KR100411953B1 - The method of titanium oxide sol manufacture and coating for superior transmittance. - Google Patents
The method of titanium oxide sol manufacture and coating for superior transmittance. Download PDFInfo
- Publication number
- KR100411953B1 KR100411953B1 KR10-2001-0060890A KR20010060890A KR100411953B1 KR 100411953 B1 KR100411953 B1 KR 100411953B1 KR 20010060890 A KR20010060890 A KR 20010060890A KR 100411953 B1 KR100411953 B1 KR 100411953B1
- Authority
- KR
- South Korea
- Prior art keywords
- titanium oxide
- coating
- sol
- volume ratio
- glass
- Prior art date
Links
- GWEVSGVZZGPLCZ-UHFFFAOYSA-N Titan oxide Chemical compound O=[Ti]=O GWEVSGVZZGPLCZ-UHFFFAOYSA-N 0.000 title claims abstract description 97
- OGIDPMRJRNCKJF-UHFFFAOYSA-N titanium oxide Inorganic materials [Ti]=O OGIDPMRJRNCKJF-UHFFFAOYSA-N 0.000 title claims abstract description 80
- 238000000576 coating method Methods 0.000 title claims abstract description 65
- 239000011248 coating agent Substances 0.000 title claims abstract description 53
- 238000002834 transmittance Methods 0.000 title claims abstract description 27
- 238000004519 manufacturing process Methods 0.000 title claims abstract description 14
- 238000000034 method Methods 0.000 title abstract description 25
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 claims abstract description 36
- 230000001699 photocatalysis Effects 0.000 claims abstract description 33
- 239000011521 glass Substances 0.000 claims abstract description 31
- 239000010936 titanium Substances 0.000 claims abstract description 19
- 239000013078 crystal Substances 0.000 claims abstract description 14
- -1 Silicon alkoxide Chemical class 0.000 claims abstract description 13
- 229910052719 titanium Inorganic materials 0.000 claims abstract description 13
- 238000009792 diffusion process Methods 0.000 claims abstract description 7
- 230000002787 reinforcement Effects 0.000 claims abstract description 7
- 229910052783 alkali metal Inorganic materials 0.000 claims abstract description 6
- 150000001340 alkali metals Chemical class 0.000 claims abstract description 6
- 230000004888 barrier function Effects 0.000 claims abstract description 3
- VEXZGXHMUGYJMC-UHFFFAOYSA-N Hydrochloric acid Chemical compound Cl VEXZGXHMUGYJMC-UHFFFAOYSA-N 0.000 claims description 34
- LFQSCWFLJHTTHZ-UHFFFAOYSA-N Ethanol Chemical compound CCO LFQSCWFLJHTTHZ-UHFFFAOYSA-N 0.000 claims description 23
- 239000000243 solution Substances 0.000 claims description 18
- 238000003756 stirring Methods 0.000 claims description 13
- 239000012299 nitrogen atmosphere Substances 0.000 claims description 10
- 229910021642 ultra pure water Inorganic materials 0.000 claims description 7
- 239000012498 ultrapure water Substances 0.000 claims description 7
- 239000007864 aqueous solution Substances 0.000 claims description 5
- 238000001035 drying Methods 0.000 claims description 3
- 239000007788 liquid Substances 0.000 claims description 2
- 239000000203 mixture Substances 0.000 claims description 2
- RMAQACBXLXPBSY-UHFFFAOYSA-N silicic acid Chemical compound O[Si](O)(O)O RMAQACBXLXPBSY-UHFFFAOYSA-N 0.000 claims description 2
- 238000010438 heat treatment Methods 0.000 abstract description 23
- 239000000377 silicon dioxide Substances 0.000 abstract description 17
- 238000003980 solgel method Methods 0.000 abstract description 7
- 150000004703 alkoxides Chemical class 0.000 abstract description 6
- 239000002243 precursor Substances 0.000 abstract description 6
- 239000010703 silicon Substances 0.000 abstract description 4
- 229910052710 silicon Inorganic materials 0.000 abstract description 4
- 230000015572 biosynthetic process Effects 0.000 abstract description 3
- 238000000354 decomposition reaction Methods 0.000 abstract description 3
- 230000001747 exhibiting effect Effects 0.000 abstract description 3
- 239000005341 toughened glass Substances 0.000 abstract description 3
- XUIMIQQOPSSXEZ-UHFFFAOYSA-N Silicon Chemical compound [Si] XUIMIQQOPSSXEZ-UHFFFAOYSA-N 0.000 abstract description 2
- RTAQQCXQSZGOHL-UHFFFAOYSA-N Titanium Chemical compound [Ti] RTAQQCXQSZGOHL-UHFFFAOYSA-N 0.000 abstract description 2
- 150000002894 organic compounds Chemical class 0.000 abstract description 2
- BDAGIHXWWSANSR-UHFFFAOYSA-N methanoic acid Natural products OC=O BDAGIHXWWSANSR-UHFFFAOYSA-N 0.000 description 8
- 230000007062 hydrolysis Effects 0.000 description 7
- 238000006460 hydrolysis reaction Methods 0.000 description 7
- 239000000047 product Substances 0.000 description 7
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 7
- 239000011941 photocatalyst Substances 0.000 description 6
- 238000001782 photodegradation Methods 0.000 description 6
- 238000009833 condensation Methods 0.000 description 5
- 230000005494 condensation Effects 0.000 description 5
- OSWFIVFLDKOXQC-UHFFFAOYSA-N 4-(3-methoxyphenyl)aniline Chemical compound COC1=CC=CC(C=2C=CC(N)=CC=2)=C1 OSWFIVFLDKOXQC-UHFFFAOYSA-N 0.000 description 4
- 235000019253 formic acid Nutrition 0.000 description 4
- 238000002441 X-ray diffraction Methods 0.000 description 3
- 230000007423 decrease Effects 0.000 description 3
- 238000004455 differential thermal analysis Methods 0.000 description 3
- 239000012071 phase Substances 0.000 description 3
- 230000007704 transition Effects 0.000 description 3
- 229910002808 Si–O–Si Inorganic materials 0.000 description 2
- 229910003088 Ti−O−Ti Inorganic materials 0.000 description 2
- 238000004458 analytical method Methods 0.000 description 2
- 239000003054 catalyst Substances 0.000 description 2
- 230000000052 comparative effect Effects 0.000 description 2
- 239000003344 environmental pollutant Substances 0.000 description 2
- 238000007654 immersion Methods 0.000 description 2
- 238000006303 photolysis reaction Methods 0.000 description 2
- 230000015843 photosynthesis, light reaction Effects 0.000 description 2
- 230000003014 reinforcing effect Effects 0.000 description 2
- 238000010532 solid phase synthesis reaction Methods 0.000 description 2
- 238000002411 thermogravimetry Methods 0.000 description 2
- 125000000217 alkyl group Chemical group 0.000 description 1
- 238000003556 assay Methods 0.000 description 1
- 239000012298 atmosphere Substances 0.000 description 1
- 239000006227 byproduct Substances 0.000 description 1
- 230000015556 catabolic process Effects 0.000 description 1
