JP2001247368A - Silicon carbide sintered compact and method for producing the same - Google Patents

Silicon carbide sintered compact and method for producing the same

Info

Publication number
JP2001247368A
JP2001247368A JP2000063274A JP2000063274A JP2001247368A JP 2001247368 A JP2001247368 A JP 2001247368A JP 2000063274 A JP2000063274 A JP 2000063274A JP 2000063274 A JP2000063274 A JP 2000063274A JP 2001247368 A JP2001247368 A JP 2001247368A
Authority
JP
Japan
Prior art keywords
silicon carbide
sintered compact
sintered body
carbide sintered
water absorption
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2000063274A
Other languages
Japanese (ja)
Inventor
Shuichiro Shimoda
修一郎 下田
Akihito Iwai
明仁 岩井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Showa Denko Materials Co Ltd
Original Assignee
Hitachi Chemical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Chemical Co Ltd filed Critical Hitachi Chemical Co Ltd
Priority to JP2000063274A priority Critical patent/JP2001247368A/en
Publication of JP2001247368A publication Critical patent/JP2001247368A/en
Pending legal-status Critical Current

Links

Landscapes

  • Optical Elements Other Than Lenses (AREA)
  • Ceramic Products (AREA)

Abstract

PROBLEM TO BE SOLVED: To obtain an inexpensive silicon carbide sintered compact having substantially no pore, suitable for a transportation and a preservation members for a semiconductor wafer, a liquid crystal substrate, etc., a mirror for a stage position measurement in an exposure apparatus, a mirror for a precision optical instrument, etc., and to provide a method for producing a silicon carbide sintered compact, capable of readily producing the inexpensive silicon carbide sintered compact having substantially no pore, suitable for a transportation and a preservation members for a semiconductor wafer, a liquid crystal substrate, etc., a mirror for a stage position measurement in an exposure apparatus, a mirror for a precision optical instrument, etc., in a high yield. SOLUTION: This silicon carbide sintered compact has <=0.1% water absorption and <=10 μm maximum diameter of free carbon contained. This method for producing the silicon carbide sintered compact having <=0.1% water absorption and <=10 μm maximum diameter of free carbon contained is characterized by molding a mixture of boron or its compound, carbon powder or a substance to form carbon in a baking process and silicon carbide powder having <=1 μm average particle diameter, baking the molding to prepare a normal-pressure sintered compact having <=1% water absorption and then subjecting the atmospheric-pressure sintered compact to hot isostatic pressure treatment.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、半導体ウェーハ、
液晶基板等の搬送や保持部材、露光装置におけるステー
ジ位置測定用ミラー、精密光学機器用ミラー等に適した
炭化珪素焼結体及びその製造法に関する。
TECHNICAL FIELD The present invention relates to a semiconductor wafer,
The present invention relates to a silicon carbide sintered body suitable for a member for transporting or holding a liquid crystal substrate or the like, a mirror for measuring a stage position in an exposure apparatus, a mirror for precision optical equipment, and the like, and a method for manufacturing the same.

【0002】[0002]

【従来の技術】従来から、LSIなどの半導体製造工程
において、半導体ウェーハの搬送、保持部材等にはステ
ンレスなどの金属が用いられてきた。しかし、近年回路
パターンの高密度化、高精度化に伴い、半導体ウェーハ
を始め、液晶基板などの搬送や保持装置にセラミック部
材が用いられるようになってきた。また露光装置におけ
るステージ位置測定用ミラー、精密光学機器用ミラー等
にもセラミックが用いられるようになってきた。中で
も、ヤング率が高く、半導体ウェーハに対して汚染が比
較的少ない材料として、炭化珪素が多く使用されるよう
になってきた。
2. Description of the Related Art Metals such as stainless steel have been conventionally used in semiconductor manufacturing processes such as LSIs for transporting semiconductor wafers and holding members. However, with the recent increase in the density and accuracy of circuit patterns, ceramic members have come to be used for transporting and holding devices such as semiconductor wafers and liquid crystal substrates. Ceramics have also been used for mirrors for measuring the stage position and mirrors for precision optical instruments in exposure apparatuses. Above all, silicon carbide has been increasingly used as a material having a high Young's modulus and relatively low contamination of semiconductor wafers.

