための研究が盛んに行われている。有機色素を用いた色素増感法(非特許文献2)や、遷移金属イオン注入(非特許文献3〜4)、酸化物イオンの一部を窒素(非特許文献5〜6)や炭素(非特許文献7)で置換した研究も行われている。また、イオウを導入する研究(非特許文献9〜10)も行われている。   Recently, extensive research has been conducted to respond to visible light in addition to ultraviolet rays by modifying titanium dioxide using physical and chemical methods. Dye sensitization method using organic dye (Non-patent Document 2), transition metal ion implantation (Non-patent Documents 3 to 4), part of oxide ions are nitrogen (Non-patent documents 5 to 6) or carbon (non-patent document 2) Research that has been replaced in Patent Document 7) has also been conducted. In addition, research into introducing sulfur (Non-Patent Documents 9 to 10) has also been conducted.

最近では、窒素原子または窒素イオンを二酸化チタンの結晶格子の中に挿入する報告もある(特許文献1)。また分子プレカーサー法と呼ばれるウェットプロセスで成分の異なるコーティング液から製膜した二酸化チタン膜を積層化して作成した可視光応答界面を持つ二酸化チタン膜の製造報告もある(非特許文献11)。   Recently, there is a report of inserting nitrogen atoms or nitrogen ions into the crystal lattice of titanium dioxide (Patent Document 1). There is also a production report of a titanium dioxide film having a visible light responsive interface prepared by laminating titanium dioxide films formed from coating solutions having different components by a wet process called a molecular precursor method (Non-patent Document 11).

このように様々な元素のドープ、可視光応答界面を作成することにより可視光に応答する光触媒を製造することができる。上記の物理的および化学的に修飾された可視光応答のアナターゼ型の二酸化チタンの色は淡黄色から暗黄色を呈しているため可視光の一部分を反射してしまう。このため可視光を有効に活用できていない。   Thus, the photocatalyst which responds to visible light can be manufactured by making dope of various elements and creating a visible light responsive interface. The physical and chemically modified visible light responsive anatase titanium dioxide has a light yellow to dark yellow color and reflects a portion of the visible light. For this reason, visible light cannot be used effectively.

いずれの製造方法もまだ試験研究的な部分が多く、製造に関して解決すべき課題をもっている。
特開2001−72419号公報 K. Honda, A. Fujishima, Nature 238, 37 (1972) B. O’regan, M. Graetzel, Nature 353, 737 (1991) M. Anpo, et. al., Res. Chem. Intermed. 27, 459 (2001) M. Anpo, Bull. Chem. Soc. Jpn 77, 1427 (2004) R. Asahi, T. Morikawa, T. Ohwaki, K. Aoki, Y. Taga, Science 293, 269 (2001) S. Sato, Chem. Phys. Lett. 123, 126 (1986) H. Irie, Y. Watanabe, K. Hashimoto, Chem. Left. 32, 8, 772 (2003) T. Umebayashi, T. Yamaki, H. Itoh, K. Asai, Appl. Phys. Left. 81, 454 (2002) T. Umebayashi, T. Yamaki, S. Tanaka, K. Asai, Chem. Lett. 32, 4, 330 (2003) T. Ohno, T. Mitsui, M. Matsumura, Chem. Lett. 32, 4, 364 (2003) 永井裕己、望月千尋、佐藤光史、鷹野一朗、日本化学会第85春季年会講演予稿集I、2 H4−41 (2005)
Each of the manufacturing methods still has a lot of experimental research and has problems to be solved regarding manufacturing.
JP 2001-72419 A K. Honda, A .; Fujishima, Nature 238, 37 (1972) B. O'regan, M.M. Graetzel, Nature 353, 737 (1991) M.M. Anpo, et. al. , Res. Chem. Intermed. 27, 459 (2001) M.M. Anpo, Bull. Chem. Soc. Jpn 77, 1427 (2004) R. Asahi, T .; Morikawa, T .; Ohwaki, K .; Aoki, Y. et al. Taga, Science 293, 269 (2001) S. Sato, Chem. Phys. Lett. 123, 126 (1986) H. Irie, Y. et al. Watanabe, K.M. Hashimoto, Chem. Left. 32, 8, 772 (2003) T.A. Umebayashi, T .; Yamaki, H .; Itoh, K .; Asai, Appl. Phys. Left. 81, 454 (2002) T.A. Umebayashi, T .; Yamaki, S .; Tanaka, K .; Asai, Chem. Lett. 32, 4, 330 (2003) T.A. Ohno, T .; Mitsui, M.M. Matsumura, Chem. Lett. 32, 4, 364 (2003) Yuki Nagai, Chihiro Mochizuki, Mitsufumi Sato, Ichiro Takano, Proceedings of the 85th Annual Meeting of the Chemical Society of Japan I, 2 H4-41 (2005)

上述の二酸化チタン粉体製造の先行技術において、非特許文献2の色素増感法は、有機色素を用いているため長時間の使用により光触媒作用から有機色素が分解されてしまい性能が低下する問題点がある。   In the above prior art of titanium dioxide powder production, the dye sensitizing method of Non-Patent Document 2 uses an organic dye, so that the organic dye is decomposed from the photocatalytic action due to long-term use, and the performance deteriorates. There is a point.

非特許文献3〜4のイオン注入法による遷移金属イオン注入や、非特許文献5のスパッター法による酸化物イオンの一部を窒素イオンに置換するには製造工程において真空に近い系と高エネルギーを必要とする上、装置が複雑で高価であるため製造コストが高くなる問題点がある。   In order to replace a part of oxide ions by transition metal ion implantation by the ion implantation method of Non-Patent Documents 3 and 4 and the sputtering method of Non-Patent Document 5 with nitrogen ions, a system close to vacuum and high energy are used in the manufacturing process. In addition, there is a problem that the manufacturing cost increases because the apparatus is complicated and expensive.

非特許文献6の酸化物イオンの一部を窒素イオンに置換するには、製造工程においてアンモニア雰囲気で還元ができる雰囲気炉を必要とするため、製造コストが高くなるといった問題点がある。   In order to replace some of the oxide ions of Non-Patent Document 6 with nitrogen ions, an atmospheric furnace capable of reduction in an ammonia atmosphere is required in the manufacturing process, and thus there is a problem that the manufacturing cost increases.

