JP2001250534A - Lithium ion secondary battery - Google Patents

Lithium ion secondary battery

Info

Publication number
JP2001250534A
JP2001250534A JP2000062263A JP2000062263A JP2001250534A JP 2001250534 A JP2001250534 A JP 2001250534A JP 2000062263 A JP2000062263 A JP 2000062263A JP 2000062263 A JP2000062263 A JP 2000062263A JP 2001250534 A JP2001250534 A JP 2001250534A
Authority
JP
Japan
Prior art keywords
battery
negative electrode
lithium
coating layer
thickness
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2000062263A
Other languages
Japanese (ja)
Inventor
Kazuya Okabe
一弥 岡部
Ryuji Shiozaki
竜二 塩崎
Shuchiku Ko
修竹 黄
Akihiro Fujii
明博 藤井
Hiroshi Yufu
宏 油布
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Yuasa Corp
Original Assignee
Yuasa Corp
Yuasa Battery Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Yuasa Corp, Yuasa Battery Corp filed Critical Yuasa Corp
Priority to JP2000062263A priority Critical patent/JP2001250534A/en
Publication of JP2001250534A publication Critical patent/JP2001250534A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Carbon And Carbon Compounds (AREA)
  • Secondary Cells (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a lithium ion secondary battery, using a carbon material for a negative electrode, having high capacity even in rapid charge/discharge, less self-discharging and improved cycle characteristics. SOLUTION: The lithium ion secondary battery comprises a coating layer with its carbon-particle surface defining at least a portion of the negative electrode contacting a separator and having a carbonate structure, the coating layer being controlled to be in the range of 5 nm-200 nm in thickness.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明はリチウムイオン二次
電池に関するものであって、さらに詳しくは負極炭素材
料の表面被膜に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a lithium ion secondary battery, and more particularly, to a surface coating of a negative electrode carbon material.

【0002】[0002]

【従来の技術】近年、電子機器の軽量化・小型化が急速
に進んでおり、これらの駆動用電源として小型・軽量
で、高エネルギー密度を有する二次電池が求められてい
る。なかでも、リチウム二次電池は高電圧、高エネルギ
ー密度を有する電池として期待が大きい。
2. Description of the Related Art In recent years, the weight and size of electronic devices have been rapidly reduced, and a secondary battery having a small size, light weight, and high energy density has been demanded as a driving power source for these devices. Above all, lithium secondary batteries are expected to have high voltage and high energy density.

【0003】リチウム二次電池の負極には、従来からリ
チウム金属及やリチウム合金が用いられてきた。しか
し、リチウム金属は樹脂状リチウム(デンドライト)の
析出による短絡、高温時の安全性等に問題がある。又、
リチウム合金にはサイクル寿命が短い、充放電エネルギ
ー効率が低いといった問題がある。最近では、これらの
問題点を解決する為、炭素材料を負極に用いる研究が活
発である。
[0003] As a negative electrode of a lithium secondary battery, lithium metal and lithium alloy have been conventionally used. However, lithium metal has problems in short-circuiting due to precipitation of resinous lithium (dendrites), safety at high temperatures, and the like. or,
Lithium alloys have problems such as short cycle life and low charge / discharge energy efficiency. Recently, in order to solve these problems, research on using a carbon material for a negative electrode is active.

【0004】しかし、炭素材料を負極に用いたリチウム
イオン電池では、電解液にLiPF 4等のハロゲンを含
むリチウム塩を用いると、前記リチウム塩が電池内部に
混入した水と反応してフッ素化水素等のハロゲン化水素
酸を発生し、これが負極に影響を与え、自己放電の増大
やサイクル特性を低下させる等の問題があった。特開平
5−258753号公報には、電解液にSやNをヘテロ
元素とする複素環化合物を添加し、炭素表面にこれらの
分解生成物の被膜を形成させることで、自己放電やサイ
クル寿命が改善されることが報告されている。
However, lithium using a carbon material for the negative electrode
In an ion battery, LiPF is used as the electrolyte. FourIncluding halogen
When a lithium salt is used, the lithium salt is stored inside the battery.
Hydrogen halide such as hydrogen fluoride reacting with mixed water
Generates acid, which affects the negative electrode and increases self-discharge
And the cycle characteristics are deteriorated. JP
Japanese Patent Application Laid-Open No. 5-257553 discloses that S and N are heterogeneous in an electrolytic solution.
Add a heterocyclic compound as an element and apply these
By forming a film of decomposition products, self-discharge and size
It is reported that the cycle life is improved.

【0005】[0005]

【発明が解決しようとする課題】本発明は、炭素材料を
負極に用いた電池において、高率充放電特性に優れ、自
己放電が少なく、充放電サイクル特性にも優れたリチウ
ム二次電池を提供することを目的とする。
SUMMARY OF THE INVENTION The present invention provides a lithium secondary battery using a carbon material for a negative electrode, which is excellent in high-rate charge / discharge characteristics, has little self-discharge, and is excellent in charge / discharge cycle characteristics. The purpose is to do.

