JP2001257349A - Protective device for mosfet - Google Patents

Protective device for mosfet

Info

Publication number
JP2001257349A
JP2001257349A JP2000064496A JP2000064496A JP2001257349A JP 2001257349 A JP2001257349 A JP 2001257349A JP 2000064496 A JP2000064496 A JP 2000064496A JP 2000064496 A JP2000064496 A JP 2000064496A JP 2001257349 A JP2001257349 A JP 2001257349A
Authority
JP
Japan
Prior art keywords
zener diode
trench
polysilicon layer
mosfet
region
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2000064496A
Other languages
Japanese (ja)
Inventor
Shin Oikawa
慎 及川
Eiichiro Kuwako
栄一郎 桑子
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sanyo Electric Co Ltd
Original Assignee
Sanyo Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sanyo Electric Co Ltd filed Critical Sanyo Electric Co Ltd
Priority to JP2000064496A priority Critical patent/JP2001257349A/en
Publication of JP2001257349A publication Critical patent/JP2001257349A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/772Field effect transistors
    • H01L29/78Field effect transistors with field effect produced by an insulated gate
    • H01L29/7801DMOS transistors, i.e. MISFETs with a channel accommodating body or base region adjoining a drain drift region
    • H01L29/7802Vertical DMOS transistors, i.e. VDMOS transistors
    • H01L29/7813Vertical DMOS transistors, i.e. VDMOS transistors with trench gate electrode, e.g. UMOS transistors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/06Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions
    • H01L29/0657Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by the shape of the body
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/772Field effect transistors
    • H01L29/78Field effect transistors with field effect produced by an insulated gate
    • H01L29/7801DMOS transistors, i.e. MISFETs with a channel accommodating body or base region adjoining a drain drift region
    • H01L29/7802Vertical DMOS transistors, i.e. VDMOS transistors
    • H01L29/7803Vertical DMOS transistors, i.e. VDMOS transistors structurally associated with at least one other device
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/772Field effect transistors
    • H01L29/78Field effect transistors with field effect produced by an insulated gate
    • H01L29/7801DMOS transistors, i.e. MISFETs with a channel accommodating body or base region adjoining a drain drift region
    • H01L29/7802Vertical DMOS transistors, i.e. VDMOS transistors
    • H01L29/7803Vertical DMOS transistors, i.e. VDMOS transistors structurally associated with at least one other device
    • H01L29/7808Vertical DMOS transistors, i.e. VDMOS transistors structurally associated with at least one other device the other device being a breakdown diode, e.g. Zener diode
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/06Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions
    • H01L29/0684Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by the shape, relative sizes or dispositions of the semiconductor regions or junctions between the regions
    • H01L29/0692Surface layout
    • H01L29/0696Surface layout of cellular field-effect devices, e.g. multicellular DMOS transistors or IGBTs

Landscapes

  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Ceramic Engineering (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Metal-Oxide And Bipolar Metal-Oxide Semiconductor Integrated Circuits (AREA)
  • Semiconductor Integrated Circuits (AREA)

Abstract

PROBLEM TO BE SOLVED: To solve the problem, where a Zener diode reduces an area of an actual operation region and lowers cell density, since it is formed concentrically and is thereby formed larger than a gate pad electrode in a power MOSFET where a resistor and a Zener diode are used for protecting a gate oxide film from electrostatic breakdown. SOLUTION: P-N junctions are made flat and to have the same size by alternately forming an N+ region and a P- region to a zebra form in a long and slender stripe polysilicon layer 19 embedded inside a trench 17. Thereby, a protective device of an MOSFET which can greatly reduce the area occupied by a Zener diode 2 can be realized.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明はMOSFETの保護
装置に係り、特にトレンチ構造を有する縦型MOSFE
Tの保護装置に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a protection device for a MOSFET, and more particularly to a vertical MOSFET having a trench structure.
T protection device.

【0002】[0002]

【従来の技術】携帯端末の普及に伴い小型で大容量のリ
チュウムイオン電池が求められるようになってきた。こ
のリチュウムイオン電池の充放電のバッテリーマネージ
メントを行う保護回路は携帯端末の軽量化のニーズによ
り、より小型で負荷ショートにも十分に耐えうるもので
なくてはならない。かかる保護回路はリチュウムイオン
電池の容器内に内蔵されるために小型化が求められ、チ
ップ部品を多用したCOB(Chip on Boar
d)技術が駆使され、小型化の要求に応えてきた。しか
し一方ではリチュウムイオン電池に直列にパワーMOS
FETを接続するのでこのパワーMOSFETのオン抵
抗も極めて小さくするニーズがあり、これが携帯電話で
は通話時間や待機時間を長くするために不可欠の要素で
ある。
2. Description of the Related Art With the spread of portable terminals, a small-sized and large-capacity lithium-ion battery has been required. The protection circuit for performing the battery management of the charging and discharging of the lithium ion battery must be smaller and capable of sufficiently withstanding a load short due to the need for reducing the weight of the portable terminal. Such a protection circuit is required to be miniaturized because it is built in a container of a lithium ion battery, and a COB (Chip on Boar) using a lot of chip components is required.
d) Technology has been used to meet the demand for miniaturization. However, on the other hand, a power MOS in series with a lithium ion battery
Since the FET is connected, there is a need to make the on-resistance of the power MOSFET extremely small, which is an indispensable factor for a mobile phone to increase the talk time and the standby time.

