JP2002126642A - Magnetic kinetic mass part for mobile telecommunication equipment and method for producing the same - Google Patents

Magnetic kinetic mass part for mobile telecommunication equipment and method for producing the same

Info

Publication number
JP2002126642A
JP2002126642A JP2000323840A JP2000323840A JP2002126642A JP 2002126642 A JP2002126642 A JP 2002126642A JP 2000323840 A JP2000323840 A JP 2000323840A JP 2000323840 A JP2000323840 A JP 2000323840A JP 2002126642 A JP2002126642 A JP 2002126642A
Authority
JP
Japan
Prior art keywords
plating
alloy
rare earth
plating layer
magnetic
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2000323840A
Other languages
Japanese (ja)
Inventor
Junichi Ishiwatari
Ryota Uchiyama
良太 内山
淳一 石渡
Original Assignee
Tdk Corp
ティーディーケイ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tdk Corp, ティーディーケイ株式会社 filed Critical Tdk Corp
Priority to JP2000323840A priority Critical patent/JP2002126642A/en
Publication of JP2002126642A publication Critical patent/JP2002126642A/en
Withdrawn legal-status Critical Current

Links

Abstract

PROBLEM TO BE SOLVED: To provide a magnetic kinetic mass part for a mobile telecommunication equipment which improves the adhesiveness between a holder of a zinc die casting and rare earth magnets, also improves moisture resistance, suppresses the deterioration of the adhesiveness particularly after storage at low temperatures and is excellent in reliability. SOLUTION: The magnetic kinetic mass part has rare earth magnets 10A, 10B bonded to a holder 1 obtained by successively forming a Cu plating layer as an underlayer and a plating layer of one or more selected from Ni and Ni-P, Ni-B and Ni-Sn alloys on a zinc die casting. The rare earth magnets 10A, 10B are Nd-Fe-B magnets each with a plating layer of Ni or an Ni-P, Ni-B or Ni-Sn alloy formed on the top.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、携帯電話等に使用
される着信感知用振動駆動装置に用いるのに好適な移動
体通信機器用磁気運動質量部及びその製造方法に係り、
とくに磁気運動質量部の構成部材である保持体(亜鉛ダ
イカスト部品)及び希土類磁石の表面処理に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a magnetic motion mass unit for a mobile communication device suitable for use in a vibration driving device for detecting an incoming call used in a cellular phone or the like, and a method of manufacturing the same.
In particular, the present invention relates to a surface treatment of a holder (zinc die-cast part) and a rare earth magnet which are constituent members of a magnetic kinetic mass part.

【0002】[0002]

【従来の技術】近年、携帯電話の小型化、高性能化にと
もない、着信感知用振動駆動装置で使用される磁気運動
質量部も小型化が一層求められている。磁気運動質量部
の小型化、かつ高出力化を同時に満足させるために必要
な条件として、磁気運動質量部の磁気特性が高いこと、
高比重であることがあげられる。
2. Description of the Related Art In recent years, with the miniaturization and high performance of portable telephones, there has been a further demand for further miniaturization of the magnetic motion mass used in the vibration drive device for incoming call detection. In order to simultaneously satisfy the requirements for miniaturization and high output of the magnetic kinematic mass, the magnetic properties of the magnetic kinematic mass must be high,
High specific gravity.

【0003】現在、Nd−Fe−B系磁石は最も磁気特
性に優れた磁石であり、着信感知用振動駆動装置で使用
するのに好適である。しかし、非常に腐食し易いという
欠点を有しているため、さまざまな表面処理が施されて
いる。特に小物形状では品質、コストのバランスに優れ
ているニッケル(Ni)めっきが最も多く適用されてい
る。
At present, the Nd-Fe-B magnet is the magnet having the most excellent magnetic properties, and is suitable for use in a vibration driving device for incoming call detection. However, it has a disadvantage that it is very susceptible to corrosion, so that various surface treatments have been applied. Particularly in the case of small articles, nickel (Ni) plating, which is excellent in balance between quality and cost, is most often applied.

【0004】一方で、磁気運動質量部を構成する部材と
して亜鉛ダイカストが高比重であり、かつ、安価である
点から磁気運動質量部の部品材質として選定されてき
た。通常、亜鉛(Zn)は非常に錆びやすいため、何ら
かの処理が行われている。なかでもクロメート処理、C
u+Snめっきはこれまで亜鉛を素材とするものに対し
て広く採用されている。
On the other hand, zinc die casting has been selected as a component material of the magnetic kinematic mass part because it has a high specific gravity and is inexpensive as a member constituting the magnetic kinematic mass part. Usually, zinc (Zn) is very easily rusted, and therefore some treatment is performed. Above all, chromate treatment, C
Until now, u + Sn plating has been widely adopted for those using zinc as a raw material.

【0005】しかしながら、クロメート処理は近年の環
境問題から使用を制限する方向にあるため、Cu+Sn
めっきを適用して耐食性を確保してきた。
However, since the use of the chromate treatment is being restricted due to recent environmental problems, Cu + Sn
Plating has been applied to ensure corrosion resistance.