【0006】[0006]

【課題を解決するための手段】上記の課題を解決するた
め、本発明は、正極と、非水電解液を含むセパレータ
と、リチウムイオンを吸蔵・放出できる炭素材料からな
る負極を備え、前記負極の少なくともセパレータと接す
る部分を構成する炭素粒子の表面がカーボネート構造を
有する被膜層を有し、前記被膜層の厚さが5nm〜20
0nmであることを特徴とするリチウム二次電池であ
る。
In order to solve the above-mentioned problems, the present invention comprises a positive electrode, a separator containing a non-aqueous electrolyte, and a negative electrode made of a carbon material capable of inserting and extracting lithium ions. The surface of the carbon particles constituting at least the portion in contact with the separator has a coating layer having a carbonate structure, and the coating layer has a thickness of 5 nm to 20 nm.
A lithium secondary battery having a thickness of 0 nm.

【0007】負極に炭素材料を用いた場合、炭素材料へ
のリチウムの吸蔵・放出反応は、電解液と炭素表面との
間に生成する被膜の状態によって大きく支配される。リ
チウム金属負極をモデルに説明すると、リチウム金属表
面に、緻密でイオン導伝性の高い被膜があると、優れた
電池特性を示すが、逆に厚くイオン伝導性の低い被膜が
あると、電池のレート特性や、充放電サイクル特性が悪
くなる。ここで、前者の被膜成分は炭酸リチウムや酸化
リチウム等であり、後者の被膜成分はフッ化リチウム等
であることが知られている。同様のことが炭素材料の表
面に生成する被膜についても言える。即ち、炭素材料の
界面抵抗を増大させる要因の一つに、炭素材料表面に、
フッ化リチウム等のイオン伝導度の低い被膜が形成され
ることが挙げられる。
When a carbon material is used for the negative electrode, the reaction of absorbing and releasing lithium into and from the carbon material is largely controlled by the state of a film formed between the electrolytic solution and the carbon surface. Explaining the lithium metal negative electrode as a model, if a lithium metal surface has a dense and highly ion-conductive coating, it exhibits excellent battery characteristics. The rate characteristics and charge / discharge cycle characteristics deteriorate. Here, it is known that the former film component is lithium carbonate, lithium oxide or the like, and the latter film component is lithium fluoride or the like. The same can be said for a film formed on the surface of a carbon material. That is, one of the factors that increase the interfacial resistance of the carbon material is that the carbon material surface
For example, a film having low ion conductivity such as lithium fluoride may be formed.

【0008】本発明者らは、炭素材料表面に生じる被膜
について、研究を進めた結果、電解液の溶媒にカーボネ
ート類を用いた場合、特に電池の初期充電過程におい
て、負極炭素表面で電解液の一部が分解して形成される
カーボネート構造の被膜の厚さを、5nm〜200nm
の範囲に制御することにより、充放電サイクル性能が大
幅に改善することを見い出した。
The present inventors have conducted research on a film formed on the surface of a carbon material. As a result, when carbonates are used as a solvent for the electrolytic solution, particularly in the initial charging step of the battery, the electrolytic solution is deposited on the carbon surface of the negative electrode. The thickness of the carbonate-structured film formed by partial decomposition is 5 nm to 200 nm.
It has been found that the charge / discharge cycle performance is significantly improved by controlling the temperature within the range.

【0009】負極炭素材料の表面に、制御されたカーボ
ネート構造の被膜を形成する方法としては、例えば、電
池の初期充電時の温度を制御することにより、被膜形成
反応の速度を制御でき、また前記初期充電の時間を制御
することにより、前記被膜の厚さが制御できる。
As a method of forming a film having a controlled carbonate structure on the surface of the negative electrode carbon material, for example, by controlling the temperature at the time of initial charging of the battery, the speed of the film forming reaction can be controlled. By controlling the time of the initial charge, the thickness of the coating can be controlled.

【0010】制御されたカーボネート構造の被膜層は、
負極の全てのカーボン粒子表面に形成される必要はな
く、少なくともセパレータと接する部分を構成する炭素
粒子の表面に形成されていればよい。
[0010] The controlled carbonate structure coating layer comprises:
It is not necessary to form on the surface of all the carbon particles of the negative electrode, and it is sufficient if it is formed on at least the surface of the carbon particles constituting the portion in contact with the separator.

【0011】なお、「特許請求の範囲」にいう「被膜層
の厚さ」とは、電池を解体して負極板を取り出し、ジエ
チルカーボネート等の溶媒によって電解液を洗浄・除去
し、真空乾燥を行った後に計測した値をいう。
[0011] The "thickness of the coating layer" in the claims means that the battery is disassembled, the negative electrode plate is taken out, the electrolyte is washed and removed with a solvent such as diethyl carbonate, and vacuum drying is performed. It means the value measured after performing.

