JP2004137533A - Method for manufacturing rare earth system permanent magnet having copper plating film on surface - Google Patents

Method for manufacturing rare earth system permanent magnet having copper plating film on surface Download PDF

Info

Publication number
JP2004137533A
JP2004137533A JP2002302088A JP2002302088A JP2004137533A JP 2004137533 A JP2004137533 A JP 2004137533A JP 2002302088 A JP2002302088 A JP 2002302088A JP 2002302088 A JP2002302088 A JP 2002302088A JP 2004137533 A JP2004137533 A JP 2004137533A
Authority
JP
Japan
Prior art keywords
plating film
mol
copper plating
copper
permanent magnet
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2002302088A
Other languages
Japanese (ja)
Other versions
JP3994847B2 (en
Inventor
Toshinobu Aranae
新苗 稔展
Kazuhide Oshima
大島 一英
Yukimitsu Miyao
宮尾 幸光
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Proterial Ltd
Original Assignee
Sumitomo Special Metals Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Special Metals Co Ltd filed Critical Sumitomo Special Metals Co Ltd
Priority to JP2002302088A priority Critical patent/JP3994847B2/en
Publication of JP2004137533A publication Critical patent/JP2004137533A/en
Application granted granted Critical
Publication of JP3994847B2 publication Critical patent/JP3994847B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Abstract

<P>PROBLEM TO BE SOLVED: To provide a method for manufacturing a rare earth system permanent magnet having a copper plating film provided with excellent adhesion properties on the surface by using a new electric copper plating solution. <P>SOLUTION: The copper plating film is formed directly or through another metal plating film on the surface of a rare earth system permanent magnet by electric copper plating treatment using the plating solution which contains 0.03 to 0.5 mol/L copper sulfate, 0.05 to 0.7 mol/L ethylenediaminetetraacetic acid, 0.02 to 1.0 mol/L sodium sulfate, and 0.1 to 1.0 mol/L at least one kind selected from tartrate and citrate and pH of which is adjusted to 11.0 to 13.0. <P>COPYRIGHT: (C)2004,JPO