【0003】これらのセラミック部材は、その表面に塵
埃が付着して露光不良などの悪影響を与えぬように、通
常、セラミック部材の表面を研削後、ラッピング、ポリ
シング等の研磨を行い、平滑化して使用されている。し
かし、常圧で焼結したセラミックは気孔(以下ポアとす
る)を有しており、研磨を行っても表面にポアが残留し
てしまう。これを半導体ウェーハ、液晶基板等の搬送や
保持装置の部材に使用すると、ポアの部分に塵埃などが
入り込み、回路形成の際の露光不良となる。
[0003] In order to prevent dust from adhering to the surface of the ceramic member and having an adverse effect such as exposure failure, the surface of the ceramic member is usually ground and then polished by lapping, polishing or the like, and smoothed. It is used. However, ceramics sintered at normal pressure have pores (hereinafter referred to as pores), and pores remain on the surface even after polishing. If this is used as a member for transporting or holding a semiconductor wafer, a liquid crystal substrate, or the like, dust or the like enters the pores, resulting in exposure failure during circuit formation.

【0004】一方、露光装置におけるステージ位置測定
用ミラー、精密光学機器用ミラー等に使用すると、ポア
などの凹凸の存在がレーザー光の乱反射の原因となり、
位置測定において問題となっていた。これらの問題点の
対策として、例えば特許第2779968号公報に示さ
れるように、セラミックの表面に化学気相析出(CV
D)などの方法により炭化珪素などの膜を形成する真空
チャックが提案されている他、特開平11−14776
6号公報に示されるように、炭化珪素成形体を1900
〜2050℃の不活性ガス雰囲気中で常圧焼結した後、
さらに加圧しながら熱処理する熱間静水圧処理〔以下H
IP(ホットアイソスタティックプレス)処理とする〕
した炭化珪素の表面を2μm以下のダイヤモンド砥粒で
研磨する方法が提案されている。
On the other hand, when used in a mirror for measuring the stage position in an exposure apparatus, a mirror for precision optical equipment, etc., the presence of irregularities such as pores causes irregular reflection of laser light.
This was a problem in position measurement. As a countermeasure against these problems, for example, as disclosed in Japanese Patent No. 2777968, chemical vapor deposition (CV) is performed on a ceramic surface.
D) and the like, a vacuum chuck for forming a film of silicon carbide or the like has been proposed, and JP-A-11-14776.
No. 6, as disclosed in Japanese Patent Publication No.
After normal pressure sintering in an inert gas atmosphere at ~ 2050 ° C,
Hot isostatic pressure treatment (hereinafter referred to as H
IP (hot isostatic press) treatment]
A method has been proposed in which the surface of silicon carbide is polished with diamond abrasive grains of 2 μm or less.

【0005】しかしながら前者の方法では、成膜した炭
化珪素膜は遊離炭素を含んでいないので、研磨すると実
質的にポアの無い表面を得ることができるが、コストが
高くなると共に、厚い炭化珪素の膜を形成することが困
難である。一方、後者の方法では、常圧焼結体の吸水率
が大きい場合、特に吸水率が1%を越えると、その後H
IP処理を行っても実質的にポアの無い炭化珪素焼結体
を得ることが困難である。仮にHIP処理後の時点で実
質的にポアを無くすことができても、焼結体中に遊離炭
素が存在し、その遊離炭素の粒径が大きい場合、特に最
大径が10μmを越えると研磨する際、遊離炭素が脱離
してその部分にポアが発生するという問題点がある。
However, in the former method, since the formed silicon carbide film does not contain free carbon, a surface substantially free of pores can be obtained by polishing. However, the cost is increased and the thickness of the silicon carbide film is increased. It is difficult to form a film. On the other hand, in the latter method, when the water absorption of the normal pressure sintered body is large, especially when the water absorption exceeds 1%, H
Even if IP processing is performed, it is difficult to obtain a silicon carbide sintered body having substantially no pores. Even if the pores can be substantially eliminated at the time after the HIP treatment, free carbon exists in the sintered body, and when the particle diameter of the free carbon is large, particularly when the maximum diameter exceeds 10 μm, polishing is performed. In this case, there is a problem that free carbon is desorbed and pores are generated in the portion.

【0006】[0006]

【発明が解決しようとする課題】請求項1記載の発明
は、実質的にポアが無く、安価でかつ半導体ウェーハ、
液晶基板等の搬送や保持部材、露光装置におけるステー
ジ位置測定用ミラー、精密光学機器用ミラー等に適した
炭化珪素焼結体を提供するものである。
The invention according to claim 1 is substantially free of pores, is inexpensive, and has a semiconductor wafer,
An object of the present invention is to provide a silicon carbide sintered body suitable for a member for transporting or holding a liquid crystal substrate or the like, a stage position measuring mirror in an exposure apparatus, a mirror for precision optical equipment, and the like.

