JPH08150393A - Production of deionized water by electrolytic deionization method - Google Patents

Production of deionized water by electrolytic deionization method

Info

Publication number
JPH08150393A
JPH08150393A JP6319218A JP31921894A JPH08150393A JP H08150393 A JPH08150393 A JP H08150393A JP 6319218 A JP6319218 A JP 6319218A JP 31921894 A JP31921894 A JP 31921894A JP H08150393 A JPH08150393 A JP H08150393A
Authority
JP
Japan
Prior art keywords
water
chamber
treated
deionized water
concentration
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP6319218A
Other languages
Japanese (ja)
Other versions
JP3305139B2 (en
Inventor
Yasutaka Shinmyo
康孝 新明
Koichi Hosoda
浩一 細田
Makio Tamura
真紀夫 田村
Katsumi Okugawa
克巳 奥川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Organo Corp
Original Assignee
Organo Corp
Japan Organo Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Organo Corp, Japan Organo Co Ltd filed Critical Organo Corp
Priority to JP31921894A priority Critical patent/JP3305139B2/en
Priority to PCT/JP1996/001517 priority patent/WO1997046491A1/en
Priority claimed from PCT/JP1996/001517 external-priority patent/WO1997046491A1/en
Publication of JPH08150393A publication Critical patent/JPH08150393A/en
Application granted granted Critical
Publication of JP3305139B2 publication Critical patent/JP3305139B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A20/00Water conservation; Efficient water supply; Efficient water use
    • Y02A20/124Water desalination

Landscapes

  • Separation Using Semi-Permeable Membranes (AREA)
  • Water Treatment By Electricity Or Magnetism (AREA)

Abstract

PURPOSE: To enhance the conductivity of a concentration chamber to improve a current effect and to economically produce deionized water by specifying the flow rate ratio of the water to be treated to concnd. water and the linear velocity of the water to be treated and concd. water when the waters are introduced into the desalting chamber and concentration chamber. CONSTITUTION: An ion exchanger is packed between a cation-exchange membrane 4 and an anion-exchange membrane 5 to constitute a desalting chamber 1, and concentration chambers 2 are formed on both sides of the desalting chamber 1 through the cation-exchange membrane 4 and anion-exchange membrane 5. The desalting chamber 1 and concentration chamber 2 are arranged between an anode 9 and a cathode 10, the water to be treated is introduced into the desalting chamber 1 while impressing a voltage, and concd. water is introduced into the concentration chamber 2 to remove the impurity ions in the water. The flow rate ratio of the water to be treated to concd. water is controlled to 6:1 to 12:1 and the linear velocity of the water to be treated and concd. water to 75-150m/hr when the waters are introduced into the desalting chamber 1 and concentration chamber 2. Consequently, the electric resistance of the concentration chamber 2 is lowered, and the conductivity is enhanced.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は半導体製造工業、製薬工
業、食品工業等の各種の産業又は研究施設等において利
用される脱イオン水を電気脱イオン法により効率的に製
造する脱イオン水製造方法に関する。
BACKGROUND OF THE INVENTION The present invention relates to the production of deionized water for efficiently producing deionized water used in various industries such as semiconductor manufacturing industry, pharmaceutical industry, food industry, or research facilities by an electric deionization method. Regarding the method.

【0002】[0002]

【従来の技術】脱イオン水を製造する方法として、従来
からイオン交換樹脂に被処理水を通して脱イオンを行な
う方法が知られているが、この方法ではイオン交換樹脂
がイオンで飽和されたときに酸及びアルカリ水溶液によ
って再生を行なう必要があり、このような処理操作上の
不利を解消すべく近年、薬剤による再生が全く不要な電
気脱イオン法による脱イオン水製造方法が確立され、実
用化に至っている。
2. Description of the Related Art As a method for producing deionized water, a method has been conventionally known in which deionized water is passed through an ion-exchange resin to be treated. In this method, when the ion-exchange resin is saturated with ions, It is necessary to regenerate with an acid and alkaline aqueous solution, and in order to eliminate such a disadvantage in processing operation, in recent years, a deionized water production method by an electric deionization method, which does not require regeneration with a chemical, has been established and put to practical use. Has arrived.

【0003】[0003]

【発明が解決しようとする課題】この電気脱イオン法
は、カチオン交換膜とアニオン交換膜との間にイオン交
換樹脂を充填して脱塩室を構成し、該脱塩室の両外側に
濃縮室を設け、これら脱塩室及び濃縮室を陽電極と陰電
極の間に配置し、電圧を印加しながら脱塩室に被処理水
を、濃縮室に濃縮水をそれぞれ流入し、脱塩室において
被処理水中の不純物イオンを除去すると共に、該不純物
イオンを電気的に吸引して濃縮室に移動させて脱イオン
水を製造するものであり、この方法によればイオン交換
樹脂がイオンで飽和されることがないため薬剤による再
生が不要であるという利点を有するが、一方において高
い電圧を印加するため、この電力消費量の面から製造コ
ストの上昇という問題を抱えており、いかに電力消費量
を低減するかが重要な課題となっている。
According to this electrodeionization method, an ion exchange resin is filled between the cation exchange membrane and the anion exchange membrane to form a desalting chamber, and the concentration is performed on both outsides of the desalting chamber. A chamber is provided, and the desalting chamber and the concentrating chamber are arranged between the positive electrode and the negative electrode, and the water to be treated flows into the desalting chamber and the concentrated water flows into the concentrating chamber while applying a voltage. In this method, deionized water is produced by removing impurity ions in the water to be treated and electrically sucking the impurity ions to move them to the concentrating chamber. According to this method, the ion exchange resin is saturated with ions. Since there is no need to regenerate with chemicals, it has the advantage of increasing the manufacturing cost from the aspect of power consumption because a high voltage is applied on the one hand. Is important to reduce It has become an issue.

【0004】上記の課題を解決するに当たって肝要なこ
とは、脱塩室及び濃縮室に電気が流れ易くなるようにす
ること即ち、脱塩室、濃縮室の導電性を高めることであ
る。ここにおいて脱塩室にはイオン交換体が充填されて
おり、このイオン交換体は一種の導電体として機能して
いるから、導電性の改善という観点からは濃縮室の導電
性が重要な因子となり、印加電圧低減という課題を解決
するためには濃縮室の導電性を高めることが必要とな
る。
What is important in solving the above problems is to facilitate the flow of electricity to the desalting chamber and the concentrating chamber, that is, to increase the conductivity of the desalting chamber and the concentrating chamber. Here, the desalting chamber is filled with an ion exchanger, and since this ion exchanger functions as a kind of conductor, the conductivity of the concentration chamber is an important factor from the viewpoint of improving conductivity. In order to solve the problem of reducing the applied voltage, it is necessary to increase the conductivity of the concentrating chamber.

【0005】濃縮室の導電性を高める試みは幾つかなさ
れている。第1の試みは濃縮水の流量を減少させる方法
である。従来の電気脱イオン法による脱イオン水製造法
においては、実用的な被処理水と濃縮水の流量比は3:
1〜5:1であり、その結果、被処理水が純水にまで脱
イオンされた場合、濃縮水中における不純物イオンの濃
縮倍率は4〜6倍となっていた。そこで濃縮水の流量を
減少させることによって濃縮倍率を高め、それにより導
電率を高め、以て印加電圧を低減せしめるというのがこ
の第1の試みである。
Several attempts have been made to increase the conductivity of the concentrating chamber. The first attempt is to reduce the flow rate of concentrated water. In the conventional deionized water production method using the electric deionization method, the practical flow rate ratio of the water to be treated and the concentrated water is 3:
1 to 5: 1, and as a result, when the water to be treated was deionized to pure water, the concentration ratio of impurity ions in the concentrated water was 4 to 6 times. Therefore, the first attempt is to reduce the flow rate of concentrated water to increase the concentration ratio, thereby increasing the conductivity and thereby reducing the applied voltage.

【0006】しかしながら、濃縮室においてイオンの濃
度勾配の発生を抑止し、Caイオン、Mgイオン等の硬
度成分のスケール析出を防止するためにはある程度の流
量で濃縮水を流して乱流を起こさせる必要があるが、上
記の如く濃縮水の流量を減少させることは乱流の発生を
不可能にするという問題がある。
However, in order to prevent the concentration gradient of ions from occurring in the concentrating chamber and prevent scale precipitation of hardness components such as Ca ions and Mg ions, the concentrated water is caused to flow at a certain flow rate to cause turbulent flow. Although it is necessary to reduce the flow rate of the concentrated water as described above, there is a problem that turbulent flow cannot be generated.

