JP2001252672A - Operation method for electric deionized water production device - Google Patents

Operation method for electric deionized water production device

Info

Publication number
JP2001252672A
JP2001252672A JP2000066387A JP2000066387A JP2001252672A JP 2001252672 A JP2001252672 A JP 2001252672A JP 2000066387 A JP2000066387 A JP 2000066387A JP 2000066387 A JP2000066387 A JP 2000066387A JP 2001252672 A JP2001252672 A JP 2001252672A
Authority
JP
Japan
Prior art keywords
chamber
exchange membrane
water
deionized water
treated
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2000066387A
Other languages
Japanese (ja)
Other versions
JP4397089B2 (en
Inventor
Masanari Hidaka
真生 日高
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Organo Corp
Original Assignee
Organo Corp
Japan Organo Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Organo Corp, Japan Organo Co Ltd filed Critical Organo Corp
Priority to JP2000066387A priority Critical patent/JP4397089B2/en
Publication of JP2001252672A publication Critical patent/JP2001252672A/en
Application granted granted Critical
Publication of JP4397089B2 publication Critical patent/JP4397089B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A20/00Water conservation; Efficient water supply; Efficient water use
    • Y02A20/124Water desalination

Landscapes

  • Separation Using Semi-Permeable Membranes (AREA)
  • Water Treatment By Electricity Or Magnetism (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide an operation method for an electric power-saving electric deionized water production device capable of easily removing a scale. SOLUTION: In this deionized water production device, an ion exchanger is packed at two small desalting chambers d1 and d2 divided by one side cation exchange membrane 3, the other side anion exchange membrane 4 and an intermediate ion exchange membrane 5 placed between both ion exchange membranes, and an anion exchanger is packed in the desalting chamber d1 as the ion exchanger packed to constitute a desalting chamber D1. The concentration chambers 1 are provided at the both sides of the desalting chamber D1 through the cation exchange membrane 3 and anion exchange membrane 4. The desalting chamber D1 and the concentration chamber 1 are arranged between an anode 7 and a cathode 6, and the water to be treated is made to flow into the desalting chamber d2 while applying voltage. Then, the effluent of the desalting chamber d2 is made to flow into the desalting chambers d1 and also concentrated water is made to flow into the concentration chamber 1 to remove an impurity ion in the water to be treated and to form the deionized water and a stage for washing the concentration chamber in which the effluent of the desalting chamber d2 is disparaged to the outside of the system without flowing into the desalting chambers d1 and also the concentrated water is made to flow into the concentration chamber 1 to remove an impurity anion in the water and to lower the pH of the concentrated water are provided.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、半導体製造分野、
医製薬製造分野、原子力や火力等の発電分野、食品工業
などの各種の産業又は研究所施設において使用され、電
気抵抗を低減することができ、且つ濃縮室内のスケール
洗浄を簡単な方法で行える省電力型電気式脱イオン水製
造装置の運転方法に関するものである。
The present invention relates to the field of semiconductor manufacturing,
Used in various industries or research laboratories, such as the pharmaceutical and pharmaceutical manufacturing fields, the power generation field such as nuclear power and thermal power, the food industry, etc., it is possible to reduce the electric resistance and save the scale in the concentration chamber by a simple method. The present invention relates to a method for operating a power-type electric deionized water producing apparatus.

【0002】[0002]

【従来の技術】脱イオン水を製造する方法として、従来
からイオン交換樹脂に被処理水を通して脱イオンを行う
方法が知られているが、この方法ではイオン交換樹脂が
イオンで飽和されたときに薬剤によって再生を行う必要
があり、このような処理操作上の不利な点を解消するた
め、近年、薬剤による再生が全く不要な電気式脱イオン
法による脱イオン水製造方法が確立され、実用化に至っ
ている。
2. Description of the Related Art As a method for producing deionized water, there has been conventionally known a method in which deionized water is passed through ion-exchange resin through water to be treated. In order to eliminate such disadvantages in the treatment operation, it is necessary to regenerate with a chemical, and in recent years, a method for producing deionized water by an electric deionization method that does not require regeneration with a chemical has been established and put into practical use. Has been reached.

【0003】図2はその従来の典型的な電気式脱イオン
水製造装置の模式断面図を示す。図2に示すように、カ
チオン交換膜101及びアニオン交換膜102を離間し
て交互に配置し、カチオン交換膜101とアニオン交換
膜102で形成される空間内に一つおきにイオン交換体
103を充填して脱塩室とする。脱塩室の被処理水流入
側(前段)にはアニオン交換樹脂103aが充填され、
脱塩室の被処理水流出側(後段)にはカチオン交換樹脂
とアニオン交換樹脂の混合イオン交換樹脂103bが充
填されている。また、脱塩室104のそれぞれ隣に位置
するアニオン交換膜102とカチオン交換膜101で形
成されるイオン交換体103を充填していない部分は濃
縮水を流すための濃縮室105とする。
FIG. 2 is a schematic cross-sectional view of a typical conventional electric deionized water producing apparatus. As shown in FIG. 2, the cation exchange membranes 101 and the anion exchange membranes 102 are alternately arranged at a distance from each other, and every other ion exchanger 103 is placed in a space formed by the cation exchange membranes 101 and the anion exchange membranes 102. Fill to form a desalination chamber. The anion exchange resin 103a is filled on the inflow side (front stage) of the water to be treated in the desalination chamber,
A mixed ion exchange resin 103b of a cation exchange resin and an anion exchange resin is filled on the outflow side (the latter stage) of the water to be treated in the desalination chamber. In addition, the portions not adjacent to the ion-exchanger 103 formed by the anion exchange membrane 102 and the cation exchange membrane 101 located next to the desalination chamber 104 are used as the concentration chamber 105 for flowing the concentrated water.

【0004】また、カチオン交換膜101とアニオン交
換膜102と、その内部に充填するイオン交換体103
とで脱イオンモジュールを形成する。すなわち、図では
省略する内部がくり抜かれた枠体の一方の側にカチオン
交換膜を封着し、枠体のくり抜かれた部分の上方部(前
段)にアニオン交換樹脂を、下方部(後段)に混合イオ
ン交換樹脂をそれぞれ充填し、次いで、枠体の他方の部
分にアニオン交換膜を封着する。なお、イオン交換膜は
比較的柔らかいものであり、枠体内部にイオン交換体を
充填してその両面をイオン交換膜で封着した時、イオン
交換膜が湾曲してイオン交換体の充填層が不均一となる
のを防止するため、枠体の空間部に複数のリブを縦設す
るのが一般的である。また、枠体の上方部に被処理水の
流入口が、また枠体の下方部に処理水の流出口が付設さ
れている。
Further, a cation exchange membrane 101, an anion exchange membrane 102, and an ion exchanger 103 filled therein.
To form a deionization module. That is, a cation exchange membrane is sealed on one side of the frame whose inside is omitted in the figure, and an anion exchange resin is placed on the upper part (front part) of the cut part of the frame, and the lower part (second part). Is filled with the mixed ion exchange resin, and then the other part of the frame is sealed with an anion exchange membrane. The ion-exchange membrane is relatively soft, and when the inside of the frame is filled with the ion-exchanger and both surfaces are sealed with the ion-exchange membrane, the ion-exchange membrane curves and the packed layer of the ion-exchanger becomes Generally, a plurality of ribs are provided vertically in the space of the frame body to prevent unevenness. In addition, an inlet for treated water is provided above the frame, and an outlet for treated water is provided below the frame.

【0005】このような脱イオンモジュールの複数個を
その間にスペーサーを挟んで、並設した状態が図2に示
されたものであり、並設した脱イオンモジュールの一側
に陰極109を配設すると共に、他端側に陽極110を
配設する。なお、前述したスペーサーを挟んだ位置が濃
縮室105であり、また両端の濃縮室105の両外側に
必要に応じカチオン交換膜101、アニオン交換膜10
2、あるいはイオン交換性のない単なる隔膜等の仕切り
膜を配設し、仕切り膜で仕切られた両電極109、11
0が接触する部分をそれぞれ陰極室112及び陽極室1
13とする。このように、従来の電気式脱イオン水製造
装置においては、濃縮室の数は脱塩室の数より1つ多い
形態のものであるか、あるいは両端の濃縮室を仕切り膜
無しで電極室とした場合には1つ少ない形態のものであ
った。
FIG. 2 shows a state in which a plurality of such deionization modules are juxtaposed with a spacer interposed therebetween, and a cathode 109 is arranged on one side of the juxtaposed deionization modules. At the same time, the anode 110 is provided at the other end. The position sandwiching the spacer is the concentration chamber 105, and the cation exchange membrane 101 and the anion exchange membrane 10
2, or a partition membrane such as a mere diaphragm having no ion exchange property is provided, and both electrodes 109 and 11 separated by the partition membrane.
0 are in contact with the cathode chamber 112 and the anode chamber 1 respectively.
It is assumed to be 13. As described above, in the conventional electric deionized water producing apparatus, the number of the concentration chambers is one larger than the number of the desalination chambers, or the concentration chambers at both ends are separated from the electrode chambers without a partition membrane. In this case, the shape was one less.