【0003】特に保護回路ではリチュウムイオン電池L
iBに直列に2個のNチャンネル型のパワーMOSFE
Tが接続されるので、この2個のパワーMOSFETの
低オン抵抗(RDS(on))が最も要求される項目である。こ
のためにチップを製造する上で微細加工によりセル密度
を上げる開発が進められてきた。
In particular, in the protection circuit, a lithium ion battery L
Two N-channel power MOSFETs in series with iB
Since T is connected, the low on-resistance (R DS (on) ) of these two power MOSFETs is the most required item. For this reason, development for increasing the cell density by fine processing in manufacturing chips has been promoted.

【0004】具体的には、チャンネルが半導体基板表面
に形成されるプレーナー構造ではセル密度は740万個
/平方インチであったが、チャンネルをトレンチの側面
に形成するトレンチ構造の第1世代ではセル密度は25
00万個/平方インチと大幅に向上した。さらにトレン
チ構造の第2世代ではセル密度は7200万個/平方イ
ンチまで向上できた。しかし微細化にも限度があり、セ
ル密度をさらに飛躍的に向上するには限界が見えてき
た。
Specifically, in the planar structure in which the channel is formed on the surface of the semiconductor substrate, the cell density is 7.4 million cells / square inch. The density is 25
It has greatly improved to one million pieces / square inch. In the second generation of the trench structure, the cell density was improved to 72 million cells / square inch. However, there is a limit to miniaturization, and a limit has been seen to further improve the cell density dramatically.

【0005】一方、パワーMOSFETでは薄いゲート
酸化膜を静電破壊から保護するために保護用の抵抗体が
ゲート電極に挿入され更に静電気を外部に逃がすために
ゲート電極とソース電極間にツェナーダイオードが接続
されている。
On the other hand, in a power MOSFET, a protection resistor is inserted into a gate electrode to protect a thin gate oxide film from electrostatic breakdown, and a zener diode is provided between the gate electrode and a source electrode to release static electricity to the outside. It is connected.

【0006】従来のパワーMOSFETの平面図を図5
に示す。1はゲートパッド電極であり、その下には保護
用のツェナーダイオード2(同心円の点線)が形成さ
れ、点線の丸印で示すようにボンディングワイヤーで電
極の取り出しが行われる。3はポリシリコンで形成され
た静電破壊防止の保護用の抵抗体であり、一端をゲート
パッド電極1に接続され、他端はゲート連結電極4に接
続されている。5は実動作領域であり、この中にパワー
MOSFETを構成する多数のMOSトランジスタのセ
ル6が配列されている。7はソース電極であり、実動作
領域5上に各セルのソース領域と接続して設けられる。
ゲート連結電極4は各セル6のゲート電極と接続され且
つ実動作領域5の周囲に配置されている。なお、ソース
電極7には点線の丸印で示すようにボンディングワイヤ
が熱厚着され、電極の取り出しを行う。
FIG. 5 is a plan view of a conventional power MOSFET.
Shown in Reference numeral 1 denotes a gate pad electrode, under which a protective Zener diode 2 (concentric dotted line) is formed, and the electrode is taken out by a bonding wire as shown by a dotted circle. Numeral 3 denotes a protection resistor made of polysilicon for preventing electrostatic destruction. One end is connected to the gate pad electrode 1 and the other end is connected to the gate connection electrode 4. Reference numeral 5 denotes an actual operation area, in which a number of MOS transistor cells 6 constituting a power MOSFET are arranged. Reference numeral 7 denotes a source electrode, which is provided on the actual operation region 5 so as to be connected to the source region of each cell.
The gate connection electrode 4 is connected to the gate electrode of each cell 6 and is arranged around the actual operation area 5. A bonding wire is thermally attached to the source electrode 7 as indicated by a dotted circle, and the electrode is taken out.

【0007】図4の左側に、トレンチ型の各セル6の断
面構造を示す。NチャンネルのパワーMOSFETにお
いては、N+型の半導体基板21の上にN-型のエピタキ
シャル層からなるドレイン領域22を設け、その上にP
型のチャネル層23を設ける。チャネル層23からドレ
イン領域22まで到達するトレンチ24を作り、トレン
チ24の内壁をゲート酸化膜25で被膜し、トレンチ2
4に充填されたポリシリコンよりなるゲート電極26を
設けて各セル6を形成する。トレンチ24に隣接したチ
ャネル層23表面にはN+型のソース領域28が形成さ
れ、隣り合う2つのセルのソース領域28間のチャネル
層23表面にはP+型のボディコンタクト領域29が形
成される。さらにチャネル層23にはソース領域28か
らトレンチ24に沿ってチャネル領域27が形成され
る。トレンチ24上は層間絶縁膜30で覆い、ソース領
域28およびボディコンタクト領域29にコンタクトす
るソース電極7を設ける。かかるセル6は図5の実動作
領域5に多数個配列される。具体的には小さい四角で表
示したものが1個のセルである。
FIG. 4 shows a cross-sectional structure of each trench type cell 6 on the left side. In an N-channel power MOSFET, a drain region 22 made of an N -type epitaxial layer is provided on an N + -type semiconductor substrate 21, and a P-type drain region 22 is formed thereon.
A channel layer 23 is provided. A trench 24 extending from the channel layer 23 to the drain region 22 is formed, and an inner wall of the trench 24 is coated with a gate oxide film 25.
A gate electrode 26 made of polysilicon filled in 4 is provided to form each cell 6. An N + -type source region 28 is formed on the surface of the channel layer 23 adjacent to the trench 24, and a P + -type body contact region 29 is formed on the surface of the channel layer 23 between the source regions 28 of two adjacent cells. You. Further, a channel region 27 is formed in the channel layer 23 from the source region 28 along the trench 24. The trench 24 is covered with an interlayer insulating film 30, and a source electrode 7 that contacts the source region 28 and the body contact region 29 is provided. Many such cells 6 are arranged in the actual operation area 5 in FIG. Specifically, one cell is represented by a small square.