【0007】第2の試みは濃縮水を循環して再利用する
ことにより濃縮水のイオン濃度を高め、それにより導電
率を高めるという方法である。この方法では濃縮水を一
旦貯留するタンクと該タンクから濃縮水を送り出して循
環させるためのポンプが必要となり、設備が大型化し、
運転管理も煩雑となるという欠点がある。
The second attempt is to increase the ionic concentration of the concentrated water by recycling the concentrated water, thereby increasing the conductivity. This method requires a tank for temporarily storing the concentrated water and a pump for sending the concentrated water from the tank to circulate the concentrated water.
There is a drawback that operation management becomes complicated.

【0008】第3の試みは濃縮水に塩や酸等の薬品を添
加して導電率を高めるというものであるが、薬品を供給
するための新たな設備を設けなければならず、同様に設
備が大型化し、運転管理も煩雑になるという欠点があ
る。
The third attempt is to increase the conductivity by adding a chemical such as salt or acid to the concentrated water, but a new facility for supplying the chemical must be provided, and likewise the facility However, there is a drawback in that it becomes large and operation management becomes complicated.

【0009】第4の試みは濃縮室にイオン交換樹脂を充
填して導電性を高めるというものであるが、濃縮室の厚
みが小さいためイオン交換樹脂を充填することが困難で
あり、実現性に乏しい。仮りにこのことを実現しようと
すると濃縮室の厚みを増大する必要があり、装置が大型
化するという問題が生じる。
The fourth attempt is to fill the concentration chamber with an ion exchange resin to enhance conductivity, but it is difficult to fill the ion exchange resin because the thickness of the concentration chamber is small. poor. If it is attempted to realize this, it is necessary to increase the thickness of the concentrating chamber, which causes a problem that the device becomes large.

【0010】このように濃縮室の導電性を高める幾つか
の試みはそれぞれ欠点を内包し、根本的な解決方法には
至っていない。
Thus, some attempts to increase the conductivity of the concentrating chamber have their own drawbacks, and have not reached the fundamental solution.

【0011】本発明者等は叙上の点に鑑み、上記課題を
解決すべく鋭意研究した結果、被処理水と濃縮水の流量
比及び線速度を従来よりも大ならしめることにより濃縮
室に移動するイオン量を増大し、それにより濃縮室の導
電性を高めることができるという知見を得た。ところで
被処理水と濃縮水の流量比及び線速度は処理水の水質に
関係する因子でもあり、それらの数値をあまりに大きく
すると処理水の水質を低下させる虞れがある。そこで本
発明者等はこの点も考慮して更に研究を進めた結果、被
処理水と濃縮水の流量比に関しては、被処理水と濃縮水
の流量比を6:1〜12:1とすることが、また被処理
水及び濃縮水の線速度に関しては、75〜150m/h
rの線速度が、処理水の水質を低下させずに上記課題を
解決するためにそれぞれ最適な流量比、線速度であると
いう結論が得られ、本発明を完成するに至った。
In view of the above points, the inventors of the present invention have conducted diligent research to solve the above-mentioned problems, and as a result, by increasing the flow rate ratio and the linear velocity of the water to be treated and the concentrated water more than ever, It has been found that the amount of migrating ions can be increased, thereby increasing the conductivity of the concentrating chamber. By the way, the flow rate ratio and the linear velocity of the water to be treated and the concentrated water are also factors related to the water quality of the treated water, and if the values are too large, the water quality of the treated water may be deteriorated. Therefore, as a result of further research by the present inventors in consideration of this point, the flow ratio of the treated water to the concentrated water is set to 6: 1 to 12: 1. In addition, regarding the linear velocities of the treated water and the concentrated water, 75 to 150 m / h
It was concluded that the linear velocities of r are optimum flow rate ratios and linear velocities for solving the above problems without deteriorating the quality of treated water, respectively, and completed the present invention.

【0012】而して、本発明は濃縮室の導電性を高めて
電流効率を向上し、それにより印加電圧の低減化を実現
し、以て経済的に有利な電気脱イオン法による脱イオン
水製造方法を提供することを目的としている。
Thus, the present invention enhances the conductivity of the concentrating chamber to improve the current efficiency, thereby reducing the applied voltage, and thus economically advantageous deionized water by the electric deionization method. It is intended to provide a manufacturing method.

【0013】[0013]

【課題を解決するための手段】本発明は、(1)カチオ
ン交換膜とアニオン交換膜との間にイオン交換体を充填
して脱塩室を構成し、上記カチオン交換膜、アニオン交
換膜を介して脱塩室の両側に濃縮室を設け、これらの脱
塩室及び濃縮室を陽極と陰極の間に配置し、電圧を印加
しながら脱塩室に被処理水を流入すると共に、濃縮室に
濃縮水を流入して被処理水中の不純物イオンを除去し、
脱イオン水を製造する電気脱イオン法による脱イオン水
の製造方法において、被処理水と濃縮水の流量比が6:
1〜12:1であり且つ被処理水及び濃縮水の線速度が
75〜150m/hrとなるように被処理水、濃縮水を
それぞれ脱塩室、濃縮室に流入するようにしたことを特
徴とする電気脱イオン法による脱イオン水の製造方法、
(2)脱塩室の厚みを7〜10mmとし、また濃縮室の
厚みを0.5〜2mmとして、所定の流量比及び所定の
線速度で被処理水及び濃縮水を流すようにした上記
(1)記載の電気脱イオン法による脱イオン水の製造方
法、(3)脱塩室への被処理水の流入方向と濃縮室への
濃縮水の流入方向が相互に反対の方向となるように被処
理水、濃縮水をそれぞれ脱塩室、濃縮室に流入するよう
にした上記(1)又は(2)記載の電気脱イオン法によ
る脱イオン水の製造方法、(4)脱塩室に流入した被処
理水が最初にアニオン交換体層を通過するようにした上
記(1)又は(2)記載の電気脱イオン法による脱イオ
ン水の製造方法、(5)脱塩室に流入した被処理水が最
初にアニオン交換体層を通過し、次いでカチオン交換体
とアニオン交換体の混合イオン交換体層を通過するよう
にした上記(4)記載の電気脱イオン法による脱イオン
水の製造方法を要旨とする。
According to the present invention, (1) an ion exchanger is filled between a cation exchange membrane and an anion exchange membrane to form a desalting chamber, and the above cation exchange membrane and anion exchange membrane are provided. A concentration chamber is provided on both sides of the demineralization chamber through these, and the deionization chamber and the concentration chamber are arranged between the anode and the cathode. Concentrated water is flowed into to remove the impurity ions in the water to be treated,
In the method for producing deionized water by the electric deionization method for producing deionized water, the flow ratio of the water to be treated and the concentrated water is 6:
1 to 12: 1, and the treated water and the concentrated water are introduced into the desalting chamber and the concentrating chamber so that the linear velocities of the treated water and the concentrated water are 75 to 150 m / hr, respectively. A method for producing deionized water by an electric deionization method,
(2) The desalting chamber has a thickness of 7 to 10 mm, the concentration chamber has a thickness of 0.5 to 2 mm, and the water to be treated and the concentrated water are caused to flow at a predetermined flow rate ratio and a predetermined linear velocity. 1) The method for producing deionized water by the electric deionization method according to 1), so that the inflow direction of the water to be treated into the desalting chamber and the inflow direction of the concentrated water into the concentration chamber are opposite to each other. The method for producing deionized water by the electric deionization method according to (1) or (2) above, wherein the water to be treated and the concentrated water are allowed to flow into the demineralizing chamber and the concentrating chamber, respectively, and (4) to the demineralizing chamber. The method for producing deionized water by the electric deionization method according to the above (1) or (2), wherein the treated water first passed through the anion exchanger layer, (5) the treated water flowing into the desalination chamber Water first passes through the anion exchanger layer and then the cation and anion exchanger mix. And gist the above (4) The method of producing deionized water by electrodeionization method according to pass through the ion exchanger layer.

【0014】本発明は電気脱イオン法によって脱イオン
水を製造するものであり、本発明を実施するに当たって
は、カチオン交換膜とアニオン交換膜との間にイオン交
換体を充填してなる脱塩室と、上記カチオン交換膜、ア
ニオン交換膜を介して脱塩室の両側に設けられた濃縮室
と、これらの両外側に配置された陽極、陰極とを備えて
なる電気式脱イオン水製造装置が用いられる。
The present invention is to produce deionized water by an electric deionization method, and in carrying out the present invention, desalting is carried out by filling an ion exchanger between a cation exchange membrane and an anion exchange membrane. Electric deionized water producing apparatus comprising a chamber, a concentration chamber provided on both sides of the desalting chamber through the cation exchange membrane and the anion exchange membrane, and an anode and a cathode arranged on both outsides of these chambers. Is used.