【0007】請求項2及び3記載の発明は、実質的にポ
アが無く、安価でかつ半導体ウェーハ、液晶基板等の搬
送や保持部材、露光装置におけるステージ位置測定用ミ
ラー、精密光学機器用ミラー等に適した炭化珪素焼結体
を容易に歩留りよく製造することが可能な炭化珪素焼結
体の製造法を提供するものである。
The invention according to claims 2 and 3 is substantially free from pores, is inexpensive, and is a member for transporting and holding semiconductor wafers, liquid crystal substrates, etc., a mirror for measuring a stage position in an exposure apparatus, a mirror for precision optical equipment, and the like. It is intended to provide a method for manufacturing a silicon carbide sintered body capable of easily manufacturing a silicon carbide sintered body suitable for a high yield.

【0008】[0008]

【課題を解決するための手段】本発明者らは上記の問題
点を解消するために研究を重ねた結果、得られる炭化珪
素焼結体の吸水率が0.1%以下で、該焼結体に含有す
る遊離炭素の最大径が10μm以下であれば、表面を研
磨しても遊離炭素が脱離せず、ポアが発生しないという
ことを見出すと共に常圧焼結体の吸水率が1%以下であ
れば、その後のHIP処理によりポアの無い炭化珪素焼
結体を得ることができることを見出し、本発明を完成す
るに至った。
Means for Solving the Problems As a result of repeated studies to solve the above problems, the present inventors have found that the obtained silicon carbide sintered body has a water absorption of 0.1% or less, If the maximum diameter of the free carbon contained in the body is 10 μm or less, it is found that the free carbon does not desorb even if the surface is polished and no pores are generated, and the water absorption of the normal pressure sintered body is 1% or less. Then, it has been found that a silicon carbide sintered body without pores can be obtained by the subsequent HIP treatment, and the present invention has been completed.

【0009】本発明は、吸水率が0.1%以下で、含有
する遊離炭素の最大径が10μm以下である炭化珪素焼
結体に関する。また、本発明は、硼素又はその化合物及
び炭素粉又は焼成過程で炭素を生成する物質と平均粒径
が1μm以下の炭化珪素粉末との混合物を成形した後、
常圧焼成して吸水率が1%以下の常圧焼結体を作製し、
次いで常圧焼結体をHIP処理することを特徴とする吸
水率が0.1%以下で、含有する遊離炭素の最大径が1
0μm以下の炭化珪素焼結体の製造法に関する。さら
に、本発明は、HIP処理が、75MPa以上の加圧力
で、かつ1700〜2100℃の温度の処理である前記
の炭化珪素焼結体の製造法に関する。
The present invention relates to a silicon carbide sintered body having a water absorption of 0.1% or less and containing free carbon having a maximum diameter of 10 μm or less. Further, the present invention, after molding a mixture of boron or a compound thereof and a carbon powder or a substance that forms carbon in the firing process and a silicon carbide powder having an average particle size of 1 μm or less,
Normal pressure firing to produce a normal pressure sintered body with a water absorption of 1% or less,
Next, the normal pressure sintered body is subjected to HIP treatment, wherein the water absorption is 0.1% or less and the maximum diameter of the free carbon contained is 1%.
The present invention relates to a method for producing a silicon carbide sintered body of 0 μm or less. Further, the present invention relates to the method for producing a silicon carbide sintered body, wherein the HIP treatment is a treatment at a pressure of 75 MPa or more and a temperature of 1700 to 2100 ° C.

【0010】[0010]

【発明の実施の形態】本発明によって得られる炭化珪素
焼結体の吸水率は、0.1%以下、好ましくは0.08
%以下、さらに好ましくは0.05%以下であるが、0
%であれば最も好ましい。0.1%を越えると、ポアの
無い表面を得ることが困難である。吸水率は、JIS
C 2141に準じて求めることができる。
BEST MODE FOR CARRYING OUT THE INVENTION The silicon carbide sintered body obtained by the present invention has a water absorption of 0.1% or less, preferably 0.08% or less.
%, More preferably 0.05% or less.
% Is most preferable. If it exceeds 0.1%, it is difficult to obtain a pore-free surface. Water absorption rate is JIS
It can be determined according to C 2141.

【0011】また、炭化珪素焼結体に含有される遊離炭
素の最大径は、10μm以下、好ましくは6μm以下、
さらに好ましくは4μm以下であるが、下限については
特に制限はなく、10μmを越えると、研磨する際、遊
離炭素が脱離し、その部分にポアが発生するという問題
点が生じる。遊離炭素の最大径は、走査型電子顕微鏡
(SEM)で、1000倍に拡大し任意の0.1mm2
ついて最大遊離炭素径を測定して求めることができる。
The maximum diameter of free carbon contained in the silicon carbide sintered body is 10 μm or less, preferably 6 μm or less,
More preferably, it is 4 μm or less, but the lower limit is not particularly limited. If it exceeds 10 μm, there is a problem that free carbon is desorbed during polishing and pores are generated in that portion. The maximum diameter of the free carbon can be determined by measuring the maximum free carbon diameter of an arbitrary 0.1 mm 2 with a scanning electron microscope (SEM) at a magnification of 1000 times.