【0006】本発明が対象とする磁気運動質量部は特許
第2987936号公報に記載の如く亜鉛ダイカストと
希土類磁石を接着剤で固定する構造となっている。とこ
ろが、被着体表面にSn層が形成されていると、Snが
低温領域で相変化を起こし(β相からα相Snへ変
化)、体積膨張して接着界面が剥離する(スズペストが
発生する)不具合があった。また、従来のクロメート処
理の代替となる薬剤及び手法は、各メーカーで鋭意検討
されているが、未だ十分な性能が得られていない。
The magnetic kinetic mass of the present invention has a structure in which zinc die casting and a rare earth magnet are fixed with an adhesive as described in Japanese Patent No. 2987936. However, when an Sn layer is formed on the surface of the adherend, Sn undergoes a phase change in a low-temperature region (change from β phase to α phase Sn), expands in volume, and peels off the adhesive interface (tin pest is generated). ) There was a problem. Further, chemicals and techniques as alternatives to the conventional chromate treatment have been intensively studied by each manufacturer, but sufficient performance has not yet been obtained.

【0007】[0007]

【発明が解決しようとする課題】本発明は、上記の点に
鑑み、亜鉛ダイカストの保持体と希土類磁石との接着
性、耐湿性を向上させ、特に、低温貯蔵後の接着性劣化
を抑制し、優れた信頼性を実現可能な移動体通信機器用
磁気運動質量部及びその製造方法を提供することを目的
とする。
SUMMARY OF THE INVENTION In view of the above, the present invention improves the adhesion and moisture resistance between a zinc die casting holder and a rare earth magnet, and particularly suppresses the deterioration of adhesion after storage at low temperatures. It is an object of the present invention to provide a magnetic motion mass part for a mobile communication device capable of realizing excellent reliability and a method of manufacturing the same.

【0008】本発明のその他の目的や新規な特徴は後述
の実施の形態において明らかにする。
[0008] Other objects and novel features of the present invention will be clarified in embodiments described later.

【0009】[0009]

【課題を解決するための手段】上記目的を達成するため
に、本発明に係る移動体通信機器用磁気運動質量部は、
保持体に希土類磁石を接着した構成において、前記保持
体が、亜鉛ダイカストに、下地としてCuめっき層、さ
らにNi、Ni−P合金、Ni−B合金、Ni−Sn合
金のいずれか1種以上のめっき層が順次積層されたもの
であることを特徴としている。
In order to achieve the above object, a magnetic kinetic mass for a mobile communication device according to the present invention comprises:
In the configuration in which the rare earth magnet is bonded to the holder, the holder is a zinc die-cast, a Cu plating layer as a base, and further, at least one of Ni, a Ni-P alloy, a Ni-B alloy, and a Ni-Sn alloy. It is characterized in that the plating layers are sequentially laminated.

【0010】前記移動体通信機器用磁気運動質量部にお
いて、前記希土類磁石はNd−Fe−B系磁石であり、
最表面にNi、Ni−P合金、Ni−B合金、Ni−S
n合金のいずれかのめっき層が形成されているとよい。
In the magnetic mass unit for mobile communication equipment, the rare earth magnet is an Nd—Fe—B magnet.
Ni, Ni-P alloy, Ni-B alloy, Ni-S on the outermost surface
It is preferable that one of the plating layers of the n alloy is formed.

【0011】また、前記Nd−Fe−B系磁石は、前記
最表面のめっき層の下地としてCuめっき層を有してい
るとよい。
Further, the Nd-Fe-B-based magnet may have a Cu plating layer as a base of the plating layer on the outermost surface.

【0012】本発明に係る移動体通信機器用磁気運動質
量部の製造方法は、亜鉛ダイカストに、下地としてCu
めっき層を形成後、Ni、Ni−P合金、Ni−B合
金、Ni−Sn合金のいずれか1種以上のめっき層を積
層形成して保持体を作製する保持体作製工程と、希土類
磁石の最表面に、Ni、Ni−P合金、Ni−B合金、
Ni−Sn合金のいずれかのめっき層を形成する希土類
磁石の表面処理工程と、前記保持体に、前記表面処理工
程終了後の希土類磁石を接着剤で固着する固着工程とを
備えることを特徴としている。
According to the method of manufacturing a magnetic motion mass part for mobile communication equipment according to the present invention, a method of manufacturing
After forming the plating layer, a holding member preparing step of forming a holding member by laminating any one or more plating layers of Ni, Ni-P alloy, Ni-B alloy, and Ni-Sn alloy to form a holding member; Ni, Ni-P alloy, Ni-B alloy,
A surface treatment step of a rare earth magnet for forming any plating layer of a Ni-Sn alloy; and a fixing step of fixing the rare earth magnet after the surface treatment step to the holder with an adhesive. I have.

【0013】前記移動体通信機器用磁気運動質量部の製
造方法において、前記下地としてCuめっき層は、少な
くとも当初PH7〜10のアルカリキレート浴を使用し
て処理されるとよい。
[0013] In the method of manufacturing a magnetic kinetic mass for a mobile communication device, the Cu plating layer as the base may be treated at least initially using an alkali chelating bath having a pH of 7 to 10.