【0015】このような電気式脱イオン水製造装置の一
構成例は図1に示されている。以下、図1に示す装置を
用いて脱イオン水を製造する場合を例にとり、本発明を
詳細に説明する。
An example of the construction of such an electric deionized water producing apparatus is shown in FIG. Hereinafter, the present invention will be described in detail by taking the case of producing deionized water using the apparatus shown in FIG. 1 as an example.

【0016】同図において1は脱塩室、2は濃縮室で、
これらの脱塩室1、濃縮室2は交互に複数設けられてい
る。一般的には脱塩室1を構成するに当たっては1個の
モジュール品として製作される。即ち、四周枠状に形成
された例えば合成樹脂からなる枠体3の両面にそれぞれ
カチオン交換膜4、アニオン交換膜5を接着し、その内
部空間にイオン交換体、例えばイオン交換樹脂6(カチ
オン交換樹脂及びアニオン交換樹脂)を充填して脱イオ
ンモジュール7を製作し、該脱イオンモジュール7内の
イオン交換樹脂充填部を脱塩室1として構成する。
In the figure, 1 is a desalting chamber, 2 is a concentrating chamber,
A plurality of desalting chambers 1 and concentration chambers 2 are alternately provided. Generally, when constructing the desalination chamber 1, it is manufactured as one module product. That is, a cation exchange membrane 4 and an anion exchange membrane 5 are adhered to both sides of a frame body 3 made of, for example, a synthetic resin formed in a four-circle frame shape, and an ion exchanger, for example, an ion exchange resin 6 (cation exchange membrane 6) is attached to the inner space thereof. Resin and anion exchange resin) to fill the deionization module 7, and the ion exchange resin filling portion in the deionization module 7 is configured as the deionization chamber 1.

【0017】上記脱イオンモジュール7は離間して複数
並設される。各脱イオンモジュール7、7間には四周枠
状に形成されたゴムパッキン等の水密性部材からなるス
ペーサー8が介在され、このようにして形成される空間
部を濃縮室2として構成する。濃縮室2の内部空間に
は、イオン交換膜4、5同士の密着を防止して濃縮水の
流路を確保するために、通常、イオン交換繊維、合成樹
脂製網体等の流路形成材が充填される。
A plurality of the deionization modules 7 are arranged side by side with a space therebetween. A spacer 8 made of a watertight member such as a rubber packing formed in a four-circle frame shape is interposed between the deionization modules 7 and 7, and the space portion thus formed constitutes the concentration chamber 2. In the internal space of the concentrating chamber 2, in order to prevent the adhesion of the ion exchange membranes 4 and 5 to each other and to secure a flow path of the concentrated water, a flow path forming material such as an ion exchange fiber or a synthetic resin net body is usually used. Is filled.

【0018】上記の如き脱塩室1と濃縮室2との交互配
列体の両側部に陽極9と陰極10を配置し、特に図示し
ないが陽極9、陰極10の近傍にそれぞれ仕切膜を設
け、該仕切膜と陽極9との間の空間部を陽極室11とし
て構成し且つ該仕切膜と陰極10との間の空間部を陰極
室12として構成する。
An anode 9 and a cathode 10 are arranged on both sides of the alternating arrangement of the desalting chamber 1 and the concentrating chamber 2 as described above. Partitioning films are provided in the vicinity of the anode 9 and the cathode 10, respectively, although not particularly shown. A space between the partition film and the anode 9 is configured as an anode chamber 11, and a space between the partition film and the cathode 10 is configured as a cathode chamber 12.

【0019】図中、13は被処理水流入ライン、14は
脱イオン水流出ライン、15は濃縮水流入ライン、16
は濃縮水流出ライン、17は電極水流入ライン、18は
電極水流出ラインである。
In the figure, 13 is a treated water inflow line, 14 is a deionized water outflow line, 15 is a concentrated water inflow line, 16
Is a concentrated water outflow line, 17 is an electrode water inflow line, and 18 is an electrode water outflow line.

【0020】上記の如く構成される装置を用いて脱イオ
ン水を製造するに当たっては、被処理水流入ライン13
より被処理水を脱塩室1内に流入し、濃縮水流入ライン
15より濃縮水を濃縮室2内に流入し、且つ陽極室1
1、陰極室12にそれぞれ電極水流入ライン17、17
を通して電極水を流入する。尚、濃縮水としては、通
常、脱塩室1に供給する被処理水と同じものが供給され
る。一方、陽極9、陰極10間に電圧を印加し、被処理
水、濃縮水の流れの方向に対して直角方向に直流電流を
通じる。
In producing deionized water using the apparatus constructed as described above, the treated water inflow line 13 is used.
More water to be treated flows into the desalination chamber 1, concentrated water flows into the concentration chamber 2 through the concentrated water inflow line 15, and the anode chamber 1
1. Electrode water inflow lines 17, 17 in the cathode chamber 12 respectively
Through the electrode water. As the concentrated water, the same water as the water to be treated which is supplied to the desalting chamber 1 is usually supplied. On the other hand, a voltage is applied between the anode 9 and the cathode 10, and a direct current is passed in a direction perpendicular to the flow directions of the water to be treated and the concentrated water.

【0021】被処理水の脱塩室1における流量は濃縮水
の濃縮室2における流量よりも大きい必要があり、本発
明においては被処理水と濃縮水の流量比は6:1〜1
2:1、好ましくは8:1〜10:1に設定される。即
ち、被処理水の流量は濃縮水の流量の6〜12倍、好ま
しくは8〜10倍となるようにする。従来の一般的な、
被処理水と濃縮水の流量比は3:1〜5:1であり、こ
の従来の流量比から比較すると本発明における被処理水
の流量は大幅に増大している。
The flow rate of the treated water in the demineralizing chamber 1 must be larger than the flow rate of the concentrated water in the concentrating chamber 2. In the present invention, the flow rate ratio of the treated water to the concentrated water is from 6: 1 to 1.
It is set to 2: 1 and preferably 8: 1 to 10: 1. That is, the flow rate of the water to be treated is 6 to 12 times, preferably 8 to 10 times the flow rate of the concentrated water. Conventional general,
The flow rate ratio of the water to be treated and the concentrated water is 3: 1 to 5: 1. Compared with this conventional flow rate ratio, the flow rate of the water to be treated in the present invention is greatly increased.

【0022】本発明において上記流量比を6:1〜1
2:1としたのは、被処理水の流量が濃縮水の流量の6
倍未満では、濃縮室2における濃縮水のイオン濃度を充
分に増大できず、そのため濃縮室の導電性を高めること
ができず、また被処理水の流量が濃縮水の流量の12倍
を越えると、脱イオンの効率が低下して脱イオン水の水
質を低下させる虞れがあるからである。
In the present invention, the above flow rate ratio is 6: 1 to 1
2: 1 means that the flow rate of the treated water is 6 times the flow rate of the concentrated water.
If it is less than double, the ion concentration of the concentrated water in the concentrating chamber 2 cannot be sufficiently increased, so that the conductivity of the concentrating chamber cannot be increased, and if the flow rate of the water to be treated exceeds 12 times the flow rate of the concentrated water. This is because the efficiency of deionization may decrease and the water quality of deionized water may deteriorate.

【0023】本発明は上記流量比が6:1〜12:1で
あるという条件を満足していれば足りるというものでは
ない。被処理水を上記流量比の範囲内において脱塩室1
に流入したとしても脱塩室1を流れる速度があまりに遅
ければ同一の量の脱塩水を得ようとする場合に脱塩室1
の厚みを厚くして脱塩室1の通水断面積を大きくしなけ
ればならないが、脱塩室1の厚みをあまりに厚くすると
電流効率が悪くなるので好ましくない。そこで本発明に
おいては脱塩室1内を流れる被処理水の線速度が上記流
量比と共に重要な要素となる。本発明においては、脱塩
室1における被処理水の線速度は75〜150m/h
r、好ましくは、90〜120m/hrに設定される。
The present invention is not required to satisfy the condition that the flow rate ratio is 6: 1 to 12: 1. Desalination chamber 1 for water to be treated within the above flow rate ratio range
Even if it flows into the desalination chamber 1, if the flow rate in the desalination chamber 1 is too slow, the desalination chamber 1
However, if the thickness of the desalting chamber 1 is too large, the current efficiency will be deteriorated, which is not preferable. Therefore, in the present invention, the linear velocity of the water to be treated flowing in the desalination chamber 1 is an important factor together with the above flow rate ratio. In the present invention, the linear velocity of the water to be treated in the desalination chamber 1 is 75 to 150 m / h.
r, preferably 90 to 120 m / hr.

