JP2001250707A - Permanent magnet material - Google Patents

Permanent magnet material

Info

Publication number
JP2001250707A
JP2001250707A JP2000062946A JP2000062946A JP2001250707A JP 2001250707 A JP2001250707 A JP 2001250707A JP 2000062946 A JP2000062946 A JP 2000062946A JP 2000062946 A JP2000062946 A JP 2000062946A JP 2001250707 A JP2001250707 A JP 2001250707A
Authority
JP
Japan
Prior art keywords
plating layer
layer
magnet material
alloy plating
permanent magnet
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2000062946A
Other languages
Japanese (ja)
Inventor
Nobuyuki Yoshino
吉野  信幸
Hidetake Hashimoto
英豪 橋本
Shinji Ikeda
信二 池田
Takeshi Takahashi
武志 高橋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
AGEO SEIMITSU KK
Citizen Watch Co Ltd
Original Assignee
AGEO SEIMITSU KK
Citizen Watch Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by AGEO SEIMITSU KK, Citizen Watch Co Ltd filed Critical AGEO SEIMITSU KK
Priority to JP2000062946A priority Critical patent/JP2001250707A/en
Publication of JP2001250707A publication Critical patent/JP2001250707A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F41/00Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties
    • H01F41/02Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties for manufacturing cores, coils, or magnets
    • H01F41/0253Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties for manufacturing cores, coils, or magnets for manufacturing permanent magnets
    • H01F41/026Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties for manufacturing cores, coils, or magnets for manufacturing permanent magnets protecting methods against environmental influences, e.g. oxygen, by surface treatment

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Environmental & Geological Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Chemically Coating (AREA)
  • Electroplating Methods And Accessories (AREA)
  • Hard Magnetic Materials (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a permanent magnet material of R-Fe-B composition (R denotes a rare earth element) which is enhanced in magnetic characteristics and corrosion resistance by a method wherein a plated film is improved in adhesion and corrosion resistance. SOLUTION: A Zn plating layer or a Zn alloy plating layer is formed on the surface of a sintered magnet material, and then an Ni plating layer or an Ni alloy plating layer is deposited thereon.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、R−Fe−B系組
成(Rは希土類元素)の希土類焼結永久磁石に関し、特
に、高度の磁気特性を有し、優れた耐食性を有する永久
磁石材料に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a rare earth sintered permanent magnet having an R--Fe--B composition (R is a rare earth element), and more particularly to a permanent magnet material having high magnetic properties and excellent corrosion resistance. About.

【0002】[0002]

【従来の技術】R−Fe−B系組成の希土類焼結永久磁
石、その中でもNd−Fe−B組成からなる希土類焼結
永久磁石は、非常に優れた磁気特性を持ち、特に、その
最大エネルギー積はSmCo系磁石を凌ぎ、最近では5
0MGOeを越える高性能磁石が量産化されており、現
在の情報エレクトロニクス社会に必要不可欠な機能性材
料として活躍している。
2. Description of the Related Art Rare-earth sintered permanent magnets having an R-Fe-B composition, and among them, rare-earth sintered permanent magnets having an Nd-Fe-B composition have extremely excellent magnetic properties, and particularly have a maximum energy. The product surpasses SmCo-based magnets,
High-performance magnets exceeding 0MGOe have been mass-produced and are playing an active role as functional materials indispensable in the current information electronics society.

【0003】近年、磁石を応用したコンピュータ関連機
器やCDプレーヤー、ミニディスクシステム、携帯電話
をはじめとする電子機器の軽薄短小化、高密度化、高容
量化、高性能化、省電力・省エネルギー化に伴い、R−
Fe−B組成からなる希土類永久磁石、特に、Nd−F
e−B組成の焼結磁石の小型化、薄型化が要求されてい
る。
[0003] In recent years, electronic devices such as computer-related devices, CD players, mini disk systems, and mobile phones using magnets have been reduced in size, weight, density, capacity, performance, power and energy savings. With, R-
Rare-earth permanent magnets of Fe-B composition, especially Nd-F
There has been a demand for smaller and thinner sintered magnets having an EB composition.

【0004】R−Fe−B系焼結磁石を小型化あるいは
薄型の実用形状に加工し、磁気回路に実装するために
は、成形焼結したブロック状の焼結磁石を切断、研削あ
るいは研磨加工などの機械加工をする必要があり、この
加工にはワイヤーソー等の切断機や表面研削機、センタ
レス研磨機、ラッピングマシン等が使用される。
[0004] In order to process the R-Fe-B based sintered magnet into a smaller or thinner practical shape and mount it on a magnetic circuit, it is necessary to cut, grind or polish the molded and sintered block-shaped sintered magnet. It is necessary to machine such as a wire saw, a cutting machine such as a wire saw, a surface grinding machine, a centerless polishing machine, a lapping machine and the like.

【0005】しかしながら、上記のような加工を行う
と、R−Fe−B系組成の希土類焼結永久磁石は僅かな
水分(水蒸気)や酸、アルカリの存在によって永久磁石
表面に酸化物や水和物が形成され、腐食が開始する。そ
の後、電気化学的な腐食は、時間の経過と共に磁石内部
まで進行し、磁石層が侵食されて錆が発生し、さらに進
行すると最終的には構成粒子の欠落が発生する。その結
果、磁気特性は著しく劣化してしまう。この現象は劣化
速度には差があるものの加工の有無を問わずに発生する
ものである。一般に永久磁石材料の使用環境は湿気の存
在を避け難いため、R−Fe−B系組成の希土類焼結永
久磁石表面には耐食性を付与する目的で、適切な表面処
理を施さなければならない。
However, when the above-described processing is performed, the rare-earth sintered permanent magnet having the R—Fe—B composition has an oxide or hydrate on the surface of the permanent magnet due to the presence of a small amount of water (steam), acid, or alkali. Things are formed and corrosion begins. Thereafter, the electrochemical corrosion progresses to the inside of the magnet with the passage of time, the erosion of the magnet layer causes rust, and further progress results in the loss of constituent particles. As a result, magnetic properties are significantly degraded. This phenomenon occurs irrespective of the presence or absence of processing, although there is a difference in the degradation speed. Generally, it is difficult to avoid the presence of moisture in the environment in which the permanent magnet material is used. Therefore, an appropriate surface treatment must be applied to the surface of the rare earth sintered permanent magnet having the R-Fe-B composition in order to impart corrosion resistance.

【0006】上記の表面処理方法としては、既に、電気
あるいは無電解メッキ法によってNiメッキ層、あるい
はNi−P合金メッキ層を希土類焼結永久磁石の最表面
に被覆する方法やアルミニウム蒸着膜を被覆後、その表
面にクロム複合酸化物の薄膜層を形成する方法(アルミ
クローメート処理)や電着塗装、エポキシあるいはフッ
素樹脂のスプレー塗装が実用化されている。
As the above-mentioned surface treatment method, a method of coating a Ni plating layer or a Ni-P alloy plating layer on the outermost surface of a rare earth sintered permanent magnet by an electric or electroless plating method, or a method of coating an aluminum vapor-deposited film. Thereafter, a method of forming a thin layer of a chromium composite oxide on the surface (aluminum chromate treatment), electrodeposition coating, or spray coating of epoxy or fluororesin has been put to practical use.

