JPH11147766A - Silicon carbide sintered product and its production - Google Patents

Silicon carbide sintered product and its production

Info

Publication number
JPH11147766A
JPH11147766A JP9329680A JP32968097A JPH11147766A JP H11147766 A JPH11147766 A JP H11147766A JP 9329680 A JP9329680 A JP 9329680A JP 32968097 A JP32968097 A JP 32968097A JP H11147766 A JPH11147766 A JP H11147766A
Authority
JP
Japan
Prior art keywords
silicon carbide
sintering
sintered body
sintered product
average particle
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP9329680A
Other languages
Japanese (ja)
Inventor
Hiroyuki Tsuto
宏之 津戸
Hiroyuki Matsuo
裕之 松尾
Tatsuya Shiogai
達也 塩貝
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Taiheiyo Cement Corp
Original Assignee
Taiheiyo Cement Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Taiheiyo Cement Corp filed Critical Taiheiyo Cement Corp
Priority to JP9329680A priority Critical patent/JPH11147766A/en
Publication of JPH11147766A publication Critical patent/JPH11147766A/en
Withdrawn legal-status Critical Current

Links

Abstract

PROBLEM TO BE SOLVED: To eliminate a problem that it is necessary to form a silicon carbide film on the surface of a sintered product, when an extremely smooth surface is required. SOLUTION: This silicon carbide sintered product which comprises a polycrystal and whose polished surface has a surface roughness of <= 3 nm as an average roughness on a central line by a contact type measuring method. The method for producing a silicon carbide sintered product comprises adding 0.1-0.8 wt.% of boron or its compound and 1-5 wt.% of carbon as sintering auxiliaries to silicon carbide powder having an average particle of <=0. 7 μm, molding the mixture, sintering the molded product in an inert gas atmosphere of 1900-2050 deg.C at the atmospheric pressure, subjecting the sintered product to a hot hydrostatic pressure press (HIP) treatment at a lower temperature than the sintering temperature under a pressure of >=1000 kg/cm<2> , and subsequently polishing the surface of the obtained HIP treatment product with diamond abrasive particles having an average particle diameter of <=2 μm.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、炭化珪素焼結体及
びその製造方法に関し、特に極めて平滑な研磨面を有す
る炭化珪素焼結体及びその製造方法に関する。
The present invention relates to a silicon carbide sintered body and a method for producing the same, and more particularly, to a silicon carbide sintered body having an extremely smooth polished surface and a method for producing the same.

【0002】[0002]

【従来の技術】従来、半導体製造工程におけるシリコン
ウェハーの搬送、保持には、ステンレス等の金属部材が
用いられてきたが、近年、半導体ウェハーの大口径化、
回路パターンの高密度化に伴って、部材の変形の抑制、
金属汚染の抑制、長期にわたる精度維持などが要求され
るようになり、これに対応するためセラミックス部材が
多く使用されるようになってきた。また、レーザー装置
など精密光学機器に使用されるミラーも、熱膨張に起因
する精度低下を避けるためセラミックス部材が多く使用
されている。そのセラミックス部材には多くの場合、ア
ルミナ、または炭化珪素が用いられている。
2. Description of the Related Art Conventionally, metal members such as stainless steel have been used to transport and hold a silicon wafer in a semiconductor manufacturing process.
With the increase in the density of circuit patterns, suppression of deformation of members,
Suppression of metal contamination, maintenance of accuracy over a long period of time, and the like have been demanded, and ceramic members have been increasingly used to cope with this. In addition, mirrors used in precision optical instruments such as laser devices are often made of ceramic members in order to avoid a decrease in accuracy due to thermal expansion. In many cases, alumina or silicon carbide is used for the ceramic member.

【0003】これらのセラミックス部材の内、精密光学
機器に使用されるセラミックスミラー、あるいは半導体
工業におけるSiウェハーの取扱いに使用されるバキュ
ームピンセット、ハンド等の部材は、その表面にゴミや
埃などが残って悪影響を与えないように、通常、必要と
される部分を研削、研磨し表面を平滑にして使用されて
いる。
[0003] Of these ceramic members, those such as ceramic mirrors used for precision optical equipment or vacuum tweezers and hands used for handling Si wafers in the semiconductor industry leave dust and dirt on the surfaces thereof. Usually, required portions are ground and polished to make the surface smooth so as not to cause any adverse effects.

【0004】しかし、これら部材の表面にはセラミック
ス材料自体が有するポアが研磨面に残り、表面平滑性や
光学特性などの点で、十分満足できるものではなかっ
た。これは、例えば多結晶セラミックスの場合、焼結の
過程で焼結体中の結晶粒子間の粒界にポアが残ることが
主たる原因である。このため、極めて平滑な表面を要求
されるセラミックス部材には、その表面にCVD(化学
気相蒸着)法により炭化珪素の膜を形成し、その膜を研
磨したものが用いられている。
[0004] However, the pores of the ceramic material itself remain on the polished surface on the surfaces of these members, and the surface smoothness and the optical characteristics are not sufficiently satisfactory. This is mainly due to the fact that pores remain at grain boundaries between crystal grains in the sintered body in the course of sintering, for example, in the case of polycrystalline ceramics. For this reason, as a ceramic member requiring an extremely smooth surface, a member obtained by forming a silicon carbide film on the surface by a CVD (chemical vapor deposition) method and polishing the film is used.