【0012】本発明に用いられる炭化珪素粉末として
は、α型、β型のいずれでもよいが、価格が安く、また
焼成時の結晶構造変化の少ないα型の炭化珪素粉末を用
いることが好ましい。また純度は高純度の粉末を用いれ
ば高純度化し易いので好ましいが、本発明においては通
常用いられるGCグレードの焼結用炭化珪素粉末であっ
ても差し支えない。炭化珪素粉末の粒径は、平均粒径が
1μm以下、好ましくは0.8μm以下、さらに好まし
くは0.1〜0.8μmの範囲とされ、1μmを越える
とHIP処理を行ってもポアを無くすことが困難であ
る。炭化珪素粉末の平均粒径は、レーザー式粒度分布測
定器(MALVERN社製のマスターサイザー)で測定
して求めることができる。
The silicon carbide powder used in the present invention may be either α-type or β-type, but it is preferable to use α-type silicon carbide powder which is inexpensive and has little change in crystal structure during firing. The use of high-purity powder is preferred because it is easy to achieve high purity. However, in the present invention, a normally used GC-grade silicon carbide powder for sintering may be used. The average particle diameter of the silicon carbide powder is 1 μm or less, preferably 0.8 μm or less, and more preferably 0.1 to 0.8 μm. When the average particle diameter exceeds 1 μm, pores are eliminated even when HIP processing is performed. It is difficult. The average particle size of the silicon carbide powder can be determined by measuring with a laser type particle size distribution analyzer (Master Sizer manufactured by MALVERN).

【0013】また、硼素化合物としては、炭化硼素を用
いることが好ましい。硼素又はその化合物の添加量は、
炭化珪素粉末100重量部に対して0.1〜1重量部と
することが好ましく、0.2〜0.8重量部とすること
がより好ましい。
It is preferable to use boron carbide as the boron compound. The amount of boron or its compound added is
It is preferably 0.1 to 1 part by weight, more preferably 0.2 to 0.8 part by weight, based on 100 parts by weight of the silicon carbide powder.

【0014】さらに、焼成過程で炭素を生成する物質と
しては、添加時に溶媒に可溶で、かつ液体状態で混合時
に炭化珪素粉末の表面を均一に被覆できるものが好まし
く、例えば焼成後炭素となるフェノール樹脂のような炭
化率の高い熱硬化性樹脂を用いることが好ましい。その
添加量は、炭化珪素粉末100重量部に対して0.1〜
5重量部とすることが好ましく、0.5〜3重量部とす
ることがより好ましい。本発明においては、上記成分の
他に、スラリーやシート作製時のバインダー、分散剤、
可塑剤さらには成形時の離型剤など焼成によって揮散す
るものを添加することが好ましい。
Further, as a substance which forms carbon in the firing step, a substance which is soluble in a solvent at the time of addition and which can uniformly coat the surface of the silicon carbide powder when mixed in a liquid state, for example, becomes carbon after firing It is preferable to use a thermosetting resin having a high carbonization rate such as a phenol resin. The amount of addition is 0.1 to 100 parts by weight of silicon carbide powder.
It is preferably 5 parts by weight, more preferably 0.5 to 3 parts by weight. In the present invention, in addition to the above components, a binder or a dispersant for preparing a slurry or a sheet,
It is preferable to add a plasticizer, and also a material that volatilizes by firing, such as a release agent during molding.

【0015】上記バインダーとしては、ポリビニルアル
コール、カルボキシメチルセルロース、ポリビニルブチ
ラール等が用いられ、その添加量は、炭化珪素粉末10
0重量部に対して固形分で0.5〜3重量部とすること
が好ましく、0.7〜2重量部とすることがより好まし
い。分散剤としては界面活性剤等が用いられ、その添加
量は、炭化珪素粉末100重量部に対して固形分で0.
3〜1重量部とすることが好ましく、0.4〜0.7重
量部とすることがより好ましい。
As the binder, polyvinyl alcohol, carboxymethyl cellulose, polyvinyl butyral and the like are used.
The solid content is preferably 0.5 to 3 parts by weight, more preferably 0.7 to 2 parts by weight, based on 0 parts by weight. A surfactant or the like is used as the dispersant, and the amount of the surfactant added is 0.1% in solid content with respect to 100 parts by weight of the silicon carbide powder.
It is preferably from 3 to 1 part by weight, more preferably from 0.4 to 0.7 part by weight.