- 238000012512 characterization method Methods 0.000 description 1
- 238000006482 condensation reaction Methods 0.000 description 1
- 238000002425 crystallisation Methods 0.000 description 1
- 230000008025 crystallization Effects 0.000 description 1
- 238000006731 degradation reaction Methods 0.000 description 1
- 238000000113 differential scanning calorimetry Methods 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 238000005265 energy consumption Methods 0.000 description 1
- 230000007613 environmental effect Effects 0.000 description 1
- 238000002474 experimental method Methods 0.000 description 1
- 239000003673 groundwater Substances 0.000 description 1
- 229940088597 hormone Drugs 0.000 description 1
- 239000005556 hormone Substances 0.000 description 1
- 125000002887 hydroxy group Chemical group [H]O* 0.000 description 1
- 230000001771 impaired effect Effects 0.000 description 1
- 239000012535 impurity Substances 0.000 description 1
- 239000010842 industrial wastewater Substances 0.000 description 1
- 239000000463 material Substances 0.000 description 1
- 239000008204 material by function Substances 0.000 description 1
- 229910052751 metal Inorganic materials 0.000 description 1
- 239000002184 metal Substances 0.000 description 1
- 235000019645 odor Nutrition 0.000 description 1
- 230000003287 optical effect Effects 0.000 description 1
- 239000005416 organic matter Substances 0.000 description 1
- 230000010355 oscillation Effects 0.000 description 1
- 231100000719 pollutant Toxicity 0.000 description 1
- 239000000843 powder Substances 0.000 description 1
- 238000002360 preparation method Methods 0.000 description 1
- 238000005245 sintering Methods 0.000 description 1
- 239000002904 solvent Substances 0.000 description 1
- 239000007858 starting material Substances 0.000 description 1
- 238000005728 strengthening Methods 0.000 description 1
- 239000000126 substance Substances 0.000 description 1
- 238000004381 surface treatment Methods 0.000 description 1
- 238000003786 synthesis reaction Methods 0.000 description 1
- 238000005496 tempering Methods 0.000 description 1
- 230000004580 weight loss Effects 0.000 description 1
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J37/00—Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
- B01J37/02—Impregnation, coating or precipitation
- B01J37/0215—Coating
- B01J37/0228—Coating in several steps
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J21/00—Catalysts comprising the elements, oxides, or hydroxides of magnesium, boron, aluminium, carbon, silicon, titanium, zirconium, or hafnium
- B01J21/06—Silicon, titanium, zirconium or hafnium; Oxides or hydroxides thereof
- B01J21/063—Titanium; Oxides or hydroxides thereof
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J35/00—Catalysts, in general, characterised by their form or physical properties
- B01J35/30—Catalysts, in general, characterised by their form or physical properties characterised by their physical properties
- B01J35/39—Photocatalytic properties
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J37/00—Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
- B01J37/04—Mixing
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J37/00—Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
- B01J37/08—Heat treatment
Landscapes
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Materials Engineering (AREA)
- Organic Chemistry (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Physics & Mathematics (AREA)
- Thermal Sciences (AREA)
- Catalysts (AREA)
Abstract
본 발명은 유기화합물의 분해에 대해 높은 광촉매 특성을 나타내는 투과율이 우수한 광촉매성 산화티탄졸 및 그 제조 방법 및 코팅 방법에 관한 것으로, 본 발명은 유리에 적용 가능하도록 투과율이 우수한 광촉매성 산화티탄을 졸-겔법을 이용하여 제조된 산화티탄졸 및 그 제조·코팅하는 방법 및 광촉매 특성이 뛰어난 아나타제 결정을 생성하기 위한 방법에 관한 것이다.The present invention relates to a photocatalytic titanium oxide sol having a high transmittance exhibiting high photocatalytic properties against decomposition of an organic compound, a method for manufacturing the same, and a coating method thereof. The present invention relates to a photocatalytic titanium oxide having a high transmittance so as to be applicable to glass. The present invention relates to a titanium oxide sol produced using the gel method, a method for producing and coating the same, and a method for producing anatase crystals excellent in photocatalytic properties.
유리 표면에 산화티탄 졸을 코팅하기 위해서는 투과율이 우수한 졸의 개발이 이루어져야 하며 , 유리 내에 함유되어 있는 알카리 금속이 열처리과정에서 확산되어 아나타제 결정 형성을 방해하므로 확산방지층을 형성하여야 한다. 본 발명에서 졸-겔법에 의해 제조되는 실리카 및 산화티탄의 전구체로써는 알콕사이드를 사용한다. 실리콘의 전구체로는 실리콘 알콕사이드를 사용하며, 티타늄의 전구체로는 티타늄알콕사이드를 사용한다.In order to coat the titanium oxide sol on the glass surface, a sol having excellent transmittance should be developed, and an alkali metal contained in the glass diffuses during the heat treatment to prevent formation of anatase crystals, thereby forming a diffusion barrier layer. In the present invention, alkoxide is used as a precursor of silica and titanium oxide produced by the sol-gel method. Silicon alkoxide is used as a precursor of silicon, and titanium alkoxide is used as a precursor of titanium.
종래의 산화티탄 졸은 투명성이 떨어지고 열처리 공정이 있어 강화유리에 적용이 불가능 했지만, 본 발명에 의해 투명성이 우수하고 강화처리 만으로 광촉매 특성이 뛰어난 산화티탄 코팅을 할 수 있어 각종 유리를 이용한 제품에 적용할 수 있다.Conventional titanium oxide sol has poor transparency and heat treatment process was not applicable to tempered glass, but the present invention can be applied to products using various glass because it can be coated with titanium oxide excellent transparency and excellent photocatalytic properties only by reinforcement treatment. can do.
Description
본 발명은 유기화합물의 분해에 대해 높은 광촉매 특성을 나타내는 투과율이 우수한 광촉매성 산화티탄졸 및 그 제조 방법 및 산화티탄졸의 코팅 방법에 관한 것으로, 더욱 구체적으로 설명하면, 유기화합물의 분해에 대해 높은 광촉매특성을 가지면서 투과율이 우수하고 아나타제결정을 생성하는 것이 가능하게 되어 유리에 적용 가능한 산화티탄졸 및 그 제조방법과 그를 이용하여 코팅하는 산화티탄졸의 코팅방법에 관한 것이다.The present invention relates to a photocatalytic titanium oxide sol having a high transmittance exhibiting high photocatalytic properties with respect to decomposition of organic compounds, a preparation method thereof, and a coating method of titanium oxide sol. The present invention relates to a titanium oxide sol applicable to glass, a method of manufacturing the same, and a coating method of a titanium oxide sol coated using the same, having a photocatalytic property and having excellent transmittance and enabling to generate anatase crystals.