非特許文献7の酸化物イオンの一部を炭素で置換するには炭化チタン(TiC)粉体を空気中で36時間の熱処理後、さらに酸素雰囲気中600℃で5時間の熱処理が必用である。熱処理に多くのエネルギーと時間を必要とする上、酸素と雰囲気炉が必用となるため製造コストが高くなる問題点がある。非特許文献8〜10の硫黄を導入するには硫化チタン(TiS)を空気中で500〜600℃の温度で24〜48時間熱処理して製造するため、前述の通り熱処理に多くのエネルギーと時間を必要とするため製造コストが高くなる問題点がある。 In order to replace some of the oxide ions of Non-Patent Document 7 with carbon, it is necessary to heat treat titanium carbide (TiC) powder in air for 36 hours, and then heat treatment in an oxygen atmosphere at 600 ° C. for 5 hours. . In addition to requiring a large amount of energy and time for the heat treatment, oxygen and an atmospheric furnace are required, which increases the manufacturing cost. In order to introduce sulfur in Non-Patent Documents 8 to 10, titanium sulfide (TiS 2 ) is manufactured by heat treatment in air at a temperature of 500 to 600 ° C. for 24 to 48 hours. Since time is required, there is a problem that the manufacturing cost increases.

背景技術で述べた可視光応答型二酸化チタンの作成のための他元素ドーピングの方法は、いずれも二酸化チタン微粒子か物理的成膜による二酸化チタン膜に対するものである。先述の通り非特許文献3〜5の物理的方法は装置の大型化による膨大な設備投資と膨大なエネルギーが必要であり、大量生産時を想定すると技術的に多くの問題を残している。これらの問題より製品の高コスト化は不可避である。   The other element doping methods for producing visible light responsive titanium dioxide described in the background art are for titanium dioxide fine particles or titanium dioxide films formed by physical film formation. As described above, the physical methods of Non-Patent Documents 3 to 5 require enormous capital investment and enormous energy due to the enlargement of the apparatus, and many technical problems remain when assuming mass production. From these problems, it is inevitable to increase the cost of the product.

また、非特許文献6〜10の化学反応を用いた作成法は、熱処理雰囲気を変更して行う場合や、長時間の熱処理が必用のため多くのエネルギーが必要となるため製品の高コスト化は不可避である。   In addition, the production method using the chemical reaction described in Non-Patent Documents 6 to 10 requires a lot of energy because the heat treatment atmosphere is changed or a long-time heat treatment is necessary. Inevitable.

非特許文献11の分子プレカーサー法と呼ばれるウェットプロセスで成分の異なるコーティング液から製膜した二酸化チタン膜を積層化して作成した可視光応答界面を持つ二酸化チタン膜は可視光応答物質が積層膜の界面に生成するため、粉末の製造の場合にも二酸化チタンの粒子に積層化が必用となるため製品の高コスト化は不可避である。   A titanium dioxide film having a visible light responsive interface formed by laminating titanium dioxide films formed from coating liquids having different components by a wet process called a molecular precursor method of Non-Patent Document 11 has a visible light responsive substance as an interface between the laminated films. Therefore, it is inevitable to increase the cost of the product because it is necessary to laminate the titanium dioxide particles even in the production of powder.

近年の低環境負荷の材料開発の流れから、低公害、低エネルギー(低い熱処理温度、短時間)で目的の材料が作れる材料開発が望まれる。   In recent years, the development of materials with low environmental load is desired to develop materials that can produce the desired materials with low pollution and low energy (low heat treatment temperature, short time).

以上のように、低VOC(揮発性有機化合物)、環境低負荷の成分を用いて、可視光に応答し、より多くの可視光を吸収できる黒色のアナターゼ型二酸化チタン粉体はこれまでに無かった。   As described above, there has never been a black anatase-type titanium dioxide powder that responds to visible light and absorbs more visible light by using low VOC (volatile organic compound) and low environmental load components. It was.

本発明は、上記課題を一挙に解決するものであり、可視光に応答する黒色二酸化チタンアナターゼ複合物粉末ができる前駆体溶液および黒色のアナターゼ型二酸化チタン粉末の新規な製造方法を提供する。   This invention solves the said subject at once, and provides the novel manufacturing method of the precursor solution which can make the black titanium dioxide anatase composite powder which responds to visible light, and black anatase type titanium dioxide powder.

また、本発明は黒色二酸化チタンアナターゼ複合物粉体と粉体を有する該部材を提供することも目的とする。   Another object of the present invention is to provide a black titanium dioxide anatase composite powder and the member having the powder.

本発明者は、簡単な装置で、容易に均一かつ均質な黒色二酸化チタンアナターゼ複合物粉体を作成する溶液組成物の製造方法について研究を進めてきたところ、二酸化炭素とチタンアルコキシドと水と酸化剤とを有機溶媒中で反応させ、次いでアミンを加える方法、または、二酸化炭素とチタンアルコキシドと水と酸化剤とアミンとを有機溶媒中で反応させる方法により作成した溶液組成物を脱溶媒して得た粉体を400℃で従来の方法と比べて短時間の30分の熱処理時間により、可視光域全域を吸収することが可能であると考えられる黒色二酸化チタンアナターゼ複合物粉体が形成できる溶液組成物がワンポットで得られることを発見した。これにより、今まで淡黄色または濃黄色しかなかった可視光応答二酸化チタンアナターゼ粉体に新たに黒色を作れることが出来たため光触媒機能をもつ黒色塗料などの顔料に利用できる可能性を見出すことができた。   The present inventor has conducted research on a method for producing a solution composition for easily producing a uniform and homogeneous black titanium dioxide anatase composite powder with a simple apparatus. Carbon dioxide, titanium alkoxide, water, and oxidation The solvent composition prepared by the method of reacting an agent in an organic solvent and then adding an amine, or the method of reacting carbon dioxide, titanium alkoxide, water, an oxidizing agent, and an amine in an organic solvent is desolvated. The obtained powder can be formed into a black titanium dioxide anatase composite powder that is believed to be capable of absorbing the entire visible light region by a heat treatment time of 30 minutes in a short time compared with the conventional method at 400 ° C. It has been discovered that the solution composition can be obtained in one pot. As a result, a new black color can be made on the visible light responsive titanium dioxide anatase powder, which until now only had a pale yellow or dark yellow color, so that it could be used for pigments such as black paint with a photocatalytic function. It was.

本発明者は、既にチタン錯体陰イオン中における配位子に窒素を含まないポリカルボン酸または二酸化炭素による炭酸イオンを配位子として用いることにより、これまで500℃程度の熱処理温度が必要だったアナターゼ型二酸化チタン膜を350℃程度の低い温度で作成できることに成功してきている。この溶液組成物を脱溶媒して得た粉体を400℃の処理することにより、可視光に応答する黒色二酸化チタンアナターゼ複合物粉体を作成できる溶液組成物を1段階で得られることを本発明は特徴としている。本発明の溶液組成物は、室温で1段階合成が可能であり1時間程度の短時間で合成可能である。   The present inventor has already required a heat treatment temperature of about 500 ° C. by using, as a ligand, a polycarboxylic acid not containing nitrogen as a ligand in a titanium complex anion or a carbonate ion by carbon dioxide. Anatase-type titanium dioxide films have been successfully produced at temperatures as low as about 350 ° C. It is shown that a solution composition capable of producing a black titanium dioxide anatase composite powder that responds to visible light can be obtained in one step by treating the powder obtained by removing the solvent from the solution composition at 400 ° C. The invention features. The solution composition of the present invention can be synthesized in one step at room temperature and can be synthesized in a short time of about 1 hour.