【0006】このような電気式脱イオン水製造装置によ
って脱イオン水を製造する場合を図2を参照して説明す
る。すなわち、陰極109と陽極110間に直流電流を
通じ、また、被処理水流入ライン111から被処理水が
流入すると共に、濃縮水流入ライン115から濃縮水が
流入し、且つ電極水流入ライン117、117からそれ
ぞれ電極水が流入する。被処理水流入ライン111から
流入した被処理水は脱塩室104を流下し、先ず、前段
のアニオン交換樹脂103aを通過する際、塩酸イオン
や硫酸イオンなどのアニオン成分が除去され、次に、後
段のカチオン交換樹脂及びアニオン交換樹脂の混合イオ
ン交換樹脂103bを通過する際、マグネシウムやカル
シウムなどのカチオン成分が除去される。濃縮水流入ラ
イン115から流入した濃縮水は各濃縮室105を上昇
し、カチオン交換膜101及びアニオン交換膜102を
介して移動してくる不純物イオンを受取り、不純物イオ
ンを濃縮した濃縮水として濃縮水流出ライン116から
流出され、さらに電極水流入ライン117、117から
流入した電極水は電極水流出ライン118、118から
流出される。従って、脱イオン水流出ライン114から
脱塩水が得られる。
A case of producing deionized water by such an electric deionized water producing apparatus will be described with reference to FIG. That is, a direct current is passed between the cathode 109 and the anode 110, the water to be treated flows in from the water inflow line 111, the concentrated water flows in from the concentrated water inflow line 115, and the electrode water inflow lines 117, 117 From each of the electrode water flows. The water to be treated flowing from the treated water inflow line 111 flows down the desalting chamber 104, and firstly, when passing through the anion exchange resin 103a at the preceding stage, anion components such as hydrochloric acid ions and sulfate ions are removed. Upon passing through the mixed ion exchange resin 103b of the latter cation exchange resin and anion exchange resin, cation components such as magnesium and calcium are removed. The concentrated water flowing from the concentrated water inflow line 115 rises in each concentration chamber 105, receives impurity ions moving through the cation exchange membrane 101 and the anion exchange membrane 102, and forms concentrated water as concentrated water in which the impurity ions are concentrated. Electrode water flowing out of the outflow line 116 and further flowing in through the electrode water inflow lines 117 and 117 flows out of the electrode water outflow lines 118 and 118. Therefore, deionized water is obtained from the deionized water outflow line 114.

【0007】一方、このような電気式脱イオン水製造装
置を使用して被処理水中の不純物イオンを省電力で除去
するために、電気式脱イオン水製造装置の電気抵抗を低
減する種々の試みがなされている。この場合、脱塩室に
おいては、脱塩室に使用されるイオン交換体の充填方法
や充填量が要求される処理水の水質によって決定される
ため、脱塩室の電気抵抗を低減させるには限界がある。
そこで、濃縮室の電気抵抗を低減するための対策が採ら
れることが多い。例えば、特開平9−24374号公報
には、濃縮室に電解質を添加供給して濃縮室における電
気抵抗を低減する方法が開示されている。また、濃縮水
の循環によって導電率の上昇を促進し、濃縮室の電気抵
抗を低減する方法も多数報告されている。
On the other hand, various attempts have been made to reduce the electric resistance of the electric deionized water producing apparatus in order to use such an electric deionized water producing apparatus to remove impurity ions in the water to be treated with low power consumption. Has been made. In this case, in the desalting chamber, since the method of filling the ion exchanger used in the desalting chamber and the filling amount are determined by the quality of the treated water required, it is necessary to reduce the electric resistance of the desalting chamber. There is a limit.
Therefore, measures are often taken to reduce the electrical resistance of the concentrating chamber. For example, Japanese Patent Application Laid-Open No. 9-24374 discloses a method of reducing the electric resistance in a concentration chamber by adding and supplying an electrolyte to the concentration chamber. In addition, many methods have been reported for promoting the increase in conductivity by circulating concentrated water and reducing the electric resistance of the concentrating chamber.

【0008】[0008]

【発明が解決しようとする課題】しかしながら、濃縮室
に電解質を添加供給して濃縮室の電気抵抗を低減する方
法は、電解質を濃縮室へ供給するためのポンプ、薬剤貯
留タンク及び供給配管などを設置しなければならず、設
置面積の増加、設置コストの上昇などを招く、また、定
期的に薬剤の補給や管理を行わなければならず、連続再
生型装置であるにもかかわらず人手がかかるという問題
がある。また、濃縮水の循環によって導電率の上昇を促
進し、濃縮室の電気抵抗を低減する方法は、濃縮水中に
含まれるカルシウムやマグネシウムなどの硬度成分も濃
厚となりスケールの発生を促進して、結果的に電気抵抗
の上昇を招来するという問題がある。従って、電気式脱
イオン水製造装置の電気抵抗を低減する省電力型の運転
ができ、濃縮室内でのスケール発生を抑制すると共に、
長期間の運転で例えスケール発生が起こったとしても薬
剤を使用することなく、短期間で且つ簡易な方法でスケ
ール除去が可能となる運転方法が望まれていた。
However, the method of reducing the electric resistance of the concentrating chamber by adding and supplying the electrolyte to the concentrating chamber involves a pump for supplying the electrolyte to the concentrating chamber, a chemical storage tank, a supply pipe and the like. It must be installed, which leads to an increase in installation area and installation cost. In addition, it is necessary to periodically supply and manage medicines, which requires human resources despite being a continuous regeneration type device. There is a problem. In addition, the method of promoting the increase in electrical conductivity by circulating the concentrated water and reducing the electric resistance of the concentrated chamber is based on the fact that the hardness components such as calcium and magnesium contained in the concentrated water are also thickened and the generation of scale is promoted. There is a problem that the electrical resistance is increased. Therefore, the power-saving operation of reducing the electric resistance of the electric deionized water producing apparatus can be performed, and the scale generation in the enrichment chamber is suppressed,
There has been a demand for an operation method capable of removing scale by a simple method in a short period of time without using a chemical even if scale generation occurs even in long-term operation.

【0009】従って、本発明の目的は、濃縮水へ薬剤を
添加することなく、電気式脱イオン水製造装置の構造面
からの抜本的な改善により電気抵抗を低減すると共に、
濃縮室内でのスケール発生を抑制することができ、長期
間の運転で例えスケールの発生が起こったとしても簡易
な方法でスケール除去が可能となる省電力型電気式脱イ
オン水製造装置の運転方法を提供することにある。
Therefore, an object of the present invention is to reduce the electric resistance by drastically improving the structure of the electric deionized water producing apparatus without adding a chemical to the concentrated water,
A method for operating a power-saving electric deionized water producing apparatus that can suppress scale generation in a concentration chamber and can remove scale by a simple method even if scale generation occurs even if operation occurs for a long time. Is to provide.

【0010】[0010]

【課題を解決するための手段】かかる実情において、本
発明者らは鋭意検討を行った結果、枠体の一側にカチオ
ン交換膜が封着され、他側にアニオン交換膜が封着され
た従来の脱塩室構造において、このカチオン交換膜とア
ニオン交換膜の間にさらに、脱塩室を2分割する中間イ
オン交換膜を配設して、2つの小脱塩室を隣合わせに有
してアニオン交換膜と中間イオン交換膜で区画される小
脱塩室にはアニオン交換体を充填する脱塩室とし、前記
カチオン交換膜、アニオン交換膜を介して脱塩室の両側
に濃縮室を設け、これらの脱塩室及び濃縮室を陽極と陰
極の間に配置し、電圧を印加しながら被処理水をアニオ
ン交換体が充填された一方の小脱塩室に流入させ、該小
脱塩室の流出水を他方の小脱塩室に流入させると共に、
濃縮室に濃縮水を流入して被処理水中の不純物イオンを
除去し、脱イオン水を得る脱イオン水製造工程と、前記
一方の小脱塩室の流出水は前記他方の小脱塩室へ流入さ
せることなく、系外へ排出すると共に、濃縮室に濃縮水
を流入して被処理水中の不純物アニオンを除去し、濃縮
水のpHを低下させる濃縮室洗浄工程と、を有する運転
を行えば、脱イオン水製造工程においては、イオン交換
体が充填された脱塩室1つ当たりの濃縮室の数を従来の
約半分にすることができ、電気式脱イオン水製造装置の
電気抵抗を著しく低減できる省電力型運転ができ、濃縮
室洗浄工程においては、前記一方の小脱塩室の流出水を
他方の小脱塩室へ供給することを停止するという単に流
路を変更するだけで、濃縮室にはアニオンのみが移動し
て濃縮室内でのpHを低めて酸性にし、アニオン交換膜
上等濃縮室内に発生したスケールをほとんど溶解させる
ことができること等を見出し、本発明を完成するに至っ
た。
Under such circumstances, the present inventors have conducted intensive studies and as a result, have found that a cation exchange membrane is sealed on one side of the frame and an anion exchange membrane is sealed on the other side. In the conventional desalting chamber structure, an intermediate ion exchange membrane that divides the desalting chamber into two parts is further provided between the cation exchange membrane and the anion exchange membrane, and two small desalting chambers are provided adjacent to each other. The small desalination chamber divided by the anion exchange membrane and the intermediate ion exchange membrane is a desalination chamber filled with an anion exchanger, and the cation exchange membrane and the concentration chamber are provided on both sides of the desalination chamber via the anion exchange membrane. The desalting chamber and the concentrating chamber are arranged between the anode and the cathode, and the water to be treated is caused to flow into one of the small desalting chambers filled with the anion exchanger while applying a voltage. Effluent from the other small desalination chamber
A deionized water producing step of flowing the concentrated water into the concentration chamber to remove impurity ions in the water to be treated and obtaining deionized water; and the effluent of the one small desalination chamber to the other small desalination chamber. Without draining out the system, and discharging the concentrated water into the concentrated chamber to remove impurity anions in the water to be treated and reduce the pH of the concentrated water. In the deionized water production process, the number of concentrating chambers per one deionization chamber filled with the ion exchanger can be reduced to about half of the conventional one, and the electric resistance of the electric deionized water production apparatus is remarkably increased. The power saving type operation that can be reduced can be performed, and in the concentration chamber washing step, simply changing the flow path of stopping supplying the effluent of the one small desalination chamber to the other small desalination chamber, Only anions move to the concentration chamber, and p in the concentration chamber A lower acidified, it found such that the scale generated in the anion exchange membrane choice concentrating compartment can be hardly dissolved, thereby completing the present invention.

