KR20010073712A - Method for preparing Titanium dioxide film on polymer substrate - Google Patents

Method for preparing Titanium dioxide film on polymer substrate Download PDF

Info

Publication number
KR20010073712A
KR20010073712A KR1020000002493A KR20000002493A KR20010073712A KR 20010073712 A KR20010073712 A KR 20010073712A KR 1020000002493 A KR1020000002493 A KR 1020000002493A KR 20000002493 A KR20000002493 A KR 20000002493A KR 20010073712 A KR20010073712 A KR 20010073712A
Authority
KR
South Korea
Prior art keywords
titanium dioxide
thin film
solution
titanium
polymer support
Prior art date
Application number
KR1020000002493A
Other languages
Korean (ko)
Other versions
KR100364729B1 (en
Inventor
최진호
한양수
양재훈
정현
권철한
최우석
나혜섭
Original Assignee
구자홍
엘지전자주식회사
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 구자홍, 엘지전자주식회사 filed Critical 구자홍
Priority to KR1020000002493A priority Critical patent/KR100364729B1/en
Publication of KR20010073712A publication Critical patent/KR20010073712A/en
Application granted granted Critical
Publication of KR100364729B1 publication Critical patent/KR100364729B1/en

Links

Classifications

    • EFIXED CONSTRUCTIONS
    • E03WATER SUPPLY; SEWERAGE
    • E03DWATER-CLOSETS OR URINALS WITH FLUSHING DEVICES; FLUSHING VALVES THEREFOR
    • E03D1/00Water flushing devices with cisterns ; Setting up a range of flushing devices or water-closets; Combinations of several flushing devices
    • E03D1/02High-level flushing systems
    • E03D1/14Cisterns discharging variable quantities of water also cisterns with bell siphons in combination with flushing valves
    • E03D1/142Cisterns discharging variable quantities of water also cisterns with bell siphons in combination with flushing valves in cisterns with flushing valves
    • E03D1/144Cisterns discharging variable quantities of water also cisterns with bell siphons in combination with flushing valves in cisterns with flushing valves having a single flush outlet and an additional float for delaying the valve closure
    • EFIXED CONSTRUCTIONS
    • E03WATER SUPPLY; SEWERAGE
    • E03DWATER-CLOSETS OR URINALS WITH FLUSHING DEVICES; FLUSHING VALVES THEREFOR
    • E03D1/00Water flushing devices with cisterns ; Setting up a range of flushing devices or water-closets; Combinations of several flushing devices
    • E03D1/003Cisterns in combination with wash-basins, urinals, or the like
    • EFIXED CONSTRUCTIONS
    • E03WATER SUPPLY; SEWERAGE
    • E03DWATER-CLOSETS OR URINALS WITH FLUSHING DEVICES; FLUSHING VALVES THEREFOR
    • E03D1/00Water flushing devices with cisterns ; Setting up a range of flushing devices or water-closets; Combinations of several flushing devices
    • E03D1/30Valves for high or low level cisterns; Their arrangement ; Flushing mechanisms in the cistern, optionally with provisions for a pre-or a post- flushing and for cutting off the flushing mechanism in case of leakage
    • E03D1/33Adaptations or arrangements of floats
    • EFIXED CONSTRUCTIONS
    • E03WATER SUPPLY; SEWERAGE
    • E03DWATER-CLOSETS OR URINALS WITH FLUSHING DEVICES; FLUSHING VALVES THEREFOR
    • E03D5/00Special constructions of flushing devices, e.g. closed flushing system
    • E03D5/02Special constructions of flushing devices, e.g. closed flushing system operated mechanically or hydraulically (or pneumatically) also details such as push buttons, levers and pull-card therefor
    • E03D5/09Special constructions of flushing devices, e.g. closed flushing system operated mechanically or hydraulically (or pneumatically) also details such as push buttons, levers and pull-card therefor directly by the hand
    • E03D5/092Special constructions of flushing devices, e.g. closed flushing system operated mechanically or hydraulically (or pneumatically) also details such as push buttons, levers and pull-card therefor directly by the hand the flushing element, e.g. siphon bell, being actuated through a lever

Abstract

PURPOSE: A method for forming titanium dioxide photocatalyst thin film on polymer support is provided, which can prepare thin film at room temperature and decompose nonbiodegradable toxic organic matter such as phenol, coloring compound such as methylene blue and organic matter such as salad oil. CONSTITUTION: The manufacturing method is as follows: (i) prepare antase titanium dioxide nanosol solution by reacting titanium alkoxide, complex forming agent and water in the presence of acid catalyst; (ii) dilute by adding alcohol solution to the prepared titanium dioxide nanosol solution; (iii) washcoat the diluted titanium dioxide nanosol solution on a polymer support; (iv) dry the washcoated thin film at 25-100 deg.C; and (v) repeat the washcoating and drying steps of the washcoated thin film serially.

Description

고분자 지지체상 이산화티타늄 광촉매 박막의 제조방법{Method for preparing Titanium dioxide film on polymer substrate}Method for preparing titanium dioxide photocatalyst thin film on polymer support {Method for preparing Titanium dioxide film on polymer substrate}

본 발명은 아나타제형 이산화티타늄나노졸 용액을 제조하고 그것을 이용하여 이산화티타늄 광촉매 박막을 제조하는 방법에 관한 것으로, 보다 상세하게는 고분자 지지체 표면에 상기 이산화티타늄 나노졸 용액을 코팅하여 이산화티타늄 박막을 제조하는 방법에 관한 것이다.The present invention relates to a method for preparing an anatase type titanium dioxide sol solution and using the same to prepare a titanium dioxide photocatalyst thin film. It is about how to.

최근 산업화와 공업화에 따른 에너지 고갈 및 심각한 환경오염문제의 해결을 위한 핵심 기술로 광촉매(photocatalyst) 응용기술이 제시되고 있다.Recently, photocatalyst application technology has been proposed as a core technology for solving the energy depletion and serious environmental pollution problems caused by industrialization and industrialization.

상기 광촉매란 태양광 또는 형광등에 포함된 자외선(UV)을 이용하여 촉매현상을 유도하는 물질을 통칭하는 것으로, 이중 광촉매로 사용될 수 있는 고체산화물로는 TiO2, ZnO, SnO2, Fe2O3등이 알려져 있다.The photocatalyst refers to a material that induces a catalytic phenomenon by using ultraviolet rays (UV) included in sunlight or fluorescent lamps. As a solid oxide that can be used as a photocatalyst, TiO 2 , ZnO, SnO 2 , Fe 2 O 3 Etc. are known.