【0012】電池内においては前記被膜層は電解液によ
って膨潤した状態になっていると考えられるため、実際
の被膜の厚さは、これより大きいと考えられる。実際の
被膜層の厚さを計測するには、電極をエポキシ等の樹脂
に埋めた後、断面をカットして炭素表面から埋めた樹脂
迄の距離を電子顕微鏡等で計測する方法等が挙げられる
が、この方法は、電解液の組成や形成されるカーボネー
ト骨格の構造等により、膨潤係数が異なることや、サン
プル間の誤差が大く現れやすいため、上記のような定義
とした。
[0012] In the battery, the coating layer is considered to be swollen by the electrolyte, so that the actual thickness of the coating is considered to be larger than this. In order to measure the actual thickness of the coating layer, a method of embedding the electrode in a resin such as epoxy, cutting the cross section and measuring the distance from the carbon surface to the embedded resin with an electron microscope or the like can be used. However, in this method, the swelling coefficient varies depending on the composition of the electrolytic solution, the structure of the carbonate skeleton to be formed, and the like, and a large error between samples is likely to appear.

【0013】[0013]

【発明の実施の形態】本発明は以下の記載により限定さ
れるものではなく、試験方法や構成する電池の正極活物
質、負極活物質、正極、負極、電解質、セパレータ並び
に電池形状等は任意である。本発明電池の実施形態の一
例を図1に示す。
DESCRIPTION OF THE PREFERRED EMBODIMENTS The present invention is not limited by the following description, and the test method and the positive electrode active material, the negative electrode active material, the positive electrode, the negative electrode, the electrolyte, the separator, the shape of the battery and the like of the battery to be constituted are arbitrary. is there. FIG. 1 shows an example of an embodiment of the battery of the present invention.

【0014】負極9に用いる炭素材料としては、リチウ
ムを吸蔵、放出可能な炭素材料であればよく、特にエッ
クス線回折法より見積もられる面間隔(d002)が0.
3354〜0.3369nmで、c軸方向の結晶子の大
きさ(Lc)が20nm以上である炭素粒子が好まし
い。
The carbon material used for the negative electrode 9 may be any carbon material capable of occluding and releasing lithium. In particular, the plane spacing (d 002 ) estimated by X-ray diffraction method is 0.
Carbon particles having a crystallite size (Lc) of 3354 to 0.3369 nm in the c-axis direction of 20 nm or more are preferred.

【0015】正極7としては、LiCoO2、LiNi
2、LiMn24等のリチウム金属酸化物や、前記L
iCoO2、LiNiO2、LiMn24のCo、Ni、
Mnの部位の一部を他元素で置換した酸化物等を用いる
ことができる。前記他元素としては、Li、B,V,A
l,Ni,Co,Mg,Cr,Tb等が挙げられる。
As the positive electrode 7, LiCoO 2 , LiNi
Lithium metal oxides such as O 2 and LiMn 2 O 4;
Co, Ni of iCoO 2 , LiNiO 2 , LiMn 2 O 4 ,
An oxide or the like in which a part of Mn is substituted with another element can be used. As the other elements, Li, B, V, A
1, Ni, Co, Mg, Cr, Tb and the like.

【0016】セパレータ8には、イオンの透過性に優
れ、機械的強度のある絶縁性薄膜を用いることができ
る。耐有機溶剤性と疎水性の観点から、ポリプロピレン
やポリエチレンといったオレフィン系のポリマーが用い
られる。セパレータの孔径は、一般に電池に用いられる
範囲のものであり、例えば0.01〜1μmである。ま
た、その厚みについても同様で、一般に電池に用いられ
る範囲のものであり、例えば5〜40μmである。
As the separator 8, an insulating thin film having excellent ion permeability and mechanical strength can be used. From the viewpoint of organic solvent resistance and hydrophobicity, olefin polymers such as polypropylene and polyethylene are used. The pore size of the separator is in a range generally used for a battery, and is, for example, 0.01 to 1 μm. The same applies to the thickness, which is in the range generally used for batteries, for example, 5 to 40 μm.

【0017】電解質には、高いリチウムイオン伝導性を
示すLiPF6、LiBF4、LiAsF6、LiOSO2
CF3等等を用いることができる。これら含フッ素電解
質は、非水溶媒中に通常0.1M〜3.0M好ましくは
0.5M〜2.0Mの濃度に溶解して使用する。
The electrolyte includes LiPF 6 , LiBF 4 , LiAsF 6 and LiOSO 2 exhibiting high lithium ion conductivity.
CF 3, etc. and the like can be used. These fluorinated electrolytes are used after being dissolved in a non-aqueous solvent at a concentration of usually 0.1 M to 3.0 M, preferably 0.5 M to 2.0 M.

【0018】前記非水溶媒は、高誘電率溶媒と低粘度溶
媒の組み合わせで使用されることが好ましい。高誘電率
溶媒としては、例えば、エチレンカーボネート(E
C)、プロフピレンカーボネート(PC)等の環状カー
ボネート類が好適に用いられる。これら高誘電率溶媒
は、単独で使用してもよく、また2種類以上を組み合わ
せてもよい。
The non-aqueous solvent is preferably used in a combination of a high dielectric constant solvent and a low viscosity solvent. Examples of the high dielectric constant solvent include ethylene carbonate (E
C) and cyclic carbonates such as propylene carbonate (PC) are preferably used. These high dielectric constant solvents may be used alone or in combination of two or more.