산화티탄의 결정구조는 아나타제(anatase), 루타일(rutile), 브루카이트(brookite)의 3가지로 존재한다. 이러한 결정구조는 출발물질, 제조방법, 소결온도 등에 좌우되며, 일반적으로 광촉매활성은 아나타제가 가장 큰 것으로 알려져 있다.There are three crystal structures of titanium oxide: anatase, rutile, and brookite. The crystal structure depends on the starting material, the production method, the sintering temperature, and the like, and in general, the photocatalytic activity is known to have the largest anatase.
광촉매는 무한한 빛에너지를 이용할 수 있으며, 2차적인 오염물질을 방출하지 않기 때문에, 최근 광촉매를 이용한 난분해성 물질의 처리에 대한 관심이 집중되고 있다. 현재 광촉매를 응용하는 부분은 크게 세 분야로 휘발성유기물의 분해 및 악취를 제거하는 대기정화장치, 지하수와 상수원의 유기물제거 및 산업폐수를 정화하는 수질정화장치, 그리고 환경호르몬을 제거하고 살균능력을 통해 쾌적하고 청결한 생활환경을 유지시키는 의료 및 기타생활용품으로 이용되고 있다. 특히 산화티탄은 환경오염물질의 분해능과 자기정화기능을 갖음으로서 환경을 정화할 수 있을 뿐 아니라 항상 깨끗한 외관을 유지할 수 있으므로 매우 다양한 분야에서 다양한 기능성 재료로 산업에 응용될 수 있다.Since photocatalysts can use infinite light energy and do not emit secondary pollutants, attention has recently been focused on the treatment of hardly decomposable materials using photocatalysts. Currently, photocatalysts are mainly applied to three fields: air purifiers to decompose volatile organics and remove odors, water purifiers to remove organic matter from groundwater and water supplies, and industrial wastewater to be purified, and to remove environmental hormones and sterilize them. It is used as a medical and other daily necessities to maintain a comfortable and clean living environment. In particular, since titanium oxide has the resolution and self-purifying function of environmental pollutants, it can not only clean the environment but also maintain a clean appearance at all times, and thus it can be applied to various functional materials in various fields.
이러한 광촉매로서 산화티탄이 널리 사용되고 있으며, 이러한 산화티탄을 제조하는 방법에는 졸-겔법 및 고상법 등이 있다. 고상법은 고온에서 열처리를 해야 하므로 에너지 소모가 많고, 결정이 성장하여 미립상을 얻기 어렵다. 또한 균일한 합성이 어렵고, 불순물 유입 가능성이 높아, 최근에는 미립상의 균일한 고순도 합성이 가능한 졸-겔법을 이용하고 있다. 하지만 졸-겔법에 의해 만들어진 종래의 산화티탄 졸은 투명성이 떨어지고 열처리 공정이 있어 투명성이 요구되는 강화유리에는 적용하기 어려웠다.Titanium oxide is widely used as such a photocatalyst, and methods for producing such titanium oxide include a sol-gel method and a solid phase method. Since the solid phase method requires heat treatment at a high temperature, energy consumption is high, and crystals grow, making it difficult to obtain particulates. In addition, it is difficult to uniformly synthesize and have a high possibility of introducing impurities, and recently, a sol-gel method capable of fine, uniform high-purity synthesis has been used. However, the conventional titanium oxide sol made by the sol-gel method is difficult to apply to tempered glass which requires transparency because of poor transparency and heat treatment process.
본 발명의 목적은 광촉매 특성을 나타내면서 우수한 투과율을 나타내는 산화티탄 코팅액을 졸-겔법에 의해 투과율이 우수한 광촉매성 산화티탄졸을 제조하므로써 투명성이 우수하고 강화처리 만으로 광촉매 특성이 뛰어난 산화티탄 코팅을 할 수 있어 각종 유리를 이용한 제품에 적용하는 것이다.An object of the present invention is to produce a titanium oxide coating liquid exhibiting excellent photocatalytic properties and excellent transmittance by preparing a photocatalytic titanium oxide sol having excellent transmittance by the sol-gel method. It is to be applied to products using various glass.
본 발명의 다른 목적은 투명성이 우수하고 강화처리 만으로 광촉매 특성이 뛰어난 산화티탄 코팅을 할 수 있어 각종 유리를 이용한 제품에 적용하는 것이 가능한 광촉매성 산화티탄졸의 제조방법을 제공하는 것이다.Another object of the present invention is to provide a method for producing a photocatalytic titanium oxide sol which can be applied to a product using various glass, which can be coated with titanium oxide having excellent transparency and excellent photocatalytic properties only by strengthening treatment.
본 발명의 다른 목적은 투명성이 우수하고 강화처리 만으로 광촉매 특성이 뛰어난 산화티탄 코팅을 할 수 있어 각종 유리를 이용한 제품에 적용하는 것이 가능한 광촉매성 산화티탄졸의 코팅방법을 제공하는 것이다.Another object of the present invention is to provide a method for coating a photocatalytic titanium oxide sol which can be applied to a product using various glass, which can be coated with titanium oxide having excellent transparency and excellent photocatalytic properties only by reinforcing treatment.
본 발명의 이러한 목적들은 초순수(H2O)와 염산을 90 : 10 내지 99 : 1 의 부피비율로 교반하고, 이를 알콜에 1 : 99 내지 10 : 90 의 부피비율로 첨가하고 교반하여 알코올함유 염산수용액을 얻고, 티타늄알콕사이드와 알콜을 20 : 80 내지 40 : 60의 부피비로 교반한 용액에 질소 분위기에서 상기 염산수용액을 한방울씩 적하 시키면서 12시간 이상 교반하여 제조된 본 발명에 따른 투과율이 우수한 광촉매성 산화티탄졸 및 그 제조방법 및 코팅방법에 의하여 달성된다.These objects of the present invention are to stir ultrapure water (H 2 O) and hydrochloric acid in a volume ratio of 90: 10 to 99: 1, add it to an alcohol in a volume ratio of 1: 99 to 10: 90 and stir to alcohol-containing hydrochloric acid An aqueous solution was obtained, and the photocatalyst having excellent transmittance according to the present invention, prepared by stirring the solution of hydrochloric acid in a nitrogen atmosphere dropwise for 12 hours or more in a solution in which the titanium alkoxide and the alcohol were stirred at a volume ratio of 20:80 to 40:60. It is achieved by a titanium oxide sol, a production method thereof and a coating method.
본 발명에 따른 투과율이 우수한 광촉매성 산화티탄졸 및 그 제조방법 및 코팅방법을 이하에 기술되는 실시예에 의하여 그 특징 및 장점들을 보다 명백하게 이해할 수 있을 것이다.The photocatalytic titanium oxide sol having excellent transmittance according to the present invention, its manufacturing method and coating method will be more clearly understood by the examples described below.