【0024】本発明において上記線速度を75〜150
m/hrとしたのは、線速度が75m/hr未満では上
述した如く、同一量の脱塩水を得ようとする場合に脱塩
室1の厚みを厚くしなければならないので電流効率が悪
くなり、また線速度が150m/hrを越えると、脱塩
室1内での圧力損失が大きくなり過ぎて好ましくないと
共に、被処理水がイオン交換樹脂と接触している時間が
短くなって脱イオンの効率が低下し、脱イオン水の水質
を低下させる虞れがあるからである。即ち、被処理水の
線速度はその数値が大きい程、同一量の脱塩水を得るの
に必要な脱塩室1の厚みが薄くなるので、電流効率を良
くするという面からは被処理水の線速度は大きい方が好
ましいが、脱イオン水の水質を低下させないで処理を行
なうためには該線速度の上限は150m/hrとなる。
In the present invention, the linear velocity is set to 75 to 150.
As described above, when the linear velocity is less than 75 m / hr, it is necessary to increase the thickness of the demineralization chamber 1 in order to obtain the same amount of demineralized water. If the linear velocity exceeds 150 m / hr, the pressure loss in the deionization chamber 1 becomes too large, which is not preferable, and the time during which the water to be treated is in contact with the ion exchange resin is shortened, resulting in deionization. This is because there is a risk that the efficiency will decrease and the quality of deionized water will decrease. That is, the larger the linear velocity of the water to be treated is, the thinner the desalination chamber 1 required to obtain the same amount of demineralized water is. Therefore, from the viewpoint of improving the current efficiency, the water to be treated is improved. The linear velocity is preferably high, but the upper limit of the linear velocity is 150 m / hr in order to perform the treatment without deteriorating the quality of deionized water.

【0025】一方、濃縮室2における濃縮水の線速度も
75〜150m/hrに設定される。この数値範囲は被
処理水の線速度と同じであるが、両者は必ずしも同じ数
値をとる必要はない。
On the other hand, the linear velocity of the concentrated water in the concentrating chamber 2 is also set to 75 to 150 m / hr. Although this numerical range is the same as the linear velocity of the water to be treated, both do not necessarily have the same numerical value.

【0026】濃縮水の線速度が75m/hr未満では濃
縮室2を流れる濃縮水に充分な乱流を生じさせることが
できない。通常、濃縮室を流れる濃縮水には脱塩室から
移動してきたイオンの濃度勾配が生じ、Naイオン、C
aイオン、Mgイオン等のカチオンはアニオン交換膜5
付近に最も多く分布し、Clイオン等のアニオンはカチ
オン交換膜4付近に最も多く分布する。従って、Caイ
オン、Mgイオン等の硬度成分の場合には濃縮室内にお
いて、スケール析出という現象を生じる虞れがある。こ
のようなスケール析出を防止し、均一なイオン濃度とす
るためには濃縮水に充分な乱流を生じさせる必要がある
が、この乱流を生じさせるためには線速度が75m/h
r以上である必要がある。
If the linear velocity of the concentrated water is less than 75 m / hr, sufficient turbulent flow cannot be generated in the concentrated water flowing through the concentrating chamber 2. Normally, a concentration gradient of the ions transferred from the desalting chamber is generated in the concentrated water flowing through the concentrating chamber.
Cations such as a ion and Mg ion are anion exchange membrane 5
The most is distributed in the vicinity, and the anions such as Cl ions are most distributed in the vicinity of the cation exchange membrane 4. Therefore, in the case of hardness components such as Ca ions and Mg ions, there is a possibility that a phenomenon of scale deposition may occur in the concentrating chamber. In order to prevent such scale precipitation and obtain a uniform ion concentration, it is necessary to generate sufficient turbulent flow in the concentrated water, but in order to generate this turbulent flow, the linear velocity is 75 m / h.
It must be r or more.

【0027】また濃縮水の線速度が150m/hrを越
えると、通常、濃縮室2内には前述の如く、流路形成材
が充填されているために濃縮室2での圧力損失が大きく
なり過ぎて実用的でない。
When the linear velocity of the concentrated water exceeds 150 m / hr, the pressure loss in the concentrating chamber 2 becomes large because the channel forming material is usually filled in the concentrating chamber 2 as described above. Too practical.

【0028】而して、上記の如き条件の下に被処理水及
び濃縮水がそれぞれ脱塩室1、濃縮室2に供給される。
被処理水流入ライン13より流入した被処理水は下向流
で脱塩室1を流下し、イオン交換樹脂6の充填層を通過
する際に不純物イオンが除かれ、それにより脱イオン水
が得られ、この脱イオン水は脱イオン水流出ライン14
より流出する。
Under the above conditions, the water to be treated and the concentrated water are supplied to the desalting chamber 1 and the concentrating chamber 2, respectively.
The treated water that has flowed in through the treated water inflow line 13 flows downward in the desalting chamber 1, and impurity ions are removed when passing through the packed bed of the ion exchange resin 6, whereby deionized water is obtained. The deionized water is discharged to the deionized water outflow line 14
More outflow.

【0029】一方、濃縮水流入ライン15より流入した
濃縮水は濃縮室2を上向流で流入上昇する。脱塩室1内
で除去された被処理水中の不純物イオンは電気的に吸引
されてカチオン交換膜4又はアニオン交換膜5を通って
濃縮室2に移動する。即ち、不純物イオンのうちNaイ
オン等のカチオンは陰極10側に吸引され、カチオン交
換膜4を通って濃縮室2に移動し、またClイオン等の
アニオンは陽極9側に吸引され、アニオン交換膜5を通
って濃縮室2に移動する。濃縮室2を流れる濃縮水はこ
の移動してくる不純物イオンを受け取り、不純物イオン
を濃縮した濃縮水として濃縮水流出ライン16より流出
する。電極水流入ライン17より陽極室11、陰極室1
2に流入した電極水は電極水流出ライン18より流出す
る。
On the other hand, the concentrated water flowing in from the concentrated water inflow line 15 flows upward in the concentrating chamber 2 in an upward flow. Impurity ions in the water to be treated removed in the desalting chamber 1 are electrically sucked and move to the concentration chamber 2 through the cation exchange membrane 4 or the anion exchange membrane 5. That is, among the impurity ions, cations such as Na ions are attracted to the cathode 10 side, move to the concentrating chamber 2 through the cation exchange membrane 4, and anions such as Cl ions are attracted to the anode 9 side, and the anion exchange membrane is attracted. It moves to the concentration room 2 through 5. The concentrated water flowing through the concentrating chamber 2 receives the moving impurity ions and flows out from the concentrated water outflow line 16 as concentrated water in which the impurity ions are concentrated. From the electrode water inflow line 17 to the anode chamber 11 and the cathode chamber 1
The electrode water flowing into 2 flows out from the electrode water outflow line 18.

【0030】本発明は脱塩室における被処理水の流量
と、濃縮室における濃縮水の流量との流量比が6:1〜
12:1となるように被処理水、濃縮水を供給すると共
に、それらの線速度が75〜150m/hrとなるよう
に被処理水、濃縮水を供給するものであるから、脱塩室
1から濃縮室2に移動する単位時間当たりのイオンの移
動量が飛躍的に多くなり、それによって濃縮室における
濃縮水のイオン濃度を大きくでき、その結果、濃縮室2
の電気抵抗が低下し、導電性が高められる。
In the present invention, the flow rate ratio of the flow rate of the water to be treated in the demineralizing chamber to the flow rate of the concentrated water in the concentrating chamber is from 6: 1 to.
Since the treated water and the concentrated water are supplied so as to have a ratio of 12: 1, and the treated water and the concentrated water are supplied so that the linear velocity thereof is 75 to 150 m / hr, the desalting chamber 1 The amount of ions transferred per unit time from the liquid to the concentrating chamber 2 increases dramatically, which can increase the ion concentration of the concentrated water in the concentrating chamber.
The electric resistance of is reduced and the conductivity is increased.

【0031】従来の一般的な、被処理水と濃縮水の流量
比3:1〜5:1においては、被処理水が純水まで脱イ
オンされるとした場合の濃縮水のイオン濃縮倍率は4〜
6倍であるが、本発明における流量比6:1〜12:1
の場合には、該イオン濃縮倍率は7〜13倍となる。濃
縮室に供給されたときの濃縮水の導電率に前記イオン濃
縮倍率を乗じた値がほぼ濃縮室出口付近における濃縮水
の導電率となるから、本発明においては、濃縮室出口付
近における濃縮水の導電率は供給時の濃縮水の導電率の
7〜13倍となることを意味している。
In the conventional general flow rate ratio of treated water to concentrated water of 3: 1 to 5: 1, the ion concentration ratio of concentrated water when the treated water is deionized to pure water is 4-
6 times, but the flow rate ratio in the present invention is from 6: 1 to 12: 1.
In the case of, the ion concentration ratio is 7 to 13 times. Since the value obtained by multiplying the conductivity of the concentrated water when supplied to the concentration chamber by the ion concentration ratio is the conductivity of the concentrated water near the outlet of the concentration chamber, in the present invention, the concentrated water near the outlet of the concentration chamber It means that the electric conductivity of is 7 to 13 times the electric conductivity of the concentrated water at the time of supply.