【0011】すなわち、請求項1の発明(1)は、一側
のカチオン交換膜、他側のアニオン交換膜及び当該カチ
オン交換膜と当該アニオン交換膜の間に位置する中間イ
オン交換膜で区画される2つの小脱塩室にイオン交換体
を充填し、且つ一方の小脱塩室に充填されるイオン交換
体はアニオン交換体として脱塩室を構成し、前記カチオ
ン交換膜、アニオン交換膜を介して脱塩室の両側に濃縮
室を設け、これらの脱塩室及び濃縮室を陽極と陰極の間
に配置し、電圧を印加しながら一方のアニオン交換体が
充填された小脱塩室に被処理水を流入し、次いで、該小
脱塩室の流出水を他方の小脱塩室に流入すると共に、濃
縮室に濃縮水を流入して被処理水中の不純物イオンを除
去し、脱イオン水を製造する脱イオン水製造工程と、前
記被処理水が流入する一方の小脱塩室の流出水は前記他
方の小脱塩室へ流入させることなく、系外へ排出すると
共に、濃縮室に濃縮水を流入して被処理水中の不純物ア
ニオンを除去し、濃縮水のpHを低下させる濃縮室洗浄
工程と、を有することを特徴とする電気式脱イオン水製
造装置の運転方法を提供するものである。かかる構成を
採ることにより、脱イオン水製造工程においては、イオ
ン交換体が充填された脱塩室1つ当たりの濃縮室の数を
従来の約半分にすることができ、電気式脱イオン水製造
装置の電気抵抗を著しく低減できる。また、従来の装置
と比較して相対的に濃縮室の数が少ないため、濃縮室を
流通する濃縮水のイオン濃度を濃厚とすることができ、
導電率が向上し、更に電気抵抗が低減されると共に、濃
縮室内を流通する濃縮水の流速を高めることができ、濃
縮室内のスケールが発生し難くなる。また、長期間の運
転により、濃縮室内にスケールが発生した場合、濃縮室
洗浄工程に切替え、すなわち、被処理水が最初に流入す
る小脱塩室の流出水の流路を変更するだけで、濃縮室内
でのpHが酸性を示し、アニオン交換膜上等濃縮室内に
発生したスケールをほとんど溶解させることができる。
That is, the invention (1) according to claim 1 is defined by a cation exchange membrane on one side, an anion exchange membrane on the other side, and an intermediate ion exchange membrane located between the cation exchange membrane and the anion exchange membrane. The two small desalination chambers are filled with an ion exchanger, and the ion exchanger filled in one of the small desalination chambers constitutes a desalination chamber as an anion exchanger. Enrichment chambers are provided on both sides of the desalination chamber, and these desalination chambers and the enrichment chamber are arranged between the anode and the cathode, and a voltage is applied to the small desalination chamber filled with one anion exchanger. The water to be treated flows in, and then the effluent from the small desalination chamber flows into the other small desalination chamber, and the concentrated water flows into the concentration chamber to remove impurity ions in the water to be treated. A deionized water production process for producing water, and the water to be treated flows in The effluent of one small desalination chamber is discharged out of the system without flowing into the other small desalination chamber, and the concentrated water flows into the concentration chamber to remove impurity anions in the water to be treated. A method for operating an electric deionized water producing apparatus, comprising: a concentration chamber washing step of lowering the pH of concentrated water. By adopting such a configuration, in the deionized water production process, the number of the enrichment chambers per one deionization chamber filled with the ion exchanger can be reduced to about half of the conventional one, and the electric deionized water production can be performed. The electrical resistance of the device can be significantly reduced. In addition, since the number of concentrating chambers is relatively small as compared with the conventional apparatus, the ion concentration of the concentrated water flowing through the concentrating chamber can be increased,
The conductivity is improved, the electric resistance is further reduced, and the flow rate of the concentrated water flowing in the concentration chamber can be increased, so that the scale in the concentration chamber is less likely to be generated. In addition, when scale is generated in the concentration chamber due to long-term operation, the process is switched to the concentration chamber cleaning step, that is, only the flow path of the effluent of the small desalination chamber into which the water to be treated first flows in is changed. The pH in the concentration chamber is acidic, and the scale generated in the concentration chamber such as on the anion exchange membrane can be almost dissolved.

【0012】請求項2の発明(2)は、前記脱イオン水
製造工程を行い、次いで濃縮室洗浄工程を行うか、ある
いは、前記脱イオン水製造工程を行い、次いで運転を停
止した後、運転再開時に前記濃縮室洗浄工程を行うこと
を特徴とする前記(1)記載の電気式脱イオン水製造装
置の運転方法を提供するものである。かかる構成を採る
ことにより、前記発明と同様の効果を奏する他、通常運
転途中や通常運転終了後、すなわち運転停止直後であっ
ても、運転停止後暫くの停止期間があった後の運転再開
後のいずれにおいても、薬剤を使用することなく簡単に
濃縮室内を酸洗浄することができる。
According to a second aspect of the present invention, the deionized water producing step is performed, and then the concentrating chamber cleaning step is performed, or the deionized water producing step is performed, and then the operation is stopped and then the operation is stopped. It is intended to provide an operation method of the electric deionized water producing apparatus according to (1), wherein the concentration chamber cleaning step is performed at the time of restart. By adopting such a configuration, in addition to achieving the same effects as those of the invention described above, during normal operation or after the end of the normal operation, that is, immediately after the operation is stopped, even after the operation is restarted after a stop period for a while after the operation is stopped. In any of the above, the concentration chamber can be easily acid-washed without using a chemical.

【0013】請求項3の発明(3)は、前記一側のカチ
オン交換膜と前記中間イオン交換膜で区画される他方の
小脱塩室に充填されるイオン交換体は、カチオン交換体
とアニオン交換体の混合体であることを特徴とする前記
(1)又は(2)記載の電気式脱イオン水製造装置の運
転方法を提供するものである。かかる構成を採ることに
より、脱イオン水製造工程では、アニオン成分を多く含
む被処理水、特にシリカ、炭酸等の弱酸性成分を多く含
む被処理水を十分に処理することが可能となる。また、
カチオン交換体とアニオン交換体の混合体が充填された
小脱塩室を流れる被処理水と濃縮水の流れが逆の場合、
マグネシウムやカルシウムイオンなどのカチオン成分を
濃縮した濃縮水を直ちに濃縮室から流出して濃縮室内で
のスケール発生を防止できる。
According to a third aspect of the present invention, in the third aspect, the ion exchanger packed in the other small desalting chamber partitioned by the cation exchange membrane on one side and the intermediate ion exchange membrane comprises a cation exchanger and an anion. It is intended to provide an operation method of the electric deionized water producing apparatus according to the above (1) or (2), which is a mixture of exchangers. By adopting such a configuration, in the deionized water production step, it is possible to sufficiently treat the water to be treated containing a large amount of anionic components, particularly the water to be treated containing a large amount of weakly acidic components such as silica and carbonic acid. Also,
When the flows of the water to be treated and the concentrated water flowing through the small desalting chamber filled with the mixture of the cation exchanger and the anion exchanger are opposite,
Concentrated water in which cation components such as magnesium and calcium ions are concentrated is immediately discharged from the concentration chamber to prevent generation of scale in the concentration chamber.

【0014】請求項4の発明(4)は、前記中間イオン
交換膜は、カチオン交換膜あるいはアニオン交換膜の単
一膜、又はアニオン交換膜及びカチオン交換膜の両方を
配置した複式膜であることを特徴とする前記(1)〜
(3)記載の電気式脱イオン水製造装置の運転方法を提
供するものである。かかる構成を採ることにより、前記
発明と同様の効果を奏する他、脱イオン水製造工程で
は、単一膜を使用する場合、被処理水中から除去したい
イオンが陽イオンか、陰イオンかによって、イオン交換
膜の選択ができる。また、複式膜は装置上部又は装置下
部にカチオン交換膜又はアニオン交換膜を配置するもの
であるが、この場合、例えば、第1小脱塩室被処理水側
(入口側)にカチオン膜、第1小脱塩室処理水側(出口
側)にアニオン交換膜を配置すると、第2小脱塩室から
のカチオン成分の移動がなされ、第1小脱塩室のpHが
アルカリ側へと移りやすくなり、非イオン状シリカのイ
オン化が進み、第1小脱塩室処理水側(出口側)に配置
されたアニオン交換膜を通して更なるシリカの低減が行
われるという作用を奏する。
According to a fourth aspect of the present invention, the intermediate ion exchange membrane is a single membrane of a cation exchange membrane or an anion exchange membrane, or a double membrane having both an anion exchange membrane and a cation exchange membrane. (1)-characterized by the above
(3) An operation method of the electric deionized water producing apparatus according to (3). By adopting such a configuration, in addition to achieving the same effects as the above-described invention, in the deionized water production step, when a single membrane is used, the ion to be removed from the water to be treated is a cation or an anion, depending on whether the ion is an anion. Exchange membrane can be selected. Further, the double membrane has a cation exchange membrane or an anion exchange membrane disposed at the top or bottom of the apparatus. In this case, for example, a cation membrane or a cation membrane is disposed on the first small desalination chamber treated water side (inlet side). When the anion exchange membrane is disposed on the treated water side (outlet side) of the first small-size desalination chamber, the cation component is moved from the second small-size desalination chamber, and the pH of the first small-size desalination chamber is easily shifted to the alkali side. In other words, the ionization of the nonionic silica proceeds, and the effect is obtained that the silica is further reduced through the anion exchange membrane disposed on the treated water side (outlet side) of the first small demineralization chamber.