【0007】[0007]

【発明が解決しようとする課題】しかしながら、これら
の方法はいずれもいくつかの欠点を有している。アルミ
クロメート処理では、蒸着装置をはじめ、その後のクロ
ム複合酸化物の薄膜層を形成する工程でも環境問題の観
点から廃液の処理設備などの高価な設備や大量の電力や
水が必要であり、最終的にはコストアップに繋がる。ま
た、微小な穴内部や溝部へのコーティングが困難である
などの欠点がある。更に、クロム複合酸化物の薄膜層を
形成する工程では人体の健康を害する恐れが生ずる。
However, each of these methods has some disadvantages. In the aluminumate treatment, expensive equipment such as waste liquid treatment equipment and a large amount of electric power and water are required from the viewpoint of environmental problems in the subsequent step of forming a thin film layer of chromium composite oxide, including a vapor deposition apparatus. It leads to cost increase. In addition, there is a disadvantage that it is difficult to coat the inside of the minute hole or the groove. Further, in the step of forming the thin film layer of the chromium composite oxide, there is a risk that human health may be impaired.

【0008】電着塗装では、磁石の形状によっては電界
分布が不均一となり塗装膜厚が場所により異なる現象が
生ずる。特に鋭角な角部を有する箇所では電界が集中
し、設定膜厚よりも著しく塗装膜厚が厚くなり、磁石全
体の寸法精度が要求される場合には問題となる。場合に
よっては後加工が必要となるケースも発生する。さらに
は得られた塗装被膜にはピンホールが数多く存在し、時
間経過に伴い、水分が磁石表面に到達し、腐食の原因と
なる問題点がある。また、エポキシあるいはフッ素樹脂
のスプレー塗装では、膜厚の制御が困難であること、ま
た、膜厚が薄いとピンホールの発生確率が大きくなり、
腐食が発生するなどの問題がある。
[0008] In the electrodeposition coating, the electric field distribution becomes non-uniform depending on the shape of the magnet, and a phenomenon occurs in which the coating film thickness varies depending on the location. In particular, an electric field concentrates at a portion having a sharp corner, and the coating film thickness becomes significantly larger than the set film thickness. This is a problem when dimensional accuracy of the entire magnet is required. In some cases, post-processing may be required. Furthermore, there are many pinholes in the obtained coating film, and there is a problem that as time passes, water reaches the surface of the magnet and causes corrosion. In addition, it is difficult to control the film thickness by spray coating of epoxy or fluororesin, and when the film thickness is small, the probability of occurrence of pinholes increases,
There are problems such as corrosion.

【0009】一方、電気あるいは無電解メッキ法による
NiあるいはNi合金メッキは、安価で、優れた耐食性
付与方法として既に多方面に応用されており、この方法
は形状に関わらず、ほぼ均一な膜厚で全面被覆が可能で
あること、膜厚の制御が容易でピンホールの少ない膜形
成が可能であること、更には大規模で高価な設備を必要
としないことなど、上述の表面処理方法と比較し、優位
な点を数多く有しており、R−Fe−B系組成の希土類
焼結永久磁石材料の耐食性付与方法として高い評価を受
け、広く使用されている。
On the other hand, Ni or Ni alloy plating by an electric or electroless plating method has already been applied to various fields as a method for imparting excellent corrosion resistance at low cost, and this method has a substantially uniform film thickness regardless of the shape. Compared to the above surface treatment methods, such as that the entire surface can be coated with, the film thickness can be easily controlled and a film with few pinholes can be formed, and no large-scale and expensive equipment is required. It has many advantages and is highly evaluated as a method for imparting corrosion resistance to rare earth sintered permanent magnet materials having an R-Fe-B composition, and is widely used.

【0010】しかしながら、電気あるいは無電解メッキ
法によるNiあるいはNi合金メッキ層では、実用上、
充分な耐食性を得られない。すなわち、NiあるいはN
i合金メッキ層を直接、R−Fe−B系組成の希土類焼
結永久磁石表面に形成すると密着性が不充分であるた
め、時間の経過と共にメッキ層の割れや剥離が生じる可
能性がある。特に高温高湿環境下では顕著である。ま
た、NiあるいはNi合金メッキ層を充分な耐食性を得
るために膜厚を厚くして、被覆した場合、メッキ層が有
する膜の内部応力によって、磁石自体が破壊される場合
もある。
However, in the case of a Ni or Ni alloy plating layer formed by an electric or electroless plating method,
Sufficient corrosion resistance cannot be obtained. That is, Ni or N
If the i-alloy plating layer is formed directly on the surface of the rare earth sintered permanent magnet having the R-Fe-B composition, the adhesion is insufficient, so that the plating layer may be cracked or peeled off with time. This is particularly noticeable in a high-temperature and high-humidity environment. Further, when the Ni or Ni alloy plating layer is coated with a large thickness in order to obtain sufficient corrosion resistance, the magnet itself may be destroyed by internal stress of the film of the plating layer.

【0011】上記課題の解決のため、例えば、特開平1
−42805号公報や特開平5−109519号公報の
ように、下地層としてCu層やSn層を形成し、この上
にNiあるいはNi合金メッキ層を被覆することによ
り、メッキ被膜の密着性の改善を図り、耐食性を付与す
る例が開示されているが、これらの下地層はそれ自体が
耐食性に劣る。したがって、Cu層やSn層である下地
層の上にNiあるいはNi合金メッキ層を積層した場
合、NiあるいはNi合金メッキ層は通常、ゴミ(パー
ティクル)の付着等による、ピンホールの発生が避けら
れず、僅かではあるがピンホールが存在するため、そこ
から水蒸気や水が徐々に侵入し、時間の経過と共に下地
層が腐食する。その結果、Cu層やSn層からなる下地
層に、ピンホールやクラック等が発生し、磁石材料表面
にまで水分が到達し、最終的には磁石材料が腐食してし
まう現象が生ずる。また、Cu層やSn層は主に電気メ
ッキ法で形成するが、この場合、一般には両者とも電流
効率が悪いために、析出速度が遅く、生産性および経済
性に劣る問題があった。
In order to solve the above problems, for example, Japanese Patent Laid-Open No.
As described in JP-A-42805 and JP-A-5-109519, a Cu layer or a Sn layer is formed as an underlayer, and a Ni or Ni alloy plating layer is coated thereon to improve the adhesion of the plating film. For example, these underlayers themselves have poor corrosion resistance. Therefore, when a Ni or Ni alloy plating layer is laminated on an underlayer which is a Cu layer or a Sn layer, the Ni or Ni alloy plating layer usually avoids generation of pinholes due to adhesion of dust (particles). However, since a small number of pinholes are present, water vapor and water gradually penetrate therefrom, and the underlying layer is corroded over time. As a result, pinholes, cracks, and the like are generated in the underlying layer made of the Cu layer or the Sn layer, and the moisture reaches the surface of the magnet material, eventually causing a phenomenon that the magnet material is corroded. Further, the Cu layer and the Sn layer are mainly formed by an electroplating method. In this case, however, generally, both have low current efficiency, so that the deposition rate is low, and there is a problem that productivity and economy are poor.