상기 산화물이 광촉매 작용을 하는 원리를 살펴보면, 상기 산화물 입자의 크기가 수십 나노미터 정도로 미세화될 경우 이러한 산화물은 "양자크기효과(quantum size effect)"의 반도체 특성이 발현된다. 즉, 상기 산화물 입자에 광에너지가 가해지면 고유의 에너지 간격(band energy gap, Eg)에 해당하는 파장의 빛을 흡수하면서 전하분리가 일어나 전자와 정공이 발생된다. 이렇게 발생된 전자와 정공은 산화환원반응을 일으켜 광촉매 특성을 나타낸다.Looking at the principle that the oxide acts as a photocatalyst, when the size of the oxide particles are reduced to a few tens of nanometers, such oxides exhibit semiconductor properties of "quantum size effect". That is, when light energy is applied to the oxide particles, electrons and holes are generated by absorbing light while absorbing light having a wavelength corresponding to an inherent band energy gap (Eg). The generated electrons and holes cause redox reactions to show photocatalytic properties.

상기 광촉매 특성 중 하나인 분해력 특성은 공기중의 산소가 전자와 반응하고 수증기가 정공과 반응하여 분해력이 뛰어난 활성산소를 발생시킴으로써 흡착된 각종 독성을 갖는 난분해성 유기물, 악취물질, 휘발성유기물(VOCs)을 최종적으로 무해한 물과 CO2로 분해시킨다.One of the photocatalytic properties is the decomposability characteristic of refractory organic substances, odorous substances, and volatile organic substances (VOCs) having various toxicity adsorbed by oxygen in the air reacting with electrons and water vapor reacting with holes to generate active oxygen having excellent decomposition ability. Is finally decomposed into harmless water and CO 2 .

상기 광촉매 시스템은 빛에너지를 이용하므로 경제적이고, 분해물질의 농도가 매우 낮은 경우 또는 상온, 상압 조건에서도 촉매능을 발휘할 수 있으며 촉매물질 자체에 의한 2차 오염발생을 일으키지 않는다는 특징을 갖는다.The photocatalyst system is economical because it uses light energy, and exhibits catalytic performance even when the concentration of the decomposition material is very low or at room temperature and atmospheric pressure, and does not cause secondary contamination by the catalyst material itself.

광촉매를 이용하는 가장 간단한 방법으로는 반도체 분말(이산화티타늄입자)을 현탁액으로 만들거나 일정한 용기 내에 충진시켜 사용하는 방법이 있다. 그러나 이는 광촉매 장치가 큰 용적율을 가져야 하거나 또는 촉매를 회수하는 어려움으로 인하여 바람직하지 않다.The simplest method of using a photocatalyst is to use a semiconductor powder (titanium dioxide particles) as a suspension or to fill a container. However, this is undesirable because the photocatalyst device must have a large volume fraction or difficulty in recovering the catalyst.

또한, 광촉매를 다양한 분야에서 응용하기 위하여 광촉매의 박막화, 선재화 및 멤브레인화 기술개발이 요구되고 있다. 이와 같은 개발을 위해서 다양한 지지체 상에 광촉매를 고정화(immobilization)시키는 기술도 함께 연구되고 있다. 이때 대표적으로 사용되는 광촉매 지지체로는 유리, 실리카, 유리/광섬유, 셀룰로스, 지올라이트, 알루미나, 알루미노실리케이트, 스테인레스스틸, 폴리신(polythene)계 수지 등이 알려져 있다.In addition, in order to apply the photocatalyst in various fields, it is required to develop a thin film, wire and membraneization technology of the photocatalyst. For this development, techniques for immobilizing photocatalysts on various supports have also been studied. Typical photocatalyst supports used here include glass, silica, glass / optical fibers, cellulose, zeolite, alumina, aluminosilicate, stainless steel, polythene-based resins, and the like.

또한, 광촉매 입자를 다양한 지지체상에 고정할 때 중요한 요소로는 촉매와 지지체간에 강한 접착력을 제공하여 안정성이 확보되어야 하고 공정 중에 촉매의 변성이 일어나지 않아야 한다. 특히, 외장재에 코팅막을 응용하는 경우, 코팅막의 투명성과 광택도 중요한 요소이다.In addition, when fixing the photocatalyst particles on a variety of supports, an important factor is to provide a strong adhesion between the catalyst and the support to ensure stability and not to denature the catalyst during the process. In particular, when the coating film is applied to the exterior material, transparency and gloss of the coating film are also important factors.

한편, 스티렌계 수지(ABS, PS 등)는 TV, 오디오, 냉장고, 청소기, 에어컨 등의 가전제품, 또는 조명기기, 컴퓨터 등의 실생활용품에서 외장재로 많이 사용되고 있지만 상기 스티렌계 수지 표면에 이산화티타늄 입자를 코팅한 광촉매 박막의 제조는 아직 보고된 바가 없다.On the other hand, styrene-based resins (ABS, PS, etc.) are widely used as exterior materials in household appliances such as TVs, audio, refrigerators, vacuum cleaners, air conditioners, or lighting appliances, computers, etc. The production of a photocatalyst thin film coated has not been reported yet.

일반적으로 유리류, 세라믹류 또는 금속류 표면의 광촉매 박막의 제조에 대해서는 비교적 많은 응용연구가 수행되어 왔다. 그러나, 스티렌계 수지와 같이 고분자 지지체를 사용하는 경우에는 공정상 100℃이상, 즉 지지체의 연화점(softening point) 이상의 고온처리를 하였을 경우 지지체의 뒤틀림이 발생하는 등의 문제가 발생하고, 절연체인 이들 물질의 성질상 졸-겔 고온소성법, 증기증착법, 전기증착법 등과 같은 일반적인 박막제조 기술이 사용될 수 없다고 알려져 있어, 이 분야에 대한 연구가 시급한 과제로 지적되고 있다.In general, a relatively large amount of applied research has been conducted on the production of photocatalyst thin films on glass, ceramic or metal surfaces. However, in the case of using a polymer support such as a styrene resin, problems such as distortion of the support may occur when the high temperature treatment is performed at 100 ° C. or more, that is, at a softening point of the support. It is known that general thin film manufacturing techniques such as sol-gel high temperature firing, vapor deposition, and electric deposition cannot be used due to the nature of the material. Therefore, research in this field is urgently pointed out.