この溶液組成物を、加熱や減圧などの方法で溶媒を取り除いて得られた粉体を加熱処理することにより、可視光に応答する黒色二酸化チタンアナターゼ複合物粉体を作成できる。非特許文献7〜10の化学反応による可視光応答二酸化チタンアナターゼの製造方法と比較すると、熱処理雰囲気の調整が不要の上、熱処理時間を極めて短縮出来る特徴を持っている。   By heat-treating the powder obtained by removing the solvent from the solution composition by a method such as heating or decompression, a black titanium dioxide anatase composite powder that responds to visible light can be produced. Compared with the method for producing visible light responsive titanium dioxide anatase by chemical reaction described in Non-Patent Documents 7 to 10, the heat treatment atmosphere is not required to be adjusted and the heat treatment time can be extremely shortened.

本発明は二酸化炭素とチタンアルコキシドと水と酸化剤を有機溶媒中で反応させ、次いでアミンを加えることを特徴とする、炭酸イオンと二酸化物イオンが配位したチタン錯体陰イオンとアミン陽イオンとを含有する黒色二酸化チタンアナターゼ複合物粉体形成用前駆体溶液、もしくは、二酸化炭素とチタンアルコキシドと水と酸化剤とアミンと酸化剤を有機溶媒中で反応させることを特徴とする、炭酸イオンと二酸化物イオンが配位したチタン錯体陰イオンとアミン陽イオンとを含有する黒色二酸化チタンアナターゼ複合物粉体形成用前駆体溶液で、脱溶媒した後に熱処理するといった極めて簡単で作業性の良い工程で、可視光に応答する黒色二酸化チタンアナターゼ複合物粉体が得られることが分った。   The present invention is characterized in that carbon dioxide, titanium alkoxide, water and an oxidizing agent are reacted in an organic solvent, and then an amine is added, and a titanium complex anion coordinated with carbonate ions and dioxide ions, an amine cation, A precursor solution for forming a black titanium dioxide anatase composite powder containing carbon dioxide, titanium alkoxide, water, an oxidizing agent, an amine and an oxidizing agent in an organic solvent, and carbonate ions, This is a precursor solution for forming a black titanium dioxide anatase complex powder containing a titanium complex anion coordinated with a dioxide ion and an amine cation. It was found that a black titanium dioxide anatase composite powder responding to visible light was obtained.

その結果、従来の技術では可視光化に高い真空を制御したり、製膜に大量のエネルギーが必要である高価な装置が必要であったり、熱処理行程で雰囲気を変更したり、処理時間が数十時間を要していたのが、本発明を用いることにより空気中で熱処理できる装置があれば数十分の短時間の熱処理で可視光に応答する黒色の二酸化チタンアナターゼ複合物粉体を製造することができるようになった。   As a result, the conventional technology requires a high vacuum for visible light generation, requires an expensive apparatus that requires a large amount of energy for film formation, changes the atmosphere during the heat treatment process, and requires a lot of processing time. It took 10 hours to produce black titanium dioxide anatase composite powder that responds to visible light with a few tens of minutes of heat treatment if there is an apparatus that can be heat-treated in air by using the present invention. I was able to do that.

この複合物粉体は紫外線以外にも可視光下でも光触媒機能が発現するため、紫外線がほとんど無い室内向けの脱臭製品や日用品への適用はもちろん、塗料やプラスチックスなどの顔料として利用する事により、光触媒機能を持つ黒色塗料やダッシュボードなどの高機能プラスチックス製品を作ることが可能である。また可視光応答型太陽電池の電極材料などにも適用できる。ここに例を挙げたが、これらに限定されない。   Since this composite powder exhibits a photocatalytic function under visible light as well as ultraviolet rays, it can be applied to indoor deodorized products and daily necessities that have almost no ultraviolet rays, and it can be used as a pigment for paints and plastics. It is possible to make high-performance plastics products such as black paint and dashboard with photocatalytic function. It can also be applied to electrode materials for visible light responsive solar cells. Although an example was given here, it is not limited to these.

本発明では、炭酸イオンと二酸化物イオンが配位したチタン錯体陰イオンとアミン陽イオンとを含有する溶液組成物から二酸化チタンを主成分とした可視光応答黒色二酸化チタンアナターゼ複合物粉体が作成される。   In the present invention, a visible light-responsive black titanium dioxide anatase composite powder composed mainly of titanium dioxide is prepared from a solution composition containing a titanium complex anion coordinated with carbonate ions and dioxide ions and an amine cation. Is done.

本発明の第一に用いる溶液組成物は、二酸化炭素とチタンアルコキシドと水と酸化剤を有機溶媒中で反応させ、次いでアミンを加えることにより得られる。好ましくは、得られる溶液組成物は均一かつ透明である。   The solution composition used first in the present invention is obtained by reacting carbon dioxide, titanium alkoxide, water and an oxidizing agent in an organic solvent, and then adding an amine. Preferably, the resulting solution composition is uniform and transparent.

本発明の第二に用いる溶液組成物は、二酸化炭素とチタンアルコキシドと水と酸化剤とアミンを有機溶媒中で反応させることにより得られる。好ましくは、得られる溶液組成物は均一かつ透明である。   The solution composition used in the second aspect of the present invention is obtained by reacting carbon dioxide, titanium alkoxide, water, an oxidizing agent, and an amine in an organic solvent. Preferably, the resulting solution composition is uniform and transparent.

本発明の前駆体および前駆体溶液を作成するために用いられるチタンアルコキシドとしては、テトラメトキシチタン、テトラエトキシチタン、テトライソプロポキシチタン、テトラ−n−プロポキシチタン、テトラ−n−ブトキシチタンなどが挙げられるがこれらに限定されるものではない。   Examples of the titanium alkoxide used for preparing the precursor and the precursor solution of the present invention include tetramethoxy titanium, tetraethoxy titanium, tetraisopropoxy titanium, tetra-n-propoxy titanium, and tetra-n-butoxy titanium. However, it is not limited to these.