【0012】本発明はかかる問題点に鑑みてなされたも
ので、その目的は、R−Fe−B系組成の希土類焼結永
久磁石に関し、メッキ被膜の密着性、耐食性を向上させ
ることにより、高度の磁気特性を有し、優れた耐食性を
有する永久磁石材料を提供することにある。
The present invention has been made in view of the above-mentioned problems, and an object of the present invention is to provide a rare earth sintered permanent magnet having an R-Fe-B composition, and to improve the adhesion and corrosion resistance of a plating film to improve the durability. Another object of the present invention is to provide a permanent magnet material having the following magnetic properties and excellent corrosion resistance.

【0013】[0013]

【課題を解決するための手段】上記目的を達成するた
め、本発明による永久磁石材料は、下記記載の構成から
なっている。すなわち、本発明の永久磁石材料は、R−
Fe−B系組成(Rは希土類元素)からなる磁石材料の
表面に被覆層を有する永久磁石材料であって、その被覆
層がZnメッキ層あるいはZn合金メッキ層と、Niメ
ッキ層あるいはNi合金メッキ層を有することを特徴と
する。
In order to achieve the above object, a permanent magnet material according to the present invention has the following constitution. That is, the permanent magnet material of the present invention has a R-
A permanent magnet material having a coating layer on the surface of a magnet material made of an Fe-B composition (R is a rare earth element), wherein the coating layer is a Zn plating layer or a Zn alloy plating layer, and a Ni plating layer or a Ni alloy plating. It is characterized by having a layer.

【0014】また、本発明の永久磁石材料は、Znメッ
キ層あるいはZn合金メッキ層が、永久磁石材料の表面
に有することを特徴とする。
The permanent magnet material according to the present invention is characterized in that a Zn plating layer or a Zn alloy plating layer is provided on the surface of the permanent magnet material.

【0015】また、本発明の永久磁石材料は、Znメッ
キ層あるいはZn合金メッキ層が、Niメッキ層あるい
はNi合金メッキ層の下層に有することを特徴とする。
Further, the permanent magnet material of the present invention is characterized in that the Zn plating layer or the Zn alloy plating layer is provided below the Ni plating layer or the Ni alloy plating layer.

【0016】また、好ましくは、本発明の永久磁石材料
は、Znメッキ層あるいはZn合金メッキ層の膜厚が
0.1μm以上であることを特徴とする。
Preferably, the permanent magnet material of the present invention is characterized in that the Zn plating layer or the Zn alloy plating layer has a thickness of 0.1 μm or more.

【0017】また、好ましくは、本発明の永久磁石材料
は、Niメッキ層あるいはNi合金メッキ層の膜厚が2
μm以上であることを特徴とする。
Preferably, in the permanent magnet material of the present invention, the Ni plating layer or the Ni alloy plating layer has a thickness of 2 nm.
μm or more.

【0018】(作用)本発明の永久磁石材料に関し、N
iメッキ層あるいはNi合金メッキ層の密着性、耐食性
を充分に満足させ、生産性および経済性に優れるメッキ
被膜構造について、本発明者が種々検討した結果、Zn
メッキ層あるいはZn合金メッキ層を永久磁石材料の表
面に形成し、その上にNiメッキ層あるいはNi合金メ
ッキ層を積層することが最適であることを見い出した。
(Function) Regarding the permanent magnet material of the present invention, N
As a result of various studies by the present inventor on the plating film structure that sufficiently satisfies the adhesion and corrosion resistance of the i-plated layer or the Ni alloy plated layer and is excellent in productivity and economy,
It has been found that it is optimal to form a plating layer or a Zn alloy plating layer on the surface of a permanent magnet material and to laminate a Ni plating layer or a Ni alloy plating layer thereon.

【0019】この効果発現の原因は、Znメッキ層ある
いはZn合金メッキ層が、R−Fe−B系組成の磁石材
料やNiメッキ層あるいはNi合金メッキ層との密着性
に優れているということに加え、Znメッキ層あるいは
Zn合金メッキ層は一般に腐食しやすい金属ではある
が、R−Fe−B系組成の磁石材料の表面に形成する
と、たとえNiメッキ層あるいはNi合金メッキ層のピ
ンホールを通過して、水分がZnメッキ層あるいはZn
合金メッキ層に到達しても、Znメッキ層あるいはZn
合金メッキ層は、Cu層やSn層と異なり、R−Fe−
B系組成の磁石材料との間で陽極的に作用し、Znメッ
キ層あるいはZn合金メッキ層のみが腐食し、その下の
R−Fe−B系組成の磁石材料には何ら影響を及ぼさな
いという自己腐食現象によって磁石材料の腐食をくい止
める作用を有することに起因している。
The cause of this effect is that the Zn plating layer or the Zn alloy plating layer has excellent adhesion to the magnet material of the R—Fe—B composition, the Ni plating layer, or the Ni alloy plating layer. In addition, a Zn plating layer or a Zn alloy plating layer is generally a metal which is easily corroded. However, if it is formed on the surface of a magnet material having an R-Fe-B composition, it passes through a pinhole of the Ni plating layer or the Ni alloy plating layer. And the moisture is changed to the Zn plating layer or Zn
Even when reaching the alloy plating layer, the Zn plating layer or Zn
The alloy plating layer is different from the Cu layer and the Sn layer in that the R-Fe-
It acts anodicly with the B-based magnet material, corrodes only the Zn plating layer or Zn alloy plating layer, and has no effect on the underlying R-Fe-B-based magnet material. This is because the self-corrosion phenomenon has an action of stopping corrosion of the magnet material.

【0020】この効果はZnメッキ層あるいはZn合金
メッキ層に多少のピンホールやクラックが存在しても、
何ら差し支えないことが、本発明者によって確認されて
いる。また、Znメッキ層あるいはZn合金メッキ層は
通常、電気メッキ法により形成されるが、CuやSnの
電気メッキ法と比較し、メッキ析出速度が早く、電流効
率に優れてることは既知の事実である。
This effect can be obtained even if some pinholes or cracks exist in the Zn plating layer or the Zn alloy plating layer.
It has been confirmed by the present inventors that there is no problem. In addition, the Zn plating layer or the Zn alloy plating layer is usually formed by an electroplating method, but it is a known fact that the plating deposition rate is high and the current efficiency is excellent as compared with the Cu or Sn electroplating method. is there.

【0021】したがって、Znメッキ層あるいはZn合
金メッキ層と耐食性に優れたNiメッキ層あるいはNi
合金メッキ層を組み合わせ、積層することにより、その
相乗効果によって、密着性の良いメッキ層が被覆され
た、より優れた耐食性を有する、生産性および経済性に
も優れたR−Fe−B系組成の永久磁石材料の提供が可
能となる。また、最表層にNiメッキ層あるいはNi合
金メッキ層を形成すれば、装飾的外観にも見栄えのする
磁石となる効果もある。
Therefore, a Zn plating layer or a Zn alloy plating layer and a Ni plating layer or Ni
By combining and laminating alloy plating layers, an R-Fe-B-based composition coated with a plating layer having good adhesion, having superior corrosion resistance, and having excellent productivity and economic efficiency due to a synergistic effect thereof. Of the permanent magnet material can be provided. Also, if a Ni plating layer or a Ni alloy plating layer is formed on the outermost layer, there is also an effect that the magnet can have a decorative appearance.