【0016】また、可塑剤としては、ポリエチレングリ
コール、ディオクチルフタレート等が用いられ、その添
加量は、炭化珪素粉末100重量部に対して固形分で
0.5〜3重量部とすることが好ましく、1〜2重量部
とすることがより好ましい。溶剤は水が好ましいが、そ
の添加量については特に制限はない。離型剤としては、
ステアリン酸、ワックス等が用いられ、その添加量は、
炭化珪素粉末100重量部に対して固形分で0.5〜3
重量部とすることが好ましく、0.7〜2重量部とする
ことがより好ましい。
As the plasticizer, polyethylene glycol, dioctyl phthalate, or the like is used, and the amount of the plasticizer is preferably 0.5 to 3 parts by weight as a solid content with respect to 100 parts by weight of the silicon carbide powder. , 1 to 2 parts by weight. The solvent is preferably water, but the amount added is not particularly limited. As a release agent,
Stearic acid, wax, etc. are used.
0.5 to 3 in solid content with respect to 100 parts by weight of silicon carbide powder
It is preferable to set it as a weight part, and it is more preferable to set it as 0.7-2 weight part.

【0017】上記成分と炭化珪素粉末との混合物の成形
は、金型プレス成形、冷間静水圧(CIP)成形、鋳込
み成形、射出成形、押し出し成形等の方法で成形するこ
とができる。なお成形圧力は、各々成形方法により異な
るため特に制限はない。
The mixture of the above components and silicon carbide powder can be formed by a method such as die press molding, cold isostatic pressure (CIP) molding, casting, injection molding, or extrusion molding. The molding pressure is not particularly limited because it differs depending on the molding method.

【0018】常圧焼成する場合の雰囲気は、アルゴンガ
スなどの不活性ガス雰囲気中で焼成することが好まし
い。なお常圧焼成した常圧焼結体中の遊離炭素の最大径
が10μmを越えると、HIP処理した後の炭化珪素焼
結体の表面にも10μmを越える遊離炭素が存在するた
め常圧焼成により得られる常圧焼結体中の遊離炭素の最
大径も10μm以下であることが好ましい。
The atmosphere for firing under normal pressure is preferably firing in an inert gas atmosphere such as argon gas. If the maximum diameter of the free carbon in the normal pressure sintered body exceeds 10 μm, free carbon exceeding 10 μm is also present on the surface of the silicon carbide sintered body after the HIP treatment. The maximum diameter of free carbon in the obtained normal pressure sintered body is also preferably 10 μm or less.

【0019】常圧焼結体の吸水率は、1%以下、好まし
くは0.6%以下、さらに好ましくは0.3%以下であ
るが、0%であれば最も好ましい。1%を越えると、H
IP処理してもポアを無くすことが困難である。
The normal-pressure sintered body has a water absorption of 1% or less, preferably 0.6% or less, more preferably 0.3% or less, and most preferably 0%. If it exceeds 1%, H
It is difficult to eliminate pores even by IP processing.

【0020】HIP処理する場合の雰囲気は、窒素ガ
ス、アルゴンガスなどの不活性ガス雰囲気中で処理する
ことが好ましい。HIP処理するときの圧力は、75MP
a以上であることが好ましく、98MPa以上であることが
より好ましく、145〜500MPaの範囲であることが
さらに好ましい。75MPa未満であるとHIP処理して
もポアを無くすことが困難になる傾向がある。
The HIP treatment is preferably performed in an atmosphere of an inert gas such as nitrogen gas or argon gas. The pressure for HIP processing is 75MP
It is preferably at least a, more preferably at least 98 MPa, even more preferably in the range of 145 to 500 MPa. If the pressure is less than 75 MPa, it tends to be difficult to eliminate pores even by HIP processing.