도 1 은 본 발명에 따른 산화티탄졸을 제조하는 제조 장치의 개략도1 is a schematic view of a manufacturing apparatus for producing a titanium oxide sol according to the present invention
도 2 는 본 발명에 따른 산화티탄졸을 제조하는 제조공정을 나타내는 공정도2 is a process chart showing a manufacturing process for producing a titanium oxide sol according to the present invention
도 3 은 실리카 및 산화티탄 졸의 코팅 공정을 나타내는 공정도3 is a process chart showing a coating process of silica and titanium oxide sol
도 4 는 산화티탄의 TG-DSC 분석 데이타를 나타내는 그래프4 is a graph showing TG-DSC analysis data of titanium oxide
도 5 는 열처리 온도에 따른 산화티탄 졸의 광분해 특성 데이타를 나타내는 그래프5 is a graph showing photodegradation characteristics data of titanium oxide sol according to heat treatment temperature
도 6 은 열처리 온도에 따른 투과율 분석 데이타를 나타내는 그래프Figure 6 is a graph showing the transmittance analysis data according to the heat treatment temperature
도 7 은 실리카 코팅 유무에 따른 광분해 특성 데이타를 나타내는 그래프7 is a graph showing photodegradation characteristic data with and without silica coating
도 8 은 실리카 코팅 유무에 따른 XRD 분석 데이타를 나타내는 그래프8 is a graph showing the XRD analysis data with and without silica coating
도 9 는 강화처리 및 열처리에 따른 광분해 특성 데이터를 나타내는 그래프9 is a graph showing photodegradation characteristic data according to reinforcement treatment and heat treatment.
도 10은 유리커버 표면에 산화티탄을 코팅한 후 강화처리한 터널용 조명등기구의 사시도.Figure 10 is a perspective view of the tunnel lighting fixtures after the titanium oxide coated on the glass cover surface treatment.
본 발명에 따른 광촉매성 산화티탄졸은 유리 표면에 산화티탄 졸을 코팅하기 위해서는 투과율이 우수한 졸의 개발을 목표로 안출된 것으로, 유리 내에 함유되어 있는 알카리 금속이 열처리과정에서 확산되어 아나타제 결정 형성을 방해하여 광촉매 특성이 떨어지므로, 산화티탄 코팅 전에 실리카(SiO2) 졸을 사용하여 확산 방지층을 형성한 후, 산화티탄 코팅을 실시하여야 하는 코팅방법을 포함한다.The photocatalytic titanium oxide sol according to the present invention is designed to develop a sol having a high transmittance in order to coat the titanium oxide sol on the glass surface, and the alkali metal contained in the glass diffuses during the heat treatment to form anatase crystals. Since the photocatalyst properties are impaired, the coating method includes coating the titanium oxide after forming the diffusion barrier layer using silica (SiO 2 ) sol before coating the titanium oxide.
본 발명에서 졸-겔 법에 의해 제조되는 실리카 및 산화티탄의 전구체로써는 알콕사이드를 사용한다. 실리콘의 전구체로는 실리콘알콕사이드를 사용하며, 티타늄의 전구체로는 티타늄알콕사이드를 사용한다. 본 발명의 졸-겔법은 알콕사이드의 가수분해(hydrolysis)와 응축반응(condensation)에 의해 진행되며 아래에 표기한 식과 같다.In the present invention, alkoxides are used as precursors of silica and titanium oxide produced by the sol-gel method. Silicon alkoxide is used as a precursor of silicon, and titanium alkoxide is used as a precursor of titanium. The sol-gel method of the present invention proceeds by hydrolysis and condensation of the alkoxide and is represented by the following formula.
(1) 가수분해 :(1) hydrolysis:
Si(OR)4+ 4H2O → Si(OH)4+ 4R-OHSi (OR) 4 + 4H 2 O → Si (OH) 4 + 4R-OH
Ti(OR)4+ 4H2O → Ti(OH)4+ 4R-OHTi (OR) 4 + 4H 2 O → Ti (OH) 4 + 4R-OH
(2) 응축반응 :(2) Condensation reaction
Si(OR)4+ Si(OH)4→ (OR)3Si-O-Si(OH)3+ R-OHSi (OR) 4 + Si (OH) 4 → (OR) 3 Si-O-Si (OH) 3 + R-OH
Si(OH)4+ Si(OH)4→ (OH)3Si-O-Si(OH)3+ H2OSi (OH) 4 + Si (OH) 4 → (OH) 3 Si-O-Si (OH) 3 + H 2 O
Ti(OR)4+ Ti(OH)4→ (OR)3Ti-O-Ti(OH)3+ R-OHTi (OR) 4 + Ti (OH) 4 → (OR) 3 Ti-O-Ti (OH) 3 + R-OH
Ti(OH)4+ Ti(OH)4→ (OH)3Ti-O-Ti(OH)3+ H2OTi (OH) 4 + Ti (OH) 4 → (OH) 3 Ti-O-Ti (OH) 3 + H 2 O
상기 식에서 R은 알킬기를 나타낸다.In the formula, R represents an alkyl group.
가수분해 및 응축반응에 영향을 주는 요소들은 pH, 촉매의 성질과 농도, 물의 상대적 몰 비(R), 그리고 온도 등을 들 수 있다. 따라서 이러한 요소들을 제어함으로써 졸-겔 무기질 망상조직의 구조와 성질들을 넓은 범위에 걸쳐 변화시킬 수있다.Factors affecting hydrolysis and condensation include pH, nature and concentration of the catalyst, relative molar ratio (R) of water, and temperature. Thus, by controlling these factors, the structure and properties of the sol-gel inorganic network can be varied over a wide range.
일반적으로 말하면 가수분해 과정은 물을 첨가함으로써 이루어지는데, 알콕사이드 그룹 (OR)을 하이드록실 그룹(hydroxyl group, OH)으로 치환하는 과정이다. 이어지는 응축과정은 M-OH 그룹들이 M-O-M 결합을 만들면서 부산물로 물과 알코올을 만드는 과정이다. 대부분의 조건하에서는 응축과정은 가수분해 과정이 끝나기 전에 시작된다. 그러나 pH나 H2O/금속원소 몰 비(R), 그리고 촉매에 의해 응축이 시작되기 전에 가수분해 과정이 끝나도록 조건을 맞출 수 있다. 이에 덧붙여 물은 알콕사이드와 섞이지 않기 때문에 이들을 둘 다 용해시킬 수 있는 알코올과 같은 용매를 쓴다. 이렇게 용액을 균질하게 하는 알코올과 같은 물질이 있을 경우에는 물과 알콕사이드가 서로 섞여 가수분해가 일어난다.Generally speaking, the hydrolysis process is performed by adding water, which replaces an alkoxide group (OR) with a hydroxyl group (OH). Subsequent condensation is the process by which M-OH groups make MOM bonds, making water and alcohol as by-products. Under most conditions, the condensation process begins before the end of the hydrolysis process. However, conditions can be adjusted to complete the hydrolysis process before condensation begins by pH, H 2 O / metal element molar ratio (R), and catalyst. In addition, water does not mix with alkoxides, so use a solvent such as an alcohol that can dissolve both. When there is a substance such as alcohol that makes the solution homogeneous, water and alkoxide are mixed with each other to cause hydrolysis.