【0022】ここで、Zn合金メッキ層とは、Znのほ
かにCuやSnなどの他の金属との合金メッキ層である
が、Zn以外の金属としてCuやSnに限定するもので
はない。また、Zn合金メッキ層中のZnの含有量も特
に限定するものではないが、原子%で10%以上である
ことが望ましい。また、Znメッキ層あるいはZn合金
メッキ層の効果発現のためにはメッキ膜厚が0.1μm
以上が好ましいことが本発明者によって確認されてい
る。
Here, the Zn alloy plating layer is an alloy plating layer with another metal such as Cu or Sn in addition to Zn, but the metal other than Zn is not limited to Cu or Sn. Also, the content of Zn in the Zn alloy plating layer is not particularly limited, but is preferably 10% or more in atomic%. In order to achieve the effect of the Zn plating layer or the Zn alloy plating layer, the plating film thickness is 0.1 μm.
The present inventors have confirmed that the above is preferable.

【0023】また、Ni合金メッキ層とはNi−P、N
i−B、Ni−P−WあるいはNi−B−Wなどの組成
を有するメッキ層であるが、特にこれらに限定するもの
ではない。また、Niメッキ層あるいはNi合金メッキ
層のメッキ膜厚は充分な耐食性を付与するためには2μ
m以上が好ましいことが本発明者によって確認されてい
る。
The Ni alloy plating layer is Ni-P, N
The plating layer has a composition such as iB, Ni-PW or Ni-BW, but is not particularly limited thereto. The plating thickness of the Ni plating layer or the Ni alloy plating layer is 2 μm in order to impart sufficient corrosion resistance.
It has been confirmed by the present inventors that m or more is preferable.

【0024】また、NiメッキあるいはNi合金メッキ
層の形成方法は電気メッキ法、無電解メッキ法のどちら
でも可能あるが、メッキ被膜の被覆性を考慮し、微小な
穴内部やエッジ部へ均一に被覆するためには無電解メッ
キ法が好ましい。
The Ni plating or Ni alloy plating layer can be formed by either an electroplating method or an electroless plating method. For coating, an electroless plating method is preferable.

【0025】Znメッキ層あるいはZn合金メッキ層
と、Niメッキ層あるいはNi合金メッキ層の形成のた
めに行う洗浄方法や前処理方法およびメッキ浴の組成、
温度、メッキ条件は特に限定するものではないが、洗浄
や前処理に使用する各種の溶液やメッキ浴のpHは6以
上であることが好ましい。これはpH6未満の強酸性で
あると電気化学的に焼結磁石材料の腐食が進行し、磁石
層が侵食されて、磁気特性が劣化するためである。ま
た、メッキ後、各メッキ層の密着性、硬度をさらに上げ
るために熱処理を行っても良い。この時の温度は200
〜800℃が適当であり、好ましくは300℃〜400
℃が最適である。また、この時の雰囲気は特に限定する
ものではないが、窒素や不活性ガス雰囲気が好ましい。
The cleaning method and pretreatment method for forming the Zn plating layer or the Zn alloy plating layer and the Ni plating layer or the Ni alloy plating layer, the composition of the plating bath,
The temperature and plating conditions are not particularly limited, but the pH of various solutions and plating baths used for washing and pretreatment is preferably 6 or more. This is because, if the pH is less than 6, the corrosion of the sintered magnet material progresses electrochemically, the magnet layer is eroded, and the magnetic properties deteriorate. After plating, heat treatment may be performed to further increase the adhesion and hardness of each plating layer. The temperature at this time is 200
To 800 ° C is suitable, preferably 300 ° C to 400 ° C.
° C is optimal. The atmosphere at this time is not particularly limited, but a nitrogen or inert gas atmosphere is preferable.

【0026】また、本発明はZnメッキ層あるいはZn
合金メッキ層と、Niメッキ層あるいはNi合金メッキ
層の2層積層構造に限定するものではなく、Znメッキ
層あるいはZn合金メッキ層と、Niメッキ層あるいは
Ni合金メッキ層の中間に他の金属層を1層以上積層し
ても良く、また、Niメッキ層あるいはNi合金メッキ
層の上にさらに金属層や樹脂層を被覆しても良い。ま
た、本発明は焼結磁石材料に限るものではなく、R−F
e−B系組成の磁石粉を樹脂で結合したボンド磁石にも
適用可能である。
The present invention also relates to a Zn plating layer or a Zn plating layer.
The present invention is not limited to a two-layer structure of an alloy plating layer and a Ni plating layer or a Ni alloy plating layer, but may include a Zn plating layer or a Zn alloy plating layer and another metal layer between the Ni plating layer and the Ni alloy plating layer. May be laminated, or a metal layer or a resin layer may be further coated on the Ni plating layer or the Ni alloy plating layer. Further, the present invention is not limited to the sintered magnet material, and the R-F
The present invention is also applicable to a bonded magnet in which a magnet powder having an EB composition is bonded with a resin.

【0027】[0027]

【発明の実施の形態】以下、本発明の実施の形態を実施
例により詳細に説明する。 (実施例1)以下、本発明の実施例における永久磁石材
料について説明する。本実施例ではR−Fe−B系組成
(Rは希土類元素)からなる焼結磁石材料としてNd−
Fe−B組成からなる焼結磁石材料を採用した。本発明
で用いるNd−Fe−B組成からなる焼結磁石材料の製
造方法はまず、高周波溶解により所定組成のNd−Fe
−B合金を溶解しインゴットを作製する。このインゴッ
トを粗粉砕機と微粉砕機との組み合わせにより、平均粒
径3μmまで粉砕し、微粉末を得る。この微粉末を磁場
中でプレスして、c軸方向が揃った成形体を作製する。
この成形体をアルゴン雰囲気中、1100℃付近の温度
で焼結し、その後、アルゴン雰囲気中で約600℃で熱
処理することにより長さ40mm、幅30mm、厚み2
0mmの高磁気エネルギー積((BH)max)を有す
るブロック状の焼結磁石材料を得た。
DESCRIPTION OF THE PREFERRED EMBODIMENTS Embodiments of the present invention will be described below in detail with reference to examples. Embodiment 1 Hereinafter, a permanent magnet material according to an embodiment of the present invention will be described. In this embodiment, a sintered magnet material composed of an R—Fe—B based composition (R is a rare earth element) is Nd—
A sintered magnet material having an Fe-B composition was employed. The method for producing a sintered magnet material having the Nd-Fe-B composition used in the present invention is as follows.
-B alloy is melted to produce an ingot. This ingot is pulverized to a mean particle size of 3 μm by a combination of a coarse pulverizer and a fine pulverizer to obtain a fine powder. This fine powder is pressed in a magnetic field to produce a compact having a uniform c-axis direction.
This molded body is sintered at a temperature of about 1100 ° C. in an argon atmosphere, and then heat-treated at about 600 ° C. in an argon atmosphere to have a length of 40 mm, a width of 30 mm and a thickness of 2 mm.
A block-shaped sintered magnet material having a high magnetic energy product ((BH) max) of 0 mm was obtained.