【0021】また、HIP処理温度は、1700〜21
00℃が好ましく、1800〜2050℃がより好まし
く、1900〜2000℃がさらに好ましい。1700
℃未満であると、吸水率を小さくする効果が小さいため
高吸水率の焼結体となり、ポアを無くすことが困難にな
る傾向があり、2100℃を越えると、遊離炭素の最大
径が10μmを越え、ポアのない表面を得ることが困難
な傾向がある。HIP処理時間は、10分〜3時間が好
ましく、30分〜2時間がさらに好ましい。10分未満
であると、ポアを無くすことが困難になる傾向がある。
The HIP processing temperature ranges from 1700 to 21
00 ° C is preferable, 1800 to 2050 ° C is more preferable, and 1900 to 2000 ° C is further preferable. 1700
If the temperature is lower than 0 ° C., the effect of reducing the water absorption rate is small, so that the sintered body has a high water absorption rate, and it tends to be difficult to eliminate pores. If the temperature exceeds 2100 ° C., the maximum diameter of free carbon is 10 μm. And it tends to be difficult to obtain pore-free surfaces. The HIP processing time is preferably from 10 minutes to 3 hours, more preferably from 30 minutes to 2 hours. If the time is less than 10 minutes, it tends to be difficult to eliminate pores.

【0022】[0022]

【実施例】以下、本発明を実施例により説明する。表1
及び表2に示す平均粒径のα型炭化珪素粉末99重量部
に、フェノール樹脂〔昭和高分子(株)製、商品名BRL
−219(不揮発分70重量%)〕を固形分で2重量部
(炭素分として1重量部)、ポリビニルアルコール〔ク
ラレ(株)製、商品名クラレポバール205の水溶液(不
揮発分10重量%)〕を固形分で1重量部、ステアリン
酸〔中京油脂(株)製、商品名セロゾール920(不揮発
分18重量%)〕を固形分で1重量部、平均粒径が1.
5μmの炭化硼素を0.3重量部及び純水を100重量
部加えて、合成樹脂製ボールミルで24時間混合した
後、スプレードライヤーで造粒し、成形粉を得た。
The present invention will be described below with reference to examples. Table 1
And 99 parts by weight of an α-type silicon carbide powder having an average particle diameter shown in Table 2 were mixed with a phenol resin [BRL, trade name, manufactured by Showa Polymer Co.
-219 (non-volatile content 70% by weight)] in solid content of 2 parts by weight (1 part by weight as carbon content), polyvinyl alcohol [Kuraray Co., Ltd., trade name Kuraray Povar 205 aqueous solution (non-volatile content 10% by weight)] 1 part by weight of solid content, 1 part by weight of stearic acid [Cerozol 920 (manufactured by Chukyo Yushi Co., Ltd., trade name: 18% by weight of non-volatile content)], and an average particle diameter of 1.
0.3 parts by weight of 5 μm boron carbide and 100 parts by weight of pure water were added, mixed with a synthetic resin ball mill for 24 hours, and then granulated with a spray drier to obtain a molding powder.

【0023】この後、成形粉を金型内に充填し、98MP
aの圧力で金型プレス成形して直径が30mm(φ)及び
厚さが5mmの円盤を作製し、次いでアルゴンガス雰囲気
中で表1及び表2に示す温度で1時間保持して常圧焼成
し、常圧焼結体を得た。得られた常圧焼結体について、
JIS C 2141に準じて、吸水率を求めた。その
結果を表1及び表2に示す。この後、得られた常圧焼結
体をさらにアルゴンガス雰囲気中で表1及び表2に示す
温度及び圧力下で1時間保持してHIP処理し、炭化珪
素焼結体を得た。
Thereafter, the molding powder is filled in a mold, and the
Press-molding is performed under the pressure of a to produce a disk having a diameter of 30 mm (φ) and a thickness of 5 mm, and then holding for 1 hour at a temperature shown in Tables 1 and 2 in an atmosphere of argon gas and normal pressure firing. Then, a normal pressure sintered body was obtained. About the obtained atmospheric pressure sintered body,
The water absorption was determined according to JIS C 2141. The results are shown in Tables 1 and 2. Thereafter, the obtained normal pressure sintered body was further kept in an argon gas atmosphere at a temperature and a pressure shown in Tables 1 and 2 for 1 hour to perform a HIP treatment to obtain a silicon carbide sintered body.

【0024】次に、上記で得た炭化珪素焼結体の表面を
研削後、鏡面研磨して評価試料とした。この評価試料に
ついて、JIS C 2141に準じて、吸水率を求め
た。また走査型電子顕微鏡(SEM)で、任意の0.1
mm2について最大遊離炭素径、遊離炭素の脱離の有無及
びポアの有無を調べた。これらの結果をまとめて表1及
び表2に示す。
Next, the surface of the silicon carbide sintered body obtained above was ground and mirror-polished to obtain an evaluation sample. For this evaluation sample, the water absorption was determined according to JIS C 2141. Also, using a scanning electron microscope (SEM),
With respect to mm 2 , the maximum free carbon diameter, the presence or absence of desorption of free carbon, and the presence or absence of pores were examined. These results are summarized in Tables 1 and 2.