【0005】[0005]

【発明が解決しようとする課題】しかしながら、この方
法は、表面平滑性に優れたセラミックス部材を作製する
ことはできるが、炭化珪素膜を部材の表面に形成するた
めには、高価な装置が必要であり、こうしたことがセラ
ミックス部材のコスト高の一因となっていた。また、表
面の炭化珪素膜を研磨すると、その機械的応力により、
炭化珪素膜が脆性であることと相俟って、膜に亀裂が入
り、その亀裂の進展により膜が破壊に至ることすらあっ
た。
However, this method can produce a ceramic member having excellent surface smoothness, but requires an expensive apparatus in order to form a silicon carbide film on the surface of the member. This has contributed to the high cost of the ceramic member. In addition, when the silicon carbide film on the surface is polished,
Coupled with the brittleness of the silicon carbide film, the film was cracked, and the growth of the cracks could even break the film.

【0006】本発明は、上述した極めて平滑な表面を必
要とするセラミックスが有する課題に鑑みなされたもの
であって、その目的は、表面に炭化珪素膜を形成しなく
ても、極めて平滑な研磨面が得られる炭化珪素焼結体を
提供しその製造方法をも提供することにある。
SUMMARY OF THE INVENTION The present invention has been made in view of the above-mentioned problems of ceramics requiring an extremely smooth surface, and has as its object to achieve extremely smooth polishing without forming a silicon carbide film on the surface. It is another object of the present invention to provide a silicon carbide sintered body having a surface and a method for manufacturing the same.

【0007】[0007]

【課題を解決するための手段】本発明者等は、上記目的
を達成するため鋭意研究した結果、細かい炭化珪素粉末
に焼結助剤としてほう素またはその化合物及び炭素を添
加して成形し、その成形体を従来より低温で焼結し、そ
れをさらにHIP処理すれば、この表面を研磨すること
で極めて平滑な表面を有する焼結体が得られるとの知見
を得て本発明を完成した。
Means for Solving the Problems The inventors of the present invention have conducted intensive studies to achieve the above-mentioned object, and as a result, boron or a compound thereof and carbon as a sintering aid have been added to fine silicon carbide powder and molded. The present invention was completed by obtaining the knowledge that a sintered body having an extremely smooth surface can be obtained by sintering the formed body at a lower temperature than before and further subjecting the formed body to HIP treatment by polishing this surface. .

【0008】即ち本発明は、 (1)多結晶から成る炭化珪素焼結体において、該焼結
体の研磨面の表面粗さが、接触式による中心線平均粗さ
(Ra)で3nm以下であることを特徴とする炭化珪素
焼結体(請求項1)とし、また (2)0.7μm以下の平均粒径を有する炭化珪素粉末
に、焼結助剤としてほう素またはその化合物を0.1〜
0.8重量%、炭素を1〜5重量%添加し、成形し、そ
れを1900〜2050℃の不活性ガス雰囲気中で常圧
焼結した後、それをさらに1000kg/cm2以上の
圧力下で焼結温度より低い温度で熱間静水圧プレス(H
IP)処理し、得られたHIP処理体の表面を2μm以
下の平均粒径を有するダイヤモンド砥粒で研磨すること
を特徴とする炭化珪素焼結体の製造方法(請求項2)と
することを要旨とする。以下さらに詳細に説明する。
That is, the present invention provides: (1) In a silicon carbide sintered body made of polycrystal, the surface roughness of the polished surface of the sintered body is not more than 3 nm as a center line average roughness (Ra) by a contact method. (2) A silicon carbide powder having an average particle diameter of 0.7 μm or less, containing boron or a compound thereof as a sintering aid. 1 to
0.8% by weight and 1 to 5% by weight of carbon are added, molded, sintered at normal pressure in an inert gas atmosphere of 1900 to 2050 ° C., and then further sintered under a pressure of 1000 kg / cm 2 or more. Hot isostatic pressing at a temperature lower than the sintering temperature (H
IP) treatment, and polishing the surface of the obtained HIP-treated body with diamond abrasive grains having an average particle size of 2 μm or less (claim 2). Make a summary. This will be described in more detail below.

