JP2000117261A - Device for production of electrically deionized water and passing treatment of water through the same - Google Patents

Device for production of electrically deionized water and passing treatment of water through the same

Info

Publication number
JP2000117261A
JP2000117261A JP10287537A JP28753798A JP2000117261A JP 2000117261 A JP2000117261 A JP 2000117261A JP 10287537 A JP10287537 A JP 10287537A JP 28753798 A JP28753798 A JP 28753798A JP 2000117261 A JP2000117261 A JP 2000117261A
Authority
JP
Japan
Prior art keywords
water
exchange membrane
chamber
deionized water
valve
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP10287537A
Other languages
Japanese (ja)
Inventor
Madoka Tanabe
円 田辺
Riichi Ikegami
理一 池上
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Organo Corp
Original Assignee
Organo Corp
Japan Organo Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Organo Corp, Japan Organo Co Ltd filed Critical Organo Corp
Priority to JP10287537A priority Critical patent/JP2000117261A/en
Publication of JP2000117261A publication Critical patent/JP2000117261A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A20/00Water conservation; Efficient water supply; Efficient water use
    • Y02A20/124Water desalination

Abstract

PROBLEM TO BE SOLVED: To regenerate ion exchange membrane without using any liquid chemical agent when hydroxide compounds are deposited on ion exchange membrane being used and accordingly the voltage applied to between an anode and a cathode is increased, and to enable a continuous passing treatment of water through the device by providing the device with a switching means for reversing the passing direction of water through a desalting chamber. SOLUTION: The treatment using this device 30 is performed for an appropriate period, e.g. about two to six months until the quality of treated water approaches to its deterioration point by gradual increase in ions in the treated water and after the treatment, the passing direction of water through a desalting chamber 10 is switched to the reverse direction. The switching operation comprises opening valves 2, 3, 6 and 7; closing valves 1, 4, 5 and 8; supplying raw water to the desalting chamber 10 of the device 30 through a liquid transfer line via the valve 2 to obtain treated water via the valve 3; and also supplying the raw water to a concentration chamber 20 through another liquid transfer line via the valves 2 and 6 to discharge concentrated water via the valve 7. Thus, with such operation, treated water is produced and also, hydroxide compounds deposited on anion exchange membrane, such as calcium hydroxide, are gradually removed from the membrane by acid washing effects of impurity ions in raw water, such as Cl- or SO4-2, to regenerate the anion exchange membrane.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、電気式脱イオン水
製造装置の長期間の通水処理等により、使用するイオン
交換膜に不純物イオンの水酸化物等が析出した場合、薬
液を使用することなく該イオン交換膜の回生を図ると共
に、連続して通水可能な電気式脱イオン水製造装置及び
その通水処理方法に関するものである。
BACKGROUND OF THE INVENTION The present invention relates to the use of a chemical solution when hydroxide of impurity ions or the like is deposited on an ion-exchange membrane to be used due to long-term water treatment of an electric deionized water producing apparatus. The present invention relates to an electric deionized water production apparatus capable of continuously regenerating the ion-exchange membrane without regenerating the ion-exchange membrane, and a method of treating the water.

【0002】[0002]

【従来の技術】イオン交換体としてカチオン交換樹脂と
アニオン交換樹脂を用いた2床式、2床3塔式又は混床
式の脱イオン水製造装置は、使用するイオン交換樹脂が
イオンを交換し、貫流点に達した場合、酸及びアルカリ
水溶液で再生する必要があるが、イオン交換体を用いる
ものの、薬剤による再生が全く不要な電気式脱イオン水
製造装置が実用化されている。
2. Description of the Related Art In a two-bed, two-bed, three-column or mixed-bed deionized water producing apparatus using a cation exchange resin and an anion exchange resin as ion exchangers, the ion exchange resin used exchanges ions. When the flow-through point is reached, it is necessary to regenerate with an aqueous solution of an acid and an alkali. However, although an ion exchanger is used, an electric deionized water production apparatus which does not require regeneration with a chemical has been put to practical use.

【0003】従来から実用化されている電気式脱イオン
水製造装置は、基本的にはカチオン交換膜とアニオン交
換膜で形成される隙間に、イオン交換体としてアニオン
交換樹脂とカチオン交換樹脂の混合イオン交換樹脂層を
充填して脱塩室とし、当該イオン交換樹脂層に被処理水
を通過させるとともに、前記両イオン交換膜を介して被
処理水の流れに対して直角方向に直流電流を作用させ
て、両イオン交換膜の外側に流れている濃縮水中に被処
理水中イオンを電気的に排除しながら脱イオン水(処理
水)を製造するものである。
[0003] Conventionally, an electric deionized water producing apparatus which has been put into practical use basically has a mixture of an anion exchange resin and a cation exchange resin as an ion exchanger in a gap formed by a cation exchange membrane and an anion exchange membrane. Filling the ion exchange resin layer to form a desalination chamber, allowing the water to be treated to pass through the ion exchange resin layer, and applying a direct current in a direction perpendicular to the flow of the water to be treated via the two ion exchange membranes. Then, deionized water (treated water) is produced while electrically removing ions in the water to be treated from the concentrated water flowing outside the both ion exchange membranes.

【0004】また、当該電気式脱イオン水製造装置は被
処理水中に存在するマグネシウムやカルシウムの硬度成
分がイオン交換膜に析出することを防止するため、通
常、前段に逆浸透膜装置や硬水軟化装置が設置されてい
る。
In order to prevent the hardness components of magnesium and calcium present in the water to be treated from depositing on the ion-exchange membrane, the electric deionized water producing apparatus is usually provided with a reverse osmosis membrane apparatus or a hard water softening apparatus. Equipment is installed.

【0005】しかし、前段に逆浸透膜装置などを設置し
たとしても、数十ppb 〜数ppm 程度のマグネシウムイオ
ンやカルシウムイオンの流出は避けられず、これを長期
間に亘って通水処理を行った電気式脱イオン水製造装置
においては、カルシウムやマグネシウムの水酸化物がア
ニオン交換膜に徐々に蓄積し析出してくる。このため、
陽極及び陰極間の電気抵抗が徐々に上昇し所定の電流を
確保するために高電圧を要することになる。また、所定
の電流を確保しても、シリカ等が処理水に漏出して処理
水の水質が低下してくる。従来、このような電気式脱イ
オン水製造装置の性能低下の回復を図るために、該装置
の通水処理を停止し、薬剤で処理してイオン交換膜に蓄
積したイオンを溶離することにより該装置の回復を図っ
ていた。
[0005] However, even if a reverse osmosis membrane device or the like is installed in the preceding stage, outflow of magnesium ions or calcium ions of about several tens of ppb to several ppm is unavoidable, and the outflow of this water is carried out for a long period of time. In such an electric deionized water production apparatus, hydroxides of calcium and magnesium gradually accumulate and precipitate in the anion exchange membrane. For this reason,
The electric resistance between the anode and the cathode gradually increases, and a high voltage is required to secure a predetermined current. Further, even if a predetermined current is secured, silica or the like leaks into the treated water, and the quality of the treated water decreases. Conventionally, in order to recover the performance deterioration of such an electric deionized water producing apparatus, the water passing treatment of the apparatus is stopped, and the apparatus is treated with a chemical to elute ions accumulated in the ion exchange membrane. I was trying to recover the device.