【0032】本発明において上記した如き特定の流量比
及び線速度を与えるためには、脱塩室1の厚み(カチオ
ン交換膜4とアニオン交換膜5とが対向する方向の間隔
をいう):t1 を7〜10mmとし、また濃縮室2の厚
み(カチオン交換膜4とアニオン交換膜5とが対向する
方向の間隔をいう):t2 を0.5〜2mmとすること
が好ましい。
In the present invention, in order to give the specific flow rate ratio and linear velocity as described above, the thickness of the deionization chamber 1 (referred to as the distance between the cation exchange membrane 4 and the anion exchange membrane 5 facing each other): t It is preferable that 1 is 7 to 10 mm, and the thickness of the concentrating chamber 2 (which means the distance between the cation exchange membrane 4 and the anion exchange membrane 5 in the opposite direction): t 2 is 0.5 to 2 mm.

【0033】本発明の実施に用いられる装置は図1に示
すものに限られない。例えば同図の装置は脱イオンモジ
ュール7を用いて脱塩室1を形成しているが、脱塩室1
の形成方法はこれに限定されず、他の手段によるもので
もよい。
The apparatus used to carry out the present invention is not limited to that shown in FIG. For example, in the apparatus shown in the figure, the deionization chamber 1 is formed by using the deionization module 7.
The method of forming is not limited to this, and other means may be used.

【0034】また図1の装置は、脱塩室1への被処理水
の流入方向と濃縮室2への濃縮水の流入方向が相互に反
対の方向即ち向流式を採用しているが、本発明は上記流
入方向が相互に反対方向(向流式)でも或いは同一方向
(並流式)でもよい。ただ、向流式の場合には次のよう
な利点がある。
The apparatus of FIG. 1 adopts a counterflow type in which the inflow direction of the water to be treated into the desalination chamber 1 and the inflow direction of the concentrated water into the concentration chamber 2 are opposite to each other. In the present invention, the inflow directions may be opposite to each other (counterflow type) or may be the same direction (parallel flow type). However, the countercurrent type has the following advantages.

【0035】即ち、図1を例にとり説明すると、脱塩室
1における被処理水のイオン濃度は脱塩室の入口付近即
ち脱塩室上部において最も高く、下方にいくに従って低
くなる。また濃縮室2における濃縮水のイオン濃度は濃
縮室の出口付近即ち濃縮室上部において最も高く、下方
にいくに従って低くなる。従って、脱塩室1と濃縮室2
の濃度分布の傾向性が一致し、脱塩室1と濃縮室2の上
部において共にイオン濃度が最も高くなり、このイオン
濃度の高いところで脱イオンが行なわれると脱イオン効
率が良好となり、処理水の水質が顕著に向上する。
That is, taking FIG. 1 as an example, the ion concentration of the water to be treated in the desalting chamber 1 is highest near the inlet of the desalting chamber, that is, at the upper part of the desalting chamber, and becomes lower as it goes downward. The ionic concentration of the concentrated water in the concentrating chamber 2 is highest near the outlet of the concentrating chamber, that is, in the upper part of the concentrating chamber, and becomes lower as it goes downward. Therefore, desalination chamber 1 and concentration chamber 2
The tendency of the concentration distribution of the same is the same, the ion concentration is highest in both the upper part of the deionization chamber 1 and the concentration chamber 2, and when deionization is performed at the high ion concentration, the deionization efficiency becomes good and the treated water The water quality is significantly improved.

【0036】その結果、被処理水の流量を大ならしめて
も並流式の場合よりもより充分に不純物イオンを除去す
ることができ、この点から本発明においては向流式が好
ましい。
As a result, even if the flow rate of the water to be treated is increased, the impurity ions can be removed more satisfactorily than in the case of the co-current system. From this point, the counter-current system is preferred in the present invention.

【0037】また並流式の場合は、濃縮室2の入口付近
(例えば図1において濃縮室上部)において濃縮水のイ
オン濃度は最も低く、出口付近(例えば図1において濃
縮室下部)にいくに従って高くなる。従って、この場合
は脱塩室1と濃縮室2における濃度分布の傾向性が正反
対となり、脱塩室と濃縮室におけるイオン濃度の濃度差
が大きくなって、イオン濃度の高い濃縮室下部において
は、イオン濃度の低い脱塩室下部にイオンが漏出する虞
れが生じる。イオンの漏出は処理水の汚染を招くので避
けなければならない。
In the case of the parallel flow system, the ionic concentration of the concentrated water is lowest near the inlet of the concentrating chamber 2 (for example, the upper portion of the concentrating chamber in FIG. 1), and as the concentration approaches the outlet (for example, the lower portion of the concentrating chamber in FIG. 1). Get higher Therefore, in this case, the tendency of the concentration distributions in the desalting chamber 1 and the concentrating chamber 2 are opposite to each other, the concentration difference between the ion concentration in the desalting chamber and the concentrating chamber becomes large, and in the lower part of the concentrating chamber having a high ion concentration Ions may leak to the lower part of the demineralization chamber where the ion concentration is low. Leakage of ions causes contamination of treated water and must be avoided.

【0038】これに対し向流式の場合は脱塩室1と濃縮
室2におけるイオン濃度の濃度差は極めて小さいからイ
オン漏出の虞れはなく、この点からも向流式が好まし
い。
On the other hand, in the case of the countercurrent type, since the difference in ion concentration between the desalting chamber 1 and the concentrating chamber 2 is extremely small, there is no risk of ion leakage, and the countercurrent type is preferable also from this point.

【0039】本発明において脱塩室1にはカチオン交換
樹脂とアニオン交換樹脂が充填されるが、被処理水が最
初にアニオン交換樹脂層を通過するようにすることが好
ましい。従って、図1に示す如く被処理水が下向流で流
入する場合には、脱塩室1の上部にアニオン交換樹脂を
充填し、その下部にカチオン交換樹脂を充填することが
好ましい(勿論、上向流の場合にはその順序が逆にな
る)。このアニオン交換樹脂層とカチオン交換樹脂層の
層構成は2層でも3層以上でもよい。
In the present invention, the deionization chamber 1 is filled with a cation exchange resin and an anion exchange resin, but it is preferable that the water to be treated first passes through the anion exchange resin layer. Therefore, as shown in FIG. 1, when the water to be treated flows in a downward flow, it is preferable to fill the anion exchange resin in the upper part of the desalting chamber 1 and the cation exchange resin in the lower part (of course, of course). In the case of upward flow, the order is reversed). The layer structure of the anion exchange resin layer and the cation exchange resin layer may be two layers or three or more layers.

【0040】即ち、下向流の場合を例にとり説明する
と、脱塩室1の上部をアニオン交換樹脂層とし、その下
部をカチオン交換樹脂層とする、2層からなる態様及び
該上部をアニオン交換樹脂層、その下部をカチオン交換
樹脂層とし、この順番に2組以上積層部が繰り返し設け
られる、3層以上からなる態様がある。
That is, the case of a downward flow will be described as an example. An embodiment in which the upper portion of the desalting chamber 1 is an anion exchange resin layer and a lower portion thereof is a cation exchange resin layer, and the upper portion is anion exchange resin layer. There is a mode in which a resin layer and a cation-exchange resin layer below the resin layer are provided, and two or more sets of laminated portions are repeatedly provided in this order, and the layer has three or more layers.

【0041】またカチオン交換樹脂とアニオン交換樹脂
の混合イオン交換樹脂層を設けることもでき、この場合
の層構成としては、脱塩室1の上部をアニオン交換樹脂
層とし、その下部をカチオン交換樹脂層とし、この積層
部を1組設けるか或いは2組以上繰り返し設け、更にそ
の下部に混合イオン交換樹脂層を設ける、3層以上から
なる態様及び該上部をアニオン交換樹脂層とし、その下
部を混合イオン交換樹脂層とする、2層からなる態様が
ある。
It is also possible to provide a mixed ion exchange resin layer of a cation exchange resin and an anion exchange resin. In this case, the layer constitution is such that the upper portion of the desalting chamber 1 is the anion exchange resin layer and the lower portion thereof is the cation exchange resin. As a layer, one set of this laminated part is provided or two or more sets are repeatedly provided, and a mixed ion exchange resin layer is further provided below it. A mode comprising three or more layers and an upper part thereof as an anion exchange resin layer, and a lower part thereof is mixed. There is an aspect including two layers, which are ion exchange resin layers.