本発明の前駆体溶液を作成するために用いられる配位子の炭酸イオンはドライアイスなどから導入するが二酸化炭素源に限定はない。配位子の添加量は、チタンに対して1倍モルから1000倍、より好適には10倍から100倍に加えるのが適当である。これを超える量を添加した場合、チタンと反応しないため単に二酸化炭素を加えているだけとなり不効率である。またこれより少ない場合は反応が未完結となり、液の安定性が著しく低下する。   The ligand carbonate ion used to prepare the precursor solution of the present invention is introduced from dry ice or the like, but the carbon dioxide source is not limited. The addition amount of the ligand is suitably 1 to 1000 times, more preferably 10 to 100 times that of titanium. When an amount exceeding this is added, it does not react with titanium, so that carbon dioxide is simply added, which is inefficient. On the other hand, when the amount is less than this, the reaction is incomplete, and the stability of the liquid is significantly lowered.

本発明の前駆体溶液を作成するために用いられるアミン化合物としては、一般式(I)で示される化合物、n−プロピルアミン、ジ−n−プロピルアミン、ジイソプロピルアミン、エチル−n−プロピルアミン、エチルイソプロピルアミン、ジ−n−ブチルアミン、ジイソブチルアミン、ジ−sec−ブチルアミン、ジ−ter−ブチルアミン、エチル−n−ブチルアミン、イソプロピル−n−ブチルアミン、ジ−n−ペンチルアミン、n−ヘキシルアミン、ジヘキシルアミン、ジシクロヘキシルアミン、n−オクチルアミンなどのアルキル基の炭素数が10以下の脂肪族アミンが挙げられるがこれらに限定されるものではない。アルキル基の炭素数が10を越える場合は有機成分が多くなり、脱溶媒後の加熱処理時に化合物中で二酸化チタンの中で不純物準位を形成してしまうため光触媒機能が低下する。このため高性能の粉体を得ることが困難である。   Examples of amine compounds used for preparing the precursor solution of the present invention include compounds represented by general formula (I), n-propylamine, di-n-propylamine, diisopropylamine, ethyl-n-propylamine, Ethyl isopropylamine, di-n-butylamine, diisobutylamine, di-sec-butylamine, di-ter-butylamine, ethyl-n-butylamine, isopropyl-n-butylamine, di-n-pentylamine, n-hexylamine, dihexyl Examples include, but are not limited to, aliphatic amines having 10 or less carbon atoms in alkyl groups such as amine, dicyclohexylamine, and n-octylamine. When the number of carbon atoms in the alkyl group exceeds 10, the organic component increases, and an impurity level is formed in titanium dioxide in the compound during the heat treatment after desolvation, so that the photocatalytic function is lowered. For this reason, it is difficult to obtain a high-performance powder.

Figure 2008114178
(式中、R、R、R、Rは水素または炭素数が1〜10のアルキル基であって、R〜R中少なくとも一つがアルキル基を示し、R〜Rはそれぞれ同じでも異なっていてもよい。)
Figure 2008114178
(Wherein, R 1, R 2, R 3, R 4 is a hydrogen or an alkyl group having 1 to 10 carbon atoms, at least one of R 1 to R 4 represents an alkyl group, R 1 to R 4 May be the same or different.)

また、本発明に用いられるアミンとしては一般式(II)あるいは(III)で示される化合物、ピリジン、4−メチルピリジン、4−アミノピリジン、4−ジメチルアミノピリジンなどのピリジン誘導体、ベンジルアミン、N,N−ジメチルベンジルアミンなどのベンジルアミン誘導体、N,N−ジメチルアニリン、N,N−ジメチル−p−トルイジンなどのアニリン誘導体などが挙げられるがこれらに限定されるものではない。   Examples of amines used in the present invention include compounds represented by formula (II) or (III), pyridine derivatives such as pyridine, 4-methylpyridine, 4-aminopyridine, 4-dimethylaminopyridine, benzylamine, N , Benzylamine derivatives such as N-dimethylbenzylamine, aniline derivatives such as N, N-dimethylaniline, N, N-dimethyl-p-toluidine, and the like, but are not limited thereto.

Figure 2008114178
(式中、Rはジメチルアミノ基、ジエチルアミノ基、水素または炭素数が1〜10のアルキル基、nは0または1の整数、R、Rは水素または炭素数が1〜10のアルキル基を示し、R、Rはそれぞれ同じでも異なっていてもよい。)
Figure 2008114178
(Wherein R 5 is a dimethylamino group, diethylamino group, hydrogen or an alkyl group having 1 to 10 carbon atoms, n is an integer of 0 or 1, R 6 and R 7 are hydrogen or alkyl having 1 to 10 carbon atoms, And R 6 and R 7 may be the same or different.

Figure 2008114178
Figure 2008114178

(式中、Rはジメチルアミノ基、ジエチルアミノ基、水素または炭素数が1〜10のアルキル基を示す。) (In the formula, R 8 represents a dimethylamino group, a diethylamino group, hydrogen, or an alkyl group having 1 to 10 carbon atoms.)

本発明に用いられるアミン化合物は、反応によって生成する塩あるいは付加化合物が水、アルコールに溶解し易いこと、および経時的に結晶が析出することが無いなど、安定な液を形成することを目安に選定される。2種以上のアミンを併用して結晶の析出を抑えることも有効である。アミンの添加量はチタンアルコキシドに対して等モルから10倍量が適当である。より好適には等モルから5倍量が適当である。これを超える量を添加した場合、有機物が多くなり脱溶媒後の加熱処理時に二酸化チタンの中で不純物準位を形成してしまうため光触媒機能が低下する。これより少ない場合は反応が未完結となり、液の安定性が著しく低下する。   The amine compound used in the present invention is based on the formation of a stable liquid such that the salt or addition compound produced by the reaction is easily dissolved in water and alcohol, and the crystals do not precipitate over time. Selected. It is also effective to suppress the precipitation of crystals by using two or more amines in combination. The amount of amine added is suitably from equimolar to 10 times the amount of titanium alkoxide. More preferably, an equimolar to 5-fold amount is appropriate. When an amount exceeding this is added, the amount of organic matter increases, and impurity levels are formed in the titanium dioxide during the heat treatment after desolvation, so that the photocatalytic function is lowered. When the amount is less than this, the reaction is incomplete, and the stability of the liquid is significantly reduced.

また、本発明に用いられる酸化剤としては、過酸化水素、硝酸、亜硝酸、三酸化二窒素、四酸化二窒素、硫酸、オゾン、酸素、過塩素酸、塩素酸、亜塩素酸、次亜塩素酸、さらし粉、ペルオキソ硫酸、酸化鉛、過酸化バリウムなどが挙げられるがこれらに限定されるものではない。これらを水と組み合わせて単独で用いてもよく、2種以上を組み合わせても良い。簡便さ、水溶液であること、不純物が少ないことを勘案すれば、過酸化水素水が最も適している。   Examples of the oxidizing agent used in the present invention include hydrogen peroxide, nitric acid, nitrous acid, dinitrogen trioxide, dinitrogen tetroxide, sulfuric acid, ozone, oxygen, perchloric acid, chloric acid, chlorous acid, hypochlorous acid. Examples include, but are not limited to, chloric acid, bleaching powder, peroxosulfuric acid, lead oxide, and barium peroxide. These may be used alone in combination with water, or two or more thereof may be combined. In view of simplicity, aqueous solution, and few impurities, hydrogen peroxide solution is most suitable.