본 발명은 상술한 종래의 문제점을 개선하기 위하여 안출된 것으로, 코팅시상온건조가 가능한 나노크기의 결정상 이산화티타늄 졸 용액을 이용하여 실온에서 고분자 지지체상 이산화티타늄 광촉매 박막을 제조할 수 있게 한다.The present invention has been made to improve the above-mentioned conventional problems, it is possible to produce a titanium dioxide photocatalyst thin film on a polymer support at room temperature using a nano-sized crystalline titanium dioxide sol solution capable of drying at room temperature.

도 1은 본 발명의 실시예 1에 따른 이산화티타늄 나노입자의 투과전자현미경사진이고;1 is a transmission electron micrograph of the titanium dioxide nanoparticles according to Example 1 of the present invention;

도 2는 본 발명의 실시예 1에 따른 이산화티타늄 나노입자의 X-선 회절도이고;2 is an X-ray diffraction diagram of titanium dioxide nanoparticles according to Example 1 of the present invention;

도 3은 본 발명의 실시예 2에 따라 제조된 TiO2-ABS 광촉매 박막의 주사전자현미경 사진이고;3 is a scanning electron micrograph of a TiO 2 -ABS photocatalyst thin film prepared according to Example 2 of the present invention;

도 4는 비교예로써 일본산 ISHIHARA 이산화티타늄 졸용액을 ABS 수지 위에 코팅하여 제조한 박막의 주사전자현미경 사진이고(배율×10,000);4 is a scanning electron micrograph of a thin film prepared by coating a Japanese ISHIHARA titanium dioxide sol solution on an ABS resin as a comparative example (magnification × 10,000);

도 5는 본 발명의 실시예 3에 따라 제조된 TiO2-PS 광촉매 박막의 주사전자현미경 사진이고(배율×10,000);5 is a scanning electron micrograph of a TiO 2 -PS photocatalyst thin film prepared according to Example 3 of the present invention (magnification × 10,000);

도 6은 본 발명의 실시예 4에 따라 제조된 TiO2-ABS 광촉매 박막의 주사전자현미경 사진이고(배율×5,000);6 is a scanning electron microscope photograph of a TiO 2 -ABS photocatalyst thin film prepared according to Example 4 of the present invention (magnification × 5,000);

도 7(a)은 자외선 흡수로부터 본 발명의 실시예 5에 따라 제조된 TiO2-ABS 광촉매 박막의 메틸렌블루(MB) 분해정도를 시간에 따라 나타낸 그래프이고, 도7(b)은 본 발명의 이산화티타늄광촉매 박막 없이 UV만을 조사하여 MB 분해정도를 시간에 따라 나타낸 그래프이고; 및,Figure 7 (a) is a graph showing the degree of methylene blue (MB) decomposition of the TiO 2 -ABS photocatalyst thin film prepared according to Example 5 of the present invention over time from the ultraviolet absorption, Figure 7 (b) is a graph of the present invention It is a graph which shows MB decomposition degree with time by irradiating only UV without a titanium dioxide photocatalyst thin film; And,

도 8(a)은 본 발명의 실시예 6에 따라 제조된 TiO2-ABS 광촉매 박막의 시간에 따른 페놀용액 분해정도를, 고분해능 액체크로마토그래피(HPLC)를 이용하여 측정한 결과를 시간에 따라 나타낸 그래프이고, 도 8(b)은 광촉매 박막없이 UV만 조사하여 페놀용액 분해정도를 시간에 따라 나타낸 그래프이다.FIG. 8 (a) shows the results of measuring the decomposition degree of phenol solution with time of high resolution liquid chromatography (HPLC) of the TiO 2 -ABS photocatalyst thin film prepared according to Example 6 of the present invention. Figure 8 (b) is a graph showing the decomposition of phenol solution over time by irradiating only the UV without a photocatalyst thin film.

본 발명은 산촉매 존재하에 티타늄 알콕사이드, 착체형성제 및 물을 반응시켜 투명한 아나타제 결정형 이산화티타늄(TiO2) 나노졸 용액을 제조하는 제1단계, 상기 제조된 이산화티타늄 나노졸 용액에 알코올 수용액을 첨가하여 희석시키는 제2단계, 상기 희석된 이산화티타늄 나노졸 용액을 고분자 지지체에 코팅하는 제3단계, 상기 코팅된 박막을 25℃ 내지 100℃의 온도로 건조하는 제4단계, 및, 상기 건조된 박막에 상기 코팅 및 건조의 단계들을 차례로 반복 수행하는 제5단계로 이루어지는 고분자 지지체상 이산화티타늄 광촉매 박막의 제조방법을 제공한다.The present invention is the first step to prepare a transparent anatase crystalline titanium dioxide (TiO 2 ) nanosol solution by reacting titanium alkoxide, complexing agent and water in the presence of an acid catalyst, by adding an aqueous alcohol solution to the prepared titanium dioxide nanosol solution A second step of diluting, a third step of coating the diluted titanium dioxide nanosol solution on a polymer support, a fourth step of drying the coated thin film at a temperature of 25 ° C. to 100 ° C., and on the dried thin film Provided is a method for producing a titanium dioxide photocatalyst thin film on a polymer support, comprising a fifth step of sequentially performing the coating and drying steps.

이때, 상기 제1단계의 투명한 아나타제 결정형 이산화티타늄(TiO2) 나노졸 용액은 산촉매를 비롯한 티타늄 알콕사이드, 착체형성제 및 물을 포함한 반응용액을 약 80℃에서 8시간 동안 교반함으로써 제조될 수 있다. 산촉매는 질산 또는 염산이 사용될 수 있다.In this case, the transparent anatase crystalline titanium dioxide (TiO 2 ) nanosol solution of the first step may be prepared by stirring a reaction solution including titanium alkoxide, a complexing agent, and water, including an acid catalyst, at about 80 ° C. for 8 hours. As the acid catalyst, nitric acid or hydrochloric acid may be used.