【0008】図4の右側にツェナーダイオード2の断面
構造を示す。チャネル層23を覆うゲート酸化膜25上
にトレンチ24にポリシリコンを埋め込む時に堆積され
たポリシリコンを用いて、最初に全体をP-型にドープ
した後ソース領域28のイオン注入時に選択的にN+
にドープしてツェナーダイオード2を形成している。す
なわち、中心から同心円状にN+型領域−P-型領域−N
+型領域−P-型領域−N+型領域−P-型領域−N+型領
域となり、6個のツェナーダイオードが直列に接続され
る。さらにそのポリシリコン上面はPSG(Phosp
horus Silicate Glass)膜9で覆
われ、ゲートパット電極1とツェナーダイオード2の中
心のN+型領域がコンタクトしている。ツェナーダイオ
ード2を形成するPN接合はポリシリコンに形成される
ので、その接合端をポリシリコン側面に露出しないよう
に同心円上に閉ループの形状を採用する。従って、ツェ
ナーダイオード2に30Vのツェナー降伏電圧が要求さ
れるときは1つのPN接合当たりのツェナー降伏電圧が
5〜7Vであるので6個のPN接合が同心円上に形成さ
れればよい。
FIG. 4 shows the cross-sectional structure of the Zener diode 2 on the right side. Using polysilicon deposited when the polysilicon is buried in the trench 24 on the gate oxide film 25 covering the channel layer 23, the whole is first doped into P type, and then N is selectively implanted during the ion implantation of the source region 28. The zener diode 2 is formed by doping into a + type. That is, the N + type region −P type region −N concentrically from the center.
A + type region-P - type region-N + type region-P - type region-N + type region, and six Zener diodes are connected in series. Further, the upper surface of the polysilicon is formed by PSG (Phosp).
The gate pad electrode 1 is in contact with the N + type region at the center of the Zener diode 2. Since the PN junction forming the Zener diode 2 is formed of polysilicon, a closed loop shape is adopted on a concentric circle so that the junction end is not exposed on the side surface of the polysilicon. Therefore, when a Zener breakdown voltage of 30 V is required for the Zener diode 2, the Zener breakdown voltage per PN junction is 5 to 7 V, so that six PN junctions may be formed concentrically.

【0009】図6にかかるパワーMOSFETの等価回
路図を示す。この図によれば、ゲート端子Gとソース端
子S間にツェナーダイオードZD(図5 符号2)が接
続され、ゲート端子Gとゲート電極間には保護用の抵抗
体RP(図5 符号3)が接続される。なおダイオード
Iは基板ダイオードであり、ドレイン端子Dとソース
端子S間に接続される。
FIG. 6 shows an equivalent circuit diagram of the power MOSFET. According to this figure, a Zener diode Z D (2 in FIG. 5) is connected between the gate terminal G and the source terminal S, and a protection resistor R P (3 in FIG. 5) is connected between the gate terminal G and the gate electrode. ) Is connected. Note diode D I is a substrate diode, is connected between the drain terminal D and the source terminal S.

【0010】[0010]

【発明が解決しようとする課題】かかる従来のパワーM
OSFETではリーク電流を防ぐためにツェナーダイオ
ード2のPN接合が同心円上に配列されるため、ツェナ
ーダイオード2に例えば50Vと高いツェナー降伏電圧
を要求されると10個のPN接合を同心円上に配列しな
ければならずツェナーダイオード2を形成するポリシリ
コンの大きさは実動作領域を狭めることになり、セル構
造をトレンチ型にしてもある程度のセル密度の減少はさ
けられない問題点を有していた。
The conventional power M
In the OSFET, the PN junctions of the Zener diode 2 are arranged concentrically in order to prevent leakage current. Therefore, when a high Zener breakdown voltage of, for example, 50 V is required for the Zener diode 2, ten PN junctions must be arranged concentrically. In other words, the size of the polysilicon forming the Zener diode 2 narrows the actual operation region, and there is a problem that a certain reduction in cell density cannot be avoided even if the cell structure is a trench type.

【0011】またツェナーダイオード2を形成するポリ
シリコンにはまずボロン(P-)を注入し、その後砒素
(N+)を注入させるが、同心円が大きくなると中心部
分と外側のN+型領域の大きさが異なり、N+型領域の濃
度のばらつきも大きくなるため、結果的に中心部分と外
側でのツェナー降伏電圧にもばらつきが出る問題点もあ
った。
[0011] First boron into the polysilicon to form the Zener diode 2 (P -) was injected, then it is implanted with arsenic (N +), the size of the central portion and the outer N + -type region when concentrically increases However, since the variation in the concentration of the N + -type region becomes large, there is also a problem that the Zener breakdown voltage at the central portion and at the outside also varies.