【0006】[0006]

【発明が解決しようとする課題】しかしながら、この薬
剤洗浄は、必要な電流を確保するために、スタックの電
気抵抗を低く維持するという保守上の観点から、高処理
水質、低消費電力が要求される電気式脱イオン水製造装
置ほど頻繁に行う必要があり、例えば、1か月に一度の
高頻度に及ぶ装置も少なくなかった。特に、濃縮水の導
電率を高くし、スタックの電気抵抗を低く保ち、少ない
消費電力で高水質が得られる濃縮水循環構造の電気式脱
イオン水製造装置においては、濃縮水中のカルシウムや
マグネシウム等の硬度成分の濃度が高くなるため、上述
のイオン交換膜への析出が生じ易く、薬剤洗浄の頻度を
高くしなければならない傾向にあった。さらに、上記薬
剤で処理する方法では、薬剤貯槽、薬剤洗浄用配管類、
ポンプ類、排液処理設備等の薬剤洗浄に必要な諸設備を
常設しなければならず、設置面積が増大するだけでな
く、薬剤を使用しないという電気式脱イオン水製造装置
の本来の特長を滅却するという問題もあった。また、近
年のコストダウンの潮流から、特に半導体デバイス製造
分野では、超純水製造装置を長時間に亘り停止すること
は好ましくない。
However, in this chemical cleaning, high treated water quality and low power consumption are required from the viewpoint of maintenance to keep the electric resistance of the stack low in order to secure necessary current. It has to be performed as frequently as the electric deionized water producing apparatus, and for example, there are many apparatuses that operate at a high frequency once a month. In particular, in an electric deionized water production device having a concentrated water circulation structure in which the conductivity of the concentrated water is increased, the electric resistance of the stack is kept low, and high water quality can be obtained with low power consumption, calcium and magnesium in the concentrated water are used. Since the concentration of the hardness component is increased, the above-mentioned precipitation on the ion exchange membrane is likely to occur, and the frequency of chemical cleaning tends to be increased. Further, in the method of treating with the above-mentioned chemicals, a chemical storage tank, piping for chemical cleaning,
Various equipment required for chemical cleaning such as pumps and wastewater treatment equipment must be permanently installed, which not only increases the installation area, but also eliminates the use of chemicals. There was also the problem of extermination. In addition, due to the trend of cost reduction in recent years, it is not preferable to stop the ultrapure water production apparatus for a long time, particularly in the field of semiconductor device production.

【0007】従って、本発明の目的は、電気式脱イオン
水製造装置の長期間の通水処理により、使用するイオン
交換膜にマグネシウムやカルシウムの水酸化物が析出
し、陽極、陰極間の印加電圧が上昇した場合、薬液を使
用することなく該イオン交換膜の回生を図ると共に、連
続して通水処理が可能な電気式脱イオン水製造装置及び
その通水処理方法を提供することにある。
[0007] Accordingly, an object of the present invention is to provide a deionized water producing apparatus for a long period of time, through which a hydroxide of magnesium or calcium precipitates on an ion-exchange membrane to be used. It is an object of the present invention to provide an electric deionized water producing apparatus capable of continuously regenerating water while using an ion-exchange membrane without using a chemical solution when a voltage rises, and a method for treating water. .

【0008】[0008]

【課題を解決するための手段】かかる実情おいて、本発
明者は鋭意検討を行った結果、電気式脱イオン水製造装
置の長期間の通水処理において、陽極、陰極間の電圧上
昇の原因となるマグネシウムやカルシウムの水酸化物の
析出は、濃縮室の出口側に位置するアニオン交換膜上で
生じ、濃縮室の入口側に位置するイオン交換膜上では生
じないこと、従って、電気式脱イオン水製造装置の脱塩
室の通水向きを、反転させて通水すれば、入口側となる
アニオン交換膜上の前記析出物は原水に含まれるC
-1、SO4 -2などの不純物イオンにより、いわゆる酸
洗浄され、薬液を使用することなくアニオン交換膜から
蓄積イオンを除去でき、これを交互に行えば、電気式脱
イオン製造装置を停止することなく連続して処理水が得
られること等を見出し、本発明を完成するに至った。
[MEANS FOR SOLVING THE PROBLEMS] Under such circumstances, the present invention
As a result of intensive studies, the clear person has found that
In the long-term water flow treatment of the
Of magnesium and calcium hydroxides
Deposition is performed on the anion exchange membrane located on the outlet side of the concentration chamber.
Occurs on the ion-exchange membrane located on the inlet side of the concentration chamber.
And therefore desalination of the electric deionized water production equipment
If the direction of water flow in the room is reversed and water is passed, it will be on the inlet side
The precipitate on the anion exchange membrane is composed of C contained in raw water.
l-1, SOFour -2So-called acid due to impurity ions such as
Washed and removed from the anion exchange membrane without using chemicals
Accumulated ions can be removed, and if this is done alternately,
Process water can be obtained continuously without stopping the ion production equipment.
The present invention has been completed, and the present invention has been completed.

【0009】すなわち、本発明は、陽極と陰極の間にカ
チオン交換膜とアニオン交換膜を交互に配し、両膜の間
に脱塩室と濃縮室を交互に形成した電気式脱イオン水製
造装置であって、前記脱塩室の通水方向を反転させる切
り換え手段を有することを特徴とする電気式脱イオン水
製造装置を提供するものである。
That is, the present invention provides an electric deionized water production system in which a cation exchange membrane and an anion exchange membrane are alternately arranged between an anode and a cathode, and a desalination chamber and a concentration chamber are alternately formed between both membranes. The present invention provides an electric deionized water producing apparatus, comprising a switching means for reversing the direction of water flow in the desalting chamber.

【0010】また、本発明は、原水を電気式脱イオン水
製造装置に通水して処理水を得る通水処理方法におい
て、前記電気式脱イオン水製造装置の脱塩室の通水向き
を、定期又は不定期に反転させて通水することを特徴と
する電気式脱イオン水製造装置の通水処理方法を提供す
るものである。
The present invention also relates to a water-passing treatment method for obtaining treated water by passing raw water through an electric deionized water producing apparatus, wherein the water flowing direction of the desalting chamber of the electric deionized water producing apparatus is changed. The present invention also provides a method for passing water through an electric deionized water producing apparatus, characterized in that the water is inverted and passed periodically or irregularly.