본 발명에 따른 투과율이 우수한 광촉매성 산화티탄졸은, 도 1 과 같이 질소분위기에서 퍼넬을 사용하여 한방울씩 적하시켜 교반할 수 있는 실험장치에 도 2 와 같은 공정을 따라 모든 공정을 상온에서 실시한다. 먼저,초순수(H2O)와 염산을 90 : 10 내지 99 : 1 의 부피비율로 교반하고, 이를 알콜에 1 : 99 내지 10 : 90 의 부피비율로 첨가하여 교반하여 알코올함유 염산수용액을 얻고, 티타늄알콕사이드와 알콜을 20 : 80 내지 40 : 60의 부피비로 교반한 용액에 질소 분위기에서 상기 염산수용액을 한방울씩 적하 시키면서 12시간 이상 교반하여 제조된다.The photocatalytic titanium oxide sol having excellent transmittance according to the present invention is subjected to all processes at room temperature according to the process as shown in FIG. 2 in an experimental apparatus capable of dropping dropwise dropwise using a funnel in a nitrogen atmosphere as shown in FIG. 1. . First, ultrapure water (H 2 O) and hydrochloric acid are stirred at a volume ratio of 90:10 to 99: 1, and this is added to an alcohol at a volume ratio of 1:99 to 10:90, followed by stirring to obtain an alcohol-containing hydrochloric acid aqueous solution. It is prepared by stirring at least 12 hours while dropwise adding the aqueous hydrochloric acid solution in a nitrogen atmosphere to a solution of titanium alkoxide and alcohol in a volume ratio of 20:80 to 40:60.
본 발명에 따른 투과율이 우수한 광촉매성 산화티탄졸의 제조방법은 초순수(H2O)와 염산을 90 : 10 내지 99 : 1 의 부피비율로 교반하고, 이를 알콜에 1: 99 내지 10 : 90 의 부피비율로 첨가하여 교반하여 알코올함유 염산수용액을 얻는 단계와, 티타늄알콕사이드와 알콜을 20 : 80 내지 40 : 60의 부피비로 용액을 교반하는 단계와, 상기 티타늄알콕사이드와 알콜이 20 : 80 내지 40 : 60의 부피비로 교반된 용액에 질소분위기에서 상기 염산수용액을 한방울씩 적하시키며 12시간이상 교반하는 단계를 포함한다.In the method for preparing a photocatalytic titanium oxide sol having excellent transmittance according to the present invention, ultrapure water (H 2 O) and hydrochloric acid are stirred at a volume ratio of 90:10 to 99: 1, and the alcohol is 1: 99-10: 10. Adding a volume ratio and stirring to obtain an alcohol-containing hydrochloric acid solution; agitating the solution with a titanium alkoxide and an alcohol in a volume ratio of 20:80 to 40:60, and the titanium alkoxide and the alcohol are 20:80 to 40: Dropping the aqueous hydrochloric acid solution drop by drop in a nitrogen atmosphere to the stirred solution at a volume ratio of 60, and stirring for 12 hours or more.
본 발명에 따른 코팅방법은, 도3에 도시된 바와같이, 유리 내에 함유되어 있는 알카리 금속의 확산을 방지하기 위해 실리카 코팅을 먼저 실시한다. 코팅은 침지코팅법으로 하고, 코팅후 100℃에서 30분간 건조 시킨다. 인상속도는 60 내지 120 mm/min 일 때 최적의 상태를 나타내며, 졸의 점도 및 인상속도 등에 의해 코팅두께가 결정되는데, 통상 30 내지 100 nm 의 두께로 코팅된다. 이어 산화티탄 코팅을 실시하며 방법은 실리카 코팅과 동일하며, 사용목적에 따라 2회 내지 4회 코팅과 건조를 반복하여 멀티코팅을 실시한다. 코팅된 산화티탄을 광촉매 특성이 높은 아나타제 결정으로 성장시키기 위해 열처리를 실시하는데, 본 발명에서는 유리를 강화시키기 위한 강화처리를 이용하여 따로 열처리를 실시하지 않고 강화처리만을 실시하여 광촉매 특성을 나타내었다. 강화처리는 400℃이상 통상 700℃ 내외에서 유리의 면적과 두께에 따라 2분 내지 7분간 코팅한 유리를 열처리하며, 열풍을 사용하여 단계별로 냉각시킨다.In the coating method according to the present invention, as shown in Fig. 3, silica coating is first performed to prevent diffusion of alkali metals contained in the glass. The coating is performed by immersion coating, and dried at 100 ° C. for 30 minutes after coating. The pulling speed is an optimal state when 60 to 120 mm / min, the coating thickness is determined by the viscosity and the pulling speed of the sol, it is usually coated with a thickness of 30 to 100 nm. Then, the titanium oxide coating is performed, and the method is the same as that of silica coating, and the coating and drying are repeated two to four times depending on the purpose of use, and then multi-coating is performed. In order to grow the coated titanium oxide into anatase crystals having high photocatalytic properties, heat treatment is performed. In the present invention, only the reinforcement treatment is performed without using heat treatment to strengthen the glass, thereby showing photocatalytic properties. The reinforcement treatment heat-treats the coated glass for 2 to 7 minutes according to the area and thickness of the glass at about 400 ° C. or higher and usually 700 ° C., and is cooled step by step using hot air.
산화티탄은 일반적으로 코팅회수가 많을수록 광분해능 특성이 우수하다. 이는 분해할 수 있는 매개체가 증가하기 때문인데, 포화상태 까지는 코팅 회수를 높이는 것이 좋지만, 코팅면의 박리현상이 발생하고, 투과율이 떨어지기 때문에 통상1회 내지 5회로 제한 된다.Titanium oxide generally has better photodegradation properties as the number of coatings increases. This is due to the increase in the number of mediators that can be decomposed, but it is better to increase the number of coatings until saturation, but it is usually limited to 1 to 5 times because the peeling phenomenon of the coating surface occurs and the transmittance is reduced.
실시예를 통하여 본 발명을 좀더 상세히 설명하기로 한다. 이들 실시예는 본 발명을 보다 구체적으로 설명하기 위한 것으로, 본 발명의 요지에 따라 본 발명의 범위는 이들 실시예에 의해 제한되지 않는다.The present invention will be described in more detail with reference to the following examples. These examples are intended to illustrate the present invention in more detail, and the scope of the present invention is not limited by these examples according to the gist of the present invention.
실시예 1 :Example 1:
도 1 과 같이 질소분위기에서 퍼넬을 사용하여 한방울씩 적하시켜 교반할 수 있는 실험장치에 도 2 와 같은 공정을 따라 모든 공정을 상온에서 실시한다. 먼저 초순수(H2O)와 염산을 93 : 7의 부피비율로 교반후, 알콜에 2 : 98 의 부피비율로 첨가하여 교반 한다. 교반한 수용액을 티타늄알콕사이드와 알콜을 20 : 80의 부피비로 교반한 용액에 질소 분위기에서 한방울씩 적하 시킨다. 적하 시부터 12시간 교반하여 안정화시켜 산화티탄졸 500ℓ를 제조하였다.In the nitrogen atmosphere as shown in Figure 1 using a funnel dropping drop by drop by using a test apparatus to perform all the processes at room temperature in accordance with the process as shown in FIG. First, ultrapure water (H 2 O) and hydrochloric acid are stirred at a volume ratio of 93: 7, and then added to the alcohol at a volume ratio of 2:98 and stirred. The stirred aqueous solution was added dropwise to the solution in which the titanium alkoxide and the alcohol were stirred at a volume ratio of 20:80 dropwise in a nitrogen atmosphere. Stirred and stirred for 12 hours from dropping to prepare 500 L of titanium oxide sol.