【0015】[0015]

【発明の実施の形態】本発明で使用する電気式脱イオン
水製造装置を図1を参照して説明する。図1は本実施の
形態における電気式脱イオン水製造装置の模式図であ
る。図1に示すように、カチオン交換膜3、中間イオン
交換膜5及びアニオン交換膜4を離間して交互に配置
し、カチオン交換膜3と中間イオン交換膜5で形成され
る空間内にイオン交換体8を充填して第1小脱塩室
1 、d3 、d5 、d7 を形成し、中間イオン交換膜5
とアニオン交換膜4で形成される空間内にアニオン交換
体81を充填して第2小脱塩室d2 、d4 、d6 、d8
を形成し、第1小脱塩室d1 と第2小脱塩室d2 で脱塩
室D1 、第1小脱塩室d3 と第2小脱塩室d4 で脱塩室
2 、第1小脱塩室d5 と第2小脱塩室d6 で脱塩室D
3 、第1小脱塩室d7 と第2小脱塩室d8 で脱塩室D4
とする。また、脱塩室D2 、D3 のそれぞれ隣に位置す
るアニオン交換膜4とカチオン交換膜3で形成されるイ
オン交換体8を充填していない部分は濃縮水を流すため
の濃縮室1とする。これを順次に併設して図中、左より
脱塩室D1 、濃縮室1、脱塩室D2 、濃縮室1、脱塩室
3 、濃縮室1、脱塩室D4 を形成する。また、中間膜
を介して隣合う2つの小脱塩室において、第2小脱塩室
の処理水流出ライン12は第1脱塩室の被処理水流入ラ
イン13に連接配管19aにより連接されている。ま
た、連接配管19aは配管途中にバルブ191を備え、
バルブ191の上流側にはバルブ192を備える分岐配
管19bを有する。
DESCRIPTION OF THE PREFERRED EMBODIMENTS Electrodeionization used in the present invention
The water production apparatus will be described with reference to FIG. FIG. 1 shows the present embodiment.
FIG. 1 is a schematic view of an electric deionized water producing apparatus in a form.
You. As shown in FIG. 1, cation exchange membrane 3, intermediate ion
Exchange membranes 5 and anion exchange membranes 4 are alternately arranged at a distance.
Formed by the cation exchange membrane 3 and the intermediate ion exchange membrane 5
The first small desalination chamber is filled with an ion exchanger 8
d1, DThree, DFive, D7To form an intermediate ion exchange membrane 5
Anion exchange in the space formed by the
The second small desalting chamber dTwo, DFour, D6, D8
And the first small desalination chamber d1And the second small desalination chamber dTwoDesalination with
Room D1, 1st desalination room dThreeAnd the second small desalination chamber dFourIn desalination room
D Two, 1st desalination room dFiveAnd the second small desalination chamber d6Desalination room D
Three, 1st desalination room d7And the second small desalination chamber d8Desalination room DFour
And In addition, desalination room DTwo, DThreeLocated next to each
Formed by the anion exchange membrane 4 and the cation exchange membrane 3
The portion not filled with the on-exchanger 8 is for flowing concentrated water
Of the concentration chamber 1. These are sequentially installed, and from the left in the figure
Desalination room D1, Concentration room 1, desalination room DTwo, Concentration room 1, desalination room
DThree, Concentration room 1, desalination room DFourTo form Also, interlayer film
In the two small desalination chambers adjacent to each other through the second small desalination chamber
Of the treated water in the first desalination chamber
The connection 13 is connected to the housing 13 by a connection pipe 19a. Ma
The connecting pipe 19a has a valve 191 in the middle of the pipe,
A branch arrangement including a valve 192 is provided upstream of the valve 191.
It has a tube 19b.

【0016】本発明の電気式脱イオン水製造装置の運転
方法において、脱イオン水製造工程を行う場合、以下の
ように操作される。この場合、バルブ191は開、バル
ブ192は閉である。すなわち、陰極6と陽極7間に直
流電流を通じ、また被処理水流入ライン11から被処理
水が流入すると共に、濃縮水流入ライン15から濃縮水
が流入し、かつ電極水流入ライン17、17からそれぞ
れ電極水が流入する。被処理水流入ライン11から流入
した被処理水は第2小脱塩室d2 、d4 、d6、d8
流下し、アニオン交換体81の充填層を通過する際に不
純物イオンが除去される。更に、第2小脱塩室の処理水
流出ライン12を通った流出水は、第1小脱塩室の被処
理水流入ライン13を通って第1小脱塩室d1 、d3
5 、d 7 を流下し、ここでもイオン交換体8、例えば
アニオン交換体とカチオン交換体の混合体の充填層を通
過する際に不純物イオンが除去され、脱イオン水が脱イ
オン水流出ライン14から得られる。また、濃縮水流入
ライン15から流入した濃縮水は各濃縮室1を上昇し、
カチオン交換膜3及びアニオン交換膜4を介して移動し
てくる不純物イオンを受取り、不純物イオンを濃縮した
濃縮水として濃縮水流出ライン16から流出され、さら
に電極水流入ライン17、17から流入した電極水は電
極水流出ライン18、18から流出される。上述の操作
によって、被処理水中の不純物イオンは電気的に除去さ
れる。
Operation of the electric deionized water producing apparatus of the present invention
When performing the deionized water production step in the method, the following
Is operated as follows. In this case, the valve 191 is opened and the valve
Block 192 is closed. That is, a direct voltage is applied between the cathode 6 and the anode 7.
Through the flowing current and from the treated water inflow line 11
As the water flows in, the concentrated water
Flows from the electrode water inflow lines 17, 17, respectively.
The electrode water flows. Inflow from treated water inflow line 11
Water to be treated is supplied to the second small desalination chamber d.Two, DFour, D6, D8To
When flowing down and passing through the packed bed of the anion exchanger 81,
Pure ions are removed. Furthermore, treated water in the second small desalination chamber
The effluent passing through the outflow line 12 is treated in the first small desalination chamber.
The first small desalination chamber d through the water inlet line 131, DThree,
dFive, D 7Again, the ion exchanger 8, for example,
Through a packed bed of a mixture of anion exchanger and cation exchanger
Impurity ions are removed when passing through, and deionized water is removed.
Obtained from the on-water outflow line 14. Also, concentrated water inflow
Concentrated water flowing in from line 15 rises in each concentrating chamber 1,
Moving through the cation exchange membrane 3 and the anion exchange membrane 4
Incoming impurity ions and concentrated the impurity ions
It is discharged from the concentrated water outflow line 16 as concentrated water,
The electrode water flowing from the electrode water inflow lines 17
It is discharged from the polar water discharge lines 18, 18. The above operations
Impurity ions in the water to be treated are electrically removed.
It is.

【0017】本実施の形態例において、中間のイオン交
換膜としては、カチオン交換膜又はアニオン交換膜の単
一膜、あるいはアニオン交換膜、カチオン交換膜の両方
を配置した複式膜のいずれであってもよい。装置上部又
は装置下部にアニオン交換膜又はカチオン交換膜とした
複式膜とする場合、アニオン交換膜及びカチオン膜のそ
れぞれの高さ(面積)は被処理水の水質又は処理目的な
どによって適宜決定される。また、単一膜を使用する場
合、被処理水中から除去したいイオン種に応じてイオン
交換膜が決定される。
In the present embodiment, the intermediate ion exchange membrane may be any of a single cation exchange membrane or an anion exchange membrane, or a composite membrane having both an anion exchange membrane and a cation exchange membrane. Is also good. In the case of a double membrane having an anion exchange membrane or a cation exchange membrane at the top or bottom of the apparatus, the height (area) of each of the anion exchange membrane and the cation membrane is appropriately determined according to the quality of the water to be treated or the purpose of treatment. . When a single membrane is used, the ion exchange membrane is determined according to the ion species to be removed from the water to be treated.