【0025】[0025]

【表1】 [Table 1]

【0026】[0026]

【表2】 [Table 2]

【0027】表1及び表2に示されるように、本発明に
なる炭化珪素焼結体は、表面を研削及び鏡面研磨した後
においても実質的にポアがないことが明らかである。こ
れに対し、本発明に含まれない試料No.6、8、14及
び20の炭化珪素焼結体は、遊離炭素の最大径が10μ
mを越えるため、遊離炭素の脱離が見られ、その部分に
ポアが生じた。またHIP処理後の吸水率が0.1%を
越える試料No.9、15及び21の炭化珪素焼結体
は、表面にポアが生じていた。また常圧焼結体の吸水率
が1%を越えると共にHIP処理後の吸水率が0.1%
を越える試料No.1及び2の炭化珪素焼結体並びに炭化
珪素粉末の平均粒径が1μmを越え、かつ常圧焼結体の
吸水率が1%を越えると共にHIP処理後の吸水率が
0.1%を越える試料No.25の炭化珪素焼結体につい
ても、上記と同様に表面にポアが生じていた。
As shown in Tables 1 and 2, it is clear that the silicon carbide sintered body according to the present invention has substantially no pores even after the surface is ground and mirror-polished. On the other hand, the silicon carbide sintered bodies of Samples Nos. 6, 8, 14 and 20, which are not included in the present invention, have a maximum free carbon diameter of 10 μm.
m, desorption of free carbon was observed, and pores were formed in that portion. Sample No. whose water absorption after HIP treatment exceeded 0.1%. The silicon carbide sintered bodies of Nos. 9, 15, and 21 had pores on the surface. Further, the water absorption of the normal pressure sintered body exceeds 1% and the water absorption after HIP treatment is 0.1%.
The average particle diameter of the silicon carbide sintered bodies and silicon carbide powder of sample Nos. 1 and 2 exceeding 1 μm exceeded 1 μm, the water absorption of the normal pressure sintered body exceeded 1%, and the water absorption after HIP treatment was 0%. In the silicon carbide sintered body of sample No. 25 exceeding 0.1%, pores were generated on the surface in the same manner as described above.

【0028】[0028]

【発明の効果】請求項1記載の炭化珪素焼結体は、実質
的にポアが無く、安価でかつ半導体ウェーハ、液晶基板
等の搬送や保持部材、露光装置におけるステージ位置測
定用ミラー、精密光学機器用ミラー等に適した炭化珪素
焼結体である。請求項2及び3記載の方法により得られ
る炭化珪素焼結体は、実質的にポアが無く、安価でかつ
半導体ウェーハ、液晶基板等の搬送や保持部材、露光装
置におけるステージ位置測定用ミラー、精密光学機器用
ミラー等に適した炭化珪素焼結体を容易に歩留りよく製
造することが可能な炭化珪素焼結体である。
According to the first aspect of the present invention, the silicon carbide sintered body has substantially no pores, is inexpensive, and is a member for transporting and holding semiconductor wafers and liquid crystal substrates, a mirror for measuring a stage position in an exposure apparatus, and precision optics. It is a silicon carbide sintered body suitable for a mirror for equipment and the like. The silicon carbide sintered body obtained by the method according to claims 2 and 3 has substantially no pores, is inexpensive, and is a member for transporting and holding semiconductor wafers, liquid crystal substrates, etc., a mirror for measuring a stage position in an exposure apparatus, and a precision mirror. It is a silicon carbide sintered body that can easily produce a silicon carbide sintered body suitable for a mirror for an optical device with a high yield.

───────────────────────────────────────────────────── フロントページの続き Fターム(参考) 2H042 DA01 DA12 DC09 DC10 DE07 DE09 4G001 BA22 BA23 BA60 BA68 BA78 BB22 BB23 BB60 BC12 BC13 BC43 BC56 BD31 BD38 BE22 BE39  ──────────────────────────────────────────────────続 き Continued on the front page F term (reference) 2H042 DA01 DA12 DC09 DC10 DE07 DE09 4G001 BA22 BA23 BA60 BA68 BA78 BB22 BB23 BB60 BC12 BC13 BC43 BC56 BD31 BD38 BE22 BE39