실시예2 :Example 2
도 1과 같이 질소분위기에서 퍼넬을 사용하여 한방울씩 적하시켜 교반할 수 있는 실험장치에 도 2 와 같은 공정을 따라 모든 공정을 상온에서 실시한다. 먼저 초순수(H2O)와 염산을 99 : 1의 부피비율로 교반후, 알콜에 1 : 99 의 부피비율로 첨가하여 교반 한다. 교반한 수용액을 티타늄알콕사이드와 알콜을 40 : 60의 부피비로 교반한 용액에 질소 분위기에서 한방울씩 적하 시킨다. 적하 시부터 15시간교반하여 안정화시켜 산화티탄졸 500ℓ를 제조하였다.In the nitrogen atmosphere as shown in Figure 1 using a funnel dropping drop by drop in an experimental apparatus that can be stirred all the processes are carried out at room temperature according to the process shown in FIG. First, ultrapure water (H 2 O) and hydrochloric acid are stirred at a volume ratio of 99: 1, and then added to an alcohol at a volume ratio of 1:99 and stirred. The stirred aqueous solution was added dropwise to the solution in which the titanium alkoxide and the alcohol were stirred at a volume ratio of 40:60 dropwise in a nitrogen atmosphere. Stirred by stirring for 15 hours from dropping to prepare 500 L of titanium oxide sol.
비교예 1 : 종래의 산화티탄졸Comparative Example 1 Conventional Titanium Oxide
산화티탄졸 제품 중 특성이 우수하다고 인정받고 있는 일본의 이시하라 제품의 투과율을 측정하기 위해 슬라이드 글래스에 코팅을 실시한 후, 500℃ 열처리를 실시하였다.In order to measure the transmittance of the Ishihara product in Japan, which is recognized as having excellent properties among the titanium oxide products, coating was performed on the slide glass, followed by heat treatment at 500 ° C.
<투명도의 비교><Comparison of Transparency>
실시예1 및 실시예2에 의해 합성한 산화티탄졸을 슬라이드글래스에 코팅을 실시한 후, 500℃에서 열처리를 실시하여 투과율을 측정하였다. 먼저 실시예1에 의해 합성한 산화티탄졸은 94%의 투과율을 나타냈고, 실시예2에 의해 합성한 산화티탄졸은 91%의 투과율을 나타냈으며, 비교예1의 이시하라 산화티탄졸은 82%의 투과율을 나타내었다. 특히 이시하라 제품은 코팅표면이 불균일하여 막특성이 좋지 않았다.After the titanium oxide sol synthesized in Example 1 and Example 2 was coated on slide glass, heat treatment was performed at 500 ° C. to measure the transmittance. First, the titanium oxide sol synthesized in Example 1 showed a transmittance of 94%, the titanium oxide sol synthesized in Example 2 showed a transmittance of 91%, and the Ishihara titanium oxide sol of Comparative Example 1 was 82%. The transmittance of is shown. In particular, Ishihara's product had poor coating properties due to uneven coating surface.
실시예 3 : 산화티탄 코팅 및 열처리Example 3 Titanium Oxide Coating and Heat Treatment
도 3 과 같은 공정을 따라, 유리 내에 함유되어 있는 알카리 금속의 확산을 방지하기 위해 실리카 코팅을 먼저 실시한다. 코팅은 침지코팅법으로 하고, 코팅후 100℃에서 30분간 건조 시킨다. 인상속도는 60 mm/min으로 하며, 졸의 점도 및 인상속도 등에 의해 코팅두께가 결정되는데, 50 nm 의 두께로 코팅된다. 이어 산화티탄 코팅을 실시하며 방법은 실리카 코팅과 동일하며, 사용목적에 따라 2회, 4회 코팅과 건조를 반복하여 멀티코팅을 실시한다.Following the same process as FIG. 3, silica coating is first performed to prevent diffusion of alkali metals contained in the glass. The coating is performed by immersion coating, and dried at 100 ° C. for 30 minutes after coating. The pulling speed is 60 mm / min, and the coating thickness is determined by the viscosity and the pulling speed of the sol, and is coated with a thickness of 50 nm. Then, titanium oxide coating is performed. The method is the same as that of silica coating, and the coating and drying are repeated two times and four times depending on the purpose of use, and then multi-coating is performed.
코팅된 산화티탄을 광촉매 특성이 높은 아나타제 결정으로 성장시키기 위해 열처리를 실시하는데, 본 발명에서는 유리를 강화시키기 위한 강화처리를 이용하여 따로 열처리를 실시하지 않고 강화처리만을 실시하여 광촉매 특성을 나타내었다. 강화처리는 통상 700℃ 내외에서 유리의 면적과 두께에 따라 2분간 코팅한 유리를 열처리하며, 열풍을 사용하여 단계별로 냉각시킨다.In order to grow the coated titanium oxide into anatase crystals having high photocatalytic properties, heat treatment is performed. In the present invention, only the reinforcement treatment is performed without using heat treatment to strengthen the glass, thereby showing photocatalytic properties. Reinforcing treatment is usually heat treatment of the coated glass for 2 minutes in accordance with the area and thickness of the glass at around 700 ℃, it is cooled step by step using hot air.
실리카 코팅의 효과를 XRD 분석과 광촉매 특성 실험을 통해 분석한 결과, 도 7 과 같이 실리카 코팅 후 산화티탄 코팅을 2회 한 시편과 실리카코팅후 산화티탄코팅을 4회한 시편은 1시간 만에 개미산 10 ppm을 모두 분해했지만, 실리카 코팅 없이 산화티탄 코팅을 4회 한 시편은 모두 분해하는데 1시간 20분이 걸려, 실리카 코팅으로 산화티탄 코팅회수를 줄여도 광분해능이 더 우수한 것을 알 수 있다.As a result of analyzing the effect of silica coating through XRD analysis and photocatalytic characterization experiment, as shown in FIG. 7, the sample coated with titanium oxide twice after silica coating and the sample coated with titanium oxide four times after silica coating were formic acid 10 in 1 hour. Although all the ppm were decomposed, it took 1 hour and 20 minutes to decompose all specimens in which the titanium oxide coating was applied four times without silica coating.
도 10 은 산화티탄 졸을 이용한 제품의 예로, 유리커버 표면에 실리카 코팅 후 산화티탄을 2회 코팅하여 강화처리한 터널용 조명등기구의 한 예이다.FIG. 10 is an example of a product using a titanium oxide sol, which is an example of a tunnel luminaire for which a titanium oxide sol is coated on a glass cover surface and then coated with titanium oxide twice.