【0019】低粘度溶媒としては、例えば、ジメチルカ
ーボネート(DMC)、メチルエチルカーボネート(M
EC)、ジメチルカーボネート(DMC)等の鎖状カー
ボネート類、γーブチロラクトン等のラクトン類が挙げ
られる。これら低粘度溶媒は単独で使用してもよく、ま
た2種類以上を組み合わせてもよい。
Examples of the low viscosity solvent include dimethyl carbonate (DMC) and methyl ethyl carbonate (M
EC), chain carbonates such as dimethyl carbonate (DMC), and lactones such as γ-butyrolactone. These low-viscosity solvents may be used alone or in combination of two or more.

【0020】[0020]

【実施例】以下、実施例に基づき、本発明をさらに詳細
に説明する。
The present invention will be described below in further detail with reference to examples.

【0021】(本発明電池1)負極9は、次のようにし
て得た。人造黒鉛(粒径6μm)に、結着剤としてポリ
フッ化ビニリデン(PVDF)粉末を10重量%加え、
溶剤としてN−メチルピロリドンを加えて混練分散し、
塗布液を調製した。前記塗布液を厚さ10μmの銅箔集
電体の両面に塗布し、ロールプレスにより集電体込みの
厚さを180μmに調整して、7mAh/cm2の容量
を持つ負極シートを作製した。前記負極シートを幅65
mm高さ111mmの形状に裁断し、シートの末端に厚
み10μm幅10mmの銅リード板を取り付け、150
℃で12時間減圧乾燥し、負極9とした。
(Battery 1 of the Present Invention) Negative electrode 9 was obtained as follows. 10% by weight of polyvinylidene fluoride (PVDF) powder as a binder was added to artificial graphite (particle diameter: 6 μm),
N-methylpyrrolidone is added as a solvent, kneaded and dispersed,
A coating solution was prepared. The coating solution was applied to both surfaces of a copper foil current collector having a thickness of 10 μm, and the thickness including the current collector was adjusted to 180 μm by a roll press to produce a negative electrode sheet having a capacity of 7 mAh / cm 2 . The negative electrode sheet has a width of 65
The sheet was cut into a shape having a height of 111 mm and a copper lead plate having a thickness of 10 μm and a width of 10 mm was attached to the end of the sheet.
It dried under reduced pressure at 12 degreeC for 12 hours, and was set as the negative electrode 9.

【0022】正極7は、正極活物質としてLiCo
2、導電剤としてアセチレンブラック及び結着剤とし
てポリフッ化ビニリデン(PVDF)粉末を重量比8
5:10:5の割合で混合し、溶剤としてN−メチルピ
ロリドンを加えて混練分散し、塗布液を調製した。前記
塗布液を厚さ20μmのアルミ箔集電体の両面に塗布
し、ロールプレスにより集電体込みの厚さを230μm
に調整して6.3mAh/cm 2の容量を持つ正極シー
トを作製した。前記正極シートを幅61mm高さ107
mmの形状に裁断し、シートの末端に厚み20μm幅1
0mmのアルミニウムリード板を取り付け、150℃で
12時間減圧乾燥し、正極7とした。
The positive electrode 7 is made of LiCo as a positive electrode active material.
OTwoAcetylene black as a conductive agent and a binder
Polyvinylidene fluoride (PVDF) powder at a weight ratio of 8
The mixture was mixed at a ratio of 5: 10: 5, and N-methylpi
Loridone was added, kneaded and dispersed to prepare a coating solution. Said
Apply coating solution on both sides of 20μm thick aluminum foil current collector
And roll collector to reduce the thickness including the current collector to 230 μm
6.3mAh / cm TwoPositive electrode sheet with a capacity of
Was made. The positive electrode sheet has a width of 61 mm and a height of 107
mm at the end of the sheet, thickness 20μm width 1
Attach 0mm aluminum lead plate, and at 150 ℃
After drying under reduced pressure for 12 hours, a positive electrode 7 was obtained.

【0023】ポリエチレン製微多孔膜の袋を幅65mm
×高さ111mmの袋状に成形し、セパレータ8として
用いた。前記正極7をセパレータ8の袋に挿入したもの
と負極9とを交互に積層し、40枚の正極7及び41枚
の負極9からなる極群を得た。この極群をポリエチレン
樹脂からなる絶縁フィルムに包み込み、アルミニウム製
の角形電槽缶10に収納した。正極7及び負極9のリー
ド板と、蓋2に取り付けられた正極端子5及び負極端子
4をそれぞれボルトによって接続した。なお、端子はポ
リプロピレン樹脂からなるガスケット6を用いて絶縁し
てある。
A polyethylene microporous membrane bag is 65 mm wide.
× It was formed into a bag shape having a height of 111 mm and used as the separator 8. The positive electrode 7 inserted in the bag of the separator 8 and the negative electrode 9 were alternately laminated to obtain an electrode group including 40 positive electrodes 7 and 41 negative electrodes 9. This electrode group was wrapped in an insulating film made of a polyethylene resin, and housed in a rectangular battery case 10 made of aluminum. The lead plates of the positive electrode 7 and the negative electrode 9 were connected to the positive electrode terminal 5 and the negative electrode terminal 4 attached to the lid 2 by bolts, respectively. The terminals are insulated using a gasket 6 made of polypropylene resin.