【0011】[0011]

【発明の実施の形態】本発明において、原水としては、
特に制限されず、例えば、井水、工業用水及び半導体製
造工場の半導体デバイス等の洗浄排水又はこれらを逆浸
透膜装置や硬水軟化装置で処理された水が挙げられる。
当該原水には、本発明の電気式脱イオン水製造装置で除
去されるカルシウムイオン、マグネシウムイオン、ナト
リウムイオン、カリウムイオン、塩化物イオン、硫酸イ
オン等の強電解質、炭酸イオン、シリカ等の弱電解質等
の不純物が含まれる。
BEST MODE FOR CARRYING OUT THE INVENTION In the present invention, as raw water,
There is no particular limitation, and examples thereof include well water, industrial water, washing wastewater of semiconductor devices in a semiconductor manufacturing plant, or water obtained by treating these with a reverse osmosis membrane device or a water softening device.
The raw water contains strong electrolytes such as calcium ions, magnesium ions, sodium ions, potassium ions, chloride ions, and sulfate ions, and carbonates, and weak electrolytes such as silica, which are removed by the electric deionized water production apparatus of the present invention. And other impurities.

【0012】本発明で使用する電気式脱イオン水製造装
置としては、特に制限されず、公知のものを使用でき
る。すなわち、基本的にはカチオン交換膜とアニオン交
換膜で形成される隙間に、イオン交換体としてアニオン
交換樹脂とカチオン交換樹脂の混合イオン交換樹脂層を
充填して脱塩室とし、当該イオン交換樹脂層に原水を通
過させるとともに、前記両イオン交換膜を介して原水の
流れに対して直角方向に直流電流を作用させて、両イオ
ン交換膜の外側に流れている濃縮水中に原水中のイオン
を電気的に排除しながら処理水(以下、脱イオン水とも
いう)を製造するものである。
The electric deionized water producing apparatus used in the present invention is not particularly limited, and a known apparatus can be used. That is, a gap formed by a cation exchange membrane and an anion exchange membrane is basically filled with a mixed ion exchange resin layer of an anion exchange resin and a cation exchange resin as an ion exchanger to form a desalination chamber, While passing the raw water through the layer and applying a direct current in a direction perpendicular to the flow of the raw water through the both ion exchange membranes, the ions in the raw water flow into the concentrated water flowing outside the both ion exchange membranes. This is for producing treated water (hereinafter also referred to as deionized water) while electrically removing the water.

【0013】具体的には、スパイラル型、同心円型及び
平板積層型のものが挙げられる。スパイラル型電気式脱
イオン水製造装置は、例えば、中心電極周りに陽イオン
交換膜と陰イオン交換膜を螺旋断面が形成されるように
巻回し、脱塩室と濃縮室をその螺旋巻に沿って包囲し、
この巻回された膜の外側に電極を配置した構成のものが
例示される(例えば、特開平6−7645号公報)。同
心円型電気式脱イオン水製造装置は、例えば、陽イオン
交換膜と陰イオン交換膜を支持させた径の異なる複数の
筒状の枠体を同心円状に配置し、外側の枠体の外周囲と
内側の枠体の内周囲にそれぞれ電極を配置し、前記枠体
間に形成される空間を交互に脱塩室と濃縮室とに区画す
ると共に、最も外側に位置する区画及び最も内側に位置
する区画を濃縮室とし、脱塩室にはイオン交換体を充填
した構成のものが例示される(例えば、特開平9−28
5790号公報)。平板積層型電気式脱イオン水製造装
置は、最も汎用される型であり、例えば、平板状の脱塩
室、濃縮室、陽イオン交換膜及び陰イオン交換膜を並列
に並べて複数配置し、その両端に陽極室と陰極室を配置
した構成のものが例示される。
Specifically, spiral type, concentric type and flat plate type are mentioned. The spiral-type electric deionized water producing apparatus, for example, winds a cation exchange membrane and an anion exchange membrane around a center electrode so that a spiral cross section is formed, and runs a desalination chamber and a concentration chamber along the spiral winding. Siege,
An example is a configuration in which an electrode is arranged outside the wound film (for example, JP-A-6-7645). The concentric electric deionized water producing apparatus includes, for example, a plurality of cylindrical frames having different diameters that support a cation exchange membrane and an anion exchange membrane are concentrically arranged, and the outer periphery of the outer frame is And electrodes are arranged around the inner periphery of the inner frame, and the space formed between the frames is alternately divided into a desalination chamber and a concentration chamber, and the outermost compartment and the innermost compartment are formed. An example of a configuration in which the compartment to be used is a concentration chamber and the desalting chamber is filled with an ion exchanger (for example, see JP-A-9-28)
No. 5790). The flat plate type electric deionized water production device is the most commonly used type, for example, a flat plate desalination chamber, a concentration chamber, a cation exchange membrane and an anion exchange membrane are arranged in parallel and a plurality of them are arranged. A configuration in which an anode chamber and a cathode chamber are arranged at both ends is exemplified.

【0014】平板積層型電気式脱イオン水製造装置を図
4を参照して説明する。図4は当該電気式脱イオン水製
造装置の模式断面図を示すものであり、カチオン交換膜
41及びアニオン交換膜42を離間して交互に配置し、
カチオン交換膜41とアニオン交換膜42で形成される
空間内に一つおきにカチオン交換樹脂とアニオン交換樹
脂の混合イオン交換樹脂43を充填し、脱塩室44とす
る。なお、当該脱塩室44のそれぞれの隣に位置するア
ニオン交換膜42とカチオン交換膜41で形成される混
合イオン交換樹脂43を充填していない部分は後述する
ように濃縮水を流すべき濃縮室45とする。
A flat plate type electric deionized water producing apparatus will be described with reference to FIG. FIG. 4 is a schematic cross-sectional view of the electric deionized water production device, in which the cation exchange membranes 41 and the anion exchange membranes 42 are alternately arranged at a distance.
Every other space formed by the cation exchange membrane 41 and the anion exchange membrane 42 is filled with a mixed ion exchange resin 43 of a cation exchange resin and an anion exchange resin to form a desalination chamber 44. In addition, the part which is not filled with the mixed ion exchange resin 43 formed by the anion exchange membrane 42 and the cation exchange membrane 41 located next to each of the desalting chambers 44 is a concentrating chamber through which the concentrated water flows, as described later. 45.