【0014】[0014]

【発明の実施の形態】以下、本発明に係る移動体通信機
器用磁気運動質量部及びその製造方法の実施の形態を図
面に従って説明する。
BRIEF DESCRIPTION OF THE DRAWINGS FIG. 1 is a perspective view showing a magnetic mass unit for a mobile communication device according to an embodiment of the present invention;

【0015】図1は本発明の実施の形態であって、希土
類磁石を保持体に接着する前の分解図、図2は接着後の
正面図、図3は同平面図である。
FIG. 1 is an embodiment of the present invention, and is an exploded view before a rare earth magnet is bonded to a holder, FIG. 2 is a front view after the bonding, and FIG. 3 is a plan view of the same.

【0016】これらの図に示すように、移動体通信機器
用磁気運動質量部は、保持体1とこの表裏に同極対向で
貼り合わされる方形板状の希土類磁石10A,10Bと
からなっている。
As shown in these figures, the magnetic kinematic mass for mobile communication equipment comprises a holder 1 and square plate-shaped rare earth magnets 10A and 10B bonded to the front and back sides thereof with the same polarity. .

【0017】保持体1は方形板状の希土類磁石10A,
10Bが幅広面で接着される上側及び下側の平坦な主面
2A,2Bを有するとともに、希土類磁石10A,10
Bの端部を囲む端部側壁部3A,3B及び希土類磁石1
0A,10Bの中間部を挟んで保持する中間側壁部4
A,4Bを有している。
The holder 1 is a rectangular plate-shaped rare earth magnet 10A,
10B has upper and lower flat main surfaces 2A and 2B bonded to each other with a wide surface, and rare earth magnets 10A and 10B.
B and end side walls 3A and 3B surrounding the end of B and rare earth magnet 1
Intermediate side wall 4 for holding the intermediate part of 0A and 10B
A, 4B.

【0018】前記保持体1は上記形状を有する亜鉛ダイ
カストに防錆のための表面処理、つまりめっき処理を施
したものであり、その工程を以下に述べる。
The holder 1 is obtained by subjecting a zinc die-cast having the above-mentioned shape to a surface treatment for rust prevention, that is, a plating treatment, and the steps will be described below.

【0019】まず、炭酸ナトリウムを主成分とした洗浄
溶液を用いて、70℃,30秒の条件で亜鉛ダイカスト
を浸漬後、純水を使用して洗浄する。
First, zinc die casting is immersed in a cleaning solution containing sodium carbonate as a main component at 70 ° C. for 30 seconds, and then washed with pure water.

【0020】洗浄後、PH7〜10のアルカリキレート
浴である銅キレート浴中でストライクめっきを行い、亜
鉛ダイカスト表面に薄い3〜7μmのCuめっき層を形
成後、ピロリン酸銅浴でめっきを行い、最終的に6〜1
2μmのCuめっき層を形成する。なお、銅アルカリキ
レート浴だけで6〜12μmのCuめっき層を形成して
もよい。
After washing, strike plating is performed in a copper chelate bath, which is an alkaline chelate bath having a pH of 7 to 10, to form a thin 3 to 7 μm Cu plating layer on the surface of the zinc die-cast, followed by plating in a copper pyrophosphate bath. 6-1 finally
A Cu plating layer of 2 μm is formed. In addition, you may form a 6-12 micrometers Cu plating layer only with a copper alkali chelate bath.

【0021】銅めっき後、ワット氏浴中でNiめっき層
を5〜10μm形成し、これで亜鉛ダイカストの表面処
理が終わる。
After the copper plating, a Ni plating layer is formed in a Watts bath in a thickness of 5 to 10 μm, and the surface treatment of the zinc die casting is completed.

【0022】ここで、亜鉛ダイカストにCuめっき処理
する理由について述べる。亜鉛は両性金属で酸、アルカ
リ双方に溶解する性質を有しているため、Niめっき等
を直接行うと直ちに置換反応を起こし、表面に金属層が
析出する。しかし、密着度が劣り、膨れを生じるために
弱アルカリ性のCuめっきを下地めっきとして行う。
Here, the reason why the Cu plating process is performed on the zinc die casting will be described. Since zinc is an amphoteric metal and has the property of dissolving in both acids and alkalis, a substitution reaction occurs immediately when Ni plating or the like is performed directly, and a metal layer is deposited on the surface. However, since the degree of adhesion is inferior and swelling occurs, weakly alkaline Cu plating is performed as the base plating.

【0023】前記銅めっき工程でのストライクめっき
は、JIS H 0404−308の規定では、「スト
ライクとは、特別な作業条件または浴組成を用いて、短
時間めっきを施すこと」と記載されており、実質はめっ
きの密着性と被覆力の向上及び置換作用の防止を目的と
するものであり、通常のめっき液よりも金属イオン濃度
の低いめっき液を使用して短時間めっきを行う。工程的
には前処理(洗浄等)とめっきのつなぎの役目で、前め
っきというべきものである。
The strike plating in the copper plating step is described in JIS H 0404-308 as "strike is to perform short-time plating using special working conditions or bath composition". Substantially, the purpose is to improve the adhesion and covering power of the plating and to prevent the substitution action, and the plating is performed in a short time using a plating solution having a lower metal ion concentration than a normal plating solution. In the process, it serves as a bridge between pretreatment (cleaning and the like) and plating, and should be referred to as preplating.