Description

【0001】
【発明の属する技術分野】
本発明は、新規な電気銅めっき処理用めっき液を使用した、密着性に優れた銅めっき被膜を表面に有する希土類系永久磁石の製造方法に関する。
【0002】
【従来の技術】
Nd−Fe−B系永久磁石に代表されるR−Fe−B系永久磁石やSm−Fe−N系永久磁石に代表されるR−Fe−N系永久磁石などの希土類系永久磁石は、資源的に豊富で安価な材料が用いられ、かつ、高い磁気特性を有していることから、特にR−Fe−B系永久磁石は今日様々な分野で使用されている。
しかしながら、希土類系永久磁石は反応性の高い希土類元素:Rを含むため、大気中で酸化腐食されやすく、何の表面処理をも行わずに使用した場合には、わずかな酸やアルカリや水分などの存在によって表面から腐食が進行して錆が発生し、それに伴って、磁石特性の劣化やばらつきを招く。さらに、錆が発生した磁石を磁気回路などの装置に組み込んだ場合、錆が飛散して周辺部品を汚染する恐れがある。
上記の点に鑑み、希土類系永久磁石の表面に耐食性被膜である銅めっき被膜を形成することが従来から行われている。銅めっき被膜は優れた耐食性を有することに加え、被膜付き回り性や有機系接着剤との接着性などに優れるといった特性を有する。
一般に、銅めっき被膜を形成する方法は、電気銅めっき処理と無電解銅めっき処理に大別されるが、無電解銅めっき処理により希土類系永久磁石の表面に銅めっき被膜を形成する場合には、磁石の構成金属であるRやFeがめっき液中に溶出してめっき液に含まれている還元剤と反応し、めっき液中に溶出したRやFeの表面に銅めっき被膜の形成が進行するといった問題を防ぐためのめっき液の管理が重要である。しかしながら、これは必ずしも容易なことではない。また、無電解銅めっき処理用めっき液は一般に高価である。従って、希土類系永久磁石の表面に銅めっき被膜を形成する場合には、通常、簡易で低コストな電気銅めっき処理が採用される。
電気銅めっき処理により希土類系永久磁石の表面に銅めっき被膜を形成する場合、希土類系永久磁石の酸性条件下での強い腐食性に鑑みれば、使用するめっき液はアルカリ性であることが望ましいことから、これまでシアン化銅を含むめっき液(シアン化銅浴)が汎用されてきた。しかしながら、シアン化銅浴は形成される銅めっき被膜の特性に優れるとともに、めっき液の管理が容易であるといったことから利用価値が高いものの、毒性の強いシアンを含むので環境への影響を無視することができない。そこで、近年では、ピロリン酸銅を含むめっき液(ピロリン酸銅浴)がシアン化銅浴に替わって使用されることが多いが、ピロリン酸銅浴は浴中に遊離銅イオンを多く含むため、ピロリン酸銅浴を使用して希土類系永久磁石の表面に直接に銅めっき被膜を形成しようとすると、磁石の表面において置換めっき反応が起こるといった要因などにより、密着性に優れた銅めっき被膜を形成することができないという問題がある。また、希土類系永久磁石の表面に他の金属めっき被膜を介して銅めっき被膜を形成した場合においても、磁石の磁気特性が劣化するという現象を引き起こす。
上記の点に鑑み、本発明者らは希土類系永久磁石の表面に密着性に優れた銅めっき被膜を電気銅めっき処理により形成するための新たな方法を開発すべく、種々の検討を重ねる過程において、硫酸銅とエチレンジアミン四酢酸を含むめっき液に着目した。硫酸銅とエチレンジアミン四酢酸を含むめっき液は、無電解銅めっき処理用めっき液としては種々のめっき液が知られている。しかしながら、電気銅めっき処理用めっき液としては、硫酸銅とエチレンジアミン四酢酸とグリシンと塩化カリウムを含むめっき液が下記の非特許文献1において提案されているものの、このめっき液は、塩素イオンを含むので、腐食性の強い希土類系永久磁石の表面に銅めっき被膜を形成する際には適用しがたいものである。
【0003】
【非特許文献1】
水本省三 外4名,「EDTA錯体浴からの電気銅めっきおよびその皮膜物性」,表面技術,1990年(別冊),第41巻,第2号,p156−160
【0004】
【発明が解決しようとする課題】
そこで本発明は、新規な電気銅めっき処理用めっき液を使用した、密着性に優れた銅めっき被膜を表面に有する希土類系永久磁石の製造方法を提供することを目的とする。
【0005】
【課題を解決するための手段】
本発明者らは、上記の点に鑑みて検討を重ねた結果、硫酸銅とエチレンジアミン四酢酸と硫酸ナトリウムと酒石酸塩またはクエン酸塩を所定の組成に調整するとともに、pHを所定の範囲に調整しためっき液を使用すれば、希土類系永久磁石の表面に電気銅めっき処理により密着性に優れた銅めっき被膜を形成することができることを見出した。
【0006】
本発明は、上記の知見に基づいてなされたものであり、本発明の銅めっき被膜を表面に有する希土類系永久磁石の製造方法は、請求項1記載の通り、硫酸銅を0.03mol/L〜0.5mol/L、エチレンジアミン四酢酸を0.05mol/L〜0.7mol/L、硫酸ナトリウムを0.02mol/L〜1.0mol/L、酒石酸塩およびクエン酸塩から選ばれる少なくとも1種を0.1mol/L〜1.0mol/L含有し、pHが11.0〜13.0に調整されためっき液を使用して電気銅めっき処理により、希土類系永久磁石の表面に直接にまたは他の金属めっき被膜を介して銅めっき被膜を形成することを特徴とする。
また、請求項2記載の製造方法は、請求項1記載の製造方法において、希土類系永久磁石の表面に直接に銅めっき被膜を形成することを特徴とする。
また、請求項3記載の製造方法は、請求項1記載の製造方法において、希土類系永久磁石の表面に他の金属めっき被膜を介して銅めっき被膜を形成することを特徴とする。
また、請求項4記載の製造方法は、請求項3記載の製造方法において、他の金属めっき被膜を有機カルボン酸含有水溶液で表面処理した後に銅めっき被膜を形成することを特徴とする。
また、請求項5記載の製造方法は、請求項4記載の製造方法において、有機カルボン酸がシュウ酸であることを特徴とする。
また、請求項6記載の製造方法は、請求項4記載の製造方法において、有機カルボン酸含有水溶液の有機カルボン酸濃度が0.002mol/L以上であることを特徴とする。
また、請求項7記載の製造方法は、請求項3記載の製造方法において、他の金属めっき被膜がニッケルめっき被膜であることを特徴とする。
また、請求項8記載の製造方法は、請求項7記載の製造方法において、ニッケルめっき被膜がpHが6.0〜8.0に調整されためっき液を使用して電気ニッケルめっき処理により形成されたものであることを特徴とする。
また、本発明の電気銅めっき処理用めっき液は、請求項9記載の通り、硫酸銅を0.03mol/L〜0.5mol/L、エチレンジアミン四酢酸を0.05mol/L〜0.7mol/L、硫酸ナトリウムを0.02mol/L〜1.0mol/L、酒石酸塩およびクエン酸塩から選ばれる少なくとも1種を0.1mol/L〜1.0mol/L含有し、pHが11.0〜13.0に調整されていることを特徴とする。
また、本発明の銅めっき被膜を表面に有する希土類系永久磁石は、請求項10記載の通り、請求項1記載の製造方法により製造されたことを特徴とする。
【0007】
【発明の実施の形態】
本発明の銅めっき被膜を表面に有する希土類系永久磁石の製造方法は、硫酸銅を0.03mol/L〜0.5mol/L、エチレンジアミン四酢酸を0.05mol/L〜0.7mol/L、硫酸ナトリウムを0.02mol/L〜1.0mol/L、酒石酸塩およびクエン酸塩から選ばれる少なくとも1種を0.1mol/L〜1.0mol/L含有し、pHが11.0〜13.0に調整されためっき液を使用して電気銅めっき処理により、希土類系永久磁石の表面に直接にまたは他の金属めっき被膜を介して銅めっき被膜を形成することを特徴とするものである。
【0008】
本発明の電気銅めっき処理用めっき液において、硫酸銅の含有濃度を0.03mol/L〜0.5mol/Lと規定するのは、0.03mol/L未満では銅の析出効率が悪くなる恐れがある一方、0.5mol/Lを超えると硫酸銅が沈殿しやすくなり、硫酸銅が希土類系永久磁石の表面に形成される銅めっき被膜に混入する恐れがあるからである。
【0009】
また、エチレンジアミン四酢酸の含有濃度を0.05mol/L〜0.7mol/Lと規定するのは、0.05mol/L未満ではめっき液中の遊離銅イオンを十分に錯体形成できず、銅が沈殿しやすくなる恐れがある一方、0.7mol/Lを越えるとエチレンジアミン四酢酸がめっき液中に溶解しにくくなる恐れや、形成される銅めっき被膜に形成むらが生じやすくなる恐れがあるからである。
【0010】
また、硫酸ナトリウムの含有濃度を0.02mol/L〜1.0mol/Lと規定するのは、0.02mol/L未満ではめっき液の導電率が低下することで銅の析出効率が悪くなる恐れがある一方、1.0mol/Lを越えると形成される銅めっき被膜に形成むらが生じやすくなる恐れがあるからである。
【0011】
本発明の電気銅めっき処理用めっき液において、酒石酸塩またはクエン酸塩は、アルカリ性条件下における陽極の不働態化を効果的に抑制し、陽極からの銅の溶出を促す作用を発揮する。酒石酸塩としては、ナトリウム塩やカリウム塩やナトリウムカリウム塩などが例示される。クエン酸塩としては、ナトリウム塩やアンモニウム塩などが例示される。これらの含有濃度を0.1mol/L〜1.0mol/Lと規定するのは、0.1mol/L未満ではその効果が十分に発揮されない恐れがある一方、1.0mol/Lを越えると陰極の電流効率が低下して銅の析出効率が悪くなる恐れがあるからである。
【0012】
本発明の電気銅めっき処理用めっき液のpHを11.0〜13.0と規定するのは、主として希土類系永久磁石の酸性条件下での強い腐食性を考慮したものであるが、11.0未満では上記の組成からなるめっき液においてエチレンジアミン四酢酸が遊離銅イオンと十分に錯体形成できず、その結果、希土類系永久磁石の表面に銅めっき被膜が形成されずに黒色の亜酸化銅膜が形成されてしまう恐れがある一方、13.0を越えると陽極の不働態化を抑制しきれない恐れがあるからである。なお、pHを調整するに際しては水酸化ナトリウムなどを使用すればよい。
【0013】
本発明の電気銅めっき処理用めっき液には、必要に応じて、モノエタノールアミン、ジエタノールアミン、トリエタノールアミン、グリシン、2,2−ピピリジン、オルトフェナントロニン、ポリエチレングリコールなどの錯化剤を添加してもよい。このような錯化剤を添加すれば、めっき液中に遊離1価銅イオンが生成しても当該錯化剤はこれと錯体形成するので、遊離1価銅イオンの存在による置換めっき反応を抑制することが可能となり、密着性に劣る銅めっき被膜が希土類系永久磁石の表面に形成されることを効果的に防止することができる。
【0014】
本発明の電気銅めっき処理用めっき液を使用して希土類系永久磁石の表面に直接に銅めっき被膜を形成した場合、形成される銅めっき被膜は磁石の表面に対して優れた密着性を有する。
【0015】
本発明の電気銅めっき処理用めっき液を使用して形成される銅めっき被膜は、希土類系永久磁石の表面にニッケルめっき被膜などの他の金属めっき被膜を介して形成されてもよい。
【0016】
例えば、希土類系永久磁石の表面にニッケルめっき被膜を介して銅めっき被膜を形成する場合、銅めっき被膜を形成する前に、ニッケルめっき被膜を有機カルボン酸含有水溶液で表面処理することが望ましい。このような処理を行うことで、ニッケルめっき被膜と銅めっき被膜との密着性不良によるニッケルめっき被膜からの銅めっき被膜の剥離を効果的に防止することができる。
【0017】
有機カルボン酸含有水溶液はニッケルめっき被膜に対するエッチング処理液として機能し、その表面に変質層が形成されている場合にこれを除去して当該表面を活性化し、その表面に形成される銅めっき被膜との密着性の向上に寄与する。ニッケルめっき被膜の表面をエッチングするという目的のもとでは、塩酸や硫酸や硝酸などの無機酸を含有する水溶液を使用することもできなくはない。しかしながら、無機酸含有水溶液を使用した場合、塩素イオン(Cl)や硫酸イオン(SO 2−)や硝酸イオン(NO )などの腐食性の強い無機物イオンがニッケルめっき被膜の表面に残存すると、ニッケルめっき被膜やその表面に形成される銅めっき被膜の腐食の原因になることがある。また、銅めっき被膜を形成する際には、無機物イオンはニッケルめっき被膜の表面付近におけるめっき液特性に影響を及ぼして、密着性に優れた銅めっき被膜の形成を阻害することがある。有機カルボン酸は無機酸に比較してマイルドな酸であるので、有機カルボン酸含有水溶液を使用すれば、無機酸含有水溶液を使用した場合のように過度なエッチングが起こることなく、適度なエッチングが得られ、変質層のみをエッチングすることができるとともに、上記のような問題も軽減化できる。
【0018】
以上の効果は、pHが6.0〜8.0に調整されためっき液(例えば、特開平6−13218号公報に記載されためっき液)を使用して電気ニッケルめっき処理により形成されたニッケルめっき被膜に対してとりわけ有効である。このような中性のめっき浴を使用して電気ニッケルめっき処理により形成されたニッケルめっき被膜は、その表面にニッケル水酸化物やニッケル酸化物などからなる変質層を形成しやすく、その表面に形成される銅めっき被膜との密着性不良はこのような変質層の存在に因るものであることを本発明者らは見出している。従って、上記のような形成条件で形成されたニッケルめっき被膜の表面を有機カルボン酸含有水溶液で処理することにより、その表面に形成される銅めっき被膜との密着性向上を図ることができるのは、このようなニッケル水酸化物やニッケル酸化物などからなる変質層がニッケルめっき被膜の表面から除去されることで、当該表面が活性化されるためであると考えられる。
【0019】
有機カルボン酸としては、シュウ酸、酒石酸、クエン酸、コハク酸、リンゴ酸、マロン酸などが挙げられるが、中でもシュウ酸はニッケルめっき被膜に対して適度なエッチングレートを有していることから、好適な有機カルボン酸であるといえる。有機カルボン酸含有水溶液の有機カルボン酸濃度は、0.002mol/L以上であることが望ましい。当該濃度が0.002mol/Lを下回ると十分な効果が得られない恐れがあるからである。なお、シュウ酸は水溶性の固体物質であるので、水溶液中におけるその濃度の上限は飽和水溶液における濃度ということになる。
【0020】
有機カルボン酸含有水溶液のpHは、過度のエッチングを防止する観点からは1以上であることが望ましい。また、十分な効果を得るためには5以下であることが望ましく、3以下であることがより望ましい(ニッケルの溶解下限pHは3.5であるので、当該pHよりも酸性側にあることが好適であるため)。
【0021】
有機カルボン酸含有水溶液を使用したニッケルめっき被膜の表面処理は、通常の洗浄処理を行ったニッケルめっき被膜を表面に有する希土類系永久磁石を、例えば、20℃〜40℃に調整された有機カルボン酸含有水溶液中に60秒〜240秒浸漬することにより行えばよい。有機カルボン酸含有水溶液の温度を20℃〜40℃とするのは、20℃を下回ると十分な効果が得られない恐れがある一方、40℃を超えると過度のエッチングが起こることで、有機カルボン酸含有水溶液中に多量のエッチング成分が混入して有機カルボン酸含有水溶液の劣化を早めたり、混入成分がニッケルめっき被膜の表面に付着することで、その表面に密着性に優れた銅めっき被膜が形成されることを阻害したりする恐れがあるからである。なお、上記のような表面処理を行った後は、ニッケルめっき被膜の表面に残存する有機カルボン酸を除去するために超音波洗浄を行うことが望ましい。
【0022】
本発明におけるめっき液を使用した電気銅めっき処理は、銅めっき被膜を希土類系永久磁石の表面に直接に形成する場合でも他の金属めっき被膜を介して形成する場合でも、通常行われる電気銅めっき処理の条件に従って行えばよいが、良好な作業性の確保などの観点からは、処理温度(液温)は30℃〜70℃、望ましくは40℃〜60℃とし、処理時間は30分〜300分とするのがよい。銅めっき被膜の膜厚は、特段限定して設定されるものではないが、耐食性被膜としての機能を十分に発揮させるためには1μm以上が望ましく、3μm以上がより望ましい。一方、希土類系永久磁石の有効体積を確保するためには、磁石の表面に直接に形成する場合は50μm以下が望ましく、30μm以下がより望ましい。また、磁石の表面に他の金属めっき被膜を介して形成する場合は30μm以下が望ましく、20μm以下がより望ましい。
【0023】
なお、本発明におけるめっき液を使用した電気銅めっき処理により形成された銅めっき被膜の表面に、金属めっき被膜や樹脂被膜や化成処理被膜などを積層形成することで、さらなる耐食性の付与や機能性の付与を図ってもよい。
【0024】
希土類系永久磁石としては、例えば、R−Co系永久磁石、R−Fe−B系永久磁石、R−Fe−N系永久磁石などで、最大磁気エネルギー積が80kJ/m以上の磁気特性を有する公知の希土類系永久磁石が挙げられる。中でも、R−Fe−B系永久磁石は、前述のように、特に磁気特性が高く、量産性や経済性に優れている上に、被膜との優れた密着性を有する点において望ましいものである。これらの希土類系永久磁石における希土類元素(R)は、Nd、Pr、Dy、Ho、Tb、Smのうち少なくとも1種、あるいはさらに、La、Ce、Gd、Er、Eu、Tm、Yb、Lu、Yのうち少なくとも1種を含むものが望ましい。
また、通常はRのうち1種をもって足りるが、実用上は2種以上の混合物(ミッシュメタルやジジムなど)を入手上の便宜などの理由によって使用することもできる。