【0042】一般に被処理水中に不純物として含まれる
弱酸成分は解離度が小さく除去が困難である。例えば炭
酸イオンについては炭酸ガスの水中における解離度が小
さく、多くの遊離炭酸を含み、またケイ酸イオンについ
てはシリカの解離度が極めて小さく、いずれも除去率が
かなり低いのが現状である。
Generally, weak acid components contained as impurities in the water to be treated have a small dissociation degree and are difficult to remove. For example, carbonate ion has a low dissociation degree of carbon dioxide gas in water and contains a large amount of free carbonic acid, and silicate ion has a very low dissociation degree of silica, and the present situation is that the removal rate is considerably low.

【0043】被処理水が脱塩室において最初にアニオン
交換樹脂層を通過するようにすると、このような弱酸成
分の除去に関してその除去率を向上することができる。
これは、被処理水が最初にアニオン交換樹脂に接触する
と、不純物イオンの中で主にアニオンのみが脱イオンさ
れ、しかも該アニオンのみが濃縮室に移動し、脱塩室の
当該部分にはカチオンが残り、このカチオンに相当する
量のアルカリが一時的に生成され、その結果、被処理水
が一時的にアルカリ性となるため、弱酸成分の解離度が
向上し、弱酸イオンの濃縮室への移動量も多くなって除
去率を向上できるものと考えられる。
When the water to be treated first passes through the anion exchange resin layer in the desalting chamber, the removal rate of such weak acid components can be improved.
This is because when the water to be treated first comes into contact with the anion exchange resin, mainly anions among the impurity ions are deionized, and only the anions move to the concentration chamber, and cations are present in the portion of the desalting chamber. However, the amount of alkali equivalent to this cation is temporarily generated, and as a result, the water to be treated becomes alkaline temporarily, the dissociation degree of the weak acid component is improved, and the weak acid ion moves to the concentration chamber. It is considered that the removal rate can be improved by increasing the amount.

【0044】本発明は高い流量比で被処理水を流して、
不純物イオンの濃縮室への移動量を多くするものである
から、被処理水を最初にアニオン交換樹脂層を通過する
ように供給することによって相乗作用的に不純物イオン
としてのアニオンの移動量が増大し、それにより被処理
水のアルカリ性が高くなり、弱酸成分の除去効率を従来
よりも向上できる利点がある。
According to the present invention, the water to be treated is caused to flow at a high flow ratio,
Since the amount of impurity ions transferred to the concentrating chamber is increased, by supplying the water to be treated so that it first passes through the anion exchange resin layer, the amount of transfer of anions as impurity ions synergistically increases. However, as a result, the alkalinity of the water to be treated becomes higher, and there is an advantage that the removal efficiency of the weak acid component can be improved more than before.

【0045】この弱酸成分除去率向上のためには、被処
理水が脱塩室において最初にアニオン交換樹脂層を通過
し、次いでカチオン交換樹脂とアニオン交換樹脂の混合
イオン交換樹脂層を通過するようにすることが最も好ま
しく、このような方法によれば弱酸成分の除去率を更に
向上することができる。
In order to improve the removal rate of the weak acid component, the water to be treated first passes through the anion exchange resin layer in the desalting chamber and then passes through the mixed ion exchange resin layer of the cation exchange resin and the anion exchange resin. Is most preferable, and such a method can further improve the removal rate of the weak acid component.

【0046】その理由は、アニオン交換樹脂層よりも混
合イオン交換樹脂層の方が電気抵抗が大きく、そのため
アニオン交換樹脂層に、より多くの電流が流れ、不純物
イオンとしてのアニオンの除去及び該アニオンの濃縮室
への移動が効率よく進行することに基づくものと思われ
る。
The reason for this is that the mixed ion-exchange resin layer has a larger electric resistance than the anion-exchange resin layer, so that a larger amount of current flows through the anion-exchange resin layer to remove the anions as impurity ions and to remove the anions. It is believed that this is based on the efficient transfer of the to the concentrating chamber.

【0047】本発明は、枠体3と両イオン交換膜4、5
との間の空間部にイオン交換樹脂6を充填するに当たっ
て、枠体3に分割用桟を設けて、脱塩室1を複数に分割
することもできる。
According to the present invention, the frame 3 and both ion exchange membranes 4, 5 are used.
At the time of filling the space portion between and with the ion exchange resin 6, the deionization chamber 1 can be divided into a plurality by providing the frame 3 with a dividing bar.

【0048】本発明において、イオン交換樹脂として、
巨大網目状構造のMR型やMP型(マクロポーラス型)
のイオン交換樹脂を用いることが好ましい。該樹脂は物
理的強度に優れ、ビーズ破砕を防止できる利点がある。
ところで、従来はこのビーズ破砕によって脱塩室内の流
路が閉塞されるという問題があった。
In the present invention, as the ion exchange resin,
MR type or MP type (macroporous type) with a huge mesh structure
It is preferable to use the ion exchange resin of. The resin has an advantage that it has excellent physical strength and can prevent bead fragmentation.
By the way, heretofore, there has been a problem that the flow path in the desalting chamber is blocked by the crushing of beads.

【0049】即ち、脱塩室を構成する枠体3には脱イオ
ン水流出口が設けられており、また分割用桟を設けて脱
塩室を例えば上下2部屋に分割した場合には、この分割
用桟に被処理水通過口が設けられており、これらの流出
口、通過口にはイオン交換樹脂の樹脂粒が通過しないよ
うに通常、サランネットが貼付されている。しかしビー
ズ破砕が起きると、その破砕片はサランネットを通過し
ないためにそこで詰まりを起こしてしまい、脱塩室内の
流路を閉塞するという不具合を生じていた。
That is, a deionized water outlet is provided in the frame 3 constituting the demineralizing chamber, and a dividing bar is provided to divide the demineralizing chamber into, for example, two upper and lower chambers. A treated water passage port is provided on the crossbar, and a saran net is usually attached to these outflow ports and passage ports so that resin particles of the ion exchange resin do not pass through. However, when the beads were crushed, the crushed pieces did not pass through the saran net and were clogged there, resulting in the problem of blocking the flow path in the desalination chamber.

【0050】本発明は上記MR型イオン交換樹脂等の如
き巨大網目状構造のイオン交換樹脂を用いることによっ
てこの問題に対処することができるが、更に本発明は、
脱塩室における上記被処理水通過口及び脱イオン水流出
口を、イオン交換樹脂粒は通過させないがビーズ破砕片
は通過させる如きスリット間隙を有する櫛状のスクリー
ンとして構成することが好ましい。
The present invention can solve this problem by using an ion exchange resin having a huge network structure such as the MR type ion exchange resin described above.
The treated water passage port and the deionized water outlet port in the desalting chamber are preferably configured as a comb-shaped screen having a slit gap that does not allow the ion exchange resin particles to pass but allows the crushed beads to pass.

【0051】このように構成すれば、仮りにMR型イオ
ン交換樹脂等にビーズ破砕が起きても、その破砕片はス
クリーンのスリットを通過するため流路の閉塞を防止で
きると共に、脱塩室の流速分布を均一にできる利点があ
る。尚、この場合、脱イオン水流出ライン14の適当な
位置に、孔径100μm以下の多孔質フィルタを交換可
能に取付けて、ビーズ破砕片を捕集するようにすること
が好ましい。
According to this structure, even if beads of the MR type ion-exchange resin are crushed, the crushed fragments pass through the slits of the screen, so that the flow path can be prevented from being blocked and the demineralization chamber can be prevented. There is an advantage that the flow velocity distribution can be made uniform. In this case, it is preferable to replaceably attach a porous filter having a pore diameter of 100 μm or less to an appropriate position of the deionized water outflow line 14 so as to collect the fragmented beads.

【0052】[0052]

【実施例】【Example】

実施例、比較例 表1に示す水質の工業用水を逆浸透膜装置で処理して同
表に示す水質の透過水を得た。この透過水を被処理水及
び濃縮水として用い、図1に示したような電気式脱イオ
ン水製造装置に供給した。この場合、該装置としては、
2個の脱イオンモジュールを並設して構成されるもの
(実施例)、及び同一サイズの4個の脱イオンモジュー
ルを並設して構成されるもの(比較例1及び比較例2)
を用いた。これらの装置における脱塩室、濃縮室にそれ
ぞれ被処理水、濃縮水を通水し、脱イオン水を製造し
た。但し、図1と異なり、被処理水、濃縮水共に下向流
で通水(即ち並流式で通水)した。この時の被処理水と
濃縮水の流量比、被処理水、濃縮水の線速度、及び得ら
れた脱イオン水の流量の条件は表2に示す通りである。
尚、使用した脱イオンモジュールは脱塩室の厚みt1
8mm、濃縮室の厚みt2 が0.8mmであり、また脱
塩室内にはカチオン交換樹脂とアニオン交換樹脂を混合
したものを脱塩室全体に高さ600mmで充填した。
Examples, Comparative Examples Industrial water having the water quality shown in Table 1 was treated with a reverse osmosis membrane device to obtain permeated water having the water quality shown in the table. This permeated water was used as water to be treated and concentrated water, and was supplied to an electric deionized water producing apparatus as shown in FIG. In this case, the device is
A configuration in which two deionization modules are arranged in parallel (Example) and a configuration in which four deionization modules of the same size are arranged in parallel (Comparative Example 1 and Comparative Example 2)
Was used. Water to be treated and concentrated water were passed through the desalting chamber and the concentrating chamber in these devices to produce deionized water. However, unlike FIG. 1, both the water to be treated and the concentrated water were passed in a downward flow (that is, water was passed in a parallel flow type). The conditions of the flow rate ratio of the treated water and the concentrated water, the linear velocity of the treated water and the concentrated water, and the flow rate of the deionized water obtained at this time are as shown in Table 2.
The deionization module used had a desalting chamber thickness t 1 of 8 mm and a concentrating chamber thickness t 2 of 0.8 mm, and the desalting chamber had a mixture of a cation exchange resin and an anion exchange resin. The entire salt chamber was filled to a height of 600 mm.