【0024】また、Cu層形成のための銅めっき浴につ
いて述べると、一般に銅はイオン化傾向が小さく、鉄鋼
等に密着性の良いめっきをすることが困難なため、金属
イオン濃度の小さい錯イオンの浴(キレート浴)から薄
くて密着性の良いめっき層をつける。この操作をストラ
イクと呼んでいる。
As for a copper plating bath for forming a Cu layer, generally, copper has a low ionization tendency and it is difficult to perform plating with good adhesion to steel or the like. Apply a thin plating layer with good adhesion from the bath (chelate bath). This operation is called strike.

【0025】銅めっき浴は硫酸銅浴、シアン化銅浴、ピ
ロリン酸銅浴に大別され、亜鉛にはキレート浴であるシ
アン化銅浴が良く使用されている。但し、近年の環境問
題からシアンが敬遠されており、EDTA(エチレンジ
アミン四酢酸)、メチルアミン等のアミン類、亜リン酸
トリエチル等の有機ホスホン酸のような有機キレート剤
を使用したものが開発されており、本実施の形態ではス
トライクめっき過程ではシアン代替銅めっき浴(有機キ
レート剤を使用したPH7〜10のアルカリキレート
浴)を使用している。但し、従来通りシアン化銅浴を使
用しても機能上何ら差し支えない。
Copper plating baths are broadly classified into copper sulfate baths, copper cyanide baths, and copper pyrophosphate baths. For zinc, a copper cyanide bath which is a chelating bath is often used. However, cyan has been shunned in recent years due to environmental problems, and those using organic chelating agents such as EDTA (ethylenediaminetetraacetic acid), amines such as methylamine, and organic phosphonic acids such as triethyl phosphite have been developed. In the present embodiment, in the strike plating process, a cyan substitution copper plating bath (pH 7 to 10 alkaline chelating bath using an organic chelating agent) is used. However, even if a copper cyanide bath is used as before, there is no problem in function.

【0026】また、ストライクめっきを行い、3〜7μ
mのCuめっき層を形成後ピロリン酸銅浴でめっきを行
って最終的に6〜12μmのCuめっき層を形成するの
は、前記有機キレート剤を使用したPH7〜10の弱ア
ルカリキレート浴は高価であり、Cuめっき層をつくる
きっかけができれば、安価なピロリン酸銅を使用するの
がコスト的に好ましいからである。さらに、ピロリン酸
銅浴で最終的に6〜12μmのCuめっき層を形成する
のは、最終的な下地Cu層を6〜12μm程度にしない
と、次のめっきを行った際の密着度低下等の原因となる
ためである。
Further, strike plating is performed and 3 to 7 μm
After forming a Cu plating layer of m and plating in a copper pyrophosphate bath to finally form a Cu plating layer of 6 to 12 μm, a weak alkali chelating bath of PH7 to 10 using the organic chelating agent is expensive. This is because it is preferable in terms of cost to use inexpensive copper pyrophosphate if it can trigger the formation of the Cu plating layer. Further, the final formation of the Cu plating layer of 6 to 12 μm in the copper pyrophosphate bath is required to reduce the adhesion at the time of the next plating unless the final underlayer Cu layer is made to be about 6 to 12 μm. It is because it causes.

【0027】銅めっき後、Niめっきを形成する理由
は、通常SnめっきがCu層の上に行われるが、接着後
の低温保存、熱衝撃試験でSnの相変化がおこり接着箇
所が剥離されるため。安価で耐食性の優れためっきとし
てNiが選択される。
The reason why Ni plating is formed after copper plating is that Sn plating is usually performed on the Cu layer, but the low temperature storage after bonding and the phase change of Sn occur in a thermal shock test, and the bonded portion is peeled off. For. Ni is selected as plating which is inexpensive and has excellent corrosion resistance.

【0028】なお、Niめっき工程で使用されるワット
氏浴は、硫酸ニッケル、塩化ニッケル及び硼酸を主成分
としためっき浴である。1916年にWattsの発明
したもので、高温、大電流密度で早くめっきができる。
浴も安価であるため、寸法精度や膜の硬さ等に指定がな
ければ多く適用されるNiめっきである。なお、その他
のめっき浴でNiめっきを行っても機能上何ら差し支え
ない。
The Watts bath used in the Ni plating step is a plating bath containing nickel sulfate, nickel chloride and boric acid as main components. Invented by Watts in 1916, plating can be performed quickly at high temperatures and large current densities.
Since the bath is also inexpensive, it is Ni plating that is frequently used unless otherwise specified for dimensional accuracy, film hardness, and the like. In addition, even if Ni plating is performed in another plating bath, there is no problem in function.