さらに、Al、Ti、V、Cr、Mn、Bi、Nb、Ta、Mo、W、Sb、Ge、Sn、Zr、Ni、Si、Zn、Hf、Gaのうち少なくとも1種を添加することで、保磁力や減磁曲線の角型性の改善、製造性の改善、低価格化を図ることが可能となる。また、Feの一部をCoで置換することによって、得られる磁石の磁気特性を損なうことなしに温度特性を改善することができる。
【0025】
【実施例】
本発明を以下の実施例と比較例によってさらに詳細に説明するが、本発明は以下の記載に限定して解釈されるものではない。
【0026】
出発原料として、電解鉄、フェロボロン、RとしてのNdを所要の磁石組成に配合し、溶解鋳造後、機械的粉砕法にて粗粉砕してから微粉砕することで粒度が3μm〜10μmの微粉末を得、これを10kOeの磁界中で成形してからアルゴン雰囲気中で1100℃×1時間の焼結を行った後、得られた焼結体に対して600℃×2時間の時効処理を行い、15Nd−7B−78Feの組成を有する磁石体とした。この磁石体から3mm×20mm×40mm寸法の試験片Aと1mm×1.5mm×2mm寸法の試験片Bを切り出し、0.1mol/Lの硝酸溶液にて表面活性化を行った後、水洗して以下の実験に供した。
【0027】
実施例1:
硫酸銅五水和物0.1mol/L、エチレンジアミン四酢酸二ナトリウム塩0.16mol/L、硫酸ナトリウム0.4mol/L、酒石酸二ナトリウム塩0.2mol/Lを含有し、水酸化ナトリウムでpHを12.3に調整した銅めっき液を使用し、液温50℃、陰極電流密度0.2A/dmで200分間、電気銅めっき処理を行い、試験片Aと試験片Bの表面に銅めっき被膜を形成した。銅めっき被膜を表面に有する試験片A,10サンプルについて銅めっき被膜の膜厚を測定したところ、その平均値は15μmであった。また、銅めっき被膜を表面に有する試験片A,10サンプルに対してJIS(K5400)に準拠したクロスカット後にテープで剥離を行う密着性試験を行ったところ、銅めっき被膜が試験片から剥離したサンプルは存在しなかった。銅めっき被膜を表面に有する試験片B,10サンプルについて磁気特性を評価したところ、その平均値は0.98iHc/Hkであり、優れた特性を有していた。
【0028】
比較例1:
ピロリン酸銅0.2mol/L、ピロリン酸カリウム1.1mol/L、硝酸カリウム0.1mol/Lを含有し、アンモニア水でpHを8.5に調整した銅めっき液を使用し、液温50℃、陰極電流密度0.2A/dmで60分間、電気銅めっき処理を行い、試験片Aと試験片Bの表面に銅めっき被膜を形成したが、表面全体に銅めっき被膜は形成されなかった(故に銅めっき被膜の膜厚は未測定)。このような試験片A,10サンプルに対して実施例1と同様の密着性試験を行ったところ、すべてのサンプルにおいて、試験片の表面に部分的に形成されていた銅めっき被膜が試験片から剥離した。
【0029】
実施例2:
硫酸ニッケル六水和物0.5mol/L、クエン酸二アンモニウム0.1mol/L、ホウ酸0.2mol/L、塩化アンモニウム0.15mol/L、サッカリン0.5mol/Lを含有し、アンモニア水でpHを6.8に調整したニッケルめっき液を使用し、液温50℃、陰極電流密度0.25A/dmで15分間、電気ニッケルめっき処理を行い、試験片Aと試験片Bの表面にニッケルめっき被膜を形成した。ニッケルめっき被膜を表面に有する試験片A,10サンプルについてニッケルめっき被膜の膜厚を測定したところ、その平均値は1μmであった。ニッケルめっき被膜を表面に有する試験片Aと試験片Bをシュウ酸0.033mol/Lを含む液温30℃の水溶液(pH1.5)に2分間浸漬してニッケルめっき被膜の表面処理を行ってからイオン交換水にて2分間超音波洗浄した後、実施例1に記載の銅めっき液を使用し、液温50℃、陰性電流密度0.2A/dmで60分間、電気銅めっき処理を行い、ニッケルめっき被膜の表面に銅めっき被膜を形成した。ニッケルめっき被膜を介して銅めっき被膜を表面に有する試験片A,10サンプルについて銅めっき被膜の膜厚を測定したところ、その平均値は5μmであった。ニッケルめっき被膜を介して銅めっき被膜を表面に有する試験片A,10サンプルに対して実施例1と同様の密着性試験を行ったところ、銅めっき被膜がニッケルめっき被膜から剥離したサンプルは存在しなかった。ニッケルめっき被膜を介して銅めっき被膜を表面に有する試験片B,10サンプルについて磁気特性を評価したところ、その平均値は0.95iHc/Hkであり、優れた特性を有していた。
【0030】
比較例2:
実施例2に記載のニッケルめっき液を使用し、同様の条件で電気ニッケルめっき処理を行い、試験片Aと試験片Bの表面にニッケルめっき被膜を形成した。試験片Aと試験片Bの表面に形成されたニッケルめっき被膜に対して実施例2と同様の表面処理を行った後、比較例1に記載の銅めっき液を使用し、同様の条件で電気銅めっき処理を行い、ニッケルめっき被膜の表面に銅めっき被膜を形成した。ニッケルめっき被膜を介して銅めっき被膜を表面に有する試験片A,10サンプルについて銅めっき被膜の膜厚を測定したところ、その平均値は5μmであった。ニッケルめっき被膜を介して銅めっき被膜を表面に有する試験片A,10サンプルに対して実施例1と同様の密着性試験を行ったところ、1つのサンプルにおいて銅めっき被膜がニッケルめっき被膜から剥離した。ニッケルめっき被膜を介して銅めっき被膜を表面に有する試験片B,10サンプルについて磁気特性を評価したところ、その平均値は0.71iHc/Hkであり、磁気特性の劣化が顕著であった。
【0031】
【発明の効果】
本発明によれば、新規な電気銅めっき処理用めっき液を使用した、密着性に優れた銅めっき被膜を表面に有する希土類系永久磁石の製造方法が提供される。
[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to a method for producing a rare-earth permanent magnet having a copper plating film having excellent adhesion on the surface using a novel plating solution for electrolytic copper plating.
[0002]
[Prior art]
Rare earth permanent magnets such as R-Fe-B permanent magnets represented by Nd-Fe-B permanent magnets and R-Fe-N permanent magnets represented by Sm-Fe-N permanent magnets are resources. In particular, R-Fe-B-based permanent magnets are used in various fields today because they are made of abundant and inexpensive materials and have high magnetic properties.
However, since rare-earth permanent magnets contain highly reactive rare-earth elements: R, they are easily oxidized and corroded in the air, and when used without any surface treatment, a slight amount of acid, alkali, moisture, etc. Corrosion progresses from the surface due to the presence of rust and rust is generated, which leads to deterioration and variation in magnet characteristics. Further, when the rusted magnet is incorporated into a device such as a magnetic circuit, the rust may scatter and contaminate peripheral components.
In view of the above, formation of a copper plating film, which is a corrosion-resistant film, on the surface of a rare-earth permanent magnet has been conventionally performed. In addition to having excellent corrosion resistance, the copper plating film has characteristics such as excellent turning property with the film and excellent adhesion to an organic adhesive.
Generally, a method of forming a copper plating film is roughly classified into an electrolytic copper plating process and an electroless copper plating process, but when forming a copper plating film on the surface of a rare earth permanent magnet by the electroless copper plating process, R and Fe, which are constituent metals of the magnet, elute into the plating solution and react with the reducing agent contained in the plating solution, and the formation of a copper plating film on the surface of the R and Fe eluted into the plating solution proceeds. It is important to control the plating solution to prevent such a problem. However, this is not always easy. Further, a plating solution for electroless copper plating is generally expensive. Therefore, when a copper plating film is formed on the surface of a rare-earth permanent magnet, a simple and low-cost electrolytic copper plating process is usually adopted.
When a copper plating film is formed on the surface of a rare earth permanent magnet by electrolytic copper plating, it is desirable that the plating solution used is alkaline in view of the strong corrosiveness of the rare earth permanent magnet under acidic conditions. Heretofore, plating solutions containing copper cyanide (copper cyanide bath) have been widely used. However, although the copper cyanide bath is excellent in the properties of the copper plating film to be formed and easy to control the plating solution, it has high utility value, but ignores the effect on the environment because it contains highly toxic cyanide. I can't. Therefore, in recent years, plating solutions containing copper pyrophosphate (copper pyrophosphate bath) are often used in place of copper cyanide bath. However, copper pyrophosphate bath contains a lot of free copper ions in the bath. When attempting to form a copper plating film directly on the surface of a rare earth permanent magnet using a copper pyrophosphate bath, a copper plating film with excellent adhesion is formed due to factors such as displacement plating reaction occurring on the magnet surface. There is a problem that you can not. Further, even when a copper plating film is formed on the surface of the rare-earth permanent magnet via another metal plating film, a phenomenon that the magnetic properties of the magnet deteriorate is caused.
In view of the above, the present inventors have conducted various studies in order to develop a new method for forming a copper plating film having excellent adhesion on the surface of a rare earth permanent magnet by electrolytic copper plating. , Focused on a plating solution containing copper sulfate and ethylenediaminetetraacetic acid. As a plating solution containing copper sulfate and ethylenediaminetetraacetic acid, various plating solutions are known as plating solutions for electroless copper plating. However, as a plating solution for electrolytic copper plating, a plating solution containing copper sulfate, ethylenediaminetetraacetic acid, glycine, and potassium chloride has been proposed in the following Non-Patent Document 1, but this plating solution contains chloride ions. Therefore, when a copper plating film is formed on the surface of a highly corrosive rare earth permanent magnet, it is difficult to apply.
[0003]
[Non-patent document 1]
Ministry of Internal Affairs and Communications of Ministry of Health, Mizumoto and four others, “Electro-copper plating from EDTA complex bath and its film properties”, Surface Technology, 1990 (separate volume), Vol. 41, No. 2, p156-160.
[0004]
[Problems to be solved by the invention]