【0012】[0012]

【課題を解決するための手段】本発明はかかる課題に鑑
みてなされ、半導体基板上のチャネル層に設けたトレン
チ内に埋設したポリシリコン層に複数個のツェナーダイ
オードを形成することにより、ツェナーダイオードの専
有面積を減らして実動作領域の面積を拡げ、セル密度の
高いパワーMOSFETを提供するものである。
SUMMARY OF THE INVENTION The present invention has been made in consideration of the above problems, and has been made by forming a plurality of Zener diodes in a polysilicon layer buried in a trench provided in a channel layer on a semiconductor substrate. The present invention provides a power MOSFET having a high cell density by reducing the area occupied by the device and increasing the area of the actual operation region.

【0013】またこのツェナーダイオードをストライプ
状に形成しPN接合をゼブラ状に形成することにより高
いツェナー降伏電圧が要求されても少ない専有面積のツ
ェナーダイオードを実現するパワーMOSFETを提供
するものである。
It is another object of the present invention to provide a power MOSFET which realizes a Zener diode having a small occupied area even when a high Zener breakdown voltage is required by forming the Zener diode in a stripe shape and forming a PN junction in a zebra shape.

【0014】[0014]

【発明の実施の形態】本発明の実施の形態を図1から図
3を参照して詳細に説明する。本発明のパワーMOSF
ETの平面図を図3に示す。尚、図5に示すものと同一
構成要素は同一符号とする。1はゲートパッド電極であ
り、その近くにポリシリコンより成る保護用のツェナー
ダイオード2が形成され、点線の丸印で示すようにボン
ディングワイヤーで電極の取り出しが行われる。3はポ
リシリコンで形成された静電破壊防止の保護用の抵抗体
であり、一端をゲートパッド電極1に接続され、他端は
ゲート連結電極4に接続されている。5は実動作領域で
あり、この中にパワーMOSFETを構成する多数のM
OSトランジスタのセル6が配列されている。7はソー
ス電極であり、実動作領域5上に設けられ且つ各セル6
のソース領域と接続して設けられる。ゲート連結電極4
は各セル6のゲート電極と接続され且つ実動作領域5の
周囲に配置されている。なお、ソース電極7には点線の
丸印で示すようにボンディングワイヤが熱厚着され、電
極の取り出しを行う。8はシールド電極であり、その下
にはアニュラーリングが設けられシールド電極8とコン
タクトして、チップ終端への空乏層の拡がりを抑える。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS An embodiment of the present invention will be described in detail with reference to FIGS. Power MOSF of the present invention
FIG. 3 shows a plan view of the ET. The same components as those shown in FIG. Reference numeral 1 denotes a gate pad electrode, on which a protective zener diode 2 made of polysilicon is formed, and an electrode is taken out by a bonding wire as shown by a dotted circle. Numeral 3 denotes a protection resistor made of polysilicon for preventing electrostatic destruction. One end is connected to the gate pad electrode 1 and the other end is connected to the gate connection electrode 4. Reference numeral 5 denotes an actual operation area, in which a number of Ms constituting a power MOSFET are arranged.
OS transistor cells 6 are arranged. Reference numeral 7 denotes a source electrode which is provided on the actual operation area 5 and has
Is provided in connection with the source region of. Gate connecting electrode 4
Are connected to the gate electrode of each cell 6 and are arranged around the actual operation area 5. A bonding wire is thermally attached to the source electrode 7 as indicated by a dotted circle, and the electrode is taken out. Reference numeral 8 denotes a shield electrode. An annular ring is provided below the shield electrode 8 to make contact with the shield electrode 8 to prevent the depletion layer from spreading to the chip end.

【0015】図1の左側は本発明に用いるトレンチ型の
セル6の断面構造を示す。尚、図4に示すものと同一構
成要素は同一記号とする。N+型の半導体基板21の上
にN-型のエピタキシャル層からなるドレイン領域22
を設け、その上にP型のチャネル層23を設ける。チャ
ネル層23からドレイン領域22まで到達するトレンチ
24を作り、トレンチ24の内壁をゲート酸化膜25で
被膜し、トレンチ24に充填されたポリシリコンよりな
るゲート電極26を設けて各セル6を形成する。トレン
チ24に隣接したチャネル層23表面にはN+型のソー
ス領域28が形成され、隣り合う2つのセルのソース領
域28間のチャネル層23表面にはP+型のボディコン
タクト領域29が形成される。さらにチャネル層23に
はソース領域28からトレンチ24に沿ってチャネル領
域27が形成される。トレンチ24上は層間絶縁膜30
で覆い、ソース領域28およびボディコンタクト領域2
9にコンタクトするソース電極7を設ける。かかるセル
6は図3の実動作領域5に多数個配列される。具体的に
は小さい四角で表示したものが1個のセルである。
The left side of FIG. 1 shows a sectional structure of a trench type cell 6 used in the present invention. The same components as those shown in FIG. A drain region 22 composed of an N type epitaxial layer on an N + type semiconductor substrate 21
And a P-type channel layer 23 is provided thereon. A trench 24 extending from the channel layer 23 to the drain region 22 is formed, an inner wall of the trench 24 is coated with a gate oxide film 25, and a gate electrode 26 made of polysilicon filled in the trench 24 is provided to form each cell 6. . An N + -type source region 28 is formed on the surface of the channel layer 23 adjacent to the trench 24, and a P + -type body contact region 29 is formed on the surface of the channel layer 23 between the source regions 28 of two adjacent cells. You. Further, a channel region 27 is formed in the channel layer 23 from the source region 28 along the trench 24. On the trench 24, the interlayer insulating film 30
And the source region 28 and the body contact region 2
9 is provided. Many such cells 6 are arranged in the actual operation area 5 of FIG. Specifically, one cell is represented by a small square.