【0015】また、カチオン交換膜41とアニオン交換
膜42とその内部に充填する混合イオン交換樹脂43と
で脱イオンモジュール46を形成する。該脱イオンモジ
ュール46の複数個をその間に図では省略するスペーサ
ーを挟んで、並設した状態が図4に示されたものであ
り、並設した脱イオンモジュール46の一端側に陰極4
9を配設するとともに、他端側に陽極50を配設する。
なお、前述したスペーサーを挟んだ位置が濃縮室45で
あり、また、両端の濃縮室45の両外側に必要に応じカ
チオン交換膜、アニオン交換膜又はイオン交換性のない
単なる隔膜等の仕切り膜51を配設し、当該仕切り膜5
1で仕切られた両電極49及び50が接触する部分をそ
れぞれ陰極室52及び陽極室53とする。
A deionization module 46 is formed by the cation exchange membrane 41, the anion exchange membrane 42, and the mixed ion exchange resin 43 filled therein. FIG. 4 shows a state in which a plurality of the deionization modules 46 are arranged side by side with a spacer (not shown) interposed therebetween.
9 and an anode 50 on the other end.
The enrichment chamber 45 is located at the position sandwiching the above-mentioned spacers, and a partition membrane 51 such as a cation exchange membrane, an anion exchange membrane, or a simple membrane having no ion exchange properties is provided on both outer sides of the enrichment chamber 45 at both ends as necessary. And the partition membrane 5
The portions where the two electrodes 49 and 50 come into contact with each other are partitioned as a cathode chamber 52 and an anode chamber 53, respectively.

【0016】このような電気式脱イオン水製造装置によ
って、原水を処理し、処理水を製造するには、以下のよ
うに操作される。すなわち、陰極49と陽極50間に直
流電流を通じ、また、被処理水流入口Aから原水を流入
するとともに、電極水流入口C及びDからそれぞれ電極
水を流入する。被処理水流入口Aから流入した原水は実
線で示した矢印の如く各脱塩室44を流下し、混合イオ
ン交換樹脂43の充填層を通過する際に不純物イオンが
除かれ、処理水が脱イオン水流出口aから得られる。ま
た、濃縮水流入口Bから流入した濃縮水は点線の矢印で
示したように各濃縮室45を流下し、両イオン交換膜を
介して移動してくる不純物イオンを受け取り、不純物イ
オンを濃縮した濃縮水として濃縮水流出口bから流出さ
れ、さらに電極水流入口C及びDから流入した電極水は
電極水流出口c及びdから流出される。上記の操作によ
って、原水の不純物イオンは電気的に除去され、純水
(処理水)を得ることができる。
In order to treat raw water and produce treated water by such an electric deionized water producing apparatus, the following operation is performed. That is, a direct current is passed between the cathode 49 and the anode 50, raw water flows in from the water inlet A to be treated, and electrode water flows from the electrode water inlets C and D, respectively. The raw water flowing from the treated water inlet A flows down each desalting chamber 44 as shown by the solid line arrow, and when passing through the packed bed of the mixed ion exchange resin 43, impurity ions are removed. Obtained from water outlet a. The concentrated water flowing from the concentrated water inlet B flows down each concentration chamber 45 as shown by the dotted arrow, receives impurity ions moving through both ion exchange membranes, and concentrates the impurity ions. Electrode water which flows out from the concentrated water outlet b as water and flows in from the electrode water inlets C and D flows out from the electrode water outlets c and d. By the above operation, the impurity ions of the raw water are electrically removed, and pure water (treated water) can be obtained.

【0017】一方、この通水処理においては、電気的に
不純物イオンの除去(溶離)を行っているにもかかわら
ず、微量のカルシウムイオンやマグネシウムイオンがイ
オン交換膜、特に濃縮室のアニオン交換膜の出口側で水
分解によって生じるOH- イオンと反応し、不溶の水酸
化物となって徐々に蓄積されて析出し、ついには処理水
の水質が低下するという事態を招く。濃縮室のアニオン
交換膜の入口側で析出物が生成しないのは、脱塩室入口
側では、流入してくる被処理水中に多量の塩類が存在
し、電気的に不純物イオンの除去が活発であり、水分解
は起こりにくく、カルシウムイオン等と反応し、不溶の
水酸化物を生成するOH- イオンが生成しないためと考
えられる。一方、脱塩室出口側では、脱塩室内の水の塩
濃度は低濃度となっており、不純物イオンの除去(溶
離)と同時に、水分解が生じてOH-イオンを生成し、
これが、カルシウムイオンなどと反応して濃縮室側のア
ニオン交換膜上に不溶の水酸化物を生成するものと考え
られる。
On the other hand, in this water passing treatment, trace amounts of calcium ions and magnesium ions are deposited on the ion exchange membrane, particularly the anion exchange membrane in the concentrating chamber, even though the impurity ions are electrically removed (eluted). Reacts with OH - ions generated by water splitting at the outlet side of, and gradually accumulates and precipitates as insoluble hydroxides, eventually leading to a situation in which the quality of treated water deteriorates. The reason that no precipitate is formed on the inlet side of the anion exchange membrane in the concentration chamber is that a large amount of salts is present in the incoming treated water on the inlet side of the desalting chamber, and the removal of impurity ions is active electrically. This is considered to be because water decomposition hardly occurs and OH - ions which react with calcium ions and the like to form insoluble hydroxides are not generated. On the other hand, on the outlet side of the desalting chamber, the salt concentration of water in the desalting chamber is low, and at the same time as removal (elution) of impurity ions, water decomposition occurs to generate OH - ions,
It is considered that this reacts with calcium ions or the like to generate insoluble hydroxide on the anion exchange membrane on the side of the concentration chamber.

【0018】本発明において、脱塩室の通水方向の切り
換え時期としては、特に制限されないが、処理水の水質
が低下し始めた直後、あるいはその直前とすることが好
ましく、例えば、原水の成分と電気式脱イオン水製造装
置の能力により経験的に判断して切り換える方法及び通
水工程における電気式脱イオン水製造装置の下流に設置
された抵抗率計やシリカ計等により判断して切り換える
方法等が挙げられる。
In the present invention, the timing of switching the water flow direction of the desalting chamber is not particularly limited, but is preferably immediately after or immediately before the quality of the treated water starts to decrease. And method of switching by empirically judging from the capacity of the electric deionized water production apparatus and the method of judging by the resistivity meter or silica meter installed downstream of the electric deionized water production apparatus in the water passage process And the like.