【0029】次に、Nd−Fe−B系焼結磁石(表面処
理前の希土類磁石の素体)をバレル研磨後、硝酸溶液中
でエッチングして超音波洗浄を行い、さらに純水洗浄を
行う。洗浄された磁石をPH7〜10の弱アルカリキレ
ート浴である銅キレート浴(亜鉛ダイカストで使用した
ものと同様)中でストライクめっきを行い、3〜7μm
のCuめっき層を形成後、ピロリン酸銅浴でめっきを行
って最終的に6〜12μmのCuめっき層を形成する。
Cuめっき後、ワット氏浴中でNiめっき層を5〜10
μm形成する。
Next, after Nd-Fe-B-based sintered magnets (elements of rare-earth magnets before surface treatment) are barrel-polished, they are etched in a nitric acid solution, subjected to ultrasonic cleaning, and further to pure water cleaning. . The washed magnet is subjected to strike plating in a copper chelate bath (similar to that used for zinc die-casting), which is a weak alkali chelate bath of pH 7 to 10, and 3 to 7 μm
After forming the Cu plating layer, plating is performed in a copper pyrophosphate bath to finally form a Cu plating layer having a thickness of 6 to 12 μm.
After Cu plating, the Ni plating layer is placed in a Watts bath for 5 to 10 minutes.
μm is formed.

【0030】なお、鉄鋼素材に施されるリン酸塩処理
を、接着強度を向上させるためにNiめっき上に施して
もよい。
The phosphate treatment applied to the steel material may be performed on Ni plating to improve the bonding strength.

【0031】また、前記表面処理前の希土類磁石の素体
をバレル研磨、超音波洗浄した後に、Cuめっきを省略
してNiめっき処理を行ってNiめっき層を5〜10μ
m形成するようにしてもよい。
Further, after the element body of the rare earth magnet before the surface treatment is subjected to barrel polishing and ultrasonic cleaning, Cu plating is omitted and Ni plating treatment is performed to reduce the Ni plating layer to 5 to 10 μm.
m may be formed.

【0032】以上のようにめっき処理された磁石を着磁
して得られた希土類磁石10A,10Bを、めっき処理
された亜鉛ダイカストからなる保持体1の上側及び下側
の主面2A,2Bに、同極性の磁極が対向するようにエ
ポキシ系接着剤を使用して固定する。このとき、保持体
1の主面2A,2Bだけでなく、端部側壁部3A,3B
及び中間側壁部4A,4Bの内壁面にも接着剤を塗布し
ておき、希土類磁石10A,10Bの両端部の側面及び
中間部の側面も保持体1に接着するようにする。
The rare earth magnets 10A, 10B obtained by magnetizing the plated magnet as described above are applied to the upper and lower main surfaces 2A, 2B of the holder 1 made of plated zinc die cast. And fix them using an epoxy adhesive so that magnetic poles of the same polarity face each other. At this time, not only the main surfaces 2A and 2B of the holder 1 but also the end side walls 3A and 3B.
An adhesive is also applied to the inner wall surfaces of the intermediate side walls 4A and 4B, and the side surfaces at both ends and the side surfaces of the intermediate portions of the rare earth magnets 10A and 10B are also adhered to the holder 1.

【0033】以下の表1にNd−Fe−B系磁石のめっ
き、亜鉛ダイカストのめっきと熱衝撃試験後の結果を示
す。
Table 1 below shows the results of the plating of the Nd-Fe-B magnet, the plating of the zinc die-cast, and the results after the thermal shock test.

【0034】[0034]

【表1】 但し、めっきは、Cuの膜厚10μm、Niの膜厚5μ
mとなるよう磁石、亜鉛ダイカストにそれぞれ行った。
Snめっきを有するものはその上にSnの膜厚1μmと
なるよう処理を行った。Ni単独の場合は膜厚10μm
となるよう処理を行った。
[Table 1] However, plating was performed with a Cu film thickness of 10 μm and a Ni film thickness of 5 μm.
m and zinc die casting, respectively.
Those having Sn plating were treated thereon so as to have a Sn film thickness of 1 μm. When using only Ni, the film thickness is 10 μm
The processing was performed so that

【0035】最表面にSnめっきを施したものは、熱衝
撃試験後に磁石が剥離しており強度測定ができなかっ
た。
In the case of Sn plating on the outermost surface, the magnet was peeled off after the thermal shock test, and the strength could not be measured.

【0036】次に、以下の表2にNd−Fe−B系磁石
のめっき、亜鉛ダイカストのめっきと恒温・恒湿試験後
の結果を示す。
Next, Table 2 below shows the results of plating of Nd-Fe-B-based magnets, plating of zinc die-cast, and tests after constant temperature and humidity tests.

【0037】[0037]

【表2】 [Table 2]

【0038】表2より、亜鉛ダイカストにめっきを行わ
なかったものは、耐湿試験において錆が発生しているの
がわかる。特に、亜鉛ダイカストに何も処理をしなかっ
たものは全面から粉が吹きだしていた。
From Table 2, it can be seen that the rust was generated in the moisture resistance test for the zinc die-casting that was not plated. In particular, the powder that had not been subjected to any treatment on the zinc die-cast had the powder blown out from the entire surface.

【0039】この実施の形態によれば、次の通りの効果
を得ることができる。
According to this embodiment, the following effects can be obtained.