【0016】本発明の特徴は保護用のツェナーダイオー
ド2の形状にある。ツェナーダイオード2はゲートパッ
ド電極1の近くに配置され、一端をゲートパッド電極1
に接続され、他端はソース電極7に接続されている。
A feature of the present invention lies in the shape of the Zener diode 2 for protection. The Zener diode 2 is disposed near the gate pad electrode 1 and has one end connected to the gate pad electrode 1.
And the other end is connected to the source electrode 7.

【0017】このツェナーダイオード2は図1の右側お
よび図2の平面図に示すように、セル6のトレンチ24
と同時にトレンチ17を形成し、その内壁をゲート酸化
膜25で被覆し、ポリシリコンを付着させる。このポリ
シリコン層19はセル6のトレンチ24を埋めるポリシ
リコンの生成時に同時に付着される。ポリシリコン層1
9はチャネル層23上面のゲート酸化膜25からトレン
チ17の側面および底面のゲート酸化膜25上を延在さ
れて細長いストライプ状にエッチングされ、両端はコン
タクトを形成されるために大きく形成されている。従っ
てツェナーダイオード2を形成する部分はトレンチ17
内に埋め込まれ、その上には厚い層間絶縁膜20で覆わ
れている。このポリシリコン層19は、最初に全体をP
-型にドープした後ソース領域28のイオン注入時にホ
トレジストで選択的にN+型にドープしてツェナーダイ
オード2を形成している。すなわち、端部からゼブラ状
にN+型領域−P-型領域−N+型領域−P-型領域−N+
型領域−P-型領域−N+型領域となり、6個のツェナー
ダイオードが直列に接続される。ツェナーダイオード2
を形成する平坦なPN接合はその上面および側面端部を
トレンチ17内の層間絶縁膜20で被覆されているの
で、PN接合端でのリーク電流の発生はない。従って、
ツェナーダイオード2に30Vのツェナー降伏電圧が要
求されるときは1つのPN接合当たりのツェナー降伏電
圧が5〜7Vであるので6個のPN接合がゼブラ状に形
成されればよい。
As shown in the right side of FIG. 1 and the plan view of FIG.
At the same time, a trench 17 is formed, its inner wall is covered with a gate oxide film 25, and polysilicon is deposited. This polysilicon layer 19 is deposited at the same time that the polysilicon filling the trench 24 of the cell 6 is generated. Polysilicon layer 1
Numeral 9 extends from the gate oxide film 25 on the upper surface of the channel layer 23 to the gate oxide film 25 on the side and bottom surfaces of the trench 17 and is etched in a long and narrow stripe shape. Both ends are formed large to form contacts. . Therefore, the portion where the Zener diode 2 is formed is the trench 17
And is covered with a thick interlayer insulating film 20. This polysilicon layer 19 is initially entirely P
After doping into the type, the zener diode 2 is formed by selectively doping with N + type with photoresist at the time of ion implantation of the source region 28. That is, an N + type region-P - type region-N + type region-P - type region-N + like a zebra from the end.
A type region -P - type region -N + type region, and six Zener diodes are connected in series. Zener diode 2
Is covered with the interlayer insulating film 20 in the trench 17, so that no leak current occurs at the PN junction end. Therefore,
When a Zener breakdown voltage of 30 V is required for the Zener diode 2, the Zener breakdown voltage per PN junction is 5 to 7 V, so that six PN junctions may be formed in a zebra shape.

【0018】本発明のパワーMOSFETの等価回路図
は図6と同じであり、ゲート端子Gとソース端子S間に
ツェナーダイオードZD(図3 符号2)が接続され、
ゲート端子Gとゲート電極間には保護用の抵抗体R
P(図3 符号3)が接続される。なおダイオードDI
基板ダイオードであり、ドレイン端子Dとソース端子S
間に接続される。
The equivalent circuit diagram of the power MOSFET of the present invention is the same as that of FIG. 6, and a Zener diode Z D (2 in FIG. 3) is connected between the gate terminal G and the source terminal S.
A protective resistor R is provided between the gate terminal G and the gate electrode.
P (3 in FIG. 3) is connected. Note diode D I is a substrate diode, the drain terminal D and the source terminal S
Connected between them.

【0019】[0019]

【発明の効果】本発明に依れば、第1にポリシリコン層
19をトレンチ24内に細長くストライプ状に形成し、
ゼブラ状に同じ大きさのN+領域とP-領域を形成してツ
ェナーダイオード2を形成することができる。従って、
従来の同心円状の場合よりN+領域の拡散による不純物
濃度のばらつきを減少させることができ、各PN接合の
ツェナー降伏電圧のばらつきを減少できるので、トレン
チ24内でのPN接合数の増減により所定のツェナーダ
イオード2のツェナー降伏電圧をその面積を増やすこと
なく容易に実現できる利点を有する。
According to the present invention, first, the polysilicon layer 19 is formed in the trench 24 in an elongated stripe shape,
The zener diode 2 can be formed by forming an N + region and a P region having the same size in a zebra shape. Therefore,
Since the variation in the impurity concentration due to the diffusion of the N + region can be reduced and the variation in the Zener breakdown voltage of each PN junction can be reduced as compared with the conventional concentric shape, the predetermined number can be reduced by increasing or decreasing the number of PN junctions in the trench 24. Has the advantage that the Zener breakdown voltage of the Zener diode 2 can be easily realized without increasing its area.