本発明の溶液に用いられる有機溶媒としては、メタノール、エタノール、プロパノール、イソプロパノール、n−プロパノール、n−ブタノール、イソブタノール、t−ブタノール等の低級アルコール、エチレングリコール、プロピレングリコール等のグリコール、エチレングリコールモノブチルエーテル、プロピレングリコールモノメチルエーテル等のグリコールエーテル、などが挙げられるが、これらに限定されない。またこれらの有機溶媒は単独で用いてもよく、2種以上組み合わせても良い。   Examples of the organic solvent used in the solution of the present invention include methanol, ethanol, propanol, isopropanol, n-propanol, n-butanol, isobutanol, t-butanol and other lower alcohols, ethylene glycol, propylene glycol and other glycols, ethylene glycol Examples thereof include glycol ethers such as monobutyl ether and propylene glycol monomethyl ether, but are not limited thereto. These organic solvents may be used alone or in combination of two or more.

本発明の溶液組成物は、二酸化炭素とチタンアルコキシドと過酸化水素水などの酸化剤を低級アルコール中で反応させ、次いでアミンを加える、または、二酸化炭素とチタンアルコキシドとアミンと過酸化水素水などの酸化剤を低級アルコール中で反応させることにより得られる。酸化剤の量は、チタン錯体に対して0.001倍モルから10倍、より好適には0.05倍から5倍に加えるのが適当である。   The solution composition of the present invention comprises reacting an oxidizing agent such as carbon dioxide, titanium alkoxide and hydrogen peroxide solution in a lower alcohol and then adding an amine, or carbon dioxide, titanium alkoxide, amine and hydrogen peroxide solution, etc. It can be obtained by reacting the oxidant in a lower alcohol. The amount of the oxidizing agent is suitably 0.001 times to 10 times, more preferably 0.05 times to 5 times that of the titanium complex.

加熱または減圧などのいずれか方法により溶媒を揮発させ、200℃〜800℃の温度の熱処理を行う。より好ましくは250℃〜650℃の温度で焼成する。また、焼成温度を何段階かに分けることも出来る。焼成はマッフル炉中で徐々に高温にまで高めていっても良いし、すでに一定温度に設定されている炉に投入しても良い。熱処理時の雰囲気は空気でも良いが必用に応じて不活性ガス中で行っても良い。不活性ガスはヘリウム、アルゴン、クリプタント、キセノン、窒素など例に挙げたが、これらに限定されない。また、これらの気体は、単独で用いてもよく、2種以上組み合わせても良い。また酸素の存在量15%程度まで混合されていてもよい。   The solvent is volatilized by any method such as heating or reduced pressure, and heat treatment at a temperature of 200 ° C. to 800 ° C. is performed. More preferably, baking is performed at a temperature of 250 ° C. to 650 ° C. Also, the firing temperature can be divided into several stages. Firing may be gradually raised to a high temperature in a muffle furnace, or may be put into a furnace that has already been set to a constant temperature. The atmosphere during the heat treatment may be air, but may be performed in an inert gas as necessary. Examples of the inert gas include helium, argon, cryptant, xenon, and nitrogen, but are not limited thereto. These gases may be used alone or in combination of two or more. In addition, oxygen may be mixed up to about 15%.

溶液組成物からいずれかの方法で脱溶媒して得られる粉体の熱処理時間は当業者が適宜選択して設定することができる。例えば、10秒〜5時間、好ましくは5分〜2時間で行うことができる。また、蒸発皿などの耐熱性の基材が前記の温度範囲を保ったまま溶液組成物をスプレーなどの方法で直接基材に接触させることにより、脱溶媒と熱処理工程を同時に行うことができ、一段階で作ることができる。   The heat treatment time of the powder obtained by removing the solvent from the solution composition by any method can be appropriately selected and set by those skilled in the art. For example, it can be performed in 10 seconds to 5 hours, preferably 5 minutes to 2 hours. In addition, the solvent composition and the heat treatment step can be performed simultaneously by bringing the solution composition directly into contact with the substrate by a method such as spraying while keeping the temperature range of the heat-resistant substrate such as an evaporating dish, Can be made in one step.

なお、上記熱処理時間や熱処理工程は例示であり、これらに限定されない。   In addition, the said heat processing time and the heat processing process are illustrations, and are not limited to these.

こうして得られた二酸化チタンアナターゼ複合物粉体は特徴的な黒色を呈しており、紫外線はもちろん可視光にも応答する光触媒機能を有する。   The titanium dioxide anatase composite powder thus obtained has a characteristic black color and has a photocatalytic function that responds to visible light as well as ultraviolet light.

本発明により得られた二酸化チタンを主成分とする粉体および粉体を有する部材の工法は問わない。また、上記使用方法については例示であり、これらに限定されない。   The method of producing the powder having titanium dioxide as a main component and the member having the powder obtained by the present invention is not limited. Moreover, about the said usage method, it is an illustration and it is not limited to these.

本発明の可視光応答光触媒用黒色二酸化チタンアナターゼ複合物粉体の製造方法および該粉体形成用の溶液組成物の製造方法を次の実施例でより具体的に明らかにする。本発明は上述の発明を実施するための最良の形態に限らず本発明の趣旨を逸脱することなくその他種々の構成を採り得ることはもちろんである。   The manufacturing method of the black titanium dioxide anatase composite powder for visible light responsive photocatalyst of the present invention and the manufacturing method of the solution composition for forming the powder will be described more specifically in the following examples. It goes without saying that the present invention is not limited to the best mode for carrying out the invention described above, and various other configurations can be adopted without departing from the spirit of the present invention.

以下に実施例を上げて本発明を説明するが、本発明はこの実施例に限定されるものではない。実施例1は可視光応答光触媒用黒色二酸化チタンアナターゼ複合物粉体形成用の溶液組成物の製造方法に関するものである。   The present invention will be described below with reference to examples, but the present invention is not limited to these examples. Example 1 relates to a method for producing a solution composition for forming a black titanium dioxide anatase composite powder for visible light responsive photocatalyst.