【0040】(1) 保持体1は、亜鉛ダイカストに、下
地としてCuめっき層、さらにNiめっき層を順次積層
したものであり、希土類磁石との接着性を確保でき、ま
た低温貯蔵後の接着性劣化を抑制でき、信頼性を確保で
きる。
(1) The holder 1 is formed by sequentially laminating a Cu plating layer and a Ni plating layer as a base on a zinc die-cast, so that the adhesion with the rare earth magnet can be ensured, and the adhesion after low-temperature storage. Deterioration can be suppressed and reliability can be ensured.

【0041】(2) 希土類磁石10A,10BはNd−
Fe−B系磁石で希土類磁石として比較的安価である。
また、希土類磁石10A,10Bは最表面にNiめっき
層を形成したものであり、保持体1への接着性を確保す
るとともに耐湿性を向上させることができる。また、磁
気運動質量部に必要な十分な磁界を発生可能である。さ
らに、希土類磁石10A,10Bの構成を、下地として
Cuめっき層、さらにNiめっき層を順次積層したもの
とすれば、接着性、耐湿性をいっそう向上させることが
できる。
(2) Rare earth magnets 10A and 10B are Nd-
Fe-B based magnets are relatively inexpensive as rare earth magnets.
Further, the rare earth magnets 10A and 10B have a Ni plating layer formed on the outermost surface, so that the adhesion to the holder 1 can be secured and the moisture resistance can be improved. In addition, it is possible to generate a sufficient magnetic field necessary for the magnetic mass unit. Furthermore, if the structure of the rare earth magnets 10A and 10B is such that a Cu plating layer and a Ni plating layer are sequentially laminated as a base, the adhesiveness and moisture resistance can be further improved.

【0042】(3) 亜鉛ダイカスト及び希土類磁石のめ
っき処理に際し、下地としてCuめっき層を、当初PH
7〜10のアルカリキレート浴を使用してCuのストラ
イクめっき処理をすることで、密着性の良いめっき層を
形成可能である。
(3) When plating zinc die-casting and rare earth magnets, a Cu plating layer was
By performing a strike plating treatment of Cu using an alkali chelating bath of 7 to 10, a plating layer having good adhesion can be formed.

【0043】なお、保持体や希土類磁石の最表面のNi
めっき層の代わりに又はNiめっき層に重ねて、Ni−
P合金、Ni−B合金、Ni−Sn合金のめっき層を形
成するようにしてもよい。Ni−P合金、Ni−B合
金、Ni−Sn合金は非磁性であり、Niめっき層の代
わりにこれらの合金めっき層を用いれば、磁性めっき層
に起因する表面磁束密度の低下を回避でき、とくに希土
類磁石が小形、薄型の場合には効果がでてくる。
The Ni on the outermost surface of the holder or the rare earth magnet was
Instead of the plating layer or superimposed on the Ni plating layer, Ni-
A plating layer of a P alloy, a Ni-B alloy, or a Ni-Sn alloy may be formed. Ni-P alloys, Ni-B alloys, and Ni-Sn alloys are non-magnetic, and if these alloy plating layers are used instead of the Ni plating layers, a decrease in surface magnetic flux density due to the magnetic plating layers can be avoided, This is particularly effective when the rare earth magnet is small and thin.

【0044】また、下地としてCuめっき層を、有機キ
レート剤を使用したPH7〜10の弱アルカリキレート
浴で十分な膜厚に到達するまで継続してめっき処理して
形成し、ピロリン酸銅浴によるめっき処理を省略するこ
とも可能である。但し、ピロリン酸銅浴のめっき処理を
併用する場合に比べてコスト面では不利となる。
Further, a Cu plating layer as a base is formed by plating continuously in a weak alkali chelating bath of pH 7 to 10 using an organic chelating agent until a sufficient film thickness is reached, and formed by a copper pyrophosphate bath. The plating process can be omitted. However, it is disadvantageous in cost as compared with the case where the plating treatment of the copper pyrophosphate bath is used in combination.

【0045】以上本発明の実施の形態について説明して
きたが、本発明はこれに限定されることなく請求項の記
載の範囲内において各種の変形、変更が可能なことは当
業者には自明であろう。
Although the embodiments of the present invention have been described above, it is obvious to those skilled in the art that the present invention is not limited to the embodiments and that various modifications and changes can be made within the scope of the claims. There will be.

【0046】[0046]

【発明の効果】以上説明したように、本発明によれば、
亜鉛ダイカストの保持体と希土類磁石との接着性、耐湿
性を向上させ、特に、低温貯蔵後の接着性劣化を抑制
し、優れた信頼性を実現可能である。
As described above, according to the present invention,
It is possible to improve the adhesiveness and moisture resistance between the zinc die-casting holder and the rare earth magnet, and in particular, to suppress the adhesive deterioration after low-temperature storage and achieve excellent reliability.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明に係る移動体通信機器用磁気運動質量部
及びその製造方法の実施の形態であって、希土類磁石を
保持体に接着する前の分解図である。
FIG. 1 is an exploded view of a magnetic motion mass part for a mobile communication device and a method of manufacturing the same according to the embodiment of the present invention, before a rare earth magnet is bonded to a holder.