Accordingly, an object of the present invention is to provide a method for producing a rare earth permanent magnet having a copper plating film having excellent adhesion on the surface using a novel plating solution for electrolytic copper plating.
[0005]
[Means for Solving the Problems]
The present inventors have made repeated studies in view of the above points, and as a result, have adjusted copper sulfate, ethylenediaminetetraacetic acid, sodium sulfate, tartrate or citrate to a predetermined composition, and adjusted the pH to a predetermined range. It has been found that when the plating solution thus prepared is used, a copper plating film having excellent adhesion can be formed on the surface of the rare earth permanent magnet by electrolytic copper plating.
[0006]
The present invention has been made based on the above findings, and a method for producing a rare earth permanent magnet having a copper plating film on the surface thereof according to the present invention is as follows: 0.03 mol / L of copper sulfate. At least one selected from the group consisting of tartrate and citrate; 0.05 mol / L to 0.7 mol / L of ethylenediaminetetraacetic acid; 0.02 mol / L to 1.0 mol / L of sodium sulfate; Or 0.1 mol / L to 1.0 mol / L, and directly or on the surface of the rare earth permanent magnet by electrolytic copper plating using a plating solution having a pH adjusted to 11.0 to 13.0. A copper plating film is formed via another metal plating film.
A manufacturing method according to a second aspect is characterized in that, in the manufacturing method according to the first aspect, a copper plating film is directly formed on a surface of the rare-earth permanent magnet.
The manufacturing method according to a third aspect is characterized in that, in the manufacturing method according to the first aspect, a copper plating film is formed on the surface of the rare-earth permanent magnet via another metal plating film.
A manufacturing method according to a fourth aspect is characterized in that, in the manufacturing method according to the third aspect, a copper plating film is formed after a surface treatment of another metal plating film with an organic carboxylic acid-containing aqueous solution.
Further, a manufacturing method according to a fifth aspect is characterized in that, in the manufacturing method according to the fourth aspect, the organic carboxylic acid is oxalic acid.
Further, the production method according to claim 6 is characterized in that in the production method according to claim 4, the organic carboxylic acid concentration of the organic carboxylic acid-containing aqueous solution is 0.002 mol / L or more.
A manufacturing method according to a seventh aspect is characterized in that, in the manufacturing method according to the third aspect, the other metal plating film is a nickel plating film.
In the manufacturing method according to the eighth aspect, in the manufacturing method according to the seventh aspect, the nickel plating film is formed by electro nickel plating using a plating solution whose pH is adjusted to 6.0 to 8.0. It is characterized in that it is.
Further, the plating solution for electrolytic copper plating of the present invention, as described in claim 9, is 0.03 mol / L to 0.5 mol / L of copper sulfate and 0.05 mol / L to 0.7 mol / L of ethylenediaminetetraacetic acid. L, 0.02 mol / L to 1.0 mol / L of sodium sulfate, 0.1 mol / L to 1.0 mol / L of at least one selected from tartrate and citrate, and pH of 11.0 to It is characterized by being adjusted to 13.0.
Further, the rare earth permanent magnet having a copper plating film on the surface according to the present invention is manufactured by the manufacturing method according to claim 1 as described in claim 10.
[0007]
BEST MODE FOR CARRYING OUT THE INVENTION
The method for producing a rare earth permanent magnet having a copper plating film on its surface according to the present invention includes a copper sulfate of 0.03 mol / L to 0.5 mol / L, an ethylenediaminetetraacetic acid of 0.05 mol / L to 0.7 mol / L, Sodium sulfate is contained at 0.02 mol / L to 1.0 mol / L, and at least one selected from tartrate and citrate is contained at 0.1 mol / L to 1.0 mol / L, and the pH is 11.0 to 13. It is characterized in that a copper plating film is formed on the surface of the rare-earth permanent magnet directly or via another metal plating film by electrolytic copper plating using a plating solution adjusted to zero.
[0008]
In the plating solution for electrolytic copper plating of the present invention, the content of copper sulfate is defined as 0.03 mol / L to 0.5 mol / L. If the concentration is less than 0.03 mol / L, the copper deposition efficiency may be deteriorated. On the other hand, if it exceeds 0.5 mol / L, copper sulfate tends to precipitate, and copper sulfate may be mixed into the copper plating film formed on the surface of the rare earth permanent magnet.
[0009]
Further, the content of ethylenediaminetetraacetic acid is defined as 0.05 mol / L to 0.7 mol / L. When the concentration is less than 0.05 mol / L, free copper ions in the plating solution cannot be sufficiently complexed, and On the other hand, if it is more than 0.7 mol / L, ethylenediaminetetraacetic acid may not be easily dissolved in the plating solution, or the copper plating film to be formed may have unevenness. is there.
[0010]
Further, the content of sodium sulfate is defined as 0.02 mol / L to 1.0 mol / L. When the concentration is less than 0.02 mol / L, the conductivity of the plating solution is reduced, and the copper deposition efficiency may be deteriorated. On the other hand, if it exceeds 1.0 mol / L, the formed copper plating film may be likely to be uneven in formation.
[0011]
In the plating solution for electrolytic copper plating of the present invention, the tartrate or the citrate exhibits an effect of effectively suppressing the passivation of the anode under alkaline conditions and promoting the elution of copper from the anode. Examples of the tartrate include a sodium salt, a potassium salt, and a sodium potassium salt. Examples of the citrate include a sodium salt and an ammonium salt. When the content is defined as 0.1 mol / L to 1.0 mol / L, the effect may not be sufficiently exerted if the concentration is less than 0.1 mol / L, whereas if the concentration is more than 1.0 mol / L, the cathode may be used. This is because the current efficiency may be reduced and the copper deposition efficiency may be deteriorated.
[0012]
The reason why the pH of the plating solution for electrolytic copper plating treatment of the present invention is specified to be 11.0 to 13.0 is to mainly consider the strong corrosiveness of a rare earth permanent magnet under acidic conditions. If it is less than 0, ethylenediaminetetraacetic acid cannot sufficiently form a complex with free copper ions in the plating solution having the above composition, and as a result, a copper plating film is not formed on the surface of the rare earth permanent magnet and a black cuprous oxide film is formed. On the other hand, if it exceeds 13.0, passivation of the anode may not be sufficiently suppressed. In adjusting the pH, sodium hydroxide or the like may be used.
[0013]
If necessary, a complexing agent such as monoethanolamine, diethanolamine, triethanolamine, glycine, 2,2-pipyridine, orthophenanthronine, or polyethylene glycol is added to the plating solution for electrolytic copper plating of the present invention. May be. If such a complexing agent is added, even if free monovalent copper ions are formed in the plating solution, the complexing agent forms a complex with the complexing agent, so that the displacement plating reaction due to the presence of free monovalent copper ions is suppressed. It is possible to effectively prevent a copper plating film having poor adhesion from being formed on the surface of the rare earth permanent magnet.