【0019】脱塩室の通水方向の切り換え後の通水処理
は、処理水を得ると共に、水酸化カルシウム等を蓄積し
たイオン交換膜を電気的に回生させる処理である。すな
わち、図4中、脱イオン水流出口aから原水を流入させ
る(図中、通水方向を示す矢印は省略)。脱イオン水流
出口aから流入した原水は前述した通水方向切換え前の
場合とは逆に各脱塩室44を上昇し、混合イオン交換樹
脂43の充填層を通過する際に不純物イオンが除かれ、
処理水が図4における被処理水流入口Aから得られる。
また、同時に、アニオン交換膜42の入口側(すなわ
ち、通水方向切換え前における処理水の出口側)に蓄積
している水酸化カルシウム等が原水に含まれるCl-1
SO4 -2などの不純物イオンなどにより、いわゆる酸洗
浄されて徐々に溶解する。したがって、アニオン交換膜
42は徐々に回生される。一方、通水方向切換え後の長
期間の通水処理により、微量のカルシウムイオン等が水
酸化物となってアニオン交換膜の出口側(通水方向切り
換え前における析出場所の反対側)に徐々に析出し、前
述の如く、ついには処理水の水質が低下するという事態
を招く。そして、再び、処理水の水質が低下し始めた直
後、あるいはその直前で脱塩室の原水の通水方向を反転
させることにより、同様の操作が繰り返される。
The water passage treatment after switching the water passage direction of the desalting chamber is a treatment for obtaining treated water and electrically regenerating an ion exchange membrane in which calcium hydroxide and the like are accumulated. That is, in FIG. 4, the raw water flows in from the deionized water outlet a (the arrow indicating the water flow direction is omitted in the figure). The raw water flowing from the deionized water outlet a rises in each of the deionization chambers 44 in reverse to the case before the water flow direction switching, and the impurity ions are removed when passing through the packed bed of the mixed ion exchange resin 43. ,
The treated water is obtained from the treated water inlet A in FIG.
At the same time, calcium hydroxide and the like accumulated in the inlet side of the anion exchange membrane 42 (ie, the outlet side of the treated water before switching of the water flow direction) include Cl -1 contained in the raw water,
It is so-called acid-washed by impurity ions such as SO 4 -2 and gradually dissolved. Therefore, the anion exchange membrane 42 is gradually regenerated. On the other hand, by the long-term water-flow treatment after the water-flow direction switching, a trace amount of calcium ions and the like become hydroxides and gradually move toward the outlet side of the anion exchange membrane (the side opposite to the deposition site before the water-flow direction switching). It precipitates, and as described above, eventually causes a situation in which the quality of the treated water deteriorates. Then, the same operation is repeated by reversing the flow direction of the raw water in the desalting chamber immediately after or immediately before the quality of the treated water starts to decrease.

【0020】本発明の電気式脱イオン水製造装置におい
て、脱塩室の通水方向を反転させる切り換え手段として
は、特に制限されないが、例えば、次の第1の実施の形
態から第3の実施の形態で説明される切り換え手段が挙
げられる。
In the electric deionized water producing apparatus of the present invention, the switching means for reversing the direction of water flow in the desalting chamber is not particularly limited. For example, the switching means may be any of the following first to third embodiments. The switching means described in the embodiment is exemplified.

【0021】(第1の実施の形態における切り換え手
段)本発明の第1の実施の形態における電気式脱イオン
水製造装置の切り換え手段を図1のブロック図を参照し
て説明する。図1において、電気式脱イオン水製造装置
の切り換え手段は、脱塩室へ原水を供給する被処理水入
口と処理水を排出する処理水出口を反転可能な配管系お
よび弁を備えるものである。また、該第1の実施の形態
は脱塩室の通水方向の切り換えと同時に濃縮室の通水方
向の切り換えを行う。図1中、電気式脱イオン水製造装
置30は簡略的に脱塩室10及び濃縮室20で示す。図
1において、通水工程は次のように行う。まず、弁1、
弁4、弁5、弁8を開、弁2、弁3、弁6、弁7を閉の
状態として、原水を弁1を経由する送液管により電気式
脱イオン製造装置30の脱塩室10に供給し、弁4を経
由して処理水を得る。この時、脱塩室10の通水方向は
図中、右向きである。また、原水は弁1、弁5を経由す
る送液管により電気式脱イオン製造装置30の濃縮室2
0にも供給され、弁8を経て排出される。この時、濃縮
室20の通水方向は図中、右向きである。該通水処理に
より原水中の不純物イオンは除去されるが、一方におい
て、前述の如く、カルシウムやマグネシウムの水酸化物
はアニオン交換膜の濃縮室出口側に徐々に蓄積される。
当該通水処理は、例えば、該イオンの蓄積によって処理
水の水質が低下する点に近づくまで約2か月〜半年の適
宜の期間実施される。次に、上記通水処理した後、脱塩
室の通水方向を切り換える。該切り換えは弁2、弁3、
弁6、弁7を開、弁1、弁4、弁5、弁8を閉の状態と
して、原水を弁2を経由する送液管により電気式脱イオ
ン製造装置30の脱塩室10に供給し、弁3を経由して
処理水を得る。この時、脱塩室10の通水方向は図中、
左向きである。また、原水は弁2、弁6を経由する送液
管により電気式脱イオン製造装置30の濃縮室20にも
供給され、弁7を経て排出される。この時、濃縮室20
の通水方向は図中、左向きである。このような操作によ
り、処理水を得ると共に、前述の様な原水中のCl-1
SO4 -2などの不純物イオンによる酸洗浄作用により、
アニオン交換膜からカルシウムの水酸化物等は徐々に除
去され、アニオン交換膜は回生される。以下同様の操作
が繰り返えされる。この第1の実施の形態においては、
薬液を使用することなくイオン交換膜の回生が容易であ
る。このため、別途薬液の準備及び供給操作が不要とな
る。また、処理水の連続供給が可能である。
(Switching Means in First Embodiment) The switching means of the electric deionized water producing apparatus according to the first embodiment of the present invention will be described with reference to the block diagram of FIG. In FIG. 1, the switching means of the electric deionized water producing apparatus is provided with a piping system and a valve capable of reversing a treated water inlet for supplying raw water to a desalination chamber and a treated water outlet for discharging treated water. . In the first embodiment, the water flow direction of the condensing chamber is simultaneously switched with the water flow direction of the desalination chamber. In FIG. 1, the electric deionized water producing apparatus 30 is schematically shown by a desalting chamber 10 and a concentrating chamber 20. In FIG. 1, the water passing step is performed as follows. First, valve 1,
With the valves 4, 5, and 8 opened and the valves 2, 3, 6, and 7 closed, the desalination chamber of the electric deionization production apparatus 30 is supplied with raw water through a liquid feed pipe passing through the valve 1. 10 to obtain treated water via the valve 4. At this time, the water flow direction of the desalination chamber 10 is rightward in the figure. Raw water is supplied to the concentration chamber 2 of the electric deionization production apparatus 30 by a liquid feed pipe passing through the valves 1 and 5.
It is also supplied to 0 and discharged via valve 8. At this time, the water flow direction of the concentration chamber 20 is rightward in the figure. Although the impurity ions in the raw water are removed by the water passing treatment, on the other hand, as described above, the hydroxides of calcium and magnesium are gradually accumulated at the outlet of the anion exchange membrane in the concentration chamber.
The water passage treatment is performed for an appropriate period of about two months to half a year, for example, until a point at which the quality of the treated water decreases due to the accumulation of the ions. Next, after the water passing process, the water passing direction of the desalting chamber is switched. The switching is performed by valve 2, valve 3,
With the valves 6 and 7 opened and the valves 1, 4, 5 and 8 closed, the raw water is supplied to the desalination chamber 10 of the electric deionization production apparatus 30 by a liquid feed pipe passing through the valve 2. Then, treated water is obtained via the valve 3. At this time, the water flowing direction of the desalination chamber 10 is as shown in the figure.
It is facing left. The raw water is also supplied to the concentration chamber 20 of the electric deionization manufacturing apparatus 30 by a liquid feed pipe passing through the valves 2 and 6, and is discharged through the valve 7. At this time, the concentration room 20
Is directed leftward in the figure. By such an operation, treated water is obtained, and Cl -1 in raw water as described above,
Acid cleaning action by impurity ions such as SO 4 -2
Calcium hydroxide and the like are gradually removed from the anion exchange membrane, and the anion exchange membrane is regenerated. Hereinafter, the same operation is repeated. In the first embodiment,
It is easy to regenerate the ion exchange membrane without using a chemical solution. Therefore, separate preparation and supply operations of the chemical solution are not required. In addition, continuous supply of treated water is possible.