실시예 4 : 산화티탄 코팅 분석Example 4 Titanium Oxide Coating Assay
도 4 는 TG-DSC(열중량 시차 열분석) 분석 결과로 산화티탄졸을 80℃에서 48시간 건조한 산화티탄 분말을 불활성분위기에서 5℃/min 의 속도로 상온에서 1000℃까지 상승시켜 열중량 분석 및 시차 열분석을 실시한 결과이다. 열중량 분석에서는 상온에서 200℃ 전후까지 30%의 중량 감소를 보이고 있는데 이는 유기물이 분해·휘발하여 발생한 것으로 산화티탄 제조 공정상 포함된 유기물들이 200℃ 근방에서 대부분 제거되는 것으로 보인다. 시차 열분석에서는 400℃ 근방에서 강한 피크가 나타나는데, 이는 400℃ 전후에서 비정질에서 아나타제 결정으로 상전이가 일어나는 것을 알 수 있다. 이 결과를 토대로 산화티탄 졸은 400℃ 내외에서 아나타제로 상전이가 일어나므로 400℃ 이상에서 열처리를 실시하여야 한다.FIG. 4 is a thermogravimetric analysis of titanium oxide sol dried at 80 ° C. for 48 hours as a result of TG-DSC (thermogravimetric differential thermal analysis) analysis by raising the titanium oxide powder from room temperature to 1000 ° C. at a rate of 5 ° C./min in an inert atmosphere. And differential thermal analysis. The thermogravimetric analysis shows a 30% weight loss from room temperature to around 200 ℃, which is caused by decomposition and volatilization of organics, and most of the organic matters included in the titanium oxide manufacturing process are almost removed at around 200 ℃. Differential thermal analysis shows a strong peak near 400 ° C, which indicates that phase transition occurs from amorphous to anatase crystals around 400 ° C. Based on these results, the titanium oxide sol has to undergo heat treatment at 400 ° C or higher since phase transition occurs to anatase at around 400 ° C.
광촉매 특성 실험을 위해 10ppm의 개미산 수용액 중에 제작한 시편을 넣고 BLB 자외선 램프를 발광하여 광분해 실험을 실시한 결과 도 5 와 같이 산화티탄 코팅을 하지 않은 시편(blank)은 개미산을 분해하지 못하고, 단지 자외선 램프에 의한 분해만 미약하게 나타나고 있으며, 산화티탄 코팅 후 열처리 조건에 따른 광분해능은 열처리 온도에 따라 광분해능이 높아지는데, 500℃에서 열처리한 시편은 약 1시간만에 개미산이 거의 다 분해된 것을 알 수 있다. 300℃에서는 아나타제로의 상전이가 발생되지 않으므로 광분해능이 저하됨을 알 수 있다.To test the photocatalytic properties, a specimen prepared in a 10 ppm aqueous formic acid solution was put into a BLB ultraviolet lamp and subjected to photolysis. As a result, a blank without titanium oxide coating as shown in FIG. 5 did not decompose formic acid, but only an ultraviolet lamp. Degradation by only appears slightly, and the photodegradation of the heat treatment conditions after the titanium oxide coating increases the photodegradation according to the heat treatment temperature, the sample heat-treated at 500 ℃ was found that almost all formic acid decomposed in about 1 hour Can be. It can be seen that at 300 ° C., no phase transition to anatase occurs, resulting in a decrease in photo resolution.
또한, 도6에 도시된 바와 같이, 코닝사의 슬라이드글래스에 본 발명에 따른 실리카와 산화티탄을 코팅하였을 때, 슬라이드글래스의 투과율은 열처리 온도에 관계없이 코팅하지 않은 슬라이드글래스와 비슷한 수준인 90%이상의 높은 투과율을 나타내고 있어 산화티탄 코팅으로 인한 투과율 감소는 미미하다고 볼 수 있으며, 단지 멀티 코팅에 의한 빛의 간섭에 의해 파장대에 따라 투과율이 저하되는 오실레이션이 나타남을 알 수 있다.In addition, as shown in Figure 6, when coating the silica and titanium oxide according to the present invention on the slide glass of Corning Corporation, the transmittance of the slide glass is more than 90% of the level similar to that of the non-coated slide glass irrespective of the heat treatment temperature It shows high transmittance, so the decrease in transmittance due to the titanium oxide coating can be considered to be insignificant, and it can be seen that oscillation of the transmittance decreases depending on the wavelength band due to the interference of light by the multi-coating only.
도 8은 XRD 분석결과로, 시편의 결정화 정도에 따라 XRD 피크 강도가 결정이 된다. 실리카 코팅 없이 산화티탄 코팅한 시편은 실리카 코팅 후 산화티탄 코팅한시편보다 피크가 낮음을 알 수 있는데, 이는 실리카 코팅이 유리 내에 함유되어 있는 알카리 금속의 확산을 방지하여 광촉매 특성을 가지는 아나타제 결정 성장을 돕기 때문이다. 즉, 실리카 코팅을 하므로써 광분해 특성을 높아짐을 알 수 있다.8 is an XRD analysis result, the XRD peak intensity is determined according to the degree of crystallization of the specimen. Titanium oxide coated specimens without silica coating had lower peaks than titanium oxide coated specimens after silica coating, which prevented the diffusion of alkali metals contained in the glass to prevent anatase crystal growth with photocatalytic properties. Because it helps. That is, it can be seen that the photolysis characteristics are increased by applying silica coating.
강화유리를 제조하려면 일반유리를 강화처리 하는데, 아나타제 결정형성을 위한 열처리 없이 산화티탄 코팅 후 강화처리한 시편의 광분해능 분석 결과를 도 9에 나타내었다. 도 9에서 보는 바와 같이 아나타제 결정 형성을 위해 코팅 후 500℃에서 1시간 열처리 후 강화처리한 시편보다, 700℃에서 4분간 강화처리만 실시한 시편이 더 높은 광촉매 특성이 나타남을 알 수 있어, 열처리 프로세스를 줄여 원가를 절감할 수 있다.To prepare tempered glass, the general glass was tempered, and the results of analyzing the optical resolution of the specimen after the titanium oxide coating and the tempered treatment without heat treatment for anatase crystal formation are shown in FIG. 9. As shown in FIG. 9, it can be seen that the specimens subjected to only the reinforcement treatment at 700 ° C. for 4 minutes exhibited higher photocatalytic properties than the specimens subjected to heat treatment at 500 ° C. for 1 hour after coating to form anatase crystals. The cost can be reduced by reducing the cost.
이상에서 상세히 설명한 바와 같이, 본 발명은 투과율이 높고 광촉매 특성이 우수한 산화티탄 졸 및 실리카 졸의 제조 방법을 제시하고, 기존의 열처리 없이 유리의 강화처리 만으로 광촉매 특성을 나타내므로써, 기존의 유리제품에 적용하기 어려웠던 문제들을 해결하고, 생산 가격을 낮출 수 있어 유리 응용 산업 전반에 걸쳐 유용하게 쓰일 수 있을 것으로 기대된다.As described in detail above, the present invention provides a method for preparing titanium oxide sol and silica sol having high transmittance and excellent photocatalytic properties, and exhibits photocatalytic properties by only tempering glass without conventional heat treatment. Solving problems that were difficult to apply and lowering production costs are expected to be useful throughout the glass application industry.