[0014]
When a copper plating film is formed directly on the surface of a rare earth permanent magnet using the plating solution for electrolytic copper plating of the present invention, the formed copper plating film has excellent adhesion to the surface of the magnet. .
[0015]
The copper plating film formed using the plating solution for electrolytic copper plating of the present invention may be formed on the surface of the rare-earth permanent magnet via another metal plating film such as a nickel plating film.
[0016]
For example, when a copper plating film is formed on the surface of a rare-earth permanent magnet via a nickel plating film, it is desirable that the nickel plating film be surface-treated with an organic carboxylic acid-containing aqueous solution before the copper plating film is formed. By performing such a treatment, peeling of the copper plating film from the nickel plating film due to poor adhesion between the nickel plating film and the copper plating film can be effectively prevented.
[0017]
The organic carboxylic acid-containing aqueous solution functions as an etching solution for the nickel plating film, removes the deteriorated layer formed on the surface, activates the surface, activates the surface, and removes the copper plating film formed on the surface. Contributes to the improvement of adhesion. For the purpose of etching the surface of the nickel plating film, it is not impossible to use an aqueous solution containing an inorganic acid such as hydrochloric acid, sulfuric acid or nitric acid. However, when an aqueous solution containing an inorganic acid is used, highly corrosive inorganic ions such as chloride ions (Cl ), sulfate ions (SO 4 2− ), and nitrate ions (NO 3 ) remain on the surface of the nickel plating film. This may cause corrosion of the nickel plating film and the copper plating film formed on the surface thereof. Further, when forming a copper plating film, inorganic ions may affect the properties of the plating solution near the surface of the nickel plating film, and may hinder the formation of a copper plating film having excellent adhesion. Since organic carboxylic acids are mild acids compared to inorganic acids, using an organic carboxylic acid-containing aqueous solution does not cause excessive etching as in the case of using an inorganic acid-containing aqueous solution, and moderate etching can be performed. As a result, only the deteriorated layer can be etched, and the above problems can be reduced.
[0018]
The above effects can be obtained by nickel electroplating using a plating solution whose pH has been adjusted to 6.0 to 8.0 (for example, a plating solution described in JP-A-6-13218). Particularly effective for plating films. The nickel plating film formed by electro-nickel plating using such a neutral plating bath easily forms a deteriorated layer made of nickel hydroxide or nickel oxide on the surface, and is formed on the surface. The present inventors have found that the poor adhesion to the copper plating film is caused by the presence of such an altered layer. Therefore, by treating the surface of the nickel plating film formed under the above forming conditions with an organic carboxylic acid-containing aqueous solution, it is possible to improve the adhesion with the copper plating film formed on the surface. It is considered that this is because the altered surface composed of such nickel hydroxide or nickel oxide is removed from the surface of the nickel plating film to activate the surface.
[0019]
Examples of the organic carboxylic acid include oxalic acid, tartaric acid, citric acid, succinic acid, malic acid, malonic acid, and the like.Because oxalic acid has an appropriate etching rate for a nickel plating film, It can be said that it is a suitable organic carboxylic acid. The organic carboxylic acid concentration of the organic carboxylic acid-containing aqueous solution is desirably 0.002 mol / L or more. If the concentration is lower than 0.002 mol / L, a sufficient effect may not be obtained. Since oxalic acid is a water-soluble solid substance, the upper limit of the concentration in an aqueous solution is the concentration in a saturated aqueous solution.
[0020]
The pH of the organic carboxylic acid-containing aqueous solution is desirably 1 or more from the viewpoint of preventing excessive etching. In addition, in order to obtain a sufficient effect, it is preferably 5 or less, more preferably 3 or less (since the dissolution lower limit pH of nickel is 3.5, it is more acidic than the pH. Because it is preferred).
[0021]
The surface treatment of the nickel plating film using the organic carboxylic acid-containing aqueous solution is performed by using a rare earth permanent magnet having a nickel plating film subjected to a normal cleaning treatment on the surface, for example, an organic carboxylic acid adjusted to 20 ° C to 40 ° C. What is necessary is just to immerse in a containing aqueous solution for 60 to 240 seconds. When the temperature of the organic carboxylic acid-containing aqueous solution is set to 20 ° C. to 40 ° C., if the temperature is lower than 20 ° C., a sufficient effect may not be obtained. A large amount of etching components are mixed into the acid-containing aqueous solution to accelerate the deterioration of the organic carboxylic acid-containing aqueous solution, or the mixed components adhere to the surface of the nickel plating film, thereby forming a copper plating film having excellent adhesion on the surface. This is because there is a risk of inhibiting formation. After the surface treatment as described above, it is desirable to perform ultrasonic cleaning in order to remove the organic carboxylic acid remaining on the surface of the nickel plating film.
[0022]
The copper electroplating treatment using the plating solution in the present invention can be carried out by a conventional copper electroplating, whether the copper plating film is formed directly on the surface of the rare earth permanent magnet or through another metal plating film. The treatment may be performed in accordance with the conditions of the treatment. From the viewpoint of ensuring good workability, the treatment temperature (liquid temperature) is 30 ° C to 70 ° C, preferably 40 ° C to 60 ° C, and the treatment time is 30 minutes to 300 ° C. Minutes. The thickness of the copper plating film is not particularly limited, but is preferably 1 μm or more, more preferably 3 μm or more in order to sufficiently exhibit the function as a corrosion-resistant film. On the other hand, in order to secure an effective volume of the rare-earth permanent magnet, when it is formed directly on the surface of the magnet, it is preferably 50 μm or less, more preferably 30 μm or less. When the magnet is formed on the surface of the magnet via another metal plating film, the thickness is preferably 30 μm or less, more preferably 20 μm or less.
[0023]
In addition, by adding a metal plating film, a resin film, a chemical conversion coating film, and the like on the surface of the copper plating film formed by the electrolytic copper plating process using the plating solution in the present invention, it is possible to further impart corrosion resistance and functionality. May be provided.
[0024]