【0022】(第2の実施の形態における切り換え手
段)本発明の第2の実施の形態における電気式脱イオン
水製造装置の切り換え手段を図2のブロック図を参照し
て説明する。第2の実施の形態は、脱塩室の通水方向の
切り換えは行うが、濃縮室の通水方向は一定とするもの
である。図2において、図1と異なる点は、濃縮水の通
水系を、濃縮水の一部を排出しながら循環する濃縮水循
環構造とした点にあり、脱塩室の通水方向の切り換え手
段は図1と同じである。図中、濃縮室に供給される濃縮
水は被処理水又は被処理水を貯留した貯槽水とすること
が好ましい。
(Switching Means in Second Embodiment) The switching means of the electric deionized water producing apparatus according to the second embodiment of the present invention will be described with reference to the block diagram of FIG. In the second embodiment, the direction of water flow in the desalting chamber is switched, but the direction of water flow in the concentration chamber is fixed. 2 is different from FIG. 1 in that the concentrated water flow system has a concentrated water circulation structure that circulates while discharging a part of the concentrated water. Same as 1. In the figure, the concentrated water supplied to the concentration chamber is preferably water to be treated or storage tank water storing the water to be treated.

【0023】(第3の実施の形態における切り換え手
段)本発明の第3の実施の形態における電気式脱イオン
水製造装置の切り換え手段を図3のブロック図を参照し
て説明する。第3の実施の形態は弁に三方弁を用い、脱
塩室の通水方向の切り換えと同時に濃縮室の通水方向の
切り換えを行う。図3において、通水工程は次のように
行う。まず、弁9を送液管101側に切換えて、原水を
弁9、送液管101、102を経由する流路により電気
式脱イオン製造装置30の脱塩室10に供給し、送液管
103、104及び弁11を経由して流出管105から
処理水を得る。なお、弁11は処理水が送液管104か
ら流出管105に流れるように切換えておくことは勿論
である。この時、脱塩室10の通水方向は図中、右向き
である。一方、原水は弁9、送液管101、弁12及び
送液管108を経由する流路により電気式脱イオン製造
装置30の濃縮室20にも供給され、送液管109、弁
13及び送液管110を経て排出管111から排出され
る。この時、濃縮室20の通水方向は図中、右向きであ
る。次に、脱塩室の通水方向を切り換えるには、弁9を
送液管106側に、また、弁11を送液管107側に切
換えて、原水を送液管106、103を経由する流路に
より電気式脱イオン製造装置30の脱塩室10に供給
し、送液管102、107及び弁11を経由して流出管
105から処理水を得る。この時、脱塩室10の通水方
向は図中、左向きである。一方、原水は弁9、送液管1
06、弁13及び送液管109を経由する流路により電
気式脱イオン製造装置30の濃縮室20にも供給され、
送液管108、弁12及び送液管112を経て排出管1
11から排出される。この時、濃縮室20の通水方向は
図中、左向きである。この第2及び第3の実施の形態に
おいても、第1の実施の形態と同様の効果を奏する。
(Switching Means in Third Embodiment) The switching means of the electric deionized water producing apparatus according to the third embodiment of the present invention will be described with reference to the block diagram of FIG. In the third embodiment, a three-way valve is used as the valve, and the water flow direction of the condensing chamber is simultaneously switched with the water flow direction of the desalination chamber. In FIG. 3, the water passing step is performed as follows. First, the valve 9 is switched to the liquid feed pipe 101 side, and the raw water is supplied to the desalting chamber 10 of the electric deionization production apparatus 30 through the flow path passing through the valve 9 and the liquid feed pipes 101 and 102. The treated water is obtained from the outlet pipe 105 via the valves 103 and 104 and the valve 11. It is needless to say that the valve 11 is switched so that the treated water flows from the liquid sending pipe 104 to the outflow pipe 105. At this time, the water flow direction of the desalination chamber 10 is rightward in the figure. On the other hand, the raw water is also supplied to the concentration chamber 20 of the electric deionization apparatus 30 through a flow path passing through the valve 9, the liquid supply pipe 101, the valve 12, and the liquid supply pipe 108, and the liquid supply pipe 109, the valve 13, and the The liquid is discharged from the discharge pipe 111 via the liquid pipe 110. At this time, the water flow direction of the concentration chamber 20 is rightward in the figure. Next, in order to switch the water flow direction of the desalting chamber, the valve 9 is switched to the liquid supply pipe 106 and the valve 11 is switched to the liquid supply pipe 107 so that the raw water passes through the liquid supply pipes 106 and 103. The water is supplied to the desalting chamber 10 of the electric deionization production apparatus 30 through the flow path, and treated water is obtained from the outflow pipe 105 via the liquid feeding pipes 102 and 107 and the valve 11. At this time, the water flow direction of the desalting chamber 10 is leftward in the figure. On the other hand, raw water is supplied by the valve 9 and the liquid supply pipe 1
06, the flow through the valve 13 and the liquid supply pipe 109 is also supplied to the concentration chamber 20 of the electric deionization production apparatus 30,
Discharge pipe 1 via liquid supply pipe 108, valve 12 and liquid supply pipe 112
It is discharged from 11. At this time, the water flow direction of the concentration chamber 20 is leftward in the figure. The second and third embodiments also have the same effects as the first embodiment.