상기 티타늄 알콕사이드는, 바람직하게는, 티타늄 테트라이소프로폭사이드, 티타늄 에톡사이드 또는 티타늄 부톡사이드이다.The titanium alkoxide is preferably titanium tetraisopropoxide, titanium ethoxide or titanium butoxide.

상기 착체형성제로는 여러 가지 유기 및 고분자를 사용할 수 있으며, 분자 구조내에서 리간드로 작용할 수 있는 작용기를 가진 유기물을 의미하는 데, 그 예로 2,4-펜타디온(2,4-petadione) 등을 들 수 있다. 이러한 착체형성제는 고분자 지지체와의 결합(interaction)을 강화시키는 작용을 한다. 바람직하게는 아세틸아세톤이 착체형성제로 사용될 수 있으며, 이러한 착체형성제는 티타늄을 기준으로 1 내지 3몰부 첨가되는 것이 바람직하다.As the complexing agent, various organic and polymers may be used, and an organic material having a functional group capable of acting as a ligand in a molecular structure, for example, 2,4-pentadione (2,4-petadione) may be used. Can be mentioned. Such complexing agents act to enhance the interaction with the polymeric support. Preferably acetylacetone can be used as the complexing agent, it is preferred that 1 to 3 mole parts of the complexing agent based on titanium.

한편, 상기 제2단계의 희석단계는 이산화티타늄의 고형비가 전체 용액에서 0.3 중량% 내지 3 중량%가 되도록 희석시키는 것이 바람직하며, 첨가되는 알코올 수용액으로는 물과 에탄올 혼합용액, 또는 물과 프로판올의 혼합용액이 사용될 수 있다.On the other hand, in the dilution step of the second step, it is preferable to dilute so that the solid ratio of titanium dioxide is 0.3% to 3% by weight in the total solution. Mixed solutions may be used.

또한, 상기 제3단계의 고분자 지지체는 스티렌계 고분자일 수 있으며, 이 경우 상기 스티렌계 고분자는 아크릴로니트릴-부타디엔-스티렌(ABS) 또는 폴리스티렌(PS)인 것이 바람직하다.In addition, the polymer support of the third step may be a styrene-based polymer, in which case the styrene-based polymer is preferably acrylonitrile-butadiene-styrene (ABS) or polystyrene (PS).

상기 제3단계에서 사용되는 코팅방법은 바람직하게는 딥-코팅법이 이용될 수 있다.As the coating method used in the third step, a dip-coating method may be preferably used.

본 발명의 제조방법으로 제조된 이산화티타늄 광촉매 박막은 자외선을 이용하여 페놀과 같은 난분해성 독성 유기물, 메틸렌블루와 같은 색소화합물, 샐러르유와 같은 유화물 등을 분해시킬 수 있다. 다시 말해, 본 발명은 자외선 광촉매 특성이 우수한 저온소성용 결정상 이산화티타늄 나노졸 용액을 합성하고 이를 스티렌계 수지 등의 고분자 지지체상에 딥-코팅법을 이용하여 박막화시킴으로써 난분해성 독성 유기물 등을 물과 이산화탄소로 분해하는 것이다.The titanium dioxide photocatalyst thin film manufactured by the manufacturing method of the present invention can decompose toxic organic substances such as phenol, pigment compounds such as methylene blue, and emulsions such as sale oil using ultraviolet rays. In other words, the present invention synthesizes a crystalline titanium dioxide nanosol solution for low-temperature firing having excellent ultraviolet photocatalyst properties, and thinning it onto a polymer support such as styrene resin by using a dip-coating method, so that it is difficult to It is decomposed into carbon dioxide.

또한, 상기 이산화티타늄 용액의 코팅은 졸용액의 종류, 농도, 코팅회수 및 건조방법을 변화시킴으로써 행할 수 있다.In addition, the coating of the titanium dioxide solution can be carried out by changing the type, concentration, coating recovery and drying method of the sol solution.

본 발명은 하기의 실시예들 및 비교예들을 통해 상세히 설명될 수 있으나, 본 발명이 하기 실시예에 제한되는 것은 아니다.The present invention can be described in detail through the following examples and comparative examples, but the present invention is not limited to the following examples.

[실시예]EXAMPLE

실시예 1Example 1

티타늄 테트라이소프로폭사이드 (titanium tetraisoproproxide, Ti(OCH(CH3)2)4) 12.5㎖를 10㎖의 이소프로판올(isopropanol)에 첨가하여 티타늄 원료용액을 만들었다. 한편, 2차 증류수 75㎖에 아세틸아세톤 4.4㎖를 첨가하여 가수분해용액을 제조하였다. 그후, 상기 티타늄 원료용액을 상기 가수분해용액에 천천히 적하하여 티타늄의 가수분해를 유도하였다. 이때, 상기 가수분해반응을 촉진하기 위하여 2㎖의 70% 질산(HNO3)을 첨가하고 80℃에서 8시간 동안 교반하여 투명한 TiO2졸용액을 합성하였다. 상기 교반 온도는 약 70℃에서 80℃ 정도의 온도에서 교반시킴으로써 아나타제 결정형 이산화티타늄 나노졸 용액을 제조할 수 있으나, 교반 온도에 따라 교반 시간을 조절하여야 한다. 또한 80℃이상에서도 교반하여 아나타네 결정형 이산화티타늄 나노졸 용액을 제조할 수는 있으나 이 경우 입자의 크기가 커진다.12.5 ml of titanium tetraisoproproxide (Ti (OCH (CH 3 ) 2 ) 4 ) was added to 10 ml of isopropanol to prepare a titanium raw solution. Meanwhile, 4.4 ml of acetylacetone was added to 75 ml of distilled water to prepare a hydrolysis solution. Thereafter, the titanium raw material solution was slowly added dropwise to the hydrolysis solution to induce hydrolysis of titanium. At this time, in order to promote the hydrolysis reaction, 2 ml of 70% nitric acid (HNO 3 ) was added and stirred at 80 ° C. for 8 hours to synthesize a transparent TiO 2 sol solution. The agitating temperature can be prepared by agitating at a temperature of about 70 ℃ to about 80 ℃ anatase crystalline titanium dioxide nanosol solution, but the stirring time should be adjusted according to the stirring temperature. In addition, it is possible to prepare anatane crystalline titanium dioxide nanosol solution by stirring at 80 ℃ or more, in which case the size of the particles becomes large.