【0018】第1小脱塩室の厚さは特に制限されず、第
1小脱塩室に充填されるイオン交換体の種類と充填方法
によって、最適な厚さを決定すればよい。また、第2小
脱塩室はアニオン交換体であるため、最適厚さが当初よ
り決定される。従って、第1小脱塩室の厚さを3mm、第
2小脱塩室の厚さを6mmとして、全体の厚さ、すなわち
脱塩室の厚さを9mmとしてもよい。このように、複数の
脱塩室と濃縮室を交互に配置し、脱塩室の両側に配され
るカチオン交換膜とアニオン交換膜で区画される脱塩室
の厚みは、従来のものよりも厚くでき、1.5〜18mm
の範囲、好適には、6.5〜15mm、更に好適には9〜
13mmの範囲で適宜決定される。
The thickness of the first small desalting chamber is not particularly limited, and the optimum thickness may be determined according to the type of ion exchanger packed in the first small desalting chamber and the filling method. Further, since the second small desalting chamber is an anion exchanger, the optimum thickness is determined from the beginning. Therefore, the thickness of the first small desalination chamber may be set to 3 mm and the thickness of the second small desalination chamber may be set to 6 mm, and the overall thickness, that is, the thickness of the desalination chamber may be set to 9 mm. Thus, a plurality of desalination chambers and concentration chambers are alternately arranged, and the thickness of the desalination chamber divided by the cation exchange membrane and the anion exchange membrane arranged on both sides of the desalination chamber is larger than that of the conventional one. Thick, 1.5-18mm
, Preferably 6.5 to 15 mm, more preferably 9 to 15 mm.
It is appropriately determined within a range of 13 mm.

【0019】また、前記一側のカチオン交換膜と前記中
間イオン交換膜で区画される第1小脱塩室に充填される
イオン交換体としては、特に制限されず、上記のアニオ
ン交換体とカチオン交換体の混床以外に、アニオン交換
体単床やカチオン交換体単床及びアニオン交換体とカチ
オン交換体の混床とこれらを組合せた複式層のものも使
用できる。また、イオン交換体としては、イオン交換樹
脂、イオン交換繊維などイオン交換機能を有する物質で
あればいずれでもよく、また、それらを組合せたもので
あってもよい。
The ion exchanger packed in the first small desalting chamber partitioned by the cation exchange membrane on one side and the intermediate ion exchange membrane is not particularly limited, and the above-mentioned anion exchanger and cation In addition to a mixed bed of exchangers, a single bed of an anion exchanger, a single bed of a cation exchanger, a mixed bed of an anion exchanger and a cation exchanger, and a double layer obtained by combining these can also be used. Further, the ion exchanger may be any substance having an ion exchange function such as an ion exchange resin or an ion exchange fiber, or may be a combination thereof.

【0020】また、被処理水の第1小脱塩室及び第2小
脱塩室での流れ方向は、特に制限されず、上記実施の形
態例の他、第1小脱塩室と第2小脱塩室での流れ方向が
異なっていてもよい。また、濃縮水の流れ方向も適宜決
定される。
The flow directions of the water to be treated in the first and second small desalination chambers are not particularly limited. The flow direction in the small desalination chamber may be different. Also, the flow direction of the concentrated water is appropriately determined.

【0021】次に、本発明の電気式脱イオン水製造装置
の運転方法において、濃縮室洗浄工程を行う場合、以下
のように操作される。この場合、上記の脱イオン水製造
工程の運転操作において、バルブ191を閉、バルブ1
92を開にするだけでよい。すなわち、陰極6と陽極7
間に直流電流を通じ、また被処理水流入ライン11から
被処理水が流入すると共に、濃縮水流入ライン15から
濃縮水が流入し、かつ電極水流入ライン17、17から
それぞれ電極水が流入する。被処理水流入ライン11か
ら流入した被処理水は第2小脱塩室d2 、d4 、d6
8 を流下し、アニオン交換体81の充填層を通過する
際に不純物アニオンが除去される。第2小脱塩室の処理
水流出ライン12を通った流出水は、配管19a、分岐
配管19bを通って系外へ排出される。また、濃縮水流
入ライン15から流入した濃縮水は各濃縮室1を上昇
し、カチオン交換膜3からは移動してくるカチオンは無
く、アニオン交換膜4を介して移動してくるアニオンを
受取るのみである。従って、濃縮室内でのpHは酸性を
示し、アニオン交換膜上で濃縮室側に発生したスケール
をほとんど溶解させることができる。
Next, in the method for operating the electric deionized water producing apparatus according to the present invention, when the washing step of the concentrating chamber is performed, the following operation is performed. In this case, in the operation of the above deionized water production process, the valve 191 is closed and the valve 1 is closed.
It is only necessary to open 92. That is, the cathode 6 and the anode 7
In the meantime, a direct current flows, and the water to be treated flows in from the treated water inflow line 11, the concentrated water flows in from the concentrated water inflow line 15, and the electrode water flows in from the electrode water inflow lines 17, 17, respectively. The treated water flowing from the treated water inflow line 11 is supplied to the second small desalination chambers d 2 , d 4 , d 6 ,
flows down d 8, impurity anions are removed when passing through the packed bed of an anion exchanger 81. The effluent that has passed through the treated water outflow line 12 of the second small desalination chamber is discharged out of the system through a pipe 19a and a branch pipe 19b. Further, the concentrated water flowing from the concentrated water inflow line 15 rises in each of the concentration chambers 1, and there is no cation moving from the cation exchange membrane 3, and only the anions moving through the anion exchange membrane 4 are received. It is. Accordingly, the pH in the concentration chamber is acidic, and scale generated on the side of the concentration chamber on the anion exchange membrane can be almost dissolved.

【0022】上記実施の形態例において、脱イオン水製
造工程の場合、被処理水流入ライン11から流入した被
処理水は第2小脱塩室d2 、d4 、d6 、d8 を流下
し、アニオン交換樹脂を通過する際、特に被処理水の入
口側近傍で塩酸イオンや硫酸イオンなどのアニオン成分
が、アニオン交換膜を介して濃縮室側に移動して除去さ
れる。この場合、被処理水中のカチオン成分は被処理水
中に含まれたままである。そして、第2小脱塩室の処理
水流出ライン12を通った流出水は、第1小脱塩室の被
処理水流入ライン13を通って第1小脱塩室d1
3 、d5 、d7 を流下し、カチオン及びアニオン交換
樹脂の混床を通過する際、特に第1小脱塩室入口側(第
2小脱塩室入口側)近傍でマグネシウムやカルシウムイ
オンなどのカチオン成分が、カチオン膜を介して濃縮室
側に移動して除去される。従って、脱イオン水流出ライ
ン14から脱塩水が得られる。
In the above embodiment, in the case of the deionized water production step, the water to be treated flowing from the treated water inflow line 11 flows down the second small desalination chambers d 2 , d 4 , d 6 and d 8 . Then, when passing through the anion exchange resin, anion components such as hydrochloric acid ions and sulfate ions are moved to and removed from the concentration chamber through the anion exchange membrane, particularly near the inlet side of the water to be treated. In this case, the cation component in the water to be treated remains contained in the water to be treated. The effluent flowing through the treated water outflow line 12 of the second small desalination chamber passes through the treated water inflow line 13 of the first small desalination chamber, and the first small desalination chamber d 1 ,
When flowing down d 3 , d 5 , and d 7 and passing through a mixed bed of cation and anion exchange resin, magnesium and calcium ions are particularly present near the inlet of the first small desalting chamber (the inlet of the second small desalting chamber). Such cation components move to the concentration chamber side via the cation membrane and are removed. Therefore, deionized water is obtained from the deionized water outflow line 14.

【0023】濃縮室洗浄工程の場合、被処理水流入ライ
ン11から流入した被処理水は第2小脱塩室d2
4 、d6 、d8 を流下し、アニオン交換樹脂を通過す
る際、特に被処理水の入口側近傍で塩酸イオンや硫酸イ
オンなどのアニオン成分が、アニオン交換膜を介して濃
縮室側に移動して除去される。そして、カチオン成分を
含んだままの被処理水は系外に排出されて、第1小脱塩
室は何も流れないから第1小脱塩室のカチオン膜から濃
縮室へ移動するイオン成分はない。このため、濃縮水の
pHは脱イオン水製造工程では6.5程度のものが、p
H5以下、特に4以下にまで低下でき、スケールなどを
溶解することができる。スケールの発生場所は、通常、
濃縮室側のアニオン交換膜面上であり、ここは塩酸イオ
ンや硫酸イオンなどのアニオン成分が流通する部分であ
り、濃縮室の流出水で測定されるpH値よりも更に低い
pHの水に晒される。このため、スケールを溶解させる
には極めて都合がよい。
In the washing step of the concentrating chamber, the water to be treated flowing from the treated water inflow line 11 is supplied to the second small desalting chamber d 2 ,
When flowing down d 4 , d 6 , and d 8 and passing through the anion exchange resin, anion components such as hydrochloric acid ions and sulfate ions, particularly near the inlet side of the water to be treated, pass through the anion exchange membrane to the concentration chamber side. Move and be removed. Then, the water to be treated containing the cation component is discharged to the outside of the system, and nothing flows in the first small desalination chamber. Absent. Therefore, the pH of the concentrated water is about 6.5 in the deionized water production process,
It can be reduced to H5 or less, especially to 4 or less, and can dissolve scale and the like. Where the scale occurs is usually
On the surface of the anion exchange membrane on the side of the concentration chamber, where the anion components such as hydrochloric acid ions and sulfate ions flow, and are exposed to water having a pH lower than the pH value measured in the effluent of the concentration chamber. It is. For this reason, it is very convenient to dissolve the scale.