【0024】本発明の電気式脱イオン水製造装置の通水
処理方法は、原水を電気式脱イオン水製造装置に通水さ
せるため、原水中に含まれるカルシウムイオン、マグネ
シウムイオン、ナトリウムイオン、カリウムイオン、塩
化物イオン、硫酸イオン等の強電解質、炭酸イオン、シ
リカ等の弱電解質等の不純物イオンを除去でき、高品質
の純水を得ることができる。一方、長期間の通水処理に
おいて、カルシウムやマグネシウムの水酸化物が濃縮室
出口側のアニオン交換膜上に析出して蓄積された電気式
脱イオン水製造装置に対しては、脱塩水の通水方向を反
転させたことにより、入口側となるアニオン交換膜上の
前記析出物は原水に含まれるCl-1、SO4 -2などの不
純物イオンにより、いわゆる酸洗浄され、薬液を使用す
ることなくアニオン交換膜から蓄積物を除去できる。し
たがって、薬液を使用することなくイオン交換膜の回生
を図ることができると共に、当該装置を停止することな
く処理水を連続して供給できる。
In the method for passing water of the electric deionized water producing apparatus according to the present invention, the raw water is passed through the electric deionized water producing apparatus, so that calcium ions, magnesium ions, sodium ions, potassium contained in the raw water are contained. Impurity ions such as strong electrolytes such as ions, chloride ions and sulfate ions, and weak electrolytes such as carbonate ions and silica can be removed, and high-quality pure water can be obtained. On the other hand, in the long-term water-flow treatment, the deionized water is passed through the electric deionized water production device in which hydroxides of calcium and magnesium are deposited and accumulated on the anion exchange membrane at the outlet side of the concentration chamber. By inverting the water direction, the precipitate on the anion exchange membrane on the inlet side is so-called acid-washed by impurity ions such as Cl -1 and SO 4 -2 contained in the raw water, and a chemical solution is used. Without deposits from the anion exchange membrane. Therefore, regeneration of the ion exchange membrane can be achieved without using a chemical solution, and treated water can be continuously supplied without stopping the apparatus.

【0025】[0025]

【実施例】次に、実施例を挙げて、本発明を更に具体的
に説明するが、これは単に例示であって、本発明を制限
するものではない。 実施例1 図4に示した構造の電気式脱イオン水製造装置を用い
て、図1に示したフローにて、原水を下記の運転条件及
び上記の操作方法により、電気式脱イオン処理した。運
転期間は時間の都合上、脱塩室の通水方向切り換え操作
は1回とした。結果は最初の通水処理期間及び通水方向
切り換え後の通水処理期間の合計期間4か月に亘り、連
続して抵抗率17 MΩ・cmの脱塩水(純水)を得ること
ができた。この間、処理水のシリカ濃度は最高35ppb
であり、直流印加電圧は最高325Vであった。なお、
運転当初の処理水のシリカ濃度は30ppb であった。
EXAMPLES Next, the present invention will be described more specifically with reference to examples, but this is merely an example and does not limit the present invention. Example 1 Using an electric deionized water producing apparatus having a structure shown in FIG. 4, raw water was subjected to an electric deionization treatment according to the flow shown in FIG. 1 under the following operating conditions and the above operating method. During the operation period, the operation for switching the water flow direction of the desalting chamber was performed once because of the time. As a result, it was possible to obtain desalinated water (pure water) having a resistivity of 17 MΩ · cm continuously over a total period of 4 months including the first water passage treatment period and the water passage treatment period after switching the water passage direction. . During this time, the silica concentration of the treated water is up to 35 ppb
And the DC applied voltage was 325 V at the maximum. In addition,
The silica concentration of the treated water at the beginning of the operation was 30 ppb.

【0026】(運転条件) ・原水;逆浸透膜処理された市水 ・電気式脱イオン水製造装置;EDI-010 型(オルガノ株
式会社製) ・通水の流量;2m3/時間 ・最初の通水処理期間;2ケ月 ・通水方向切り換え後の通水処理期間;2ケ月 ・電流;2.0A ・直流印加電圧;300V
(Operating conditions) ・ Raw water; city water treated with reverse osmosis membrane ・ Electric deionized water production equipment; EDI-010 type (manufactured by Organo Co., Ltd.) ・ Flow rate of water flow: 2 m 3 / hour ・ First Water treatment period: 2 months ・ Water treatment period after switching water passage direction: 2 months ・ Current: 2.0A ・ DC applied voltage: 300V

【0027】比較例1 通水方向の切り換え操作を行わずに連続して通水処理を
行った以外は、実施例1と同様の方法に従った。結果は
通水処理期間3か月で処理水の抵抗率は5 MΩ・cm、処
理水のシリカ濃度100ppb 、直流印加電圧が550V
であった。このため、電気式脱イオン水製造装置を分解
して調べたところ、濃縮室出口側のアニオン交換膜上に
白色析出物が観察された。これは分析の結果、水酸化カ
ルシウムを含有するものであった。
Comparative Example 1 The same method as in Example 1 was followed, except that the water-passing treatment was performed continuously without switching the water-passing direction. The results are a three-month water treatment period, a resistivity of the treated water of 5 MΩ · cm, a silica concentration of the treated water of 100 ppb, and a DC applied voltage of 550 V.
Met. Therefore, when the electric deionized water producing apparatus was disassembled and examined, a white precipitate was observed on the anion exchange membrane on the outlet side of the concentration chamber. This was found to contain calcium hydroxide as a result of analysis.

【0028】[0028]

【発明の効果】本発明の方法によれば、電気式脱イオン
水製造装置の長期間の通水処理等により、使用するイオ
ン交換膜にカルシウムやマグネシウムの水酸化物からな
る不純物が蓄積された場合、薬液を使用することなく該
イオン交換膜の回生を図ることができる。このため、別
途薬液の準備及び供給操作が不要となる。また、処理水
(脱塩水)を連続して得ることができるため、特に半導
体デバイス製造分野における超純水の供給停止による操
業率の低下等を解消できる。
According to the method of the present invention, impurities consisting of hydroxides of calcium and magnesium are accumulated in the ion exchange membrane to be used by long-term water passing treatment of the electric deionized water producing apparatus. In this case, the ion exchange membrane can be regenerated without using a chemical solution. Therefore, separate preparation and supply operations of the chemical solution are not required. In addition, since treated water (demineralized water) can be continuously obtained, it is possible to eliminate a decrease in the operation rate due to a stoppage of the supply of ultrapure water, particularly in the semiconductor device manufacturing field.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の第1の実施の形態における電気式脱イ
オン水製造装置の切り換え手段を使用する通水処理方法
のブロック図を示す。
FIG. 1 is a block diagram showing a flow-through treatment method using a switching means of an electric deionized water producing apparatus according to a first embodiment of the present invention.