【0020】第2に、本発明のツェナーダイオード2は
トレンチ24内に埋め込まれたポリシリコン層19で形
成されるので、ポリシリコン層19の側面は層間絶縁膜
30およびトレンチ内壁のゲート酸化膜25で覆われて
いる。従って、ツェナーダイオード2を構成するPN接
合がポリシリコン層19の側面で終端しても層間絶縁膜
30およびゲート酸化膜25で保護されているので、P
N接合のリーク電流を最小限に押さえることができる利
点を有する。
Second, since the Zener diode 2 of the present invention is formed by the polysilicon layer 19 buried in the trench 24, the side surface of the polysilicon layer 19 has an interlayer insulating film 30 and a gate oxide film 25 on the inner wall of the trench. Covered with. Therefore, even if the PN junction constituting the Zener diode 2 is terminated at the side surface of the polysilicon layer 19, the PN junction is protected by the interlayer insulating film 30 and the gate oxide film 25.
This has the advantage that the leakage current of the N-junction can be minimized.

【0021】第3に、本発明のツェナーダイオード2は
ポリシリコン層19の細長い形状に形成できるので、ツ
ェナーダイオード2の占有面積は従来より大幅に小さく
できる。このため従来ではツェナーダイオード2の同心
円状のPN接合の数でその占有面積は決められ、ゲート
パッド電極1より大きく形成される場合が多かったが、
本発明ではゲートパッド電極1をボンディングに必要な
大きさに決めれば良く、具体的にはゲートパッド電極1
の面積は金線直径23μmの場合、従来より約75%
減、金線直径70μmの場合、従来より約56%減とな
り、その分実動作領域5の面積を増大でき、結果的にチ
ップ面積当たりのセル密度を上げられる利点を有する。
Third, since the Zener diode 2 of the present invention can be formed in an elongated shape of the polysilicon layer 19, the area occupied by the Zener diode 2 can be significantly reduced as compared with the conventional case. For this reason, conventionally, the occupied area is determined by the number of concentric PN junctions of the Zener diode 2 and is often formed larger than the gate pad electrode 1.
In the present invention, the gate pad electrode 1 may be determined to have a size necessary for bonding.
Area is about 75% compared to the conventional case when the gold wire diameter is 23 μm.
In the case where the diameter is reduced and the gold wire diameter is 70 μm, it is reduced by about 56% compared to the conventional case, and the area of the actual operation region 5 can be increased accordingly, and as a result, the cell density per chip area can be increased.

【0022】第4に、本発明では従来のトレンチ構造の
セル6を形成するプロセスを変更することなく、本発明
のツェナーダイオード2を形成できる利点もある。
Fourth, according to the present invention, there is also an advantage that the Zener diode 2 of the present invention can be formed without changing the process of forming the conventional cell 6 having a trench structure.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明のMOSFETの保護装置を説明する断
面図である。
FIG. 1 is a cross-sectional view illustrating a MOSFET protection device according to the present invention.

【図2】本発明のMOSFETの保護装置のみを説明す
る平面図である。
FIG. 2 is a plan view illustrating only a MOSFET protection device according to the present invention.

【図3】本発明のMOSFETの保護装置を説明する平
面図である。
FIG. 3 is a plan view illustrating a MOSFET protection device according to the present invention.

【図4】従来のMOSFETの保護装置を説明する断面
図である。
FIG. 4 is a cross-sectional view illustrating a conventional MOSFET protection device.

【図5】従来のMOSFETの保護装置を説明する平面
図である。
FIG. 5 is a plan view illustrating a conventional MOSFET protection device.

【図6】本発明および従来のMOSFETの保護装置の
等価回路を説明する回路図である。
FIG. 6 is a circuit diagram illustrating an equivalent circuit of the present invention and a conventional MOSFET protection device.

Claims (8)