【0024】本発明の電気式脱イオン水製造装置の運転
方法において、脱イオン水製造工程は通常の運転であ
り、濃縮室洗浄工程は、例えば長期間に渡る通常運転の
結果、濃縮室に発生したスケールを除去する工程である
から、これらは、先ず、脱イオン水製造工程を行い、次
いで濃縮室洗浄工程を行うか、あるいは、前記脱イオン
水製造工程を行い、次いで運転を停止した後、運転再開
時に前記濃縮室洗浄工程を行うものである。濃縮室洗浄
工程を行う時期の判断方法としては、特に制限されない
が、例えば、濃縮室の差圧を測定して差圧上昇から判断
する方法、処理水の水質から経験的に判断する方法、当
該装置の電気抵抗の上昇から判断する方法などが挙げら
れる。濃縮室洗浄工程は通常数分〜数十分間行えば十分
である。また、濃縮室洗浄工程を停止する時期を判断す
る方法としては、濃縮室内の流入口と流出口の差圧によ
り判断する方法が挙げられる。この場合、濃縮室内の差
圧が、実質的に電気式脱イオン水製造装置の運転開始時
の値近辺まで低下してから洗浄を停止することが好まし
い。また、濃縮室洗浄工程において通水しない一側のカ
チオン交換膜と中間膜で区画される小脱塩室に、例えば
純水を通水してもよく、前記と同様の効果が得られる
他、イオン交換膜や当該小脱塩室に充填されているイオ
ン交換体の温度上昇を抑制し、熱的損傷を回避できると
いう効果もある。
In the operation method of the electric deionized water producing apparatus of the present invention, the deionized water producing step is a normal operation, and the concentrating chamber washing step is performed in the concentrating chamber as a result of, for example, a long-term normal operation. Since these are steps for removing the scales, these are firstly performed in a deionized water production step, and then performed in a concentration chamber cleaning step, or in the deionized water production step, and then stopped, The concentration chamber cleaning step is performed when the operation is resumed. The method for determining the timing of performing the concentration chamber cleaning step is not particularly limited, and includes, for example, a method of measuring a differential pressure of the concentration chamber and determining from a rise in differential pressure, a method of empirically determining from the quality of treated water, There is a method of judging from an increase in the electric resistance of the device. It is usually sufficient to perform the concentration chamber washing step for several minutes to several tens of minutes. In addition, as a method of determining the time when the concentration chamber cleaning step is stopped, a method of determining based on a differential pressure between an inlet and an outlet in the concentration chamber is used. In this case, it is preferable to stop the washing after the pressure difference in the enrichment chamber has substantially decreased to a value close to the value at the start of operation of the electric deionized water producing apparatus. In addition, pure water may be passed through, for example, pure water to a small desalination chamber partitioned by a cation exchange membrane and an intermediate membrane that does not pass water in the concentration chamber washing step, and the same effect as described above is obtained. There is also an effect that the temperature rise of the ion exchange membrane and the ion exchanger packed in the small desalination chamber can be suppressed, and thermal damage can be avoided.

【0025】本発明において、被処理水としては、特に
制限されず、塩酸イオンや硫酸イオンを含むアニオン含
有水が使用でき、具体的には、井水、水道水、下水、工
業用水、川の水、半導体製造工場の半導体デバイスなど
の洗浄排水又は濃縮室からの回収水を、単独又は組み合
わせて混合状態にして逆浸透膜処理した透過水が使用で
きる。本発明の電気式脱イオン水製造装置の運転方法に
おいて、脱イオン水製造工程で使用する被処理水と、濃
縮室洗浄工程で使用する被処理水は同一供給源のもので
も、異なった供給源のものでもよいが、同一供給源とす
ることが、特に別途の配管等を設置する必要がない点で
好ましい。
In the present invention, the water to be treated is not particularly limited, and water containing anions containing hydrochloric acid ions and sulfate ions can be used. Specifically, well water, tap water, sewage, industrial water, and river water can be used. Water, permeated water subjected to reverse osmosis membrane treatment, in which washing water for cleaning semiconductor devices of a semiconductor manufacturing plant or recovered water from a concentration chamber is used alone or in combination to form a mixed state. In the method for operating the electric deionized water production apparatus of the present invention, the water to be treated used in the deionized water production step and the water to be treated used in the cleaning step of the concentrating chamber may be of the same supply source or different supply sources. However, it is preferable to use the same supply source, since it is not particularly necessary to provide a separate pipe or the like.

【0026】本実施の形態例ではイオン交換体が充填さ
れた脱塩室(小脱塩室)1つ当たりの濃縮室の数を従来
の約半分にした装置を使用するため、電気抵抗を著しく
低減できる省電力型運転ができる。また、従来の装置と
比較して相対的に濃縮室の数が少ないため、濃縮室を流
通する濃縮水のイオン濃度を濃厚とすることができ、導
電率が向上し、更に電気抵抗が低減されると共に、濃縮
室内を流通する濃縮水の流速を高めることができ、濃縮
室内のスケールが発生し難くなる。また、長期間の運転
で例え濃縮室内にスケールが発生しても、最初に小脱塩
室から流出する流出水の他方の小脱塩室への供給を止め
るだけで、すなわち、該流出水の流路を変更するという
簡単な操作のみで、濃縮室をいわゆる酸洗浄できるた
め、新たな薬剤を添加する必要がない。
In this embodiment, an apparatus is used in which the number of concentrating chambers per desalting chamber (small desalting chamber) filled with an ion exchanger is reduced to about half that of the conventional apparatus, so that the electric resistance is significantly reduced. Power saving operation that can be reduced. In addition, since the number of the concentrating chambers is relatively small as compared with the conventional apparatus, the ion concentration of the concentrated water flowing through the concentrating chamber can be increased, the conductivity is improved, and the electric resistance is further reduced. At the same time, the flow rate of the concentrated water flowing in the concentration chamber can be increased, and scale in the concentration chamber is less likely to occur. Further, even if scale is generated in the enrichment chamber in a long-term operation, only the supply of the effluent flowing out of the small desalination chamber to the other small desalination chamber first is stopped. The concentration chamber can be so-called acid-washed only by a simple operation of changing the flow path, so that it is not necessary to add a new chemical.

【0027】[0027]

【実施例】次に、実施例を挙げて本発明を更に具体的に
説明するが、これは単に例示であって、本発明を制限す
るものではない。 実施例1 下記装置仕様及び運転条件下において、図1に示す構成
の電気式脱イオン水製造装置の脱塩室及び濃縮室にそれ
ぞれ通水し、バルブ191を開、バルブ192を閉とし
て通水運転(脱イオン水製造工程)を行った。通水運転
は、濃縮室の初期差圧0.05MPa ゲージ圧(0.5kg
・G/cm2)が、0.12MPa ゲージ圧(1.2kg・G/cm2)
を越える差圧を感知して終了した。約半年の運転であっ
た。次いで、装置を分解して濃縮室内のスケールの有無
を観察した結果、アニオン膜の濃縮室側の膜面上にスケ
ールの付着が認められた。次いで、濃縮室洗浄工程に切
り換えた。濃縮室洗浄工程は図1に示すバルブ191
閉、192開の操作により行った以外は、運転条件の変
更はないものとした。濃縮室洗浄は濃縮室の差圧が初期
差圧に近い0.07MPa ゲージ圧(0.7kg・G/cm2)と
なったため、終了した。洗浄時間は15分であった。ま
た、洗浄時間10分の濃縮水のpHを測定したところ、
pHは4であった。次いで、装置を分解して濃縮室内の
スケールの有無を観察した結果、アニオン膜の濃縮室側
の膜面上にスケールの付着は認められなかった。
Next, the present invention will be described in more detail with reference to examples, but this is merely an example and does not limit the present invention. Example 1 Under the following apparatus specifications and operating conditions, water was passed through the desalination chamber and the concentration chamber of the electric deionized water producing apparatus having the configuration shown in FIG. 1, and the valve 191 was opened and the valve 192 was closed, and water was passed. Operation (deionized water production process) was performed. For the water flow operation, the initial differential pressure of the enrichment chamber is 0.05 MPa gauge pressure (0.5 kg
・ G / cm 2 ) is 0.12MPa gauge pressure (1.2kg ・ G / cm 2 )
When the pressure difference exceeding the limit was detected, the process was terminated. It was driving for about half a year. Next, the apparatus was disassembled and the presence or absence of scale in the concentration chamber was observed. As a result, adhesion of scale was observed on the membrane surface of the anion membrane on the side of the concentration chamber. Next, the operation was switched to the concentration chamber cleaning step. The concentration chamber cleaning step is performed by the valve 191 shown in FIG.
There was no change in the operating conditions except for the operations of closing and opening 192. The concentration chamber cleaning was terminated because the pressure difference in the concentration chamber became 0.07 MPa gauge pressure (0.7 kg · G / cm 2 ) close to the initial pressure difference. The washing time was 15 minutes. Also, when measuring the pH of the concentrated water for a washing time of 10 minutes,
pH was 4. Next, as a result of disassembling the apparatus and observing the presence or absence of scale in the concentration chamber, no adhesion of scale was found on the membrane surface of the anion membrane on the side of the concentration chamber.