상기 합성된 TiO2졸입자의 투과 전자현미경 사진이 도 1에 제시되었다. 이것으로부터 상기 졸입자의 평균입경이 5㎚임을 확인할 수 있었다.A transmission electron micrograph of the synthesized TiO 2 sol particles is shown in FIG. 1. From this, it was confirmed that the average particle diameter of the sol particles was 5 nm.

또한, 도 2는 상기 합성된 TiO2졸입자의 X-선 회절도를 나타내며 합성된TiO2입자가 단일상의 아나타제형 결정임을 입증한다.2 also shows the X-ray diffractogram of the synthesized TiO 2 sol particles and demonstrates that the synthesized TiO 2 particles are single phase anatase crystals.

실시예 2Example 2

실시예 1에서 제조된 졸-용액을 각각 20㎖씩 혼합된 물과 에탄올 혼합용매에 이산화티탄의 고형비가 0.3중량%가 되도록 희석시켰다.The sol-solution prepared in Example 1 was diluted with 20 ml of the mixed water and ethanol so that the solid ratio of titanium dioxide was 0.3% by weight.

상기 희석된 용액에 가로, 세로가 각각 3㎝인 ABS 수지를 담근 후 1.5㎝/분의 속도로 천천히 인상하면서 상기 수지 표면에 이산화티탄을 코팅하였다. 코팅이 완료된 박막을 50℃에서 1시간 건조하였다. 건조된 박막위에 상기 코팅단계들을 2회 더 반복하였다.After dipping ABS resin of 3 cm in width and length in the diluted solution, titanium dioxide was coated on the surface of the resin while slowly pulling at a rate of 1.5 cm / min. The coated thin film was dried at 50 ° C. for 1 hour. The coating steps were repeated two more times on the dried thin film.

이렇게 하여 3회 코팅한 후 얻어진 이산화티타늄 박막의 주사전자현미경 관찰결과가 도 3의 (a) 및 (b)에 나타나있다. 상기 도 3(a) 및 (b)은 균일하고 매끄러운 이산화티타늄 광촉매 박막이 형성되었음을 나타낸다. 또한 도 3(a)로부터 상기 제조된 이산화티타늄 박막의 막두께는 0.15㎛임을 알 수 있었다.Scanning electron microscope observation results of the titanium dioxide thin film obtained after the coating three times in this way is shown in Figures 3 (a) and (b). 3 (a) and 3 (b) show that a uniform and smooth titanium dioxide photocatalyst thin film was formed. In addition, it can be seen from Fig. 3 (a) that the film thickness of the prepared titanium dioxide thin film is 0.15㎛.

비교예 1Comparative Example 1

현재 시판되고 있는 일본산 이산화티타늄 졸-용액 <ISHIHARA>를 사용하여 실시예 2와 유사한 방법에 의해 이산화티타늄 박막을 제조하였다.A titanium dioxide thin film was prepared by a method similar to Example 2 using a Japanese commercially available titanium dioxide sol-solution <ISHIHARA>.

도 4는 상기 제조된 박막을 주사전자현미경으로 관찰한 결과를 보여준다. 또한 도 4로부터 상기 박막의 표면에 균열에 의한 크랙(crack)이 발생되어 있음을 확인하였다.4 shows the result of observing the prepared thin film with a scanning electron microscope. In addition, it was confirmed from FIG. 4 that cracks due to cracks were generated on the surface of the thin film.

실시예 3Example 3

실시예 1에서 제조된 졸-용액을 각각 20㎖씩 혼합된 물과 에탄올 혼합용매에 이산화티탄의 고형비가 0.3중량%가 되도록 희석시켰다.The sol-solution prepared in Example 1 was diluted with 20 ml of the mixed water and ethanol so that the solid ratio of titanium dioxide was 0.3% by weight.

상기 희석된 용액에 가로, 세로가 각각 3㎝인 PS 수지를 담근 후 1.5㎝/분의 속도로 천천히 인상하면서 상기 수지 표면에 이산화티탄을 코팅하였다. 코팅이 완료된 박막을 50℃에서 1시간 건조하였다. 건조된 박막위에 상기 코팅단계들을 2회 더 반복하여 TiO2-PS 광촉매 박막을 제조하였다.After dipping the PS resin of 3 cm in width and length in the diluted solution, titanium dioxide was coated on the surface of the resin while slowly pulling at a speed of 1.5 cm / min. The coated thin film was dried at 50 ° C. for 1 hour. The coating steps were repeated two more times on the dried thin film to prepare a TiO 2 -PS photocatalyst thin film.

도 5는 상기 박막의 주사전자현미경 관찰결과를 나타낸다. 이때 도 5에 의하여 생성된 박막의 표면에 특이한 균열 또는 기공이 형성되지 않았음을 확인하였다.5 shows a scanning electron microscope observation result of the thin film. At this time, it was confirmed that no unusual cracks or pores were formed on the surface of the thin film produced by FIG. 5.

실시예 4Example 4

실시예 1에서 제조된 TiO2졸용액을 각각 20㎖씩 혼합된 물과 프로판올의 혼합용매에 이산화티타늄의 고형비가 0.3중량%가 되도록 희석시켰다.The TiO 2 sol solution prepared in Example 1 was diluted in a mixed solvent of 20 ml each of water and propanol so that the solid ratio of titanium dioxide was 0.3% by weight.

상기 희석용액에 가로, 세로 각각 3㎝인 ABS 수지를 담근 후 1.5㎝/분의 속도로 천천히 인상하면서 상기 수지 표면에 이산화티타늄을 코팅하였다.After dipping ABS resin of 3 cm in width and length in the diluting solution, the surface of the resin was coated with titanium dioxide while slowly pulling up at a rate of 1.5 cm / min.

코팅이 완료된 박막을 UV로 1시간 건조하였다. 상기 건조된 박막 위에 상기 코팅단계들을 2회 더 반복하였다.The coated thin film was dried with UV for 1 hour. The coating steps were repeated two more times on the dried thin film.