The rare earth metal-based permanent magnets, for example, R-Co based permanent magnet, R-Fe-B based permanent magnet, etc. R-Fe-N based permanent magnet, the maximum magnetic energy product of 80 kJ / m 3 or more magnetic properties Known rare earth permanent magnets. Among them, R-Fe-B-based permanent magnets are desirable, as described above, in that they have particularly high magnetic properties, are excellent in mass productivity and economical efficiency, and have excellent adhesion to a coating film. . The rare earth element (R) in these rare earth permanent magnets is at least one of Nd, Pr, Dy, Ho, Tb, and Sm, or further, La, Ce, Gd, Er, Eu, Tm, Yb, Lu, Those containing at least one of Y are desirable.
Normally, one kind of R is sufficient, but in practice, a mixture of two or more kinds (such as misch metal or dymium) can be used for convenience and other reasons.
Further, by adding at least one of Al, Ti, V, Cr, Mn, Bi, Nb, Ta, Mo, W, Sb, Ge, Sn, Zr, Ni, Si, Zn, Hf and Ga, It is possible to improve the coercive force and the squareness of the demagnetization curve, improve the manufacturability, and reduce the cost. Further, by replacing a part of Fe with Co, the temperature characteristics can be improved without impairing the magnetic characteristics of the magnet obtained.
[0025]
【Example】
The present invention will be described in more detail with reference to the following examples and comparative examples, but the present invention should not be construed as being limited to the following description.
[0026]
As starting materials, electrolytic iron, ferroboron, and Nd as R are blended in a required magnet composition, melt-cast, coarsely ground by a mechanical grinding method, and then finely ground to obtain a fine powder having a particle size of 3 μm to 10 μm. After being molded in a magnetic field of 10 kOe and sintering at 1100 ° C. × 1 hour in an argon atmosphere, the obtained sintered body is subjected to an aging treatment at 600 ° C. × 2 hours. , 15Nd-7B-78Fe. A test piece A having a size of 3 mm × 20 mm × 40 mm and a test piece B having a size of 1 mm × 1.5 mm × 2 mm were cut out from the magnet body, surface-activated with a 0.1 mol / L nitric acid solution, and then washed with water. For the following experiment.
[0027]
Example 1
Contains 0.1 mol / L of copper sulfate pentahydrate, 0.16 mol / L of ethylenediaminetetraacetic acid disodium salt, 0.4 mol / L of sodium sulfate, and 0.2 mol / L of disodium tartrate, and is adjusted to pH with sodium hydroxide. Using a copper plating solution adjusted to 12.3, electrolytic copper plating was performed for 200 minutes at a solution temperature of 50 ° C. and a cathode current density of 0.2 A / dm 2 , and copper was applied to the surfaces of the test pieces A and B. A plating film was formed. When the film thickness of the copper plating film was measured for the test sample A, 10 samples having the copper plating film on the surface, the average value was 15 μm. In addition, when an adhesion test was performed on a test sample A, 10 samples having a copper plating film on the surface thereof, which was peeled off with a tape after cross-cutting in accordance with JIS (K5400), the copper plating film was peeled from the test piece. No sample was present. When the magnetic properties of the test pieces B and 10 samples each having a copper plating film on the surface were evaluated, the average value was 0.98 iHc / Hk, which was excellent.
[0028]
Comparative Example 1:
A copper plating solution containing 0.2 mol / L of copper pyrophosphate, 1.1 mol / L of potassium pyrophosphate, and 0.1 mol / L of potassium nitrate and adjusted to pH 8.5 with aqueous ammonia was used. An electrolytic copper plating process was performed at a cathode current density of 0.2 A / dm 2 for 60 minutes to form a copper plating film on the surfaces of the test pieces A and B, but no copper plating film was formed on the entire surface. (Therefore, the thickness of the copper plating film was not measured). When an adhesion test similar to that of Example 1 was performed on the 10 test pieces A and 10 samples, the copper plating film partially formed on the surface of the test piece was found to be in all samples. Peeled off.
[0029]
Example 2:
It contains 0.5 mol / L of nickel sulfate hexahydrate, 0.1 mol / L of diammonium citrate, 0.2 mol / L of boric acid, 0.15 mol / L of ammonium chloride, and 0.5 mol / L of saccharin. Using a nickel plating solution whose pH was adjusted to 6.8 with a nickel plating solution at a solution temperature of 50 ° C. and a cathode current density of 0.25 A / dm 2 for 15 minutes, the surfaces of the test pieces A and B were Then, a nickel plating film was formed. When the film thickness of the nickel plating film was measured for 10 samples of the test piece A having the nickel plating film on the surface, the average value was 1 μm. The test piece A and the test piece B having the nickel plating film on the surface were immersed in an aqueous solution (pH 1.5) containing 0.033 mol / L of oxalic acid at a liquid temperature of 30 ° C. for 2 minutes to perform the surface treatment of the nickel plating film. After ultrasonic cleaning with ion-exchanged water for 2 minutes from the above, using the copper plating solution described in Example 1, electrolytic copper plating treatment was performed at a solution temperature of 50 ° C. and a negative current density of 0.2 A / dm 2 for 60 minutes. Then, a copper plating film was formed on the surface of the nickel plating film. When the thickness of the copper plating film was measured on 10 samples and the test piece A having the copper plating film on the surface via the nickel plating film, the average value was 5 μm. When an adhesion test similar to that of Example 1 was performed on 10 samples A and samples having a copper plating film on the surface via the nickel plating film, there was a sample in which the copper plating film was separated from the nickel plating film. Did not. When the magnetic characteristics of the sample B, 10 samples having a copper plating film on the surface via the nickel plating film were evaluated, the average value was 0.95 iHc / Hk, which was excellent.
[0030]
Comparative Example 2:
Using the nickel plating solution described in Example 2, an electro-nickel plating treatment was performed under the same conditions, and a nickel plating film was formed on the surfaces of the test pieces A and B. After performing the same surface treatment as in Example 2 on the nickel plating films formed on the surfaces of the test piece A and the test piece B, the copper plating solution described in Comparative Example 1 was used, and the same conditions were applied. Copper plating was performed to form a copper plating film on the surface of the nickel plating film. When the thickness of the copper plating film was measured on 10 samples and the test piece A having the copper plating film on the surface via the nickel plating film, the average value was 5 μm. When an adhesion test similar to that of Example 1 was performed on the test samples A and 10 samples having a copper plating film on the surface via the nickel plating film, the copper plating film was peeled off from the nickel plating film in one sample. . When the magnetic properties of the sample B and the 10 samples having the copper plating film on the surface via the nickel plating film were evaluated, the average value was 0.71 iHc / Hk, and the deterioration of the magnetic characteristics was remarkable.
[0031]
【The invention's effect】
ADVANTAGE OF THE INVENTION According to this invention, the manufacturing method of the rare earth permanent magnet which has the copper plating film excellent in adhesiveness on the surface using the novel plating solution for electrolytic copper plating processing is provided.