【0024】安全弁1を有するアルミニウム製の蓋2と
電槽缶19とをレーザーで溶接し、横70mm、高さ1
30mm(端子込み136mm)幅22mmの角形電池
を作製した。3はレーザー溶接部である。
A lid 2 made of aluminum having a safety valve 1 and a battery case 19 are welded by a laser to a width of 70 mm and a height of 1 mm.
A prismatic battery having a width of 30 mm (136 mm including terminals) and a width of 22 mm was produced. 3 is a laser weld.

【0025】十分に精製したエチレンカーボネートと十
分に精製したジエチルカーボネートとを体積比1:1の
割合で混合した溶媒に、十分に精製したLiPF6を1
mol/l溶解したものを電解液とし、前記電解液を前
記角形電池に65g注入し、封口した。
In a solvent in which fully purified ethylene carbonate and sufficiently purified diethyl carbonate are mixed at a volume ratio of 1: 1, 1 well purified LiPF 6 is added.
The solution dissolved in mol / l was used as an electrolyte, and 65 g of the electrolyte was injected into the prismatic battery and sealed.

【0026】次に被膜作製工程として、前記角形電池に
対し、20℃において1.5A、4.2Vの定電圧充電
を施した後、50℃で3日間放置した。
Next, as a film forming step, the prismatic battery was charged at a constant voltage of 1.5 A and 4.2 V at 20 ° C., and then left at 50 ° C. for 3 days.

【0027】このようにして、図1に示す容量15Ah
の角形非水電解質電池を試作した。この電池を本発明電
池1とする。
In this way, the capacitance 15Ah shown in FIG.
The prototype non-aqueous electrolyte battery was manufactured. This battery is referred to as Battery 1 of the invention.

【0028】(本発明電池2)被膜作製工程として、2
0℃において1.5A、4.2Vの定電圧充電を施した
後、50℃で6日間放置を行ったこと以外は本発明電池
1と同様に作製した電池を本発明電池2とする。
(Battery 2 of the present invention)
A battery manufactured in the same manner as the battery 1 of the present invention except that the battery was charged at a constant voltage of 1.5 A and 4.2 V at 0 ° C. and then left at 50 ° C. for 6 days is referred to as a battery 2 of the present invention.

【0029】(本発明電池3)被膜作製工程として、2
0℃において1.5A、4.2Vの定電圧充電を施した
後、60℃で7日間放置を行ったこと以外は本発明電池
1と同様に作製した電池を本発明電池3とする。
(Battery 3 of the present invention)
A battery prepared in the same manner as the battery 1 of the present invention except that the battery was charged at a constant voltage of 1.5 A and 4.2 V at 0 ° C. and then left at 60 ° C. for 7 days is referred to as a battery 3 of the present invention.

【0030】(本発明電池4)被膜作製工程として、2
0℃において1.5A、4.2Vの定電圧充電を施した
後、60℃で14日間放置を行ったこと以外は本発明電
池1と同様に作製した電池を本発明電池4とする。
(Battery 4 of the present invention)
A battery manufactured in the same manner as the battery 1 of the present invention except that the battery was charged at a constant voltage of 1.5 A and 4.2 V at 0 ° C. and then left at 60 ° C. for 14 days is referred to as a battery 4 of the present invention.

【0031】(比較電池1)被膜作製工程として、20
℃において1.5A、4.2Vの定電圧充電を施した
後、60℃で21日間放置を行ったこと以外は本発明電
池Aと同様に作製した電池を比較電池1とする。
(Comparative Battery 1) As a film forming step, 20
A battery prepared in the same manner as the battery A of the present invention except that the battery was subjected to constant voltage charging at 1.5 A and 4.2 V at ℃ and left at 60 ° C. for 21 days is referred to as a comparative battery 1.

【0032】(比較電池2)被膜作製工程に代えて、2
0℃において1.5A、4.2Vの定電圧充電を施した
後、20℃での放置時間が12時間以内であること以外
は本発明電池1と同様に作製した電池を比較電池2とす
る。
(Comparative Battery 2) Instead of the film forming step, 2
A battery fabricated in the same manner as the battery 1 of the present invention except that the battery was subjected to a constant voltage charge of 1.5 A and 4.2 V at 0 ° C. and then left at 20 ° C. for 12 hours or less was designated as a comparative battery 2. .

【0033】これらの本発明電池1〜4及び比較電池
1、2は、それぞれ複数個作製し、一部を被膜の分析に
供し、一部を充放電試験に供した。
Each of the batteries 1 to 4 of the present invention and the comparative batteries 1 and 2 was prepared in a plural number, a part of which was subjected to the analysis of the coating, and a part was subjected to the charge and discharge test.