【0028】その後、上記のブロック状の焼結体をワイ
ヤーソーを用いて切断し、その後、表面研削機やラッピ
ングマシン等により研削し、各辺が長さ10mm、幅1
0mm、厚さ5mm寸法の直方体を作製し、試験用サン
プルとした。
Thereafter, the block-shaped sintered body is cut using a wire saw, and then ground by a surface grinder, a lapping machine, or the like. Each side has a length of 10 mm and a width of 1 mm.
A rectangular parallelepiped having a size of 0 mm and a thickness of 5 mm was prepared and used as a test sample.

【0029】その後、この試験用サンプルをアセトン中
で超音波洗浄した後、水酸化ナトリウム20g/L、オ
ルソケイ酸ナトリウム70g/L、炭酸ナトリウム20
g/Lを含むアルカリ水溶液中で脱脂後、純水で水洗
し、熱風で乾燥した。この時、使用する有機溶媒はアセ
トンに限るものでなく、その他の有機溶媒、たとえばイ
ソプロピルアルコールやトルエンなどでも良い。同様に
アルカリ水溶液も上記成分に限るものではない。
Thereafter, the test sample was subjected to ultrasonic cleaning in acetone, and then sodium hydroxide 20 g / L, sodium orthosilicate 70 g / L, sodium carbonate 20 g / L.
After degreased in an alkaline aqueous solution containing g / L, it was washed with pure water and dried with hot air. At this time, the organic solvent used is not limited to acetone, and may be another organic solvent, such as isopropyl alcohol or toluene. Similarly, the alkaline aqueous solution is not limited to the above components.

【0030】その後、試験用サンプルを適当な導電性を
有するメッキ治具に設置後、以下の組成及び条件からな
るZnメッキ液に浸漬し、メッキ層を形成した。
Thereafter, the test sample was placed on a plating jig having appropriate conductivity, and then immersed in a Zn plating solution having the following composition and conditions to form a plating layer.

【0031】 Zn(CN)2: 70g/L NaCN: 40g/L NaOH: 100g/L pH: 12.2 液温度: 30℃ 電流密度: 2A/dm2 浸漬時間: 3分Zn (CN) 2 : 70 g / L NaCN: 40 g / L NaOH: 100 g / L pH: 12.2 Liquid temperature: 30 ° C. Current density: 2 A / dm 2 Immersion time: 3 minutes

【0032】以上の操作により、Znメッキ層2μmを
試験用サンプル全面に被覆した。
By the above operation, a Zn plating layer of 2 μm was coated on the entire surface of the test sample.

【0033】その後、純水にて水洗後、以下の組成及び
条件からなる無電解Ni−Pメッキ液に浸漬し、Znメ
ッキ層上にNi−P合金メッキ層を8μm被覆した。
Thereafter, the substrate was washed with pure water, immersed in an electroless Ni-P plating solution having the following composition and conditions, and a 8 μm Ni-P alloy plating layer was coated on the Zn plating layer.

【0034】 NaH2PO2・H20: 25g/L (NH42SO4: 10g/L C34(OH)(COONa)3・2H20: 40g/
L NiSO4・6H20: 20g/L pH: 7.5 液温度: 90℃ 浸漬時間: 30分
[0034] NaH 2 PO 2 · H 2 0 : 25g / L (NH 4) 2 SO 4: 10g / L C 3 H 4 (OH) (COONa) 3 · 2H 2 0: 40g /
L NiSO 4 · 6H 2 0: 20g / L pH: 7.5 solution Temperature: 90 ° C. immersion time: 30 minutes

【0035】メッキ終了後、水洗、乾燥し、その後30
0℃、窒素雰囲気中で1時間熱処理を行った。得られた
メッキ被膜はEPMA(電子プローブマイクロアナリシ
ス)による分析により均一な組成のZnメッキ層とNi
−P合金メッキ層からなる2層構造であることが確認さ
れた。
After plating is completed, the plate is washed with water, dried, and then
Heat treatment was performed at 0 ° C. in a nitrogen atmosphere for 1 hour. The obtained plating film was analyzed by EPMA (Electron Probe Micro-Analysis) to obtain a Zn plating layer having a uniform composition and a Ni plating layer.
It was confirmed that it had a two-layer structure composed of a -P alloy plating layer.

【0036】(実施例2)実施例1と同様に試験用サン
プルを作製後、メッキ前処理を行い、その後、試験用サ
ンプルを適当な導電性を有するメッキ治具に設置後、以
下の組成及び条件からなるZn−Cuメッキ液に浸漬
し、Zn−Cu組成の合金メッキ層を形成した。
(Example 2) After preparing a test sample in the same manner as in Example 1, pre-plating treatment was performed. Thereafter, the test sample was placed on a plating jig having appropriate conductivity, and the following composition and It was immersed in a Zn-Cu plating solution under the conditions to form an alloy plating layer having a Zn-Cu composition.

【0037】 CuCN: 20g/L Zn(CN)2: 20g/L NaCN: 50g/L NaCO3: 30g/L アンモニア水: 2cc/L pH: 10.5 液温度: 30℃ 電流密度: 0.5A/dm2 浸漬時間: 4分CuCN: 20 g / L Zn (CN) 2 : 20 g / L NaCN: 50 g / L NaCO 3 : 30 g / L Aqueous ammonia: 2 cc / L pH: 10.5 Liquid temperature: 30 ° C. Current density: 0.5 A / Dm 2 immersion time: 4 minutes

【0038】以上の操作により、Zn−Cu合金メッキ
層2μmを試験用サンプル全面に被覆した。
By the above operation, a Zn-Cu alloy plating layer of 2 μm was coated on the entire surface of the test sample.

【0039】その後、純水にて水洗後、実施例1と同様
の液組成及び条件からなる無電解Ni−Pメッキ液に浸
漬し、Zn−Cu合金メッキ層上にNi−P合金メッキ
層を8μm被覆した。
Then, after washing with pure water, it was immersed in an electroless Ni-P plating solution having the same liquid composition and conditions as in Example 1, and the Ni-P alloy plating layer was formed on the Zn-Cu alloy plating layer. 8 μm was coated.

【0040】メッキ終了後、水洗、乾燥し、その後30
0℃、窒素雰囲気中で1時間熱処理を行った。得られた
メッキ被膜はEPMA(電子プローブマイクロアナリシ
ス)による分析により均一な組成のZn−Cu合金メッ
キ層とNi−P合金メッキ層からなる2層構造であるこ
とが確認された。この時、Zn−Cu合金メッキ層中の
Zn含有量は約50原子%であった。
After plating is completed, the plate is washed with water, dried, and then dried for 30 minutes.
Heat treatment was performed at 0 ° C. in a nitrogen atmosphere for 1 hour. Analysis by EPMA (Electron Probe Micro-Analysis) confirmed that the obtained plating film had a two-layer structure composed of a Zn-Cu alloy plating layer and a Ni-P alloy plating layer having a uniform composition. At this time, the Zn content in the Zn—Cu alloy plating layer was about 50 atomic%.