【特許請求の範囲】[Claims] 【請求項1】半導体基板上のチャネル層に設けたトレン
チと、該トレンチ内に埋設したポリシリコン層と該ポリ
シリコン層に形成した複数個のツェナーダイオードとを
具備することを特徴とするMOSFETの保護装置。
1. A MOSFET comprising: a trench provided in a channel layer on a semiconductor substrate; a polysilicon layer buried in the trench; and a plurality of Zener diodes formed in the polysilicon layer. Protective equipment.
【請求項2】前記ツェナーダイオードを形成する接合端
を前記ポリシリコン層の側面で終わらせることを特徴と
する請求項1記載のMOSFETの保護装置。
2. The MOSFET protection device according to claim 1, wherein a junction end for forming said Zener diode ends at a side surface of said polysilicon layer.
【請求項3】前記ポリシリコン層をストライプ状にし、
前記ツェナーダイオードを形成する接合をゼブラ状にし
て前記ポリシリコン層の側面で終わらせることを特徴と
する請求項2記載のMOSFETの保護装置。
3. The method according to claim 2, wherein the polysilicon layer is formed in a stripe shape.
3. The MOSFET protection device according to claim 2, wherein a junction forming the Zener diode is formed in a zebra shape and ends at a side surface of the polysilicon layer.
【請求項4】前記ツェナーダイオードをゲートパッド電
極の近傍に設けることを特徴とする請求項1記載のMO
SFETの保護装置。
4. The MO according to claim 1, wherein said Zener diode is provided near a gate pad electrode.
SFET protection device.
【請求項5】半導体基板上のチャネル層に設けたトレン
チと、実動作領域の該トレンチ内に形成したトレンチ型
のMOSFETのセルと、ゲートパッド電極が形成され
る近くに設けた前記トレンチに埋設したポリシリコン層
と、該ポリシリコン層に形成した複数個のツェナーダイ
オードとを具備することを特徴とするMOSFETの保
護装置。
5. A trench provided in a channel layer on a semiconductor substrate, a trench type MOSFET cell formed in the trench in an actual operation region, and embedded in the trench provided near a gate pad electrode. A MOSFET protection device comprising: a polysilicon layer formed as described above; and a plurality of Zener diodes formed in the polysilicon layer.
【請求項6】前記ツェナーダイオードを形成する接合端
を前記ポリシリコン層の側面で終わらせることを特徴と
する請求項5記載のMOSFETの保護装置。
6. The MOSFET protection device according to claim 5, wherein a junction end forming said Zener diode ends at a side surface of said polysilicon layer.
【請求項7】前記ポリシリコン層をストライプ状にし、
前記ツェナーダイオードを形成する接合をゼブラ状にし
て前記ポリシリコン層の側面で終わらせることを特徴と
する請求項5または請求項6記載のMOSFETの保護
装置。
7. The polysilicon layer is striped,
7. The MOSFET protection device according to claim 5, wherein a junction forming the Zener diode is formed in a zebra shape and ends at a side surface of the polysilicon layer.
【請求項8】前記ツェナーダイオードをゲートパッド電
極の近傍に設けることを特徴とする請求項5記載のMO
SFETの保護装置。
8. The MO according to claim 5, wherein said Zener diode is provided near a gate pad electrode.
SFET protection device.
JP2000064496A 2000-03-09 2000-03-09 Protective device for mosfet Pending JP2001257349A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2000064496A JP2001257349A (en) 2000-03-09 2000-03-09 Protective device for mosfet

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000064496A JP2001257349A (en) 2000-03-09 2000-03-09 Protective device for mosfet

Publications (1)

Publication Number Publication Date
JP2001257349A true JP2001257349A (en) 2001-09-21

Family

ID=18584193

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000064496A Pending JP2001257349A (en) 2000-03-09 2000-03-09 Protective device for mosfet

Country Status (1)

Country Link
JP (1) JP2001257349A (en)

Cited By (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102004045467A1 (en) * 2004-09-20 2006-03-30 Infineon Technologies Ag Field effect trench transistor
JP2006100317A (en) * 2004-09-28 2006-04-13 Nec Electronics Corp Semiconductor device
JP2006100494A (en) * 2004-09-29 2006-04-13 Nec Electronics Corp Vertical mosfet
WO2007092089A1 (en) 2005-12-28 2007-08-16 Vishay-Siliconix Trench polysilicon diode
JP2009111320A (en) * 2007-11-01 2009-05-21 Fuji Electric Device Technology Co Ltd Silicon carbide trench mos type semiconductor device
KR100922555B1 (en) 2007-12-27 2009-10-21 주식회사 동부하이텍 Method of manufacturing a semiconductor for protecting electrostatic discharge
US7859083B2 (en) 2007-08-09 2010-12-28 Fuji Electric Systems Co., Ltd. Semiconductor device
JP2011009337A (en) * 2009-06-24 2011-01-13 Toshiba Corp Semiconductor device
US7872307B2 (en) 2007-10-12 2011-01-18 Promos Technologies Inc. Power MOSFET array
CN102280382A (en) * 2011-09-07 2011-12-14 杭州士兰集成电路有限公司 Electrostatic discharge protecting structure integrated in insulated gate bipolar transistor (IGBT) apparatus and manufacturing method of electrostatic discharge protecting structure
US8772827B2 (en) 2011-06-08 2014-07-08 Rohm Co., Ltd. Semiconductor device and manufacturing method
US9111754B2 (en) 2005-07-26 2015-08-18 Vishay-Siliconix Floating gate structure with high electrostatic discharge performance
CN107293486A (en) * 2016-03-31 2017-10-24 北大方正集团有限公司 Channel-type semiconductor device and its manufacture method with ESD structures
US10090294B2 (en) 2016-03-04 2018-10-02 Rohm Co., Ltd. Semiconductor device
JP2018182324A (en) * 2017-04-13 2018-11-15 インフィネオン テクノロジーズ アーゲーInfineon Technologies Ag Semiconductor device having electrostatic discharge protection structure