【0034】(被膜の分析)本発明電池1〜4及び比較
電池1、2を解体し、負極9をジエチルカーボネートに
よって充分洗浄した後、真空乾燥した負極の表面を、集
束イオンビーム加工装置によって加工した。加工後の負
極断面を電子顕微鏡観察写真によって確認し、被膜層厚
さを測定した。測定結果を表1に示した。
(Analysis of Coating) The batteries 1 to 4 of the present invention and the comparative batteries 1 and 2 were disassembled, and the negative electrode 9 was sufficiently washed with diethyl carbonate. Then, the surface of the negative electrode dried under vacuum was processed by a focused ion beam processing apparatus. did. The cross section of the negative electrode after processing was confirmed by an electron microscopic observation photograph, and the thickness of the coating layer was measured. Table 1 shows the measurement results.

【0035】また、エックス線光分子分光法によって、
被膜の主な構成要素を分析した。その結果、全ての電池
の被膜が、カーボネート骨格を有することが確認でき
た。
Also, by X-ray photomolecular spectroscopy,
The main components of the coating were analyzed. As a result, it was confirmed that the coatings of all the batteries had a carbonate skeleton.

【0036】(充放電試験) (1)0.1時間率放電容量の測定 本発明電池1〜4及び比較電池1、2を用いて、1.5
A(0.1時間率)で3Vまで放電した後、1.5A
(0.1CA)で15時間4.2Vの定電圧充電と、
1.5A(0.1時間率)にて3Vまでの定電流放電を
行う充放電の繰り返しを5サイクル行った。得られた5
サイクル目の放電容量の結果を表1に併せて示した。
(Charge and Discharge Test) (1) Measurement of 0.1 hour rate discharge capacity Using batteries 1 to 4 of the present invention and comparative batteries 1 and 2,
1.5 A after discharging to 3 V at A (0.1 hour rate)
(0.1 CA) at a constant voltage of 4.2 V for 15 hours,
Five cycles of repetition of charge / discharge for performing constant current discharge up to 3 V at 1.5 A (0.1 hour rate) were performed. 5 obtained
The results of the discharge capacity at the cycle are also shown in Table 1.

【0037】(2)2時間率放電容量の測定 引き続き、15A(1時間率)で1.5時間4.2Vの
定電圧充電と、30A(2時間率)で3Vまでの定電流
放電を行う充放電を1サイクル行った。得られた放電容
量と、前記0.1時間率放電容量との比を、表1に併せ
て示した。
(2) Measurement of 2 hour rate discharge capacity Subsequently, constant voltage charging of 4.2 V at 15 A (1 hour rate) for 1.5 hours and constant current discharging of 3 V at 30 A (2 hour rate) are performed. The charge and discharge were performed for one cycle. Table 1 also shows the ratio between the obtained discharge capacity and the 0.1 hour rate discharge capacity.

【0038】(3)1時間率サイクル寿命の測定 引き続き、15A(1時間率)で1.5時間4.2Vの
定電圧充電と、15A(1時間率)で3Vまでの定電流
放電を行う充放電を連続して繰り返し行った。放電容量
が前記0.1時間率放電容量の80%に低下した時点の
サイクル数をサイクル寿命とした。結果を表1に併せて
示した。
(3) Measurement of 1 hour rate cycle life Subsequently, constant voltage charging of 4.2 V for 1.5 hours at 15 A (1 hour rate) and constant current discharging up to 3 V at 15 A (1 hour rate) are performed. Charge and discharge were continuously repeated. The cycle number at which the discharge capacity decreased to 80% of the 0.1 hour rate discharge capacity was defined as the cycle life. The results are shown in Table 1.

【0039】[0039]

【表1】 [Table 1]

【0040】以上の結果より、高い高率放電容量を確保
するには、被膜厚さが100nm以下であることが好ま
しく、十分なサイクル寿命を得るためには、5nm以上
の被膜厚さが必要であることがわかった。
From the above results, it is preferable that the film thickness is 100 nm or less in order to secure a high high rate discharge capacity, and it is necessary that the film thickness is 5 nm or more in order to obtain a sufficient cycle life. I found it.

【0041】上記実施例では、正極材料及び負極材料と
してLiCoO2及び人造黒鉛をそれぞれ用いたが、他
の正極材料、負極材料を用いた電池についても、同様の
効果が確認されている。
In the above embodiment, LiCoO 2 and artificial graphite were used as the positive electrode material and the negative electrode material, respectively. However, similar effects have been confirmed for batteries using other positive electrode materials and negative electrode materials.

【0042】[0042]

【発明の効果】被膜の厚さを制御することによって、サ
イクル寿命特性が向上する理由としては、必ずしも明確
ではないが、本発明者らは以下のように考察する。
The reason why the cycle life characteristics are improved by controlling the thickness of the film is not necessarily clear, but the present inventors consider as follows.