Claims (10)

銅めっき被膜を表面に有する希土類系永久磁石の製造方法であって、硫酸銅を0.03mol/L〜0.5mol/L、エチレンジアミン四酢酸を0.05mol/L〜0.7mol/L、硫酸ナトリウムを0.02mol/L〜1.0mol/L、酒石酸塩およびクエン酸塩から選ばれる少なくとも1種を0.1mol/L〜1.0mol/L含有し、pHが11.0〜13.0に調整されためっき液を使用して電気銅めっき処理により、希土類系永久磁石の表面に直接にまたは他の金属めっき被膜を介して銅めっき被膜を形成することを特徴とする製造方法。A method for producing a rare earth permanent magnet having a copper plating film on its surface, comprising 0.03 mol / L to 0.5 mol / L of copper sulfate, 0.05 mol / L to 0.7 mol / L of ethylenediaminetetraacetic acid, sulfuric acid It contains 0.02 mol / L to 1.0 mol / L of sodium, 0.1 mol / L to 1.0 mol / L of at least one selected from tartrate and citrate, and has a pH of 11.0 to 13.0. A copper plating film is formed on the surface of a rare-earth permanent magnet directly or via another metal plating film by an electrolytic copper plating process using a plating solution adjusted to the above. 希土類系永久磁石の表面に直接に銅めっき被膜を形成することを特徴とする請求項1記載の製造方法。2. The method according to claim 1, wherein a copper plating film is formed directly on the surface of the rare earth permanent magnet. 希土類系永久磁石の表面に他の金属めっき被膜を介して銅めっき被膜を形成することを特徴とする請求項1記載の製造方法。2. The method according to claim 1, wherein a copper plating film is formed on the surface of the rare earth permanent magnet via another metal plating film. 他の金属めっき被膜を有機カルボン酸含有水溶液で表面処理した後に銅めっき被膜を形成することを特徴とする請求項3記載の製造方法。The method according to claim 3, wherein the copper plating film is formed after the surface treatment of another metal plating film with an aqueous solution containing an organic carboxylic acid. 有機カルボン酸がシュウ酸であることを特徴とする請求項4記載の製造方法。The method according to claim 4, wherein the organic carboxylic acid is oxalic acid. 有機カルボン酸含有水溶液の有機カルボン酸濃度が0.002mol/L以上であることを特徴とする請求項4記載の製造方法。The method according to claim 4, wherein the organic carboxylic acid-containing aqueous solution has an organic carboxylic acid concentration of 0.002 mol / L or more. 他の金属めっき被膜がニッケルめっき被膜であることを特徴とする請求項3記載の製造方法。4. The method according to claim 3, wherein the other metal plating film is a nickel plating film. ニッケルめっき被膜がpHが6.0〜8.0に調整されためっき液を使用して電気ニッケルめっき処理により形成されたものであることを特徴とする請求項7記載の製造方法。8. The method according to claim 7, wherein the nickel plating film is formed by electro-nickel plating using a plating solution having a pH adjusted to 6.0 to 8.0. 硫酸銅を0.03mol/L〜0.5mol/L、エチレンジアミン四酢酸を0.05mol/L〜0.7mol/L、硫酸ナトリウムを0.02mol/L〜1.0mol/L、酒石酸塩およびクエン酸塩から選ばれる少なくとも1種を0.1mol/L〜1.0mol/L含有し、pHが11.0〜13.0に調整されていることを特徴とする電気銅めっき処理用めっき液。0.03 mol / L to 0.5 mol / L of copper sulfate, 0.05 mol / L to 0.7 mol / L of ethylenediaminetetraacetic acid, 0.02 mol / L to 1.0 mol / L of sodium sulfate, tartrate and citric acid A plating solution for electrolytic copper plating, wherein the plating solution contains at least one selected from acid salts in an amount of 0.1 mol / L to 1.0 mol / L and has a pH adjusted to 11.0 to 13.0. 請求項1記載の製造方法により製造されたことを特徴とする銅めっき被膜を表面に有する希土類系永久磁石。A rare earth permanent magnet having a copper plating film on the surface, which is manufactured by the manufacturing method according to claim 1.
JP2002302088A 2002-10-16 2002-10-16 Method for producing rare earth based permanent magnet having copper plating film on its surface Expired - Lifetime JP3994847B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002302088A JP3994847B2 (en) 2002-10-16 2002-10-16 Method for producing rare earth based permanent magnet having copper plating film on its surface