【0053】[0053]

【表1】 [Table 1]

【0054】[0054]

【表2】 [Table 2]

【0055】また印加電圧、直流電流値は表3に示す通
りである。該印加電圧は、脱イオン水抵抗率が10MΩ
・cm以上という、良好な水質の脱イオン水を得るため
に必要な印加電圧である。濃縮水出口における濃縮水の
導電率を測定すると共に、1000時間連続運転後の硬
度成分のスケール生成の有無を観察した。結果を表3に
示す。
The applied voltage and the direct current value are as shown in Table 3. The applied voltage has a deionized water resistivity of 10 MΩ.
The applied voltage required to obtain deionized water having good water quality of not less than cm. The electrical conductivity of the concentrated water at the outlet of the concentrated water was measured, and the presence or absence of scale formation of hardness component after continuous operation for 1000 hours was observed. The results are shown in Table 3.

【0056】[0056]

【表3】 [Table 3]

【0057】上記結果から明らかなように、本発明は従
来例である比較例1、比較例2の1/2の装置規模で、
かつ比較例1、比較例2より低い印加電圧で、比較例
1、比較例2とほぼ同じ量、同一水質の脱イオン水を得
ることができる。しかも、濃縮水の導電率が高い(即ち
濃縮水のイオン濃度が高い)にも関わらず硬度成分のス
ケール生成が起こらないことが判る。
As is clear from the above results, the present invention has a device scale half that of Comparative Examples 1 and 2 which are conventional examples.
Moreover, it is possible to obtain deionized water having substantially the same amount and the same water quality as in Comparative Examples 1 and 2 with a lower applied voltage than Comparative Examples 1 and 2. Moreover, it can be seen that scale formation of the hardness component does not occur even though the electrical conductivity of the concentrated water is high (that is, the ion concentration of the concentrated water is high).

【0058】[0058]

【発明の効果】以上説明したように本発明によれば特定
の流量比及び線速度で被処理水、濃縮水をそれぞれ脱塩
室、濃縮室に流入するようにしたので、脱塩室で除去さ
れた不純物イオンが濃縮室に移動する量が増大し、それ
により濃縮室の導電性が高まり、装置全体としての電気
抵抗を低減できる。その結果、同一量の脱イオン水を得
る場合に従来より印加電圧を低下しても処理水質良好な
脱イオン水を製造することが可能となり、電力消費量を
低減できる効果がある。
As described above, according to the present invention, the water to be treated and the concentrated water are allowed to flow into the desalting chamber and the concentrating chamber, respectively, at a specific flow rate ratio and linear velocity. The amount of the generated impurity ions transferred to the concentrating chamber increases, which increases the conductivity of the concentrating chamber and reduces the electric resistance of the entire device. As a result, in the case of obtaining the same amount of deionized water, it becomes possible to manufacture deionized water with good treated water quality even if the applied voltage is lowered, and there is an effect that power consumption can be reduced.

【0059】また本発明によれば、従来より大なる流量
比で被処理水を供給するので、同一規模の装置で製造さ
れる脱イオン水の量も多くなり、その結果、装置を大型
にすることなく従来よりも大量処理が可能となる効果が
ある。
Further, according to the present invention, since the water to be treated is supplied at a flow rate ratio higher than the conventional one, the amount of deionized water produced in the same scale of equipment also increases, and as a result, the equipment becomes large in size. It has an effect that a large amount of processing can be performed without the need.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明方法を実施するために用いる電気式脱イ
オン水製造装置の一例を示す縦断面略図である。
FIG. 1 is a schematic vertical sectional view showing an example of an electric deionized water producing apparatus used for carrying out the method of the present invention.

【符号の説明】[Explanation of symbols]

1 脱塩室 2 濃縮室 4 カチオン交換膜 5 アニオン交換膜 6 イオン交換樹脂 9 陽極 10 陰極 1 Desalination chamber 2 Concentration chamber 4 Cation exchange membrane 5 Anion exchange membrane 6 Ion exchange resin 9 Anode 10 Cathode

───────────────────────────────────────────────────── フロントページの続き (72)発明者 奥川 克巳 東京都文京区本郷5丁目5番16号 オルガ ノ株式会社内 ─────────────────────────────────────────────────── ─── Continuation of the front page (72) Inventor Katsumi Okugawa 5-5-16 Hongo, Bunkyo-ku, Tokyo Organo Corporation

Claims (5)

【特許請求の範囲】[Claims] 【請求項1】 カチオン交換膜とアニオン交換膜との間
にイオン交換体を充填して脱塩室を構成し、上記カチオ
ン交換膜、アニオン交換膜を介して脱塩室の両側に濃縮
室を設け、これらの脱塩室及び濃縮室を陽極と陰極の間
に配置し、電圧を印加しながら脱塩室に被処理水を流入
すると共に、濃縮室に濃縮水を流入して被処理水中の不
純物イオンを除去し、脱イオン水を製造する電気脱イオ
ン法による脱イオン水の製造方法において、被処理水と
濃縮水の流量比が6:1〜12:1であり且つ被処理水
及び濃縮水の線速度が75〜150m/hrとなるよう
に被処理水、濃縮水をそれぞれ脱塩室、濃縮室に流入す
るようにしたことを特徴とする電気脱イオン法による脱
イオン水の製造方法。
1. A desalting chamber is formed by filling an ion exchanger between a cation exchange membrane and an anion exchange membrane, and a concentration chamber is provided on both sides of the desalination chamber through the cation exchange membrane and the anion exchange membrane. The demineralizing chamber and the concentrating chamber are provided between the anode and the cathode, and the water to be treated flows into the demineralizing chamber while applying a voltage. In a method for producing deionized water by an electric deionization method, which removes impurity ions and produces deionized water, the flow ratio of the water to be treated and the concentrated water is 6: 1 to 12: 1, and the water to be treated and the concentrated water are concentrated. A method for producing deionized water by an electric deionization method, wherein water to be treated and concentrated water are made to flow into a desalting chamber and a concentrating chamber, respectively, so that the linear velocity of water is 75 to 150 m / hr. .
【請求項2】 脱塩室の厚みを7〜10mmとし、また
濃縮室の厚みを0.5〜2mmとして、所定の流量比及
び所定の線速度で被処理水及び濃縮水を流すようにした
請求項1記載の電気脱イオン法による脱イオン水の製造
方法。
2. The desalination chamber has a thickness of 7 to 10 mm and the concentration chamber has a thickness of 0.5 to 2 mm, and the water to be treated and the concentrated water are caused to flow at a predetermined flow rate ratio and a predetermined linear velocity. The method for producing deionized water according to claim 1, wherein the electrodeionization method is used.
【請求項3】 脱塩室への被処理水の流入方向と濃縮室
への濃縮水の流入方向が相互に反対の方向となるように
被処理水、濃縮水をそれぞれ脱塩室、濃縮室に流入する
ようにした請求項1又は2記載の電気脱イオン法による
脱イオン水の製造方法。
3. The desalination chamber and the concentrating chamber are treated so that the inflow direction of the treated water into the desalting chamber and the inflowing direction of the concentrated water into the concentrating chamber are opposite to each other. 3. The method for producing deionized water according to claim 1, wherein the deionized water is made to flow into the chamber.
【請求項4】 脱塩室に流入した被処理水が最初にアニ
オン交換体層を通過するようにした請求項1又は2記載
の電気脱イオン法による脱イオン水の製造方法。
4. The method for producing deionized water by the electric deionization method according to claim 1, wherein the water to be treated which has flowed into the deionization chamber first passes through the anion exchanger layer.
【請求項5】 脱塩室に流入した被処理水が最初にアニ
オン交換体層を通過し、次いでカチオン交換体とアニオ
ン交換体の混合イオン交換体層を通過するようにした請
求項4記載の電気脱イオン法による脱イオン水の製造方
法。
5. The method according to claim 4, wherein the water to be treated which has flowed into the desalting chamber first passes through the anion exchanger layer and then passes through the mixed ion exchanger layer of the cation exchanger and the anion exchanger. Method for producing deionized water by electric deionization method.
JP31921894A 1994-11-29 1994-11-29 Method for producing deionized water by electrodeionization method Expired - Fee Related JP3305139B2 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP31921894A JP3305139B2 (en) 1994-11-29 1994-11-29 Method for producing deionized water by electrodeionization method
PCT/JP1996/001517 WO1997046491A1 (en) 1994-11-29 1996-06-03 Process for producing deionized water by electrical deionization technique