[実施例1]
100ml三角フラスコにエタノール30g、チタンテトライソプロポキシド6.6g(23.2mmol)、ドライアイス50gを溶液中に少量ずつ加えバブリングさせ、その中に30%過酸化水素水2.6g(22.9mmol)を加え、室温で撹拌しながらブチルアミン3.4g(46.6mmol)を滴下した。ドライアイス投入終了後1時間室温で撹拌を行い反応させた後、淡黄色の透明溶液を得た。
[Example 1]
Ethanol 30 g, titanium tetraisopropoxide 6.6 g (23.2 mmol), and dry ice 50 g were added to the 100 ml Erlenmeyer flask little by little in the solution, and 2.6 g (22.9 mmol) of 30% aqueous hydrogen peroxide was added therein. ) And 3.4 g (46.6 mmol) of butylamine was added dropwise with stirring at room temperature. After completion of the dry ice charging, the reaction was carried out by stirring at room temperature for 1 hour to obtain a pale yellow transparent solution.

[実施例2]
実施例1の溶液を70℃の温度に加熱した蒸発皿上でエタノールを蒸発させて、黄色の粉末を得た。この粉末をすり潰して、マッフル炉の中で空気雰囲気中400℃の温度で30分間熱処理した。得られた黒色粉体の結晶構造を、X線回折装置を用いて調べた所、窒化チタンや炭化チタンなどに対応するピークは観察されずアナターゼ結晶構造のみの二酸化チタンであった(図1)。
[Example 2]
Ethanol was evaporated on an evaporating dish in which the solution of Example 1 was heated to a temperature of 70 ° C. to obtain a yellow powder. This powder was ground and heat-treated in a muffle furnace in an air atmosphere at a temperature of 400 ° C. for 30 minutes. When the crystal structure of the obtained black powder was examined using an X-ray diffractometer, no peaks corresponding to titanium nitride, titanium carbide, etc. were observed, and it was titanium dioxide having only anatase crystal structure (FIG. 1). .

元素分析を行ったところ、多量の炭素、窒素、水素と過剰の酸素が含まれていることが分かった。   Elemental analysis revealed that it contained a large amount of carbon, nitrogen, hydrogen and excess oxygen.

以下の実施例は作成した二酸化チタン粉体の光触媒機能を調べるため紫外線照射下と可視光照射下におけるメチレンブルー分解実験にて性能評価を行った。   In the following examples, in order to investigate the photocatalytic function of the prepared titanium dioxide powder, performance evaluation was carried out by methylene blue decomposition experiments under ultraviolet irradiation and visible light irradiation.

[実施例3]
実施例1で作成した粉体をすり潰して、0.1mmol/Lの濃度のメチレンブルー水溶液15mL中に入れ、スターラーで撹拌して分散させた上からブラックライトを光源とした紫外線と太陽光に近い光を出すトゥルーライトを光源として可視光線を照射した(図2)。可視光線は、紫外線カットフィルターでトゥルーライトに含まれる紫外線をカットして400nm以上の光を使用した。光の強度は、紫外線では365nmにおいて1.2mW/cm、可視光線では400nmより上で0.8mW/cmで性能試験を行った。メチレンブルーの吸光度は20分ごとに180分まで測定した。粉体表面のメチレンブルーの吸着量を調べるためリファレンスとして暗所に置いたサンプルも測定した。
[Example 3]
The powder prepared in Example 1 is ground and placed in 15 mL of a 0.1 mmol / L methylene blue aqueous solution. After stirring and dispersing with a stirrer, light close to ultraviolet rays and sunlight using black light as a light source. Visible light was irradiated using true light that emits light (FIG. 2). For visible light, ultraviolet light contained in true light was cut by an ultraviolet cut filter, and light of 400 nm or more was used. The light intensity was 1.2 mW / cm 2 at 365 nm for ultraviolet light and 0.8 mW / cm 2 above 400 nm for visible light. The absorbance of methylene blue was measured every 20 minutes up to 180 minutes. In order to examine the amount of methylene blue adsorbed on the powder surface, a sample placed in the dark as a reference was also measured.

この結果、図3に示す測定結果が得られ、作成した黒色粉体は可視光に応答する光触媒機能をもつ黒色二酸化チタンアナターゼ複合物であることが分かった。   As a result, the measurement results shown in FIG. 3 were obtained, and it was found that the prepared black powder was a black titanium dioxide anatase complex having a photocatalytic function responsive to visible light.

表1に紫外線照射時のメチレンブルー分解率を、表2に可視光照射時のメチレンブルー分解率を、下で説明する比較例の分解率と比較して示す。   Table 1 shows the decomposition ratio of methylene blue when irradiated with ultraviolet rays, and Table 2 shows the decomposition ratio of methylene blue when irradiated with visible light, in comparison with the decomposition ratio of the comparative example described below.

Figure 2008114178
Figure 2008114178

Figure 2008114178
Figure 2008114178

[比較例1]
実施例1の溶液を70℃の温度に加熱した蒸発皿上でエタノールを蒸発させて、黄色の粉末を得た。この粉末をすり潰して、マッフル炉の中で空気雰囲気中500℃の温度で30分間熱処理したところ黒ではなく黄色であった。得られた黄色粉体膜の結晶構造を、X線回折装置を用いて調べた所、ルチルの結晶構造が僅かに存在するアナターゼ結晶構造の二酸化チタンであった(図1)。
[Comparative Example 1]
Ethanol was evaporated on an evaporating dish in which the solution of Example 1 was heated to a temperature of 70 ° C. to obtain a yellow powder. When this powder was ground and heat-treated in an air atmosphere at a temperature of 500 ° C. for 30 minutes in a muffle furnace, it was yellow instead of black. When the crystal structure of the obtained yellow powder film was examined using an X-ray diffractometer, it was an anatase crystal structure titanium dioxide having a slight rutile crystal structure (FIG. 1).

実施例3と同様の方法で行ったメチレンブルー分解試験の結果、この粉体の可視光応答性は実施例1と比較して実験終了時で1/3程度と低かった。これは、熱処理温度が適切でなかったため、可視光応答成分が消失してしまったためと考えられる。   As a result of the methylene blue decomposition test conducted in the same manner as in Example 3, the visible light responsiveness of this powder was as low as about 1/3 at the end of the experiment as compared with Example 1. This is probably because the visible light response component has disappeared because the heat treatment temperature was not appropriate.