이렇게 하여 3회 코팅한 후 얻어진 이산화티타늄 박막의 주사전자현미경 관찰결과가 도 6에 나타나있다. 또한, 도 6은 이산화티타늄 광촉매 박막에 UV 건조과정중 잔류유기물의 휘발에 의해 약간의 기공이 형성되었음을 보여준다.Scanning electron microscope observation results of the titanium dioxide thin film obtained after the coating three times in this way is shown in FIG. In addition, FIG. 6 shows that some pores were formed in the titanium dioxide photocatalyst thin film by volatilization of residual organic matter during the UV drying process.

실시예 5Example 5

UV 조사시간에 따른 메틸렌블루 분해량을 자외선 흡광분석(UV)을 통해 측정함으로써 실시예 2에서 제조된 이산화티타늄 박막의 광촉매 특성을 알아보았다.The photocatalytic properties of the titanium dioxide thin film prepared in Example 2 were determined by measuring the amount of methylene blue decomposition according to UV irradiation time through ultraviolet absorption spectrometry (UV).

UV광원으로는 독일 Muller사의 300 크세논램프(Xe-lamp)(LAX-1530)를 이용하였고 335㎚이하의 파장은 cut-off 필터를 이용하여 제거하였으며 적외선 영역, 즉 700㎚를 넘는 파장은 water 필터를 사용하여 제거하였다. 반응용기의 용적은 100㎖이고 재질은 파이렉스였으며 용기 전면에 직경 3㎝의 석영 유리(quartz window)를 설치하여 UV를 조사하였다.UV light source uses 300 Xen-lamp (LAX-1530) of Muller, Germany. The wavelength below 335nm is removed by cut-off filter. Removed using. The volume of the reaction vessel was 100 ml, the material was Pyrex, and UV was irradiated by installing a quartz window with a diameter of 3 cm on the front of the vessel.

광원으로부터 용기까지의 거리는 35㎝로 일정하게 유지하였으며 이때 반응용기에서의 빛의 세기는 약 5㎼/㎠였다.The distance from the light source to the vessel was kept constant at 35 cm and the light intensity in the reaction vessel was about 5 mW / cm 2.

메틸렌블루의 초기량은 약 10-5M 수용액 20㎖이며 박막은 가로, 세로 각각 3㎝의 크기를 이용하였다.The initial amount of methylene blue was about 20 ml of an aqueous 10 −5 M solution, and the thin films were each 3 cm in length and length.

UV를 조사하면서 매 20분마다 분해되고 남은 잔류 MB량을 UV 흡수곡선의 변화를 통해 측정하였다. 도 7(a)는 본 발명에 따라 ABS 수지에 이산화티타늄 이 코팅된 박막의 시간에 따른 메틸렌블루 분해특성을 나타내는 자외선 흡광기 분석 결과를 나타낸 그래프로서, 60분 경과 후 초기 메틸렌블루량의 70%가 분해되고 180분 경과 후 거의 100%가 분해됨을 알 수 있었다.The amount of MB remaining after being decomposed every 20 minutes while irradiating UV was measured by changing the UV absorption curve. Figure 7 (a) is a graph showing the ultraviolet light absorber analysis results showing the methylene blue decomposition characteristics with time of the titanium dioxide-coated thin film in accordance with the present invention, 70% of the initial methylene blue amount after 60 minutes After 180 minutes, almost 100% was decomposed.

비교예 2Comparative Example 2

광촉매를 사용하지 않고 실시예 5와 유사한 방법으로 메틸렌블루의 분해특성을 조사한 결과를 도 7(b)에 나타내었다.The decomposition characteristics of methylene blue were investigated in a similar manner to Example 5 without using a photocatalyst, and the results are shown in FIG.

본 발명을 나타내는 도 7(a)와 비교해보면 광촉매를 사용한 경우에 더 우수한 광분해 특성을 나타냄을 알 수 있었다.Compared with FIG. 7 (a) showing the present invention, it was found that the photocatalyst exhibited better photolysis characteristics.

실시예 6Example 6

실시예 5와 동일한 UV 광원 및 장치를 사용하여 실시예 4를 통해 제조한 이산화티타늄 박막의 페놀 분해량을 알아보았다. 도 8(a)의 그래프는 UV 조사시간에 따른 페놀 분해양을 고분해능액체크로마토그래피(HPLC)를 통해 측정한 결과를 나타낸다. 이때 반응 용액의 초기 페놀 함유량은 5×10-4M 수용액 20㎖이며 사용되는 박막은 가로, 세로 각각 3㎝의 크기를 이용하였다.Using the same UV light source and device as Example 5, the amount of phenol decomposition of the titanium dioxide thin film prepared in Example 4 was examined. The graph of Figure 8 (a) shows the result of measuring the amount of phenol degradation according to the UV irradiation time by high resolution liquid chromatography (HPLC). At this time, the initial phenol content of the reaction solution was 20 ml of a 5 × 10 -4 M aqueous solution, and the thin film used was 3 cm each in width and length.

비교예 3Comparative Example 3

실시예 4의 결과와 비교하기 위하여 광촉매 박막을 사용하지 않은 경우 페놀의 분해특성을 조사한 결과를 도 8(b)에 나타내었다. 그 결과 광촉매 박막을 사용한 경우에 더 우수한 광분해 특성을 보임을 알 수 있었다.In order to compare with the result of Example 4, when the photocatalyst thin film is not used, the result of examining the decomposition property of phenol is shown in FIG. 8 (b). As a result, when the photocatalyst thin film was used, it was found to show better photolysis characteristics.

본 발명의 투명한 아나타제 결정형 이산화티타늄 나노졸 용액을 사용하여, 고분자, 특히 스티렌계 수지를 지지체로 하는 이산화티타늄 박막을 제조하는 방법은 실온에서도 박막 형성이 가능하다. 상기 제조된 고분자 지지체상 이산화티타늄 광촉매 박막은 페놀 등의 난분해성 독성유기물, 메틸렌 블루 등의 색소화합물, 샐러르유 등의 유화물을 분해할 수 있다.Using the transparent anatase crystalline titanium dioxide nanosol solution of the present invention, a method for producing a titanium dioxide thin film having a polymer, particularly a styrene resin, as a support can form a thin film even at room temperature. The prepared titanium dioxide photocatalyst thin film on the polymer support may decompose toxic organic substances such as phenol, pigment compounds such as methylene blue, and emulsions such as sale oil.