【0041】(実施例3)実施例1と同様に試験用サン
プルを作製後、メッキ前処理を行い、その後、試験用サ
ンプルを適当な導電性を有するメッキ治具に設置後、以
下の組成及び条件からなるZn−Snメッキ液に浸漬
し、Zn−Sn組成の合金メッキ層を形成した。
(Example 3) After preparing a test sample in the same manner as in Example 1, pre-plating treatment was performed. Thereafter, the test sample was placed on a plating jig having appropriate conductivity, and the following composition and It was immersed in a Zn-Sn plating solution having the above conditions to form an alloy plating layer having a Zn-Sn composition.

【0042】 Na2SnO3・3H2O: 20g/L Zn(CN)2: 20g/L NaCN: 50g/L NaOH: 30g/L pH: 10.5 液温度: 50℃ 電流密度: 1.5A/dm2 浸漬時間: 5分Na 2 SnO 3 .3H 2 O: 20 g / L Zn (CN) 2 : 20 g / L NaCN: 50 g / L NaOH: 30 g / L pH: 10.5 Liquid temperature: 50 ° C. Current density: 1.5 A / Dm 2 immersion time: 5 minutes

【0043】以上の操作により、Zn−Sn合金メッキ
層2μmを試験用サンプル全面に被覆した。
Through the above operation, a Zn-Sn alloy plating layer of 2 μm was coated on the entire surface of the test sample.

【0044】その後、純水にて水洗後、実施例1と同様
の液組成及び条件からなる無電解Ni−Pメッキ液に浸
漬し、Zn−Cu合金メッキ層上にNi−P合金メッキ
層を8μm被覆した。
Then, after rinsing with pure water, it was immersed in an electroless Ni-P plating solution having the same liquid composition and conditions as in Example 1 to form a Ni-P alloy plating layer on the Zn-Cu alloy plating layer. 8 μm was coated.

【0045】メッキ終了後、水洗、乾燥し、その後30
0℃、窒素雰囲気中で1時間熱処理を行った。得られた
メッキ被膜はEPMA(電子プローブマイクロアナリシ
ス)による分析により均一な組成のZn−Sn合金メッ
キ層とNi−P合金メッキ層からなる2層構造であるこ
とが確認された。この時、Zn−Sn合金メッキ層中の
Zn含有量は約40原子%であった。
After plating is completed, the plate is washed with water, dried, and then
Heat treatment was performed at 0 ° C. in a nitrogen atmosphere for 1 hour. Analysis of the obtained plating film by EPMA (Electron Probe Micro-Analysis) confirmed that it had a two-layer structure composed of a Zn-Sn alloy plating layer and a Ni-P alloy plating layer having a uniform composition. At this time, the Zn content in the Zn—Sn alloy plating layer was about 40 atomic%.

【0046】(実施例4)実施例1と同様に試験用サン
プルを作製後、メッキ前処理を行い、その後、試験用サ
ンプルを適当な導電性を有するメッキ治具に設置後、実
施例1と同様の組成及び条件からなるZnメッキ液に浸
漬し、Znメッキ層を形成した。
(Example 4) After preparing a test sample in the same manner as in Example 1, pre-plating treatment was performed. Thereafter, the test sample was placed on a plating jig having an appropriate conductivity. It was immersed in a Zn plating solution having the same composition and conditions to form a Zn plating layer.

【0047】以上の操作により、Znメッキ層2μmを
試験用サンプル全面に被覆した。
By the above operation, a Zn plating layer of 2 μm was coated on the entire surface of the test sample.

【0048】その後、純水にて水洗後、以下の組成及び
条件からなる無電解Ni−Bメッキ液に浸漬し、Znメ
ッキ層上にNi−B合金メッキ層を8μm被覆した。
Thereafter, the substrate was washed with pure water, immersed in an electroless Ni-B plating solution having the following composition and conditions, and coated with a Ni-B alloy plating layer of 8 μm on the Zn plating layer.

【0049】 (CH32NHBH3: 10g/L C34(OH)(COONa)3・2H20: 30g/
L CH2(COOH)2: 10g/L NiSO4・6H20: 10g/L NiCl2・6H20: 20g/L その他添加剤: 2g/L pH: 7.0 液温: 70℃
[0049] (CH 3) 2 NHBH 3: 10g / L C 3 H 4 (OH) (COONa) 3 · 2H 2 0: 30g /
L CH 2 (COOH) 2 : 10 g / L NiSO 4 .6H 2 0: 10 g / L NiCl 2 .6H 2 0: 20 g / L Other additives: 2 g / L pH: 7.0 Liquid temperature: 70 ° C.

【0050】メッキ終了後、水洗、乾燥し、その後30
0℃、窒素雰囲気中で1時間熱処理を行った。得られた
メッキ被膜はEPMA(電子プローブマイクロアナリシ
ス)による分析により均一な組成のZnメッキ層とNi
−B合金メッキ層からなる2層構造であることが確認さ
れた。
After the plating is completed, the plate is washed with water, dried, and then
Heat treatment was performed at 0 ° C. in a nitrogen atmosphere for 1 hour. The obtained plating film was analyzed by EPMA (Electron Probe Micro-Analysis) to obtain a Zn plating layer having a uniform composition and a Ni plating layer.
It was confirmed that it had a two-layer structure composed of a -B alloy plating layer.

【0051】(比較例)なお、本実施例に対する比較例
1として、実施例1と同様にブロック状の焼結体を切
断、研削して試験用サンプルとした後、全く表面処理を
行わない永久磁石材料と、比較例2として、実施例1と
同様に試験用サンプルを作製後、メッキ前処理を行い、
その後、試験用サンプルを適当な導電性を有するメッキ
治具に設置後、以下の組成及び条件からなるシアン化銅
メッキ液に浸漬し、Cuメッキ層を2μm形成後、純水
にて水洗して、実施例1と同様の液組成及び条件からな
る無電解Ni−Pメッキ液に浸漬し、Cuメッキ層上に
Ni−P合金メッキ層を8μm被覆した。
(Comparative Example) As Comparative Example 1 with respect to the present embodiment, a block-shaped sintered body was cut and ground to obtain a test sample in the same manner as in Example 1, and no permanent surface treatment was performed. After preparing a magnet sample and a test sample as Comparative Example 2 in the same manner as in Example 1, pre-plating treatment was performed.
Then, after placing the test sample on a plating jig having appropriate conductivity, it is immersed in a copper cyanide plating solution having the following composition and conditions, and after forming a Cu plating layer of 2 μm, it is washed with pure water. Then, it was immersed in an electroless Ni-P plating solution having the same liquid composition and conditions as in Example 1 to cover the Cu plating layer with a Ni-P alloy plating layer of 8 μm.