Claims (4)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
KR10-2001-0060890A KR100411953B1 (en) | 2001-09-29 | 2001-09-29 | The method of titanium oxide sol manufacture and coating for superior transmittance. |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
KR10-2001-0060890A KR100411953B1 (en) | 2001-09-29 | 2001-09-29 | The method of titanium oxide sol manufacture and coating for superior transmittance. |
Publications (2)
Publication Number | Publication Date |
---|---|
KR20030027551A KR20030027551A (en) | 2003-04-07 |
KR100411953B1 true KR100411953B1 (en) | 2003-12-24 |
Family
ID=29563061
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
KR10-2001-0060890A KR100411953B1 (en) | 2001-09-29 | 2001-09-29 | The method of titanium oxide sol manufacture and coating for superior transmittance. |
Country Status (1)
Country | Link |
---|---|
KR (1) | KR100411953B1 (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR101474242B1 (en) | 2014-07-03 | 2014-12-18 | 가톨릭관동대학교산학협력단 | Method for producing titanium dioxide photocatalyst and method for procuding photocatalyst apparatus |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP3797864A1 (en) * | 2019-09-30 | 2021-03-31 | Centre National de la Recherche Scientifique | Active support in photocatalysis |
Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH06298533A (en) * | 1993-04-13 | 1994-10-25 | Agency Of Ind Science & Technol | Production of titanium oxide colloid |
KR19990030392A (en) * | 1998-12-22 | 1999-04-26 | 이시홍 | Photocatalyst Manufacturing Method |
KR20000073151A (en) * | 1999-05-07 | 2000-12-05 | 윤덕용 | Process for Preparing Silica/Titania Photocatalyst by the Sol-Gel Method |
KR20010073712A (en) * | 2000-01-19 | 2001-08-01 | 구자홍 | Method for preparing Titanium dioxide film on polymer substrate |
KR20010096668A (en) * | 2001-06-29 | 2001-11-08 | 김현용 | Transparent TiO2 sol manufacturing method for normal temperature coating |
KR20030023390A (en) * | 2001-09-13 | 2003-03-19 | 재단법인 포항산업과학연구원 | Photocatalyst sol having high transparency and photoactivity and preparation method for the smae |
-
2001
- 2001-09-29 KR KR10-2001-0060890A patent/KR100411953B1/en not_active IP Right Cessation
Patent Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH06298533A (en) * | 1993-04-13 | 1994-10-25 | Agency Of Ind Science & Technol | Production of titanium oxide colloid |
KR19990030392A (en) * | 1998-12-22 | 1999-04-26 | 이시홍 | Photocatalyst Manufacturing Method |
KR20000073151A (en) * | 1999-05-07 | 2000-12-05 | 윤덕용 | Process for Preparing Silica/Titania Photocatalyst by the Sol-Gel Method |
KR20010073712A (en) * | 2000-01-19 | 2001-08-01 | 구자홍 | Method for preparing Titanium dioxide film on polymer substrate |
KR20010096668A (en) * | 2001-06-29 | 2001-11-08 | 김현용 | Transparent TiO2 sol manufacturing method for normal temperature coating |
KR20030023390A (en) * | 2001-09-13 | 2003-03-19 | 재단법인 포항산업과학연구원 | Photocatalyst sol having high transparency and photoactivity and preparation method for the smae |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR101474242B1 (en) | 2014-07-03 | 2014-12-18 | 가톨릭관동대학교산학협력단 | Method for producing titanium dioxide photocatalyst and method for procuding photocatalyst apparatus |
Also Published As
Publication number | Publication date |
---|---|
KR20030027551A (en) | 2003-04-07 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US5897958A (en) | Modified titanium oxide sol, photocatalyst composition and photocatalyst composition-forming agent | |
KR101265660B1 (en) | Transparent, stable titanium dioxide sol | |
US7534293B2 (en) | Method and solution for forming anatase titanium dioxide, and titanium dioxide particles, colloidal dispersion and film | |
US6340711B1 (en) | Particles aqueous dispersion and film of titanium oxide and preparation thereof | |
Yu et al. | The effect of SiO 2 addition on the grain size and photocatalytic activity of TiO 2 thin films | |
KR100696225B1 (en) | Titanium oxide sol, thin film, and processes for producing these | |
JP3524342B2 (en) | Titanium dioxide sol and thin film for thin film formation | |
JP2008522931A (en) | Preparation method of nano-particle-shaped TiO2 dispersion, dispersion obtained by this method, and surface property change by using TiO2 dispersion | |
Kamiya et al. | Nitridation of the Sol–Gel‐Derived Titanium Oxide Films by Heating in Ammonia Gas | |
JP3291563B2 (en) | Photocatalytic paint and its production method and use | |
Ding et al. | Hydrophobic photocatalytic composite coatings based on nano-TiO2 hydrosol and aminopropyl terminated polydimethylsiloxane prepared by a facile approach | |
US5919726A (en) | Method for producing photocatalyst material | |
KR100411953B1 (en) | The method of titanium oxide sol manufacture and coating for superior transmittance. | |
KR20010073712A (en) | Method for preparing Titanium dioxide film on polymer substrate | |
CN100450622C (en) | Transparent film-forming composition | |
JPH10167727A (en) | Modified titanium oxide sol, photocatalyst composition and its forming agent | |
KR20080004723A (en) | Photocatalyst coating solution | |
KR20080093483A (en) | Synthesis method of coating agent for antipollution | |
JP2003055580A (en) | Water-borne coating material, laminate, and method for producing the laminate | |
US20050175852A1 (en) | Thin silica film and silica-titania composite film, and method for preparing them | |
EP1449582A1 (en) | Transparent thin film and method for production thereof | |
US20100267553A1 (en) | Tungsten-containing Mesoporous Silica Thin Film, Highly Hydrophilic Material Containing the Same, and Method for Producing Tungsten-Containing Mesoporous Silica Thin Film | |
JPH10165811A (en) | Photocatalyst composition, forming agent thereof and base body with deposition of photocatalyst composition | |
JP2013107068A (en) | Method for manufacturing visible light response-type titanium dioxide-silicon dioxide-based photocatalyst coating solution and visible light response-type titanium dioxide-silicon dioxide-based photocatalyst coating solution | |
KR100871923B1 (en) | Titanium dioxide photocatalysts immobilized using alkoxysilane and synthetic method thereof |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A201 | Request for examination | ||
E701 | Decision to grant or registration of patent right | ||
GRNT | Written decision to grant | ||
FPAY | Annual fee payment |
Payment date: 20121109 Year of fee payment: 10 |
|
FPAY | Annual fee payment |
Payment date: 20131220 Year of fee payment: 11 |
|
LAPS | Lapse due to unpaid annual fee |