Claims (9)

산촉매 존재하에 티타늄 알콕사이드, 착체형성제 및 물을 반응시켜 투명한 아나타제 결정형 이산화티타늄(TiO2) 나노졸 용액을 제조하는 제1단계;Preparing a transparent anatase crystalline titanium dioxide (TiO 2 ) nanosol solution by reacting titanium alkoxide, complexing agent and water in the presence of an acid catalyst; 상기 제조된 이산화티타늄 나노졸 용액에 알코올 수용액을 첨가하여 희석시키는 제2단계;A second step of diluting by adding an aqueous alcohol solution to the prepared titanium dioxide nanosol solution; 상기 희석된 이산화티타늄 나노졸 용액을 고분자 지지체에 코팅하는 제3단계;A third step of coating the diluted titanium dioxide nanosol solution on a polymer support; 상기 코팅된 박막을 25℃내지 100℃의 온도에서 건조하는 제4단계; 및A fourth step of drying the coated thin film at a temperature of 25 ° C. to 100 ° C .; And 상기 건조된 박막에 상기 코팅 및 건조의 단계들을 차례로 반복 수행하는 제5단계로 이루어지는 고분자 지지체상 이산화티타늄 광촉매 박막의 제조방법.Method for producing a titanium dioxide photocatalyst thin film on a polymer support comprising a fifth step of sequentially repeating the coating and drying steps to the dried thin film. 제1항에 있어서, 상기 제1단계의 투명한 아나타제 결정형 이산화티타늄(TiO2) 나노졸 용액은 반응용액을 약 80℃에서 8시간 동안 교반함으로써 제조되는 것을 특징으로 하는 고분자 지지체상 이산화티타늄 광촉매 박막의 제조방법.The method of claim 1, wherein the transparent anatase crystalline titanium dioxide (TiO 2 ) nanosol solution of the first step is prepared by stirring the reaction solution at about 80 ℃ for 8 hours Manufacturing method. 제1항에 있어서, 상기 티타늄 알콕사이드는 티타늄 테트라이소프로폭사이드, 티타늄 에톡사이드 또는 티타늄 부톡사이드인 것을 특징으로 하는 고분자 지지체상이산화티타늄 광촉매 박막의 제조방법.The method of claim 1, wherein the titanium alkoxide is titanium tetraisopropoxide, titanium ethoxide or titanium butoxide. 제1항에 있어서, 상기 착체형성제는 아세틸아세톤인 것을 특징으로 하는 고분자 지지체상 이산화티타늄 광촉매 박막의 제조방법.The method of claim 1, wherein the complexing agent is acetylacetone. 제1항에 있어서, 상기 착체형성제는 티타늄을 기준으로 1 내지 3몰부 첨가되는 것을 특징으로 하는 고분자 지지체상 이산화티타늄 광촉매 박막의 제조방법.The method of claim 1, wherein the complex forming agent is added in an amount of 1 to 3 parts by mole based on titanium. 제1항에 있어서, 상기 제2단계는 이산화티타늄의 고형비가 전체 용액에서 0.3 중량% 내지 3 중량%가 되도록 희석시키는 단계인 것을 특징으로 하는 고분자 지지체상 이산화티타늄 광촉매 박막의 제조방법.The method of claim 1, wherein the second step is a step of diluting the solid ratio of titanium dioxide to 0.3 wt% to 3 wt% in the total solution. 제1항에 있어서, 상기 제3단계의 고분자 지지체는 스티렌계 고분자인 것을 특징으로 하는 고분자 지지체상 이산화티타늄 광촉매 박막의 제조방법.The method of claim 1, wherein the third step of the polymer support is a styrene-based polymer. 제6항에 있어서, 상기 스티렌계 고분자는 아크릴로니트릴-부타디엔-스티렌(ABS) 또는 폴리스티렌(PS)인 것을 특징으로 하는 고분자 지지체상 이산화티타늄 광촉매 박막의 제조방법.The method of claim 6, wherein the styrene-based polymer is acrylonitrile-butadiene-styrene (ABS) or polystyrene (PS). 제1항에 있어서, 상기 제3단계는 희석된 이산화티타늄 나노졸 용액을 고분자지지체에 딥-코팅하는 단계인 것을 특징으로 하는 고분자 지지체상 이산화티타늄 광촉매 박막의 제조방법.The method of claim 1, wherein the third step is a step of dip-coating a diluted titanium dioxide nanosol solution on a polymer support.
KR1020000002493A 2000-01-19 2000-01-19 Method for preparing Titanium dioxide film on polymer substrate KR100364729B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1020000002493A KR100364729B1 (en) 2000-01-19 2000-01-19 Method for preparing Titanium dioxide film on polymer substrate

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020000002493A KR100364729B1 (en) 2000-01-19 2000-01-19 Method for preparing Titanium dioxide film on polymer substrate

Publications (2)

Publication Number Publication Date
KR20010073712A true KR20010073712A (en) 2001-08-01
KR100364729B1 KR100364729B1 (en) 2002-12-18

Family

ID=19639785

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020000002493A KR100364729B1 (en) 2000-01-19 2000-01-19 Method for preparing Titanium dioxide film on polymer substrate

Country Status (1)

Country Link
KR (1) KR100364729B1 (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100411953B1 (en) * 2001-09-29 2003-12-24 대양전기공업 주식회사 The method of titanium oxide sol manufacture and coating for superior transmittance.
KR100659174B1 (en) * 2005-10-24 2006-12-19 신도산업 주식회사 Hydrophile property coating film formation method of a non-planar manufactured goods
KR100773402B1 (en) * 2006-07-19 2007-11-05 한양대학교 산학협력단 A surface modification method for abs resin using the photocatalyst and abs resin modified therefrom
KR100921381B1 (en) * 2008-02-19 2009-10-14 성균관대학교산학협력단 Novel titanium dioxide catalyst having the increased specific surface and method for preparing the same
KR100946745B1 (en) * 2009-07-29 2010-03-11 성균관대학교산학협력단 Novel titanium dioxide catalyst having the increased specific surface and method for preparing the same
KR101311722B1 (en) * 2010-12-20 2013-09-27 한국세라믹기술원 Manufacturing method of super hydrophilic titanium oxide thin film
KR20200013325A (en) * 2018-07-30 2020-02-07 (주)파인텍 Method manufacturing for membrane Supporter coating on TiO₂
KR20220072496A (en) * 2020-11-25 2022-06-02 (주)웨이투메이크 Method for producing coating film using titanium dioxide photocatalyst composition