【0028】・被処理水及び濃縮水;工業用水を逆浸透
膜装置で処理して得た透過水に硬度成分を添加し、硬度
0.2mg CaCO3/Lに調整した実験水 ・第1小脱塩室;幅300mm、高さ600mm、厚さ3mm ・第1小脱塩室充填イオン交換樹脂;アニオン交換樹脂
(A)とカチオン交換樹脂(K)との混合イオン交換樹
脂(混合比は体積比でA:K=1:1) ・第2小脱塩室;幅300mm、高さ600mm、厚さ8mm ・第2小脱塩室充填イオン交換樹脂;アニオン交換樹脂 ・装置全体の流量;1m3 /h.
Water to be treated and concentrated water: Experimental water in which a hardness component was added to permeated water obtained by treating industrial water with a reverse osmosis membrane device to adjust the hardness to 0.2 mg CaCO 3 / L. Deionization chamber; width 300 mm, height 600 mm, thickness 3 mm ・ First small desalination chamber filled ion exchange resin; mixed ion exchange resin of anion exchange resin (A) and cation exchange resin (K) (mixing ratio is volume A: K = 1: 1) ・ Second small desalination chamber; width 300 mm, height 600 mm, thickness 8 mm ・ Second small desalination chamber filled ion exchange resin; anion exchange resin ・ Flow rate of the entire apparatus: 1 m 3 / h.

【0029】[0029]

【発明の効果】請求項1の発明によれば、脱イオン水製
造工程においては、イオン交換体が充填された脱塩室1
つ当たりの濃縮室の数を従来の約半分にすることがで
き、電気式脱イオン水製造装置の電気抵抗を著しく低減
できる。また、従来の装置と比較して相対的に濃縮室の
数が少ないため、濃縮室を流通する濃縮水のイオン濃度
を濃厚とすることができ、導電率が向上し、更に電気抵
抗が低減されると共に、濃縮室内を流通する濃縮水の流
速を高めることができ、濃縮室内のスケールが発生し難
くなる。また、長期間の運転により、濃縮室内にスケー
ルが発生した場合、濃縮室洗浄工程に切替え、すなわ
ち、被処理水が最初に流入する小脱塩室の流出水の他方
の小脱塩室への供給を止めるだけで、すなわち、該流出
水の流路を変更するという簡単な操作のみで、濃縮室を
いわゆる酸洗浄できるため、新たな薬剤を添加する必要
がない。
According to the first aspect of the present invention, in the deionized water production step, the deionization chamber 1 filled with the ion exchanger is used.
The number of concentrating chambers per unit can be reduced to about half of the conventional one, and the electric resistance of the electric deionized water producing apparatus can be significantly reduced. In addition, since the number of the concentrating chambers is relatively small as compared with the conventional apparatus, the ion concentration of the concentrated water flowing through the concentrating chamber can be increased, the conductivity is improved, and the electric resistance is further reduced. At the same time, the flow rate of the concentrated water flowing in the concentration chamber can be increased, and scale in the concentration chamber is less likely to occur. Further, when scale is generated in the concentration chamber due to long-term operation, the mode is switched to the concentration chamber cleaning step, that is, the effluent of the small desalination chamber into which the water to be treated first flows is transferred to the other small desalination chamber. The concentration chamber can be so-called acid-washed only by stopping the supply, that is, by a simple operation of changing the flow path of the effluent, so that it is not necessary to add a new chemical.

【0030】請求項2の発明によれば、前記発明と同様
の効果を奏する他、通常運転途中や通常運転終了後、す
なわち運転停止直後であっても、運転停止後暫くの停止
期間があった後の運転再開後のいずれにおいても、薬剤
を使用することなく簡単に濃縮室内を酸洗浄することが
できる。
According to the second aspect of the present invention, in addition to having the same effects as the above-described invention, even during the normal operation or after the end of the normal operation, that is, immediately after the stop of the operation, there is a stop period for a while after the stop of the operation. At any time after the subsequent restart of operation, the concentration chamber can be easily acid-washed without using a chemical.

【0031】請求項3の発明によれば、脱イオン水製造
工程では、アニオン成分を多く含む被処理水、特にシリ
カ、炭酸等の弱酸性成分を多く含む被処理水を十分に処
理することが可能となる。また、カチオン交換体とアニ
オン交換体の混合体が充填された小脱塩室を流れる被処
理水と濃縮水の流れが逆の場合、マグネシウムやカルシ
ウムイオンなどのカチオン成分を濃縮した濃縮水を直ち
に濃縮室から流出して濃縮室内でのスケール発生を防止
できる。
According to the third aspect of the present invention, in the process of producing deionized water, the water to be treated containing a large amount of anionic components, particularly the water to be treated containing a large amount of weakly acidic components such as silica and carbonic acid, can be sufficiently treated. It becomes possible. When the flow of the water to be treated and the concentrated water flowing through the small desalting chamber filled with the mixture of the cation exchanger and the anion exchanger are reversed, the concentrated water in which the cation components such as magnesium and calcium ions are concentrated is immediately removed. It can flow out of the concentration chamber and prevent scale generation in the concentration chamber.

【0032】請求項4の発明によれば、前記発明と同様
の効果を奏する他、脱イオン水製造工程では、単一膜を
使用する場合、被処理水中から除去したいイオンが陽イ
オンか、陰イオンかによって、イオン交換膜の選択がで
きる。また、複式膜は装置上部又は装置下部にカチオン
交換膜又はアニオン交換膜を配置するものであるが、こ
の場合、例えば、第1小脱塩室被処理水側(入口側)に
カチオン膜、第1小脱塩室処理水側(出口側)にアニオ
ン交換膜を配置すると、第2小脱塩室からのカチオン成
分の移動がなされ、第1小脱塩室のpHがアルカリ側へ
と移りやすくなり、非イオン状シリカのイオン化が進
み、第1小脱塩室処理水側(出口側)に配置されたアニ
オン交換膜を通して更なるシリカの低減が行われるとい
う作用を奏する。
According to the fourth aspect of the invention, in addition to having the same effects as the above-mentioned invention, in the step of producing deionized water, when a single membrane is used, the ions to be removed from the water to be treated are either cations or anions. An ion exchange membrane can be selected depending on whether it is an ion or not. Further, the double membrane has a cation exchange membrane or an anion exchange membrane disposed at the top or bottom of the apparatus. In this case, for example, a cation membrane or a cation membrane is disposed on the first small desalination chamber treated water side (inlet side). When the anion exchange membrane is disposed on the treated water side (outlet side) of the first small-size desalination chamber, the cation component is moved from the second small-size desalination chamber, and the pH of the first small-size desalination chamber is easily shifted to the alkali side. In other words, the ionization of the nonionic silica proceeds, and the effect is obtained that the silica is further reduced through the anion exchange membrane disposed on the treated water side (outlet side) of the first small demineralization chamber.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の実施の形態で使用する電気式脱イオン
水製造装置の模式図である。
FIG. 1 is a schematic diagram of an electric deionized water producing apparatus used in an embodiment of the present invention.

【図2】従来の電気式脱イオン水製造装置の模式図であ
る。
FIG. 2 is a schematic view of a conventional electric deionized water producing apparatus.

【符号の説明】[Explanation of symbols]

D、D1 〜D4 、104 脱塩室 d1 、d3 、d5 、d7 第1小脱塩室 d2 、d4 、d6 、d8 第2小脱塩室 1、105 濃縮室 2、112、113 電極室 3、101 カチオン膜 4、102 アニオン膜 5 中間イオン交換膜 6、109 陰極 7、110 陽極 8、103 イオン交換体 10、100 電気式脱イオン水製造
装置 11、111 被処理水流入ライン 12 第2小脱塩室の処理水
流出ライン 13 第1小脱塩室の被処理
水流入ライン 14、114 脱イオン水流出ライン 15、115 濃縮水流入ライン 16、116 濃縮水流出ライン 17、117 電極水流入ライン 18、118 電極水流出ライン 19a、19b 接続配管 81 アニオン交換体 191、192 バルブ
D, D 1 to D 4 , 104 Desalination chamber d 1 , d 3 , d 5 , d 7 First small desalination chamber d 2 , d 4 , d 6 , d 8 Second small desalination chamber 1 , 105 Concentration Chamber 2, 112, 113 Electrode chamber 3, 101 Cationic membrane 4, 102 Anion membrane 5 Intermediate ion exchange membrane 6, 109 Cathode 7, 110 Anode 8, 103 Ion exchanger 10, 100 Electric deionized water producing apparatus 11, 111 Treated water inflow line 12 Treated water outflow line in second small desalination chamber 13 Treated water inflow line in first small desalination chamber 14, 114 Deionized water outflow line 15, 115 Concentrated water inflow line 16, 116 Concentrated water Outflow line 17, 117 Electrode water inflow line 18, 118 Electrode water outflow line 19a, 19b Connection pipe 81 Anion exchanger 191, 192 Valve

─────────────────────────────────────────────────────
────────────────────────────────────────────────── ───

【手続補正書】[Procedure amendment]

【提出日】平成13年1月31日(2001.1.3
1)
[Submission date] January 31, 2001 (2001.1.3)
1)

【手続補正1】[Procedure amendment 1]

【補正対象書類名】図面[Document name to be amended] Drawing

【補正対象項目名】図1[Correction target item name] Fig. 1

【補正方法】変更[Correction method] Change

【補正内容】[Correction contents]

【図1】 FIG.