【図2】同じく希土類磁石接着後の正面図である。FIG. 2 is a front view after the bonding of the rare-earth magnet.

【図3】同平面図である。FIG. 3 is a plan view of the same.

【符号の説明】[Explanation of symbols]

1 保持体 2A,2B 主面 3A,3B 端部側壁部 4A,4B 中間側壁部 10A,10B 希土類磁石 DESCRIPTION OF SYMBOLS 1 Holder 2A, 2B Main surface 3A, 3B End side wall 4A, 4B Intermediate side wall 10A, 10B Rare earth magnet

フロントページの続き Fターム(参考) 4K024 AA03 AA09 AA15 AA23 AB02 AB03 BA01 BB14 BC10 DA09 GA01 GA16 5D107 AA09 AA10 BB08 CC09 FF20 5E040 AA04 AA19 BC01 BC08 BD01 CA01 HB00 HB14 NN17 Continued on front page F term (reference) 4K024 AA03 AA09 AA15 AA23 AB02 AB03 BA01 BB14 BC10 DA09 GA01 GA16 5D107 AA09 AA10 BB08 CC09 FF20 5E040 AA04 AA19 BC01 BC08 BD01 CA01 HB00 HB14 NN17

Claims (5)

    【特許請求の範囲】[Claims]
  1. 【請求項1】 保持体に希土類磁石を接着した移動体通
    信機器用磁気運動質量部において、 前記保持体は、亜鉛ダイカストに、下地としてCuめっ
    き層、さらにNi、Ni−P合金、Ni−B合金、Ni
    −Sn合金のいずれか1種以上のめっき層が順次積層さ
    れたものであることを特徴とする移動体通信機器用磁気
    運動質量部。
    1. A magnetic motion mass part for a mobile communication device in which a rare earth magnet is bonded to a holding body, wherein the holding body is made of zinc die-cast, a Cu plating layer as a base, Ni, Ni-P alloy, Ni-B. Alloy, Ni
    A magnetic kinetic mass part for mobile communication equipment, characterized in that any one or more plating layers of an Sn alloy are sequentially laminated.
  2. 【請求項2】 前記希土類磁石はNd−Fe−B系磁石
    であり、最表面にNi、Ni−P合金、Ni−B合金、
    Ni−Sn合金のいずれかのめっき層が形成されている
    請求項1記載の移動体通信機器用磁気運動質量部。
    2. The rare earth magnet is an Nd—Fe—B based magnet, and Ni, Ni—P alloy, Ni—B alloy,
    The magnetic kinetic mass section for a mobile communication device according to claim 1, wherein any one of a plating layer of a Ni-Sn alloy is formed.
  3. 【請求項3】 前記Nd−Fe−B系磁石は、前記最表
    面のめっき層の下地としてCuめっき層を有している請
    求項2記載の移動体通信機器用磁気運動質量部。
    3. The magnetic motion mass unit for mobile communication equipment according to claim 2, wherein the Nd—Fe—B-based magnet has a Cu plating layer as a base of the plating layer on the outermost surface.
  4. 【請求項4】 亜鉛ダイカストに、下地としてCuめっ
    き層を形成後、Ni、Ni−P合金、Ni−B合金、N
    i−Sn合金のいずれか1種以上のめっき層を積層形成
    して保持体を作製する保持体作製工程と、 希土類磁石の最表面に、Ni、Ni−P合金、Ni−B
    合金、Ni−Sn合金のいずれかのめっき層を形成する
    希土類磁石の表面処理工程と、 前記保持体に、前記表面処理工程終了後の希土類磁石を
    接着剤で固着する固着工程とを備えることを特徴とする
    移動体通信機器用磁気運動質量部の製造方法。
    4. After forming a Cu plating layer as a base on a zinc die-cast, Ni, Ni—P alloy, Ni—B alloy, N
    a holder forming step of forming a holder by laminating any one or more plating layers of an i-Sn alloy; and a Ni, Ni-P alloy, Ni-B on the outermost surface of the rare earth magnet.
    Alloy, a surface treatment step of a rare earth magnet for forming a plating layer of any one of a Ni—Sn alloy, and a fixing step of fixing the rare earth magnet after the surface treatment step to the holder with an adhesive. A method for manufacturing a magnetic motion mass unit for mobile communication equipment.
  5. 【請求項5】 前記下地としてCuめっき層は、少なく
    とも当初PH7〜10のアルカリキレート浴を使用して
    処理される請求項4記載の移動体通信機器用磁気運動質
    量部の製造方法。
    5. The method according to claim 4, wherein the Cu plating layer as the base is treated at least initially using an alkali chelate bath having a pH of 7 to 10.
JP2000323840A 2000-10-24 2000-10-24 Magnetic kinetic mass part for mobile telecommunication equipment and method for producing the same Withdrawn JP2002126642A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2000323840A JP2002126642A (en) 2000-10-24 2000-10-24 Magnetic kinetic mass part for mobile telecommunication equipment and method for producing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000323840A JP2002126642A (en) 2000-10-24 2000-10-24 Magnetic kinetic mass part for mobile telecommunication equipment and method for producing the same

Publications (1)