【0052】 CuCN: 20g/L NaCN: 30g/L Na2CO3: 50g/L NaOH: 30g/L pH: 11.5 液温度: 40℃ 電流密度: 0.5A/dm2 浸漬時間: 5分CuCN: 20 g / L NaCN: 30 g / L Na 2 CO 3 : 50 g / L NaOH: 30 g / L pH: 11.5 Liquid temperature: 40 ° C. Current density: 0.5 A / dm 2 Immersion time: 5 minutes

【0053】メッキ終了後、水洗、乾燥し、その後30
0℃、窒素雰囲気中で1時間熱処理を行った。得られた
メッキ被膜はEPMA(電子プローブマイクロアナリシ
ス)による分析により均一な組成のCuメッキ層とNi
−P合金メッキ層からなる2層構造であることが確認さ
れた。また、比較例3として、実施例1と同様に試験用
サンプルを作製後、メッキ前処理を行い、その後、試験
用サンプルを適当な導電性を有するメッキ治具に設置
後、以下の組成及び条件からなるアルカリ性Snメッキ
液に浸漬し、試験用サンプルの表面にSnメッキ層を2
μm形成後、純水にて水洗して、実施例1と同様の液組
成及び条件からなる無電解Ni−Pメッキ液に浸漬し、
Snメッキ層上にNi−P合金メッキ層を8μm被覆し
た。
After plating is completed, the plate is washed with water, dried, and then dried for 30 minutes.
Heat treatment was performed at 0 ° C. in a nitrogen atmosphere for 1 hour. The obtained plating film was analyzed by EPMA (Electron Probe Micro Analysis) to obtain a Cu plating layer of uniform composition and Ni
It was confirmed that it had a two-layer structure composed of a -P alloy plating layer. Further, as Comparative Example 3, after preparing a test sample in the same manner as in Example 1, pre-plating treatment was performed, and thereafter, the test sample was placed on a plating jig having appropriate conductivity, and the following composition and conditions were used. Immersed in an alkaline Sn plating solution consisting of
After forming μm, it was washed with pure water and immersed in an electroless Ni-P plating solution having the same solution composition and conditions as in Example 1,
A Ni-P alloy plating layer was coated on the Sn plating layer to a thickness of 8 µm.

【0054】 Na2SnO3・3H2O: 50g/L NaOH: 10g/L pH: 10.5 液温度: 60℃ 電流密度: 1.5A/dm2 浸漬時間: 5分Na 2 SnO 3 .3H 2 O: 50 g / L NaOH: 10 g / L pH: 10.5 Liquid temperature: 60 ° C. Current density: 1.5 A / dm 2 Immersion time: 5 minutes

【0055】メッキ終了後、水洗、乾燥し、その後30
0℃、窒素雰囲気中で1時間熱処理を行った。得られた
メッキ被膜はEPMA(電子プローブマイクロアナリシ
ス)による分析により均一な組成のSnメッキ層とNi
−P合金メッキ層からなる2層構造であることが確認さ
れた。
After plating is completed, the plate is washed with water, dried, and then
Heat treatment was performed at 0 ° C. in a nitrogen atmosphere for 1 hour. The resulting plating film was analyzed by EPMA (Electron Probe Micro Analysis) to obtain a Sn plating layer having a uniform composition and Ni plating.
It was confirmed that it had a two-layer structure composed of a -P alloy plating layer.

【0056】そして、評価方法として、実施例1〜4お
よび比較例1〜3の各試験用サンプルについて振動試料
型磁力計(VSM)による磁気特性評価を行い、その
後、各サンプルを温度60℃、相対湿度95%、4日間
の雰囲気に曝す耐食試験を行い、試験後、再び、磁気特
性評価および金属顕微鏡による磁石表面の観察を行っ
た。その結果を以下の表に示す。
As an evaluation method, the magnetic properties of each test sample of Examples 1 to 4 and Comparative Examples 1 to 3 were evaluated by a vibrating sample magnetometer (VSM). A corrosion resistance test was performed by exposing to an atmosphere of 95% relative humidity for 4 days, and after the test, the magnetic properties were evaluated and the magnet surface was again observed with a metallographic microscope. The results are shown in the table below.

【0057】[0057]

【表1】 [Table 1]

【0058】表1から、本実施例1〜4で得られた永久
磁石材料はいずれも、本比較例1〜3で得られた永久磁
石材料と比較すると明らかなように、耐食試験後に磁気
特性の劣化も起こらず、変色や錆の発生も観察されず、
優れた磁気特性および耐食性を維持することが可能であ
ることが確認された。
From Table 1, it can be seen that all of the permanent magnet materials obtained in Examples 1 to 4 were compared with the permanent magnet materials obtained in Comparative Examples 1 to 3, so that the magnetic properties after the corrosion test were clear. No deterioration of the surface occurs, no discoloration or rust is observed,
It was confirmed that it was possible to maintain excellent magnetic properties and corrosion resistance.

【0059】[0059]

【発明の効果】以上説明したように、本発明による永久
磁石材料では、R−Fe−B系組成からなる磁石材料の
表面にZnメッキ層あるいはZn合金メッキ層を形成
後、Niメッキ層あるいはNi合金メッキ層を被覆する
ことにより、メッキ被膜の密着性が向上し、優れた耐食
性および高度の磁気特性を有し、更には経済性、生産性
も向上した永久磁石材料の提供が可能となり、このこと
は、各種電子製品に適用可能な磁気特性に優れた信頼性
の高い永久磁石材料の提供を可能とするものである。
As described above, in the permanent magnet material according to the present invention, after the Zn plating layer or the Zn alloy plating layer is formed on the surface of the magnet material having the R-Fe-B composition, the Ni plating layer or the Ni plating layer is formed. By coating the alloy plating layer, the adhesion of the plating film is improved, and it is possible to provide a permanent magnet material having excellent corrosion resistance and high magnetic properties, as well as improved economy and productivity. That is, it is possible to provide a highly reliable permanent magnet material having excellent magnetic properties applicable to various electronic products.

フロントページの続き (72)発明者 池田 信二 岩手県北上市北工業団地2番25号 上尾精 密株式会社内 (72)発明者 高橋 武志 岩手県北上市北工業団地2番25号 上尾精 密株式会社内 Fターム(参考) 4K022 AA02 AA44 BA04 BA14 BA16 BA24 BA32 CA28 DA01 DB02 EA01 4K024 AA03 AA05 AA14 AA17 AB02 BA01 BB14 CA03 CA04 CA06 DB01 GA04 5E040 AA04 BC01 BC08 BD01 CA01 NN05 Continuing from the front page (72) Inventor Shinji Ikeda 2-25 Kita Industrial Park, Kitakami City, Iwate Prefecture Inside Seiki Minami Co., Ltd. (72) Inventor Takeshi Takahashi 2-25 Kita Industrial Park Kitagami City, Iwate Prefecture Seiki Uegami Share Company F term (reference) 4K022 AA02 AA44 BA04 BA14 BA16 BA24 BA32 CA28 DA01 DB02 EA01 4K024 AA03 AA05 AA14 AA17 AB02 BA01 BB14 CA03 CA04 CA06 DB01 GA04 5E040 AA04 BC01 BC08 BD01 CA01 NN05

Claims (6)