本発明は可視光にも応答する光触媒機能を発生する可視光応答光触媒用黒色二酸化チタンアナターゼ複合物粉体の製造方法および該粉体形成用の溶液組成物の製造方法に係わる。アナターゼ型結晶構造の二酸化チタンは紫外光で分極して触媒として働くことは良く知られている。この二酸化チタン粉体は光があたると酸化触媒として働き、表面の有機物を分解するので優れた防汚、殺菌、消臭効果を発揮する。また二酸化チタン膜はn型半導体として太陽電池の材料にも利用できる。アナターゼ型結晶構造の二酸化チタンは太陽光に含まれる数%の紫外線しか利用できない。このため紫外線がほとんど無い室内などでは光触媒効果は発現できないため適用範囲に制限がある。太陽エネルギーの有効利用と光触媒製品の適用範囲の拡大の点からアナターゼ型の二酸化チタンの光触媒の可視光応答化はとても重要である。   The present invention relates to a method for producing a black titanium dioxide anatase composite powder for visible light responsive photocatalyst that generates a photocatalytic function that also responds to visible light, and a method for producing a solution composition for forming the powder. It is well known that titanium dioxide having an anatase type crystal structure is polarized by ultraviolet light and acts as a catalyst. The titanium dioxide powder acts as an oxidation catalyst when exposed to light, and decomposes organic substances on the surface, so that it exhibits excellent antifouling, sterilizing and deodorizing effects. The titanium dioxide film can also be used as a solar cell material as an n-type semiconductor. Titanium dioxide with anatase type crystal structure can use only a few percent of ultraviolet rays contained in sunlight. For this reason, the application range is limited because the photocatalytic effect cannot be exhibited in a room where there is almost no ultraviolet rays. The visible light response of anatase-type titanium dioxide photocatalyst is very important in terms of effective use of solar energy and expansion of the application range of photocatalytic products.

本発明のチタンに炭酸イオンと過酸化物イオンが配位した陰イオン錯体とアミン陽イオンとを含有する有機溶媒を脱溶媒して得られた粉体を空気雰囲気中で400℃の熱処理により可視光に応答する黒色二酸化チタンアナターゼ複合物粉体が得られる。この粉体は従来、淡黄色または濃黄色しか無かった可視光応答二酸化チタンとは異なる黒色を呈している。このため可視光域全域を吸収して高効率な光触媒材料を製造することが可能であると考えられる。   The powder obtained by desolvating an organic solvent containing an anion complex in which carbonate ion and peroxide ion are coordinated to titanium of the present invention and an amine cation is visible by heat treatment at 400 ° C. in an air atmosphere. A black titanium dioxide anatase composite powder responsive to light is obtained. This powder conventionally has a black color different from visible light responsive titanium dioxide, which was only pale yellow or deep yellow. For this reason, it is thought that a highly efficient photocatalyst material can be manufactured by absorbing the whole visible light region.

この複合物粉体は可視光下でも光触媒機能が発現するため、紫外線が少ない室内向けの脱臭製品や日用品への適用はもちろん、塗料やプラスチックスなどの顔料として利用する事により、光触媒機能をもつ黒色塗料やダッシュボードなどの高機能プラスチックス製品を作ることが可能である。   Since this composite powder exhibits a photocatalytic function even under visible light, it can be applied to indoor deodorized products and daily necessities with less ultraviolet light, and it can also be used as a pigment for paints and plastics to have a photocatalytic function. It is possible to make highly functional plastic products such as black paint and dashboard.

本発明は可視光応答光触媒用黒色二酸化チタンアナターゼ複合物粉体の製造方法および該粉体形成用の溶液組成物の製造方法を提供するものである。   The present invention provides a method for producing a black titanium dioxide anatase composite powder for visible light responsive photocatalyst and a method for producing a solution composition for forming the powder.

実施例1及び比較例1による酸化チタンのX線回折結果を示す図The figure which shows the X-ray-diffraction result of the titanium oxide by Example 1 and Comparative Example 1. メチレンブルー分解試験を示す図Diagram showing methylene blue decomposition test メチレンブルー分解試験の結果を示す図The figure which shows the result of the methylene blue decomposition test

Claims (6)

二酸化炭素とチタンアルコキシドと水と酸化剤とを有機溶媒中で反応させ、次いでアミンを加え、炭酸イオンと二酸化物イオンが配位したチタン錯体陰イオンとアミン陽イオンとを含有することを特徴とする可視光応答光触媒用黒色二酸化チタンアナターゼ複合物粉体形成用前駆体溶液の製造方法。   Carbon dioxide, titanium alkoxide, water and an oxidizing agent are reacted in an organic solvent, then an amine is added, and a titanium complex anion coordinated with carbonate ion and dioxide ion and an amine cation are contained. A method for producing a precursor solution for forming a black titanium dioxide anatase composite powder for visible light responsive photocatalyst. 二酸化炭素とチタンアルコキシドと水と酸化剤とアミンとを有機溶媒中で反応させ、炭酸イオンと二酸化物イオンが配位したチタン錯体陰イオンとアミン陽イオンとを含有することを特徴とする可視光応答光触媒用黒色二酸化チタンアナターゼ複合物粉体形成用前駆体溶液の製造方法。   Visible light characterized by containing a titanium complex anion and an amine cation in which carbon dioxide, titanium alkoxide, water, oxidant, and amine are reacted in an organic solvent and carbonate ions and dioxide ions are coordinated. A method for producing a precursor solution for forming a black titanium dioxide anatase composite powder for a responsive photocatalyst. 前記アミン陽イオンが、一般式(I)〜(III)
Figure 2008114178
(式中、R、R、R、Rは水素または炭素数が1〜10のアルキル基であって、R〜R中少なくとも一つがアルキル基を示し、R〜Rはそれぞれ同じでも異なっていてもよい)
Figure 2008114178
(式中、Rはジメチルアミノ基、ジエチルアミノ基、水素または炭素数が1〜10のアルキル基、nは0または1の整数、R、Rは水素または炭素数が1〜10のアルキル基を示し、R、Rはそれぞれ同じでも異なっていてもよい)
Figure 2008114178
(式中、Rはジメチルアミノ基、ジエチルアミノ基、水素または炭素数が1〜10のアルキル基を示す)
で示される群から選択される1種以上を含有することを特徴とする請求項1または請求項2に記載の可視光応答光触媒用黒色二酸化チタンアナターゼ複合物粉体形成用前駆体溶液の製造方法。
The amine cation is represented by the general formulas (I) to (III).
Figure 2008114178
(Wherein, R 1, R 2, R 3, R 4 is a hydrogen or an alkyl group having 1 to 10 carbon atoms, at least one of R 1 to R 4 represents an alkyl group, R 1 to R 4 May be the same or different)
Figure 2008114178
(Wherein R 5 is a dimethylamino group, diethylamino group, hydrogen or an alkyl group having 1 to 10 carbon atoms, n is an integer of 0 or 1, R 6 and R 7 are hydrogen or alkyl having 1 to 10 carbon atoms, And R 6 and R 7 may be the same or different from each other)
Figure 2008114178
(Wherein R 8 represents a dimethylamino group, a diethylamino group, hydrogen or an alkyl group having 1 to 10 carbon atoms)
The method for producing a precursor solution for forming a black titanium dioxide anatase composite powder for visible light responsive photocatalyst according to claim 1 or 2, comprising at least one selected from the group represented by .
請求項1または請求項2に記載の方法で製造した可視光応答光触媒用黒色アナターゼ粉体形成用前駆体溶液。   A precursor solution for forming a black anatase powder for visible light responsive photocatalyst produced by the method according to claim 1. 請求項4記載の溶液組成物中の溶質を熱処理することにより作成する可視光応答光触媒用黒色二酸化チタンアナターゼ複合物粉体の製造方法。   The manufacturing method of the black titanium dioxide anatase composite powder for visible light responsive photocatalysts produced by heat-processing the solute in the solution composition of Claim 4. 請求項5に記載の可視光応答光触媒用黒色二酸化チタンアナターゼ複合物粉体を有する光触媒部材の作成方法。   A method for producing a photocatalyst member having the black titanium dioxide anatase composite powder for visible light responsive photocatalyst according to claim 5.
JP2006301534A 2006-11-07 2006-11-07 Method for producing black titanium dioxide anatase composite powder for visible light-responsive photocatalyst and method for producing solution composition for producing the powder Withdrawn JP2008114178A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006301534A JP2008114178A (en) 2006-11-07 2006-11-07 Method for producing black titanium dioxide anatase composite powder for visible light-responsive photocatalyst and method for producing solution composition for producing the powder