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP31921894A JP3305139B2 (en) 1994-11-29 1994-11-29 Method for producing deionized water by electrodeionization method
PCT/JP1996/001517 WO1997046491A1 (en) 1994-11-29 1996-06-03 Process for producing deionized water by electrical deionization technique

Publications (2)

Publication Number Publication Date
JPH08150393A true JPH08150393A (en) 1996-06-11
JP3305139B2 JP3305139B2 (en) 2002-07-22

Family

ID=18107734

Family Applications (1)

Application Number Title Priority Date Filing Date
JP31921894A Expired - Fee Related JP3305139B2 (en) 1994-11-29 1994-11-29 Method for producing deionized water by electrodeionization method

Country Status (1)

Country Link
JP (1) JP3305139B2 (en)

Cited By (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1997046491A1 (en) * 1994-11-29 1997-12-11 Organo Corporation Process for producing deionized water by electrical deionization technique
EP0867224A2 (en) * 1997-03-28 1998-09-30 Asahi Glass Company Ltd. Method for producing deionized water
JPH1147560A (en) * 1997-07-29 1999-02-23 Japan Organo Co Ltd Secondary system line water treatment plant for pressurized water type atomic power plant
JP2000140853A (en) * 1998-11-10 2000-05-23 Kurita Water Ind Ltd Electrical regeneration type deionizing device and operation thereof
JP2001321773A (en) * 2000-05-15 2001-11-20 Japan Organo Co Ltd Apparatus and method for making electro-deionized water
JP2001327971A (en) * 2000-05-19 2001-11-27 Kurita Water Ind Ltd Electro-deionizing apparatus
JP2001353490A (en) * 2000-06-14 2001-12-25 Asahi Kasei Corp Production method of deionized water
JP2002205071A (en) * 2001-01-10 2002-07-23 Japan Organo Co Ltd Electric deionized water manufacturing apparatus and method of manufacturing deionized water
JP2002527238A (en) * 1998-10-16 2002-08-27 イーセル コーポレイション Method and apparatus for preventing scale formation in an electrodeionization unit
KR100405642B1 (en) * 1999-03-25 2003-11-14 오르가노 코포레이션 An electrodeionization apparatus comprising sub-desalination chambers
JP2004507342A (en) * 2000-08-11 2004-03-11 イオニックス,インコーポレーテッド Apparatus and method for electrodialysis
JP2004298731A (en) * 2003-03-31 2004-10-28 Japan Organo Co Ltd Water collection device of desalting cell of electric deionized water manufacturing apparatus
KR100409416B1 (en) * 1996-06-03 2005-06-13 오르가노 코포레이션 Manufacturing method of deionized water by electric deionization method
KR100598429B1 (en) * 2005-04-08 2006-07-10 광주과학기술원 Electrode structure for electrodeionization
JP2011240264A (en) * 2010-05-19 2011-12-01 Daicen Membrane Systems Ltd Method for producing purified water
JP2015226910A (en) * 2015-08-12 2015-12-17 オルガノ株式会社 Electric deionized water production apparatus

Cited By (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1997046491A1 (en) * 1994-11-29 1997-12-11 Organo Corporation Process for producing deionized water by electrical deionization technique
KR100409416B1 (en) * 1996-06-03 2005-06-13 오르가노 코포레이션 Manufacturing method of deionized water by electric deionization method
EP0867224A2 (en) * 1997-03-28 1998-09-30 Asahi Glass Company Ltd. Method for producing deionized water
EP0867224A3 (en) * 1997-03-28 1998-12-16 Asahi Glass Company Ltd. Method for producing deionized water
JPH1147560A (en) * 1997-07-29 1999-02-23 Japan Organo Co Ltd Secondary system line water treatment plant for pressurized water type atomic power plant
JP3760033B2 (en) * 1997-07-29 2006-03-29 オルガノ株式会社 Secondary water treatment system for pressurized water nuclear power plant
JP4805455B2 (en) * 1998-10-16 2011-11-02 ジーイー ウォーター アンド プロセス テクノロジーズ カナダ Method and apparatus for preventing scale generation in an electrodeionization unit
JP2002527238A (en) * 1998-10-16 2002-08-27 イーセル コーポレイション Method and apparatus for preventing scale formation in an electrodeionization unit
JP2000140853A (en) * 1998-11-10 2000-05-23 Kurita Water Ind Ltd Electrical regeneration type deionizing device and operation thereof
KR100405642B1 (en) * 1999-03-25 2003-11-14 오르가노 코포레이션 An electrodeionization apparatus comprising sub-desalination chambers
JP2001321773A (en) * 2000-05-15 2001-11-20 Japan Organo Co Ltd Apparatus and method for making electro-deionized water
JP4497388B2 (en) * 2000-05-15 2010-07-07 オルガノ株式会社 Electric deionized water production apparatus and deionized water production method
JP2001327971A (en) * 2000-05-19 2001-11-27 Kurita Water Ind Ltd Electro-deionizing apparatus
JP2001353490A (en) * 2000-06-14 2001-12-25 Asahi Kasei Corp Production method of deionized water
JP2004507342A (en) * 2000-08-11 2004-03-11 イオニックス,インコーポレーテッド Apparatus and method for electrodialysis
JP2002205071A (en) * 2001-01-10 2002-07-23 Japan Organo Co Ltd Electric deionized water manufacturing apparatus and method of manufacturing deionized water
JP4597388B2 (en) * 2001-01-10 2010-12-15 オルガノ株式会社 Electric deionized water production apparatus and deionized water production method
JP2004298731A (en) * 2003-03-31 2004-10-28 Japan Organo Co Ltd Water collection device of desalting cell of electric deionized water manufacturing apparatus
KR100598429B1 (en) * 2005-04-08 2006-07-10 광주과학기술원 Electrode structure for electrodeionization
JP2011240264A (en) * 2010-05-19 2011-12-01 Daicen Membrane Systems Ltd Method for producing purified water
JP2015226910A (en) * 2015-08-12 2015-12-17 オルガノ株式会社 Electric deionized water production apparatus

Also Published As

Publication number Publication date
JP3305139B2 (en) 2002-07-22

Similar Documents

Publication Publication Date Title
KR100409416B1 (en) Manufacturing method of deionized water by electric deionization method
JP3385553B2 (en) Electric deionized water production apparatus and deionized water production method
JP2751090B2 (en) Pure water production equipment
JP3864891B2 (en) Electric deionizer
JP2865389B2 (en) Electric deionized water production equipment and frame used for it
CN100522323C (en) Device and method for electrodialysis
JP3305139B2 (en) Method for producing deionized water by electrodeionization method
JP4400218B2 (en) Electric deionization apparatus and deionization method
JP3273707B2 (en) Production method of deionized water by electrodeionization method
JP5015990B2 (en) Electric deionized water production equipment
WO1997046492A1 (en) Process for producing deionized water by electrical deionization technique
WO1997046491A1 (en) Process for producing deionized water by electrical deionization technique
JP4250922B2 (en) Ultrapure water production system
JP7275536B2 (en) Electrodeionization apparatus and method for producing deionized water using the same
JP4609924B2 (en) Electric deionized water production equipment
JP3900666B2 (en) Deionized water production method
JP7224994B2 (en) Electrodeionized water production device and deionized water production method
JP3781352B2 (en) Electric deionized water production apparatus and deionized water production method
JP4597388B2 (en) Electric deionized water production apparatus and deionized water production method
CN101223110B (en) Electric deionized water manufacturing equipment
JP3188511B2 (en) Electrodialysis machine
JP3985494B2 (en) Electric deionization apparatus and deionization method
TWI749260B (en) Electrical deionized water production apparatus
JP2001321773A (en) Apparatus and method for making electro-deionized water
JP2002346568A (en) Electric regeneration type pure water production apparatus

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090510

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090510

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100510

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110510

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110510

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120510

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130510

Year of fee payment: 11

LAPS Cancellation because of no payment of annual fees