【特許請求の範囲】[Claims] 【請求項1】 R−Fe−B系組成(Rは希土類元素)
からなる磁石材料の表面に被覆層を有する永久磁石材料
であって、その被覆層がZnメッキ層あるいはZn合金
メッキ層と、Niメッキ層あるいはNi合金メッキ層と
を有することを特徴とする永久磁石材料。
1. An R—Fe—B composition (R is a rare earth element)
A permanent magnet material having a coating layer on the surface of a magnet material comprising: a zinc plating layer or a Zn alloy plating layer; and a Ni plating layer or a Ni alloy plating layer. material.
【請求項2】 Znメッキ層あるいはZn合金メッキ層
が、磁石材料の表面に有することを特徴とする請求項1
に記載の永久磁石材料。
2. The method according to claim 1, wherein a Zn plating layer or a Zn alloy plating layer is provided on a surface of the magnet material.
2. The permanent magnet material according to 1.
【請求項3】 Znメッキ層あるいはZn合金メッキ層
が、Niメッキ層あるいはNi合金メッキ層の下層に有
することを特徴とする請求項1または請求項2に記載の
永久磁石材料。
3. The permanent magnet material according to claim 1, wherein the Zn plating layer or the Zn alloy plating layer is provided below the Ni plating layer or the Ni alloy plating layer.
【請求項4】 Niメッキ層あるいはNi合金メッキ層
が永久磁石材料の最表層にあることを特徴とする請求項
1から請求項3のいずれか一項に記載の永久磁石材料。
4. The permanent magnet material according to claim 1, wherein the Ni plating layer or the Ni alloy plating layer is on the outermost layer of the permanent magnet material.
【請求項5】 Znメッキ層あるいはZn合金メッキ層
の膜厚が0.1μm以上であることを特徴とする請求項
1から請求項4のいずれか一項に記載の永久磁石材料。
5. The permanent magnet material according to claim 1, wherein a thickness of the Zn plating layer or the Zn alloy plating layer is 0.1 μm or more.
【請求項6】 Niメッキ層あるいはNi合金メッキ層
の膜厚が2μm以上であることを特徴とする請求項1か
ら請求項5のいずれか一項に記載の永久磁石材料。
6. The permanent magnet material according to claim 1, wherein a thickness of the Ni plating layer or the Ni alloy plating layer is 2 μm or more.
JP2000062946A 2000-03-08 2000-03-08 Permanent magnet material Pending JP2001250707A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2000062946A JP2001250707A (en) 2000-03-08 2000-03-08 Permanent magnet material

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000062946A JP2001250707A (en) 2000-03-08 2000-03-08 Permanent magnet material

Publications (1)

Publication Number Publication Date
JP2001250707A true JP2001250707A (en) 2001-09-14

Family

ID=18582893

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000062946A Pending JP2001250707A (en) 2000-03-08 2000-03-08 Permanent magnet material

Country Status (1)

Country Link
JP (1) JP2001250707A (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7045923B2 (en) 2003-07-01 2006-05-16 Nidec Corporation Magnetizing method and permanent magnet magnetized thereby
JP2007273503A (en) * 2006-03-30 2007-10-18 Tdk Corp Magnet and manufacturing method thereof
JP2007273556A (en) * 2006-03-30 2007-10-18 Tdk Corp Magnet
CN104213162A (en) * 2013-06-04 2014-12-17 天津三环乐喜新材料有限公司 Surface treatment method for zinc alloy electroplating of automobile permanent magnetic material
CN106521586A (en) * 2016-11-28 2017-03-22 宁波韵升股份有限公司 Electrogalvanizing method of neodymium iron boron magnet
CN109518239A (en) * 2018-12-25 2019-03-26 宁波韵升股份有限公司 A kind of electro-plating method of sintered neodymium iron boron material
CN114121396A (en) * 2021-09-30 2022-03-01 宁波宁港永磁材料有限公司 High-toughness samarium-cobalt sintered magnet material and preparation method thereof

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7045923B2 (en) 2003-07-01 2006-05-16 Nidec Corporation Magnetizing method and permanent magnet magnetized thereby
JP2007273503A (en) * 2006-03-30 2007-10-18 Tdk Corp Magnet and manufacturing method thereof
JP2007273556A (en) * 2006-03-30 2007-10-18 Tdk Corp Magnet
CN104213162A (en) * 2013-06-04 2014-12-17 天津三环乐喜新材料有限公司 Surface treatment method for zinc alloy electroplating of automobile permanent magnetic material
CN104213162B (en) * 2013-06-04 2018-08-21 天津三环乐喜新材料有限公司 A kind of surface treatment method of automobile permanent magnetic material electroplating kirsite
CN106521586A (en) * 2016-11-28 2017-03-22 宁波韵升股份有限公司 Electrogalvanizing method of neodymium iron boron magnet
CN109518239A (en) * 2018-12-25 2019-03-26 宁波韵升股份有限公司 A kind of electro-plating method of sintered neodymium iron boron material
CN114121396A (en) * 2021-09-30 2022-03-01 宁波宁港永磁材料有限公司 High-toughness samarium-cobalt sintered magnet material and preparation method thereof
CN114121396B (en) * 2021-09-30 2022-09-13 宁波宁港永磁材料有限公司 High-toughness samarium-cobalt sintered magnet material and preparation method thereof

Similar Documents

Publication Publication Date Title
EP1816730A1 (en) Process for producing permanent magnet for use in automotive ipm motor
US5275891A (en) R-TM-B permanent magnet member having improved corrosion resistance and method of producing same
WO2002004714A1 (en) Electrolytic copper-plated r-t-b magnet and plating method thereof
JP2001250707A (en) Permanent magnet material
WO2007091602A1 (en) Process for production of rare earth permanent magnets having copper plating films on the surfaces
JPH03173106A (en) Rare earth permanent magnet with corrosion resistant film and manufacture thereof
JP4045530B2 (en) Electrolytic copper plating method for RTB-based magnets
CN111101173A (en) Multilayer nickel plating and dehydrogenation process for neodymium iron boron permanent magnet material
JP4770553B2 (en) Magnet and manufacturing method thereof
JP2001257112A (en) Permanent magnet material
JP2004039917A (en) Permanent magnet and manufacturing method therefor
JPH07161516A (en) Bond magnet and its production
JP2002126642A (en) Magnetic kinetic mass part for mobile telecommunication equipment and method for producing the same
KR100393680B1 (en) Multilayer coated Nd-Fe-B magnet and its manufacturing method
JP2001230106A (en) Permanent magnet material
JP2968605B2 (en) Manufacturing method of permanent magnet
JPS62120004A (en) Permanent magnet with excellent corrosion resistance and manufacture thereof
JP2631493B2 (en) Manufacturing method of corrosion resistant permanent magnet
JP3142172B2 (en) R-TM-B permanent magnet with improved adhesion and method for producing the same
JPH04288804A (en) Permanent magnet and manufacture thereof
JP2631492B2 (en) Manufacturing method of corrosion resistant permanent magnet
JP4089948B2 (en) Method for manufacturing permanent magnet for hard disk drive
JPS62120003A (en) Permanent magnet with excellent corrosion resistance and manufacture thereof
JPH069168B2 (en) High corrosion resistance rare earth permanent magnet
JP4770556B2 (en) magnet