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002302088A JP3994847B2 (en) 2002-10-16 2002-10-16 Method for producing rare earth based permanent magnet having copper plating film on its surface

Publications (2)

Publication Number Publication Date
JP2004137533A true JP2004137533A (en) 2004-05-13
JP3994847B2 JP3994847B2 (en) 2007-10-24

Family

ID=32450270

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002302088A Expired - Lifetime JP3994847B2 (en) 2002-10-16 2002-10-16 Method for producing rare earth based permanent magnet having copper plating film on its surface

Country Status (1)

Country Link
JP (1) JP3994847B2 (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007039784A (en) * 2004-08-10 2007-02-15 Neomax Co Ltd Rare earth element based permanent magnet having copper plating film on surface thereof
US20090035603A1 (en) * 2006-02-07 2009-02-05 Hitachi Metals, Ltd., Method for producing rare earth metal-based permanent magnet having copper plating film on surface thereof
US7785460B2 (en) 2004-08-10 2010-08-31 Hitachi Metals, Ltd. Method for producing rare earth metal-based permanent magnet having copper plating film on the surface thereof
WO2012111353A1 (en) 2011-02-15 2012-08-23 日立金属株式会社 Production method for r-fe-b sintered magnet having plating film on surface thereof
CN104213164A (en) * 2013-06-04 2014-12-17 天津三环乐喜新材料有限公司 Neodymium iron boron permanent magnet surface protection method
CN105154928A (en) * 2015-09-07 2015-12-16 湖州方明环保科技有限公司 Novel cyanide-free alkaline copper plating solution and preparation method thereof
JP2016186100A (en) * 2015-03-27 2016-10-27 国立大学法人秋田大学 Method and device of producing copper ion-containing aqueous solution
CN107313080A (en) * 2017-06-30 2017-11-03 钢铁研究总院 Electroplate liquid, preparation method and the electro-plating method of neodymium iron boron product Direct Electroplating copper

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007039784A (en) * 2004-08-10 2007-02-15 Neomax Co Ltd Rare earth element based permanent magnet having copper plating film on surface thereof
US7785460B2 (en) 2004-08-10 2010-08-31 Hitachi Metals, Ltd. Method for producing rare earth metal-based permanent magnet having copper plating film on the surface thereof
JP4650275B2 (en) * 2004-08-10 2011-03-16 日立金属株式会社 Rare earth permanent magnet with copper plating film on the surface
US20090035603A1 (en) * 2006-02-07 2009-02-05 Hitachi Metals, Ltd., Method for producing rare earth metal-based permanent magnet having copper plating film on surface thereof
WO2012111353A1 (en) 2011-02-15 2012-08-23 日立金属株式会社 Production method for r-fe-b sintered magnet having plating film on surface thereof
CN104213164A (en) * 2013-06-04 2014-12-17 天津三环乐喜新材料有限公司 Neodymium iron boron permanent magnet surface protection method
JP2016186100A (en) * 2015-03-27 2016-10-27 国立大学法人秋田大学 Method and device of producing copper ion-containing aqueous solution
CN105154928A (en) * 2015-09-07 2015-12-16 湖州方明环保科技有限公司 Novel cyanide-free alkaline copper plating solution and preparation method thereof
CN107313080A (en) * 2017-06-30 2017-11-03 钢铁研究总院 Electroplate liquid, preparation method and the electro-plating method of neodymium iron boron product Direct Electroplating copper
CN107313080B (en) * 2017-06-30 2019-01-18 钢铁研究总院 Electroplate liquid, preparation method and the electro-plating method of the direct electro-coppering of neodymium iron boron product

Also Published As

Publication number Publication date
JP3994847B2 (en) 2007-10-24

Similar Documents

Publication Publication Date Title
JP3972111B2 (en) Method for producing rare earth based permanent magnet having copper plating film on its surface
JP5573848B2 (en) Corrosion-resistant magnet and manufacturing method thereof
JP4033241B2 (en) Method for producing rare earth based permanent magnet having copper plating film on its surface
JP4595237B2 (en) Copper plating solution and copper plating method
JP3994847B2 (en) Method for producing rare earth based permanent magnet having copper plating film on its surface
JP4650275B2 (en) Rare earth permanent magnet with copper plating film on the surface
JP2003007556A (en) Permanent magnet composite material of rare-earth-iron- boron system having excellent corrosion proof characteristic and method of manufacturing the same
JP4586937B2 (en) Corrosion-resistant magnet and manufacturing method thereof
JP4538959B2 (en) Electric Ni plating method for rare earth permanent magnet
EP2624266A1 (en) Method for forming electric copper plating film on surface of rare earth permanent magnet
JP3248982B2 (en) Permanent magnet and manufacturing method thereof
JP3614754B2 (en) Surface treatment method and magnet manufacturing method
JP3580521B2 (en) Manufacturing method of high corrosion resistant permanent magnet
JP2007251059A (en) Rare-earth magnet and manufacturing method thereof
JP3734479B2 (en) Rare earth magnet manufacturing method
JP3650141B2 (en) permanent magnet
JP2004273582A (en) Rare earth permanent magnet assuring excellent adhesive property
JP3638423B2 (en) High corrosion resistance permanent magnet
JP2007277586A (en) Plating solution, conductive material and surface treatment method of conductive material
JP2002060961A (en) Method for forming chemical film on sintered compact and rare earth metal magnet subjected to chemical film
JP2004289021A (en) Method of producing rare earth magnet
JP2003321795A (en) Method for manufacturing rare earth permanent magnet having laminated metal plating films on surface
JPS63198305A (en) High corrosion resistance rare earth element permanent magnet
JPH01223712A (en) Manufacture of corrosion-resistant permanent magnet
JP2003338419A (en) R-tm-b-based permanent magnet

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050722

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20070131

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070417

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20070607

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070618

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20070710

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20070723

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100810

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 3994847

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100810

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110810

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120810

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130810

Year of fee payment: 6

EXPY Cancellation because of completion of term