フロントページの続き Fターム(参考) 4D006 GA17 HA47 HA95 JA39Z JA41Z JA42Z JA43Z JA44Z JA45Z JA55Z JA63Z JA68Z KA26 KA41 KA61 KB01 KB11 KC02 KC12 MA13 MA14 MA15 MB07 PA01 PA02 PB02 PB04 PB05 PB06 PB08 PB27 PB28 PC01 PC31 PC32 PC41 4D061 DA02 DA03 DA08 DB05 DB13 DB18 DC19 EA09 EB04 EB13 FA08 FA09 Continued on the front page F term (reference) 4D006 GA17 HA47 HA95 JA39Z JA41Z JA42Z JA43Z JA44Z JA45Z JA55Z JA63Z JA68Z KA26 KA41 KA61 KB01 KB11 KC02 KC12 MA13 MA14 MA15 MB07 PA01 PA02 PB02 PB04 PB05 PB31 DA02PCB DAB PC DB05 DB13 DB18 DC19 EA09 EB04 EB13 FA08 FA09

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】 一側のカチオン交換膜、他側のアニオン
交換膜及び当該カチオン交換膜と当該アニオン交換膜の
間に位置する中間イオン交換膜で区画される2つの小脱
塩室にイオン交換体を充填し、且つ前記他側のアニオン
交換膜と中間イオン交換膜で区画される小脱塩室に充填
されるイオン交換体はアニオン交換体として脱塩室を構
成し、前記カチオン交換膜、アニオン交換膜を介して脱
塩室の両側に濃縮室を設け、これらの脱塩室及び濃縮室
を陽極と陰極の間に配置し、電圧を印加しながら前記ア
ニオン交換体が充填された小脱塩室に被処理水を流入
し、次いで、該小脱塩室の流出水を他方の小脱塩室に流
入すると共に、濃縮室に濃縮水を流入して被処理水中の
不純物イオンを除去し、脱イオン水を製造する脱イオン
水製造工程と、 前記被処理水が流入する一方の小脱塩室の流出水は前記
他方の小脱塩室へ流入させることなく、系外へ排出する
と共に、濃縮室に濃縮水を流入して被処理水中の不純物
アニオンを除去し、濃縮水のpHを低下させる濃縮室洗
浄工程と、を有することを特徴とする電気式脱イオン水
製造装置の運転方法。
1. An ion exchange system comprising two small desalination chambers defined by a cation exchange membrane on one side, an anion exchange membrane on the other side, and an intermediate ion exchange membrane located between the cation exchange membrane and the anion exchange membrane. An ion exchanger filled with a body and filled in a small desalination chamber partitioned by the other side anion exchange membrane and the intermediate ion exchange membrane constitutes a desalination chamber as an anion exchanger, and the cation exchange membrane, Concentration chambers are provided on both sides of the desalination chamber via an anion exchange membrane, and the desalination chamber and the concentration chamber are arranged between the anode and the cathode. The water to be treated flows into the salt chamber, then the effluent from the small desalination chamber flows into the other small desalination chamber, and the concentrated water flows into the concentration chamber to remove impurity ions in the water to be treated. A deionized water producing step of producing deionized water, The effluent from one of the small desalination chambers into which the treated water flows is discharged out of the system without flowing into the other small desalination chamber, and the concentrated water flows into the concentrating chamber and the impurity anions in the water to be treated are discharged. And a concentration chamber cleaning step of reducing the pH of the concentrated water.
【請求項2】 前記脱イオン水製造工程を行い、次いで
濃縮室洗浄工程を行うか、あるいは、前記脱イオン水製
造工程を行い、次いで運転を停止した後、運転再開時に
前記濃縮室洗浄工程を行うことを特徴とする請求項1記
載の電気式脱イオン水製造装置の運転方法。
2. Performing the deionized water production step and then performing a concentration chamber cleaning step, or performing the deionized water production step and then stopping the operation, and then performing the concentration chamber cleaning step when the operation is resumed. The method for operating the electric deionized water production apparatus according to claim 1, wherein the operation is performed.
【請求項3】 前記一側のカチオン交換膜と前記中間イ
オン交換膜で区画される他方の小脱塩室に充填されるイ
オン交換体は、カチオン交換体とアニオン交換体の混合
体であることを特徴とする請求項1又は2記載の電気式
脱イオン水製造装置の運転方法。
3. The ion exchanger filled in the other small desalting chamber partitioned by the one side cation exchange membrane and the intermediate ion exchange membrane is a mixture of a cation exchanger and an anion exchanger. The method for operating an electric deionized water producing apparatus according to claim 1 or 2, wherein:
【請求項4】 前記中間イオン交換膜は、カチオン交換
膜あるいはアニオン交換膜の単一膜、又はアニオン交換
膜及びカチオン交換膜の両方を配置した複式膜であるこ
とを特徴とする請求項1〜3のいずれか1項記載の電気
式脱イオン水製造装置の運転方法。
4. The method according to claim 1, wherein the intermediate ion exchange membrane is a single membrane of a cation exchange membrane or an anion exchange membrane, or a double membrane in which both an anion exchange membrane and a cation exchange membrane are arranged. The method for operating the electric deionized water production apparatus according to any one of claims 3 to 7.
JP2000066387A 2000-03-10 2000-03-10 Operation method of electric deionized water production equipment Expired - Fee Related JP4397089B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2000066387A JP4397089B2 (en) 2000-03-10 2000-03-10 Operation method of electric deionized water production equipment

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000066387A JP4397089B2 (en) 2000-03-10 2000-03-10 Operation method of electric deionized water production equipment

Publications (2)

Publication Number Publication Date
JP2001252672A true JP2001252672A (en) 2001-09-18
JP4397089B2 JP4397089B2 (en) 2010-01-13

Family

ID=18585753

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000066387A Expired - Fee Related JP4397089B2 (en) 2000-03-10 2000-03-10 Operation method of electric deionized water production equipment

Country Status (1)

Country Link
JP (1) JP4397089B2 (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002205071A (en) * 2001-01-10 2002-07-23 Japan Organo Co Ltd Electric deionized water manufacturing apparatus and method of manufacturing deionized water
JP2003211161A (en) * 2002-01-25 2003-07-29 Kurita Water Ind Ltd Operation method of electrically deionizing apparatus
SG120986A1 (en) * 2003-12-18 2006-04-26 Ind Tech Res Inst Acid-saving electrodialysis apparatus and method
JP2007268331A (en) * 2006-03-30 2007-10-18 Japan Organo Co Ltd Apparatus for manufacturing electrically deionized water
WO2008001801A1 (en) * 2006-06-30 2008-01-03 Sanyo Electric Co., Ltd. Deionizing device, and its using method
JP2011056407A (en) * 2009-09-10 2011-03-24 Japan Organo Co Ltd Electric deionized water production apparatus

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106362594A (en) * 2016-08-30 2017-02-01 中国科学院青海盐湖研究所 Monovalent ion selectivity electrodialysis device and preparation method of lithium chloride concentrated liquor

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002205071A (en) * 2001-01-10 2002-07-23 Japan Organo Co Ltd Electric deionized water manufacturing apparatus and method of manufacturing deionized water
JP4597388B2 (en) * 2001-01-10 2010-12-15 オルガノ株式会社 Electric deionized water production apparatus and deionized water production method
JP2003211161A (en) * 2002-01-25 2003-07-29 Kurita Water Ind Ltd Operation method of electrically deionizing apparatus
SG120986A1 (en) * 2003-12-18 2006-04-26 Ind Tech Res Inst Acid-saving electrodialysis apparatus and method
JP2007268331A (en) * 2006-03-30 2007-10-18 Japan Organo Co Ltd Apparatus for manufacturing electrically deionized water
WO2008001801A1 (en) * 2006-06-30 2008-01-03 Sanyo Electric Co., Ltd. Deionizing device, and its using method
JP2008030024A (en) * 2006-06-30 2008-02-14 Sanyo Electric Co Ltd Deionizing device and its using method
JP2011056407A (en) * 2009-09-10 2011-03-24 Japan Organo Co Ltd Electric deionized water production apparatus

Also Published As

Publication number Publication date
JP4397089B2 (en) 2010-01-13

Similar Documents

Publication Publication Date Title
JP3385553B2 (en) Electric deionized water production apparatus and deionized water production method
EP1694605B1 (en) Water treatment system and method
US8894834B2 (en) Water treatment system and method
AU2015242989B2 (en) Electrodesalination system and method
EP1682453B1 (en) Water treatment system
JPH08150393A (en) Production of deionized water by electrolytic deionization method
JP4250922B2 (en) Ultrapure water production system
JP2001252672A (en) Operation method for electric deionized water production device
JP4609924B2 (en) Electric deionized water production equipment
JP2001259376A (en) Deionized water making apparatus
JP3966103B2 (en) Operation method of electrodeionization equipment
JP2009142724A (en) Electrical deionizer and deionized water producing method
JP2001293477A (en) Deionized water making device
JP4597388B2 (en) Electric deionized water production apparatus and deionized water production method
JP2001259646A (en) Electric deionized water producer
EP1685070B1 (en) Water treatment system and method
JP3480661B2 (en) Water treatment method for electric deionized water production equipment
JP4505965B2 (en) Pure water production method
JP2001321773A (en) Apparatus and method for making electro-deionized water
JP2002011475A (en) Electric deionization device and device for producing pure water
JP2001259645A (en) Deionized water production method
JP4090646B2 (en) Pure water production apparatus and method
JP3966491B2 (en) Electric deionized water production apparatus and water flow method using the same
JP2000117261A (en) Device for production of electrically deionized water and passing treatment of water through the same
JP2000005763A (en) Electric deionized water production device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070116

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20090917

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20091019

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20091020

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121030

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131030

Year of fee payment: 4

LAPS Cancellation because of no payment of annual fees