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006301534A JP2008114178A (en) 2006-11-07 2006-11-07 Method for producing black titanium dioxide anatase composite powder for visible light-responsive photocatalyst and method for producing solution composition for producing the powder

Publications (1)

Publication Number Publication Date
JP2008114178A true JP2008114178A (en) 2008-05-22

Family

ID=39500595

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006301534A Withdrawn JP2008114178A (en) 2006-11-07 2006-11-07 Method for producing black titanium dioxide anatase composite powder for visible light-responsive photocatalyst and method for producing solution composition for producing the powder

Country Status (1)

Country Link
JP (1) JP2008114178A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103866314A (en) * 2014-02-28 2014-06-18 南京航空航天大学 Preparation method and application of visible light response black titanium dioxide nano-film
CN105600820A (en) * 2015-12-30 2016-05-25 中国科学院上海硅酸盐研究所 Green TiO2 and preparing method, modifying method and application thereof
CN109626417A (en) * 2018-12-06 2019-04-16 东莞理工学院 A kind of TiO2-XThe batch production preparation method of material
CN114314589A (en) * 2021-11-16 2022-04-12 攀钢集团攀枝花钢铁研究院有限公司 Preparation method of dry ice

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103866314A (en) * 2014-02-28 2014-06-18 南京航空航天大学 Preparation method and application of visible light response black titanium dioxide nano-film
CN103866314B (en) * 2014-02-28 2016-08-17 南京航空航天大学 The preparation method and application of visible light-responded black titanium dioxide nano thin-film
CN105600820A (en) * 2015-12-30 2016-05-25 中国科学院上海硅酸盐研究所 Green TiO2 and preparing method, modifying method and application thereof
CN109626417A (en) * 2018-12-06 2019-04-16 东莞理工学院 A kind of TiO2-XThe batch production preparation method of material
CN114314589A (en) * 2021-11-16 2022-04-12 攀钢集团攀枝花钢铁研究院有限公司 Preparation method of dry ice

Similar Documents

Publication Publication Date Title
Asahi et al. Nitrogen-doped titanium dioxide as visible-light-sensitive photocatalyst: designs, developments, and prospects
Wu et al. High visible-light photocatalytic performance of stable lead-free Cs2AgBiBr6 double perovskite nanocrystals
Huang et al. Honeycomb-like carbon nitride through supramolecular preorganization of monomers for high photocatalytic performance under visible light irradiation
CN108355702B (en) Graphite-phase carbon nitride photocatalyst with large specific surface area carbon deposition defects and preparation method and application thereof
JP5165155B2 (en) Optical semiconductor and manufacturing method thereof, optical semiconductor device, photocatalyst, hydrogen generation device and energy system
CN108855131B (en) Preparation and application of silver-nickel bimetal doped titanium dioxide nano composite material
JP4135921B2 (en) Titanium dioxide fine particles and method for producing the same
US20090263314A1 (en) Method for producing catalyst for wastewater treatment
US20130123093A1 (en) Method for Preparing Impurity-Doped Titanium Dioxide Photocatalysts Representing Superior Photo Activity at Visible Light Region and Ultraviolet Light Region in Mass Production
CN109225273B (en) Copper sulfide/tungsten sulfide composite photocatalyst and preparation method thereof
Cimieri et al. Novel sol–gel preparation of V-TiO2 films for the photocatalytic oxidation of ethanol in air
JP2008114178A (en) Method for producing black titanium dioxide anatase composite powder for visible light-responsive photocatalyst and method for producing solution composition for producing the powder
Kang et al. Preparation of Zn2GeO4 nanosheets with MIL-125 (Ti) hybrid photocatalyst for improved photodegradation of organic pollutants
Mostafa et al. Effect of microwave heating on the structure, morphology and photocatalytic activity of hydrogen titanate nanotubes
KR20170003818A (en) Manufacturing method of mesoporous anatase titanium dioxide spheres photocatalyst
Zhu et al. Selective oxidation of aniline contaminants via a hydrogen-abstraction pathway by Bi2· 15WO6 under visible light and alkaline conditions
CN111617760A (en) Mn-TiO2Composite photocatalytic material and preparation method and application thereof
KR101943921B1 (en) Manufacturing method of nitrogen doped-TiO2/graphene composite
JP2004181296A (en) Photocatalyst, its precursor sol solution and manufacturing method for the photocatalyst
CN109046302B (en) Porous petal-shaped anatase TiO2Nanocrystalline thin film and preparation method thereof
Sadek et al. Photocatalytic Degradation of Methylene Blue on Multilayer TiO2 Coatings Elaborated by the Sol-gel Spin-Coating Method
WO2009107681A1 (en) Method for producing impurity-doped metal oxide by using microwave
CN109589964B (en) Rare earth element doped lithium niobate composite photocatalytic material and preparation method and application thereof
BENSOUYAD et al. Enhanced Structural, Optical, And Photocatalytic Activities Of Cuo/Tio2: Zro2 Catalysts For Degrading Methyl Orange (MO) Dye Under UV–Visible Irradiation.
KR100780275B1 (en) Titanium Dioxide Photo-Catalyst and method of manufacturing the same

Legal Events

Date Code Title Description
A300 Application deemed to be withdrawn because no request for examination was validly filed

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20100202