【0043】負極炭素材料が充電によってリチウムを吸
蔵する際、炭素表面はリチウム電位に近い還元雰囲気下
に置かれる。このとき、電解液と炭素材料との接触界面
において、炭酸リチウム等のイオン伝導性の高い被膜が
形成される。ところが、電解液の溶媒にカーボネート類
用いている場合、イオン伝導性の高いカーボネート構造
の被膜層が形成される。しかしながら、前記カーボネー
ト構造の被膜の厚さは1nm前後であり、脆弱であるた
め、充放電の繰り返しによって前記カーボネート構造の
被膜が破壊される。その結果、炭素表面が、リチウム塩
と微量水分が反応して生じたフッ化水素等のハロゲン化
水素酸に曝され、フッ化リチウム等のイオン伝導性の低
い被膜層が形成されてしまう。また、被膜層が破壊され
た場合、電解液の分解も進行する。
When the negative electrode carbon material absorbs lithium by charging, the carbon surface is placed in a reducing atmosphere close to the lithium potential. At this time, a film having high ion conductivity such as lithium carbonate is formed at the contact interface between the electrolytic solution and the carbon material. However, when carbonates are used as the solvent of the electrolytic solution, a coating layer having a carbonate structure with high ion conductivity is formed. However, the thickness of the carbonate structure film is about 1 nm and is brittle, so that the carbonate structure film is broken by repeated charge and discharge. As a result, the carbon surface is exposed to a hydrohalic acid such as hydrogen fluoride generated by a reaction between a lithium salt and a trace amount of water, and a coating layer having low ion conductivity such as lithium fluoride is formed. In addition, when the coating layer is broken, the decomposition of the electrolytic solution also proceeds.

【0044】被膜の厚さが200nmを越えると、リチ
ウムイオン伝導を阻害するため、高率の充放電性能に悪
影響を与える。被膜の厚さが5nm未満では、充放電の
繰り返しによって前記被膜が破壊されやすく、保護膜と
しての機能が発現できない。
If the thickness of the coating exceeds 200 nm, lithium ion conduction is impaired, which adversely affects high-rate charge / discharge performance. When the thickness of the film is less than 5 nm, the film is easily broken by repeated charge and discharge, and the function as a protective film cannot be exhibited.

【0045】なお、比較電池2の負極について、エック
ス線光分子分光装置を用い、アルゴンエッチングを施し
ながら負極表面被膜の分析を行った結果、カーボネート
骨格の被膜層の最下層、即ち、グラファイト由来の炭素
のピークが検出される程度の炭素負極の表面近傍に、多
くのフッ化リチウム(LiF)が検出された。また、本
発明電池電池2の負極について同様の分析を行った結
果、同じくカーボネート骨格の被膜層の最下層、即ち、
グラファイト由来の炭素のピークが検出される程度の炭
素負極の表面近傍には、フッ化リチウム(LiF)が検
出されるものの、比較電池2に比べるとはるかに少ない
量であった。
The negative electrode of Comparative Battery 2 was analyzed for its negative electrode surface coating using an X-ray photo-molecular spectrometer while performing argon etching. As a result, the lowermost layer of the carbonate skeleton coating layer, that is, graphite-derived carbon Many lithium fluorides (LiF) were detected in the vicinity of the surface of the carbon negative electrode to the extent that the peak of was detected. The same analysis was performed on the negative electrode of the battery 2 of the present invention. As a result, the lowermost layer of the carbonate skeleton coating layer, that is,
Although lithium fluoride (LiF) was detected in the vicinity of the surface of the carbon negative electrode at which a carbon peak derived from graphite was detected, the amount was much smaller than that of the comparative battery 2.

【0046】これらのことから、炭素材料を用いた負極
にカーボネート骨格を有する被膜層を5〜100nm設
けることによって、LiF等の好ましくない被膜が炭素
表面で発生しにくくなり、優れたサイクル性能を示すも
のと考えられる。
From these facts, by providing the carbon material-containing negative electrode with a coating layer having a carbonate skeleton of 5 to 100 nm, an undesired coating such as LiF is less likely to be generated on the carbon surface, and excellent cycle performance is exhibited. It is considered something.

【0047】上述のように、本発明によれば、初期充電
後の保存温度と保存時間を制御するといった簡単な方法
により、高率充放電特性を有する、サイクル寿命特性に
優れたリチウム二次電池を提供できる。
As described above, according to the present invention, a lithium secondary battery having high rate charge / discharge characteristics and excellent cycle life characteristics can be obtained by a simple method such as controlling the storage temperature and storage time after initial charging. Can be provided.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明電池の1実施形態を示す図である。FIG. 1 is a diagram showing one embodiment of a battery of the present invention.