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20030032577A (en) * 2001-10-18 2003-04-26 주식회사 한웅크레비즈 Synthetic Method of Titanium dioxide Photocatalyst, Which Has High Anti-bio Activty, Using Mixed Metal-complex and ZnO Solution
KR101572581B1 (en) 2014-03-17 2015-11-30 한국건설기술연구원 Photocatalyst-organic complex composition for treating non-degradable organic material and manufacturing method thereof
KR101758847B1 (en) * 2014-03-21 2017-07-31 한국건설기술연구원 Convergence floating type water purification system and operating method thereof
KR20210014445A (en) 2019-07-30 2021-02-09 안재완 Multi-purpose sterilization film using surface coating technique of polyurethane(pu) nano-sol photocatalytic

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2600103B2 (en) * 1993-12-09 1997-04-16 工業技術院長 Photocatalytic filter and method for producing the same
KR100280910B1 (en) * 1995-06-19 2001-02-01 쓰끼하시 다미까따 Photocatalyst-carrying structure and photocatalyst coating material
JP3755852B2 (en) * 1997-12-26 2006-03-15 触媒化成工業株式会社 Coating liquid for forming transparent film having photocatalytic activity and substrate with transparent film
JPH11319578A (en) * 1998-05-15 1999-11-24 Matsushita Electric Ind Co Ltd Transparent film and its manufacture
KR19990046492A (en) * 1999-03-17 1999-07-05 안길홍 TiO2 PHOTO CATALYST COATING MANUFACTURE METHOD

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100411953B1 (en) * 2001-09-29 2003-12-24 대양전기공업 주식회사 The method of titanium oxide sol manufacture and coating for superior transmittance.
KR100659174B1 (en) * 2005-10-24 2006-12-19 신도산업 주식회사 Hydrophile property coating film formation method of a non-planar manufactured goods
KR100773402B1 (en) * 2006-07-19 2007-11-05 한양대학교 산학협력단 A surface modification method for abs resin using the photocatalyst and abs resin modified therefrom
KR100921381B1 (en) * 2008-02-19 2009-10-14 성균관대학교산학협력단 Novel titanium dioxide catalyst having the increased specific surface and method for preparing the same
KR100946745B1 (en) * 2009-07-29 2010-03-11 성균관대학교산학협력단 Novel titanium dioxide catalyst having the increased specific surface and method for preparing the same
KR101311722B1 (en) * 2010-12-20 2013-09-27 한국세라믹기술원 Manufacturing method of super hydrophilic titanium oxide thin film
KR20200013325A (en) * 2018-07-30 2020-02-07 (주)파인텍 Method manufacturing for membrane Supporter coating on TiO₂
KR20220072496A (en) * 2020-11-25 2022-06-02 (주)웨이투메이크 Method for producing coating film using titanium dioxide photocatalyst composition

Also Published As

Publication number Publication date
KR100364729B1 (en) 2002-12-18

Similar Documents

Publication Publication Date Title
Singh et al. Atomic layer deposited (ALD) TiO2 on fibrous nano-silica (KCC-1) for photocatalysis: nanoparticle formation and size quantization effect
Abbasi Photocatalytic activity study of coated anatase-rutile titania nanoparticles with nanocrystalline tin dioxide based on the statistical analysis
Sonawane et al. Preparation and photo-catalytic activity of Fe TiO2 thin films prepared by sol–gel dip coating
US5897958A (en) Modified titanium oxide sol, photocatalyst composition and photocatalyst composition-forming agent
KR100385301B1 (en) Novel titania photocatalyst and its manufacturing method
KR20010049625A (en) Titanium oxide, photocatalyst comprising same and photocatalytic coating agent
AU782223B2 (en) Titanium oxide, and photocatalyst and photocatalyst coating composition using the same
JP4686536B2 (en) Photocatalyst, method for producing the same, dispersion containing photocatalyst, and photocatalyst coating composition
Klankaw et al. The hybrid photocatalyst of TiO2–SiO2 thin film prepared from rice husk silica
KR20010073712A (en) Method for preparing Titanium dioxide film on polymer substrate
KR20010107542A (en) Titanium hydroxide, photocatalyst produced from the same and photocatalytic coating agent
Sarker et al. P-doped TiO2-MWCNTs nanocomposite thin films with enhanced photocatalytic activity under visible light exposure
Samadi et al. Synthesis, characterization, and application of Nd, Zr–TiO 2/SiO 2 nanocomposite thin films as visible light active photocatalyst
Zakaria et al. Visible‐light driven photodegradation of phenol over niobium oxide‐loaded fibrous silica titania composite catalyst
Au–pree et al. Enhanced Photocatalytic Activity of C-doped TiO 2 under Visible Light Irradiation: A Comparison of Corn Starch, Honey, and Polyethylene Glycol as a Carbon Sources
Petcu et al. Au/Ti Synergistically Modified Supports Based on SiO2 with Different Pore Geometries and Architectures
Han et al. Hydrothermal synthesis and visible light photocatalysis of metal-doped titania nanoparticles
JPWO2003033144A1 (en) Photocatalyst composite, coating solution for forming photocatalyst layer, and photocatalyst carrying structure
Bahreini et al. A comparative study of photocatalytic degradation and mineralisation of an azo dye using supported and suspended nano-TiO2 under UV and sunlight irradiations
Bhattacharyya et al. Photodegradation of methanol under UV–visible irradiation by titania dispersed on polyester cloth
KR100805305B1 (en) Preparation of Titania Nanotubes with High Crystallinity and Activity
KR100823976B1 (en) Composite material for photocatalyst, and manufacturing method thereof
KR100482649B1 (en) Direct adhesion method of photocatalyst on substrate
KR100489219B1 (en) Manufacturing process of Titanium Dioxide Photocatalysts supporting Silicagel
Manikantan et al. Visible light-enhanced photocatalytic dye degradation and hydrogen evolution performance of BiVO4 thin films prepared at various annealing temperatures

Legal Events

Date Code Title Description
A201 Request for examination
E902 Notification of reason for refusal
N231 Notification of change of applicant
E701 Decision to grant or registration of patent right
GRNT Written decision to grant
FPAY Annual fee payment

Payment date: 20070918

Year of fee payment: 6

LAPS Lapse due to unpaid annual fee