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】 吸水率が0.1%以下で、含有する遊離
炭素の最大径が10μm以下である炭化珪素焼結体。
1. A silicon carbide sintered body having a water absorption of 0.1% or less and containing free carbon having a maximum diameter of 10 μm or less.
【請求項2】 硼素又はその化合物及び炭素粉又は焼成
過程で炭素を生成する物質と平均粒径が1μm以下の炭
化珪素粉末との混合物を成形した後、常圧焼成して吸水
率が1%以下の常圧焼結体を作製し、次いで常圧焼結体
を熱間静水圧処理することを特徴とする吸水率が0.1
%以下で、含有する遊離炭素の最大径が10μm以下の
炭化珪素焼結体の製造法。
2. A mixture of boron or a compound thereof, a carbon powder or a substance that forms carbon in the firing step and a silicon carbide powder having an average particle diameter of 1 μm or less is formed, and then fired under normal pressure to obtain a water absorption of 1%. The following normal pressure sintered body is produced, and then the normal pressure sintered body is subjected to hot isostatic pressure treatment.
% Or less, wherein the maximum diameter of the free carbon contained is 10 μm or less.
【請求項3】 熱間静水圧処理が、75MPa以上の加圧
力で、かつ1700〜2100℃の温度の処理である請
求項2記載の炭化珪素焼結体の製造法。
3. The method for producing a silicon carbide sintered body according to claim 2, wherein the hot isostatic pressure treatment is a treatment at a pressure of 75 MPa or more and a temperature of 1700 to 2100 ° C.
JP2000063274A 2000-03-03 2000-03-03 Silicon carbide sintered compact and method for producing the same Pending JP2001247368A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2000063274A JP2001247368A (en) 2000-03-03 2000-03-03 Silicon carbide sintered compact and method for producing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000063274A JP2001247368A (en) 2000-03-03 2000-03-03 Silicon carbide sintered compact and method for producing the same

Publications (1)

Publication Number Publication Date
JP2001247368A true JP2001247368A (en) 2001-09-11

Family

ID=18583166

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000063274A Pending JP2001247368A (en) 2000-03-03 2000-03-03 Silicon carbide sintered compact and method for producing the same

Country Status (1)

Country Link
JP (1) JP2001247368A (en)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63242968A (en) * 1987-03-31 1988-10-07 新日本製鐵株式会社 Manufacture of silicon carbide base sintered body
JP2000026177A (en) * 1998-07-09 2000-01-25 Toshiba Ceramics Co Ltd Production of silicon-silicon carbide ceramics

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63242968A (en) * 1987-03-31 1988-10-07 新日本製鐵株式会社 Manufacture of silicon carbide base sintered body
JP2000026177A (en) * 1998-07-09 2000-01-25 Toshiba Ceramics Co Ltd Production of silicon-silicon carbide ceramics

Similar Documents

Publication Publication Date Title
US6814917B1 (en) Alumina sintered body and process for producing the same
US11355448B2 (en) Method for making aluminum nitride wafer and aluminum nitride wafer made by the same
JP5578507B2 (en) CaF2-MgF2 binary sintered body and method for producing plasma-resistant fluoride sintered body
JP2002068838A (en) Plasma resistant member and method for manufacturing the same
JP2012206913A (en) Magnesium fluoride-sintered body, method for manufacturing the same, and member for semiconductor manufacturing apparatus
JP5711511B2 (en) CaF2-MgF2 binary sintered body and method for producing plasma-resistant fluoride sintered body
JPH11209171A (en) Dense low thermal expansion ceramics, its production and member for semiconductor producing device
JP2010114416A (en) Wafer placing table and method of manufacturing the same
JP2001220239A (en) Silicon carbide sintered compact and method for producing the same
JP2001247368A (en) Silicon carbide sintered compact and method for producing the same
JPH1072249A (en) Alumina ceramic sintered compact and alumina ceramic parts
JP4370626B2 (en) Method for producing alumina sintered body
JP4766289B2 (en) Silicon carbide sintered body and manufacturing method thereof
JP2001226168A (en) Method for producing silicon carbide sintered compact
JP5199599B2 (en) Yttria sintered body and member for plasma process equipment
JPH11214491A (en) Wafer holder and production thereof
JPH11147766A (en) Silicon carbide sintered product and its production
JP2001302340A (en) High density low thermal expansion ceramic and manufacturing method thereof and member for semiconductor manufacturing device
JP2023062501A (en) Sintered compact and components for semiconductor manufacturing apparatus
JP4062059B2 (en) Low thermal expansion ceramic member, method for manufacturing the same, and member for semiconductor manufacturing apparatus
JP2022152706A (en) Yag sintered compact and manufacturing method thereof
JP2009203113A (en) Ceramics for plasma treatment apparatus
JP2023035557A (en) Sintered body and component for semiconductor manufacturing equipment
JP2006240960A (en) High specific resistance silicon carbide sintered compact
KR20240098197A (en) Alumina ceramics sintered body manufacturing method for improving plasma resistance

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070129

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20091023

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100304

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20100819