【符号の説明】[Explanation of symbols]

7 正極 8 セパレータ 9 負極 7 positive electrode 8 separator 9 negative electrode

───────────────────────────────────────────────────── フロントページの続き (72)発明者 藤井 明博 大阪府高槻市古曽部町二丁目3番21号 株 式会社ユアサコーポレーション内 (72)発明者 油布 宏 大阪府高槻市古曽部町二丁目3番21号 株 式会社ユアサコーポレーション内 Fターム(参考) 5H029 AJ03 AJ05 AK03 AL06 AL07 AM03 AM04 AM05 AM07 BJ02 BJ12 DJ08 DJ12 DJ16 EJ11 HJ04 HJ12 5H050 AA07 AA08 BA17 CA08 CA09 CB07 DA03 DA09 EA22 FA12 FA18 GA22 HA04 HA12  ──────────────────────────────────────────────────続 き Continuing on the front page (72) Inventor Akihiro Fujii 2-3-1-21, Kosobe-cho, Takatsuki-shi, Osaka Inside Yuasa Corporation (72) Inventor Hiroshi Yufu 2-3-1-21, Kosobe-cho, Takatsuki-shi, Osaka No. F-term in Yuasa Corporation (reference)

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】正極と、非水電解液を含むセパレータと、
リチウムイオンを吸蔵・放出できる炭素材料からなる負
極を備え、前記負極の少なくともセパレータと接する部
分を構成する炭素粒子の表面がカーボネート構造を有す
る被膜層を有し、前記被膜層の厚さが5nm〜200n
mであることを特徴とするリチウムイオン二次電池。
A positive electrode, a separator containing a non-aqueous electrolyte,
A negative electrode made of a carbon material capable of occluding and releasing lithium ions; a surface of carbon particles constituting at least a portion of the negative electrode in contact with the separator has a coating layer having a carbonate structure; and a thickness of the coating layer is 5 nm to 200n
m, a lithium-ion secondary battery.
JP2000062263A 2000-03-07 2000-03-07 Lithium ion secondary battery Pending JP2001250534A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2000062263A JP2001250534A (en) 2000-03-07 2000-03-07 Lithium ion secondary battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000062263A JP2001250534A (en) 2000-03-07 2000-03-07 Lithium ion secondary battery

Publications (1)

Publication Number Publication Date
JP2001250534A true JP2001250534A (en) 2001-09-14

Family

ID=18582295

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000062263A Pending JP2001250534A (en) 2000-03-07 2000-03-07 Lithium ion secondary battery

Country Status (1)

Country Link
JP (1) JP2001250534A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008060076A (en) * 2006-08-01 2008-03-13 Gs Yuasa Corporation:Kk Nonaqueous electrolyte secondary battery
JP2013232413A (en) * 2012-04-30 2013-11-14 Samsung Sdi Co Ltd Negative electrode for lithium secondary battery, lithium secondary battery including the same, and method of manufacturing lithium secondary battery

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008060076A (en) * 2006-08-01 2008-03-13 Gs Yuasa Corporation:Kk Nonaqueous electrolyte secondary battery
JP2013232413A (en) * 2012-04-30 2013-11-14 Samsung Sdi Co Ltd Negative electrode for lithium secondary battery, lithium secondary battery including the same, and method of manufacturing lithium secondary battery
US9793539B2 (en) 2012-04-30 2017-10-17 Samsung Sdi Co., Ltd. Negative electrode for rechargeable lithium battery, rechargeable lithium battery including same and method of preparing rechargeable lithium battery

Similar Documents

Publication Publication Date Title
EP2262037B1 (en) Lithium secondary battery using ionic liquid
JP3978881B2 (en) Non-aqueous electrolyte and lithium secondary battery using the same
JP4151060B2 (en) Non-aqueous secondary battery
JP4222519B2 (en) Lithium ion secondary battery and equipment using the same
JP5622525B2 (en) Lithium ion secondary battery
JP2010192200A (en) Nonaqueous electrolyte secondary battery
JPH08167429A (en) Rechargeable electrochemical cell and its manufacture
KR100573109B1 (en) Organic electrolytic solution and lithium battery employing the same
JPH08195220A (en) Manufacture of nonaqueous polymer battery and of polymer film for use in same
CN108370026B (en) Non-aqueous electrolyte secondary battery
JPH07296853A (en) Method for charging
JP2004039491A (en) Nonaqueous electrolyte secondary battery
JP4396082B2 (en) Non-aqueous electrolyte secondary battery and electrical equipment
JP4026351B2 (en) Negative electrode current collector, and negative electrode plate and non-aqueous electrolyte secondary battery using the current collector
JP3327468B2 (en) Lithium ion secondary battery and method of manufacturing the same
JP2001222995A (en) Lithium ion secondary battery
JP4553468B2 (en) Non-aqueous secondary battery and charging method thereof
JP2019040796A (en) Nonaqueous electrolyte secondary battery
JP2005293960A (en) Anode for lithium ion secondary battery, and lithium ion secondary battery
JP2017016905A (en) Charging/discharging method for lithium secondary battery
JP2003168427A (en) Nonaqueous electrolyte battery
JP2002313416A (en) Non-aqueous electrolyte secondary battery
JP4161396B2 (en) Non-aqueous electrolyte secondary battery
JP2003007303A (en) Nonaqueous electrolyte secondary battery
JPH10261437A (en) Polymer electrolyte and lithium polymer battery using it