【図2】本発明の第2の実施の形態における電気式脱イ
オン水製造装置の切り換え手段を使用する通水処理方法
のブロック図を示す。
FIG. 2 is a block diagram of a water passage treatment method using a switching unit of an electric deionized water production apparatus according to a second embodiment of the present invention.

【図3】本発明の第3の実施の形態における電気式脱イ
オン水製造装置の切り換え手段を使用する通水処理方法
のブロック図を示す。
FIG. 3 is a block diagram showing a flow-through treatment method using a switching means of an electric deionized water producing apparatus according to a third embodiment of the present invention.

【図4】本発明で使用する電気式脱イオン水製造装置の
模式断面図を示す。
FIG. 4 is a schematic sectional view of an electric deionized water producing apparatus used in the present invention.

【符号の説明】[Explanation of symbols]

1〜8 二方弁 9、11〜13 三方弁 10、44 脱塩室 20、45 濃縮室 30 電気式脱イオン水製造装置 41 カチオン交換膜 42 アニオン交換膜 43 混合イオン交換樹脂 49、50 電極 101〜104、106〜110、112 送液管 105 流出管 111 排出管 1-8 Two-way valve 9,11-13 Three-way valve 10,44 Deionization chamber 20,45 Concentration chamber 30 Electric deionized water production device 41 Cation exchange membrane 42 Anion exchange membrane 43 Mixed ion exchange resin 49,50 Electrode 101 To 104, 106 to 110, 112 Liquid supply pipe 105 Outflow pipe 111 Drain pipe

フロントページの続き Fターム(参考) 4D006 GA17 HA47 HA61 JA43Z JA44Z KA01 KA26 KA64 KB11 KC03 KC13 KE13P KE19P PA01 PB02 PB08 PB23 PB27 PB28 PC01 PC02 4D061 DA01 DA02 DA08 DB14 DB19 DC19 EA02 EB01 EB04 EB13 EB22 EB39 GC16 Continued on the front page F term (reference) 4D006 GA17 HA47 HA61 JA43Z JA44Z KA01 KA26 KA64 KB11 KC03 KC13 KE13P KE19P PA01 PB02 PB08 PB23 PB27 PB28 PC01 PC02 4D061 DA01 DA02 DA08 DB14 DB19 DC19 EA02 EB01 EB02 EB01 EB04

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 陽極と陰極の間にカチオン交換膜とアニ
オン交換膜を交互に配し、両膜の間に脱塩室と濃縮室を
交互に形成した電気式脱イオン水製造装置であって、前
記脱塩室の通水方向を反転させる切り換え手段を有する
ことを特徴とする電気式脱イオン水製造装置。
1. An electric deionized water producing apparatus comprising a cation exchange membrane and an anion exchange membrane alternately arranged between an anode and a cathode, and a desalination chamber and a concentration chamber alternately formed between both membranes. An electric deionized water producing apparatus, comprising switching means for reversing the direction of water flow in the desalting chamber.
【請求項2】 原水を電気式脱イオン水製造装置に通水
して処理水を得る通水処理方法において、前記電気式脱
イオン水製造装置の脱塩室の通水向きを、定期又は不定
期に反転させて通水することを特徴とする電気式脱イオ
ン水製造装置の通水処理方法。
2. In a water treatment method in which raw water is passed through an electric deionized water producing apparatus to obtain treated water, the water flowing direction of a desalting chamber of the electric deionized water producing apparatus is periodically or irregularly changed. A method of passing water through an electric deionized water producing apparatus, characterized in that the water is periodically inverted and passed.
JP10287537A 1998-10-09 1998-10-09 Device for production of electrically deionized water and passing treatment of water through the same Pending JP2000117261A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP10287537A JP2000117261A (en) 1998-10-09 1998-10-09 Device for production of electrically deionized water and passing treatment of water through the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP10287537A JP2000117261A (en) 1998-10-09 1998-10-09 Device for production of electrically deionized water and passing treatment of water through the same

Publications (1)

Publication Number Publication Date
JP2000117261A true JP2000117261A (en) 2000-04-25

Family

ID=17718631

Family Applications (1)

Application Number Title Priority Date Filing Date
JP10287537A Pending JP2000117261A (en) 1998-10-09 1998-10-09 Device for production of electrically deionized water and passing treatment of water through the same

Country Status (1)

Country Link
JP (1) JP2000117261A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113354040A (en) * 2021-06-04 2021-09-07 杭州贝思特节能环保科技有限公司 Salting electrodialysis device and using method thereof
CN113493264A (en) * 2020-04-01 2021-10-12 佛山市云米电器科技有限公司 Household water purifying device

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113493264A (en) * 2020-04-01 2021-10-12 佛山市云米电器科技有限公司 Household water purifying device
CN113354040A (en) * 2021-06-04 2021-09-07 杭州贝思特节能环保科技有限公司 Salting electrodialysis device and using method thereof

Similar Documents

Publication Publication Date Title
JP3826690B2 (en) Electrodeionization device and pure water production device
US8628653B2 (en) Electrodeionization apparatus
US7582198B2 (en) Water treatment system and method
JP3385553B2 (en) Electric deionized water production apparatus and deionized water production method
JP2006297392A (en) Device for electro-deionization by polarity inversion and double inversion, and its usage
MXPA06005386A (en) Water treatment system and method
JPH02277526A (en) Device and module for electrodeionization
MXPA06005384A (en) Water treatment system and method
JPH08150393A (en) Production of deionized water by electrolytic deionization method
JP2001259376A (en) Deionized water making apparatus
JP3788318B2 (en) Electrodeionization apparatus and electrodeionization method
WO1997046491A1 (en) Process for producing deionized water by electrical deionization technique
JP3480661B2 (en) Water treatment method for electric deionized water production equipment
JP3818467B2 (en) Method for operating electric desalting apparatus and electric desalting apparatus used for carrying out the method
EP1685070B1 (en) Water treatment system and method
JPH10323673A (en) Deionized water-producing method
JP2004033977A (en) Operation method of electrically deionizing apparatus
JP4397089B2 (en) Operation method of electric deionized water production equipment
JP2000117261A (en) Device for production of electrically deionized water and passing treatment of water through the same
JP3570350B2 (en) Electrodeionization equipment and pure water production equipment
JP2002205071A (en) Electric deionized water manufacturing apparatus and method of manufacturing deionized water
JP2003001258A (en) Electrolytic deionizing apparatus
JP4090646B2 (en) Pure water production apparatus and method
JP4915843B2 (en) Electric softening device, softening device and soft water production method
JP2003266077A (en) Electrical deionizing device

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20041221

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060111

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20060703