Publication Number Publication Date
JP2002126642A true JP2002126642A (en) 2002-05-08

Family

ID=18801456

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000323840A Withdrawn JP2002126642A (en) 2000-10-24 2000-10-24 Magnetic kinetic mass part for mobile telecommunication equipment and method for producing the same

Country Status (1)

Country Link
JP (1) JP2002126642A (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010168626A (en) * 2009-01-23 2010-08-05 Okuno Chem Ind Co Ltd Copper strike plating solution for article of zinc-containing metal or magnesium-containing metal
WO2012043717A1 (en) * 2010-09-30 2012-04-05 日立金属株式会社 Method for forming electric copper plating film on surface of rare earth permanent magnet
CN104593771A (en) * 2014-12-02 2015-05-06 浙江工业大学 Method for improving corrosion resistance of sintered NdFeB magnet through synergic protection of intergranular phosphating film and copper-plated coating and product
CN104630852A (en) * 2013-11-12 2015-05-20 天津三环乐喜新材料有限公司 Rare earth permanent magnet with multilayer composite electroplated coating and composite electroplating method thereof
WO2018190628A1 (en) * 2017-04-11 2018-10-18 엘지이노텍(주) Permanent magnet, method for manufacturing same, and motor comprising same
CN109256256A (en) * 2018-11-14 2019-01-22 烟台首钢磁性材料股份有限公司 A kind of neodymium iron boron magnetic body and its preparation process of electroplating of Zn-Ni alloy onto surface

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010168626A (en) * 2009-01-23 2010-08-05 Okuno Chem Ind Co Ltd Copper strike plating solution for article of zinc-containing metal or magnesium-containing metal
WO2012043717A1 (en) * 2010-09-30 2012-04-05 日立金属株式会社 Method for forming electric copper plating film on surface of rare earth permanent magnet
JP5013031B2 (en) * 2010-09-30 2012-08-29 日立金属株式会社 Method for forming electrolytic copper plating film on surface of rare earth permanent magnet
CN103125005A (en) * 2010-09-30 2013-05-29 日立金属株式会社 Method for forming electric copper plating film on surface of rare earth permanent magnet
US10770224B2 (en) 2010-09-30 2020-09-08 Hitachi Metals, Ltd. Method for forming electrolytic copper plating film on surface of rare earth metal-based permanent magnet
CN104630852A (en) * 2013-11-12 2015-05-20 天津三环乐喜新材料有限公司 Rare earth permanent magnet with multilayer composite electroplated coating and composite electroplating method thereof
CN104593771A (en) * 2014-12-02 2015-05-06 浙江工业大学 Method for improving corrosion resistance of sintered NdFeB magnet through synergic protection of intergranular phosphating film and copper-plated coating and product
CN104593771B (en) * 2014-12-02 2017-02-01 浙江工业大学 Method for improving corrosion resistance of sintered NdFeB magnet through synergic protection of intergranular phosphating film and copper-plated coating and product
WO2018190628A1 (en) * 2017-04-11 2018-10-18 엘지이노텍(주) Permanent magnet, method for manufacturing same, and motor comprising same
CN109256256A (en) * 2018-11-14 2019-01-22 烟台首钢磁性材料股份有限公司 A kind of neodymium iron boron magnetic body and its preparation process of electroplating of Zn-Ni alloy onto surface

Similar Documents

Publication Publication Date Title
JP5826303B2 (en) Copper foil and copper clad laminate for printed circuit
TWI247567B (en) Method for fabricating a double-sided wiring glass substrate
JP3168196B2 (en) Electronic package
JP3841768B2 (en) Package parts and semiconductor packages
US5917244A (en) Integrated circuit inductor structure formed employing copper containing conductor winding layer clad with nickel containing conductor layer
US7181040B2 (en) Case for containing electrical instrument
EP0396056B1 (en) Treatment of copper foil for printed circuits
TWI445843B (en) Copper surface treatment and copper
US6396148B1 (en) Electroless metal connection structures and methods
JP4808374B2 (en) Surface treatment method for metal molded products
JP2819523B2 (en) Printed wiring board and method of manufacturing the same
ES2219730T3 (en) PROCEDURE TO IMPROVE THE SOLUBILITY OF A SURFACE.
EP1878812A1 (en) Copper surface treatment method and copper
US20140300436A1 (en) Unibody magnet
EP1441047B1 (en) Method for forming electroplated coating on surface of article
JP3283226B2 (en) How to make a holder
EP0345092B1 (en) A method for producing a corrosion resistant rare earth- containing magnet
JP3795898B2 (en) Connected device
US6852427B1 (en) Chromium-free antitarnish adhesion promoting treatment composition
WO1996033863A1 (en) Anodized aluminum substrate having increased breakdown voltage
EP1465251A3 (en) Method for producing metal/ceramic bonded substrate
EP1371621B1 (en) Metal/ceramic bonding article and method for producing same
MXPA03000513A (en) Electrical component assembly and method of fabrication.
MY117208A (en) Rare earth metal-based permanent magnet, and process for producing the same
EP1439608A8 (en) Antenna coil and rfid-use tag using it, transponder-use antenna

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20080108