Cited By (30)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102004045467A1 (en) * 2004-09-20 2006-03-30 Infineon Technologies Ag Field effect trench transistor
US8772861B2 (en) * 2004-09-20 2014-07-08 Infineon Technologies Ag Field effect trench transistor having active trenches
DE102004045467B4 (en) 2004-09-20 2020-07-30 Infineon Technologies Ag Field effect trench transistor
JP2006100317A (en) * 2004-09-28 2006-04-13 Nec Electronics Corp Semiconductor device
JP2006100494A (en) * 2004-09-29 2006-04-13 Nec Electronics Corp Vertical mosfet
US9111754B2 (en) 2005-07-26 2015-08-18 Vishay-Siliconix Floating gate structure with high electrostatic discharge performance
EP1966830A4 (en) * 2005-12-28 2010-06-02 Vishay Siliconix Trench polysilicon diode
JP2009522784A (en) * 2005-12-28 2009-06-11 ビシェイ−シリコニクス Trench polysilicon diode
EP1966830A1 (en) * 2005-12-28 2008-09-10 Vishay-Siliconix Trench polysilicon diode
US8072013B1 (en) 2005-12-28 2011-12-06 Vishay-Siliconix Trench polysilicon diode
US9431550B2 (en) 2005-12-28 2016-08-30 Vishay-Siliconix Trench polysilicon diode
KR101098918B1 (en) * 2005-12-28 2011-12-27 비쉐이-실리코닉스 Trench polysilicon diode
WO2007092089A1 (en) 2005-12-28 2007-08-16 Vishay-Siliconix Trench polysilicon diode
US7859083B2 (en) 2007-08-09 2010-12-28 Fuji Electric Systems Co., Ltd. Semiconductor device
US7872307B2 (en) 2007-10-12 2011-01-18 Promos Technologies Inc. Power MOSFET array
JP2009111320A (en) * 2007-11-01 2009-05-21 Fuji Electric Device Technology Co Ltd Silicon carbide trench mos type semiconductor device
KR100922555B1 (en) 2007-12-27 2009-10-21 주식회사 동부하이텍 Method of manufacturing a semiconductor for protecting electrostatic discharge
JP2011009337A (en) * 2009-06-24 2011-01-13 Toshiba Corp Semiconductor device
US9576841B2 (en) 2011-06-08 2017-02-21 Rohm Co., Ltd. Semiconductor device and manufacturing method
US8772827B2 (en) 2011-06-08 2014-07-08 Rohm Co., Ltd. Semiconductor device and manufacturing method
US9129982B2 (en) 2011-06-08 2015-09-08 Rohm Co., Ltd. Semiconductor device and manufacturing method
US9362352B2 (en) 2011-06-08 2016-06-07 Rohm Co., Ltd. Semiconductor device and manufacturing method
US8889493B2 (en) 2011-06-08 2014-11-18 Rohm Co., Ltd. Manufacturing method of semiconductor device
US8994066B2 (en) 2011-06-08 2015-03-31 Rohm Co., Ltd. Manufacturing method of semiconductor device
CN102280382A (en) * 2011-09-07 2011-12-14 杭州士兰集成电路有限公司 Electrostatic discharge protecting structure integrated in insulated gate bipolar transistor (IGBT) apparatus and manufacturing method of electrostatic discharge protecting structure
US10090294B2 (en) 2016-03-04 2018-10-02 Rohm Co., Ltd. Semiconductor device
US10566325B2 (en) 2016-03-04 2020-02-18 Rohm Co., Ltd. Semiconductor device
CN107293486A (en) * 2016-03-31 2017-10-24 北大方正集团有限公司 Channel-type semiconductor device and its manufacture method with ESD structures
JP2018182324A (en) * 2017-04-13 2018-11-15 インフィネオン テクノロジーズ アーゲーInfineon Technologies Ag Semiconductor device having electrostatic discharge protection structure
JP7207861B2 (en) 2017-04-13 2023-01-18 インフィネオン テクノロジーズ アーゲー Semiconductor device including electrostatic discharge protection structure

Similar Documents

Publication Publication Date Title
EP0745275B1 (en) Diode device to protect metal-oxide-metal capacitors
US7952145B2 (en) MOS transistor device in common source configuration
US6404261B1 (en) Switch circuit and semiconductor switch, for battery-powered equipment
JP2001257349A (en) Protective device for mosfet
JP3524850B2 (en) Insulated gate field effect semiconductor device
JPH09102607A (en) Trench gate power mosfet
KR950007080A (en) Peripheral Circuit (ESD) Protection Circuit Manufacturing Method
JP2002118258A (en) Mosfet and protective circuit device using that
EP0415255B2 (en) Protection circuit for use in semiconductor integrated circuit device
JP2007220814A (en) Semiconductor device
JP2004274039A (en) Bilateral device, manufacturing method thereof, and semiconductor device
CN110867482B (en) ESD protection device for IC chip and electronic device
JP2002043574A (en) Mosfet protective device and its manufacturing method
JP3505461B2 (en) Insulated gate semiconductor device
JP2601143B2 (en) Semiconductor device
CN114783997B (en) Silicon controlled rectifier electrostatic discharge protection structure
US8866228B2 (en) Diode and electrostatic discharge protection circuit including the same
JP2002314085A (en) Protective device of mosfet
JP2001352067A (en) Protector for mosfet
US6479871B2 (en) Electrostatic discharge (ESD) latch-up protective circuit for an integrated circuit
CN210489616U (en) Multi-interdigital LDMOS-SCR electrostatic protection device
CN110729242B (en) Semiconductor switch device and manufacturing method thereof
JP2002009285A (en) Protection device of mosfet
JP2001320051A (en) Insulated gate semiconductor device
CN110690214A (en) Multi-interdigital LDMOS-SCR electrostatic protection device