【0009】上記で述べたように、表面が平滑な炭化珪
素焼結体としては、その研磨面の表面粗さを、接触式に
よる中心線平均粗さ(Ra)で3nm以下とした(請求
項1)。この研磨面の表面粗さは、従来の炭化珪素膜の
研磨面の表面粗さと同等であり、炭化珪素焼結体の表面
に炭化珪素膜を形成する必要がなくなる。これがRaで
3nmを超えると、例えばセラミックスミラーとして使
用する場合は光学的特性が不十分となるなど要求される
特性が得られなくなる。
As described above, the surface roughness of the polished surface of the silicon carbide sintered body having a smooth surface is set to 3 nm or less as a center line average roughness (Ra) by a contact method. 1). The surface roughness of the polished surface is equal to the surface roughness of the polished surface of the conventional silicon carbide film, and there is no need to form a silicon carbide film on the surface of the silicon carbide sintered body. If this exceeds 3 nm in Ra, for example, when used as a ceramics mirror, required characteristics such as insufficient optical characteristics cannot be obtained.

【0010】その焼結体の製造方法としては、0.7μ
m以下の平均粒径を有する炭化珪素粉末に、焼結助剤と
してほう素またはその化合物を0.1〜0.8重量%、
炭素を1〜5重量%添加し、成形し、それを1900〜
2050℃の不活性ガス雰囲気中で常圧焼結した後、そ
れをさらに1000kg/cm2以上の圧力下で焼結温
度より低い温度で熱間静水圧プレス(HIP)処理し、
得られたHIP処理体の表面を2μm以下の平均粒径を
有するダイヤモンド砥粒で研磨する製造方法とした(請
求項2)。
[0010] As a method of manufacturing the sintered body, 0.7 μm
m or less, and 0.1 to 0.8% by weight of boron or its compound as a sintering aid,
Carbon is added in an amount of 1 to 5% by weight, molded, and
After normal pressure sintering in an inert gas atmosphere at 2050 ° C., it is further subjected to hot isostatic pressing (HIP) at a temperature lower than the sintering temperature under a pressure of 1000 kg / cm 2 or more,
A method of polishing the surface of the obtained HIP-treated body with diamond abrasive grains having an average particle size of 2 μm or less (claim 2).

【0011】用いる炭化珪素粉末の細かさを平均粒径で
0.7μm以下(より好ましくは0.5μm以下)とし
たのは、この細かさであれば通常の焼結温度より低温で
焼結可能となり、その低温で焼結することで十分な焼結
密度に到達しながら、かつ粒成長を抑制してポアの粗大
化を避けることができ、さらにHIP処理することによ
り、顕微鏡で観察されるポアをほとんど皆無とすること
ができることにある。炭化珪素粉末の細かさが平気粒径
で0.7μmより粗いと低温易焼結の性質が失われ、低
温焼結できない。これを温度を上げて焼結すると粒成長
が生じ、ポアが粗大化してしまう。
The fineness of the silicon carbide powder used is set to 0.7 μm or less (more preferably 0.5 μm or less) in average particle size because the fineness enables sintering at a temperature lower than a normal sintering temperature. By sintering at the low temperature, a sufficient sintering density can be attained and grain growth can be suppressed to avoid coarsening of the pores. Is that it can be almost completely absent. If the fineness of the silicon carbide powder is coarser than 0.7 μm in average particle size, the low-temperature sintering property is lost and low-temperature sintering cannot be performed. If this is heated at a higher temperature, grain growth occurs and the pores become coarser.

【0012】焼結体中のポアをほとんど皆無とすること
ができる理由は理論的には解明されていないが、通常の
粗さの炭化珪素粉末の焼結では、焼結の進行に伴い粒界
相にポアが集積、成長してポアが顕在化するのに対し、
十分に微粉の炭化珪素粉末では、低温焼結と相俟って結
晶粒内に顕微鏡で観察不可能なほど径の小さいポア(ゴ
ーストポアと呼ばれる)としてとどまり、結晶粒界でポ
アが成長することがないためと思われる。
Although the reason why the pores in the sintered body can be almost completely eliminated has not been theoretically elucidated, in the sintering of a silicon carbide powder having a normal roughness, the grain boundaries are increased with the progress of sintering. While the pores accumulate and grow in the phase and the pores become apparent,
With sufficiently fine silicon carbide powder, coupled with low-temperature sintering, pores having small diameters (called ghost pores) that cannot be observed with a microscope in crystal grains may occur, and pores may grow at crystal grain boundaries. Probably not.

【0013】その炭化珪素粉末に添加する焼結助剤とし
ては、ほう素またはその化合物及び炭素が好ましい。焼
結助剤として酸化物を用いると焼結助剤の分解が生じ、
ガスが発生し、ポアの原因となる。その添加量として
は、それぞれ0.1〜0.8重量%及び1〜5重量%が
好ましく、ほう素またはその化合物が0.1重量%より
少なく、炭素が1重量%より少ないと焼結し難く、ほう
素またはその化合物が0.8重量%より多く、炭素が5
重量%より多いと焼結時に粒成長が生じ易く、ポアが粗
大化する。
As a sintering aid to be added to the silicon carbide powder, boron or its compound and carbon are preferable. When an oxide is used as a sintering aid, decomposition of the sintering aid occurs,
Gas is generated, causing pores. The added amount is preferably 0.1 to 0.8% by weight and 1 to 5% by weight, respectively. When boron or its compound is less than 0.1% by weight and carbon is less than 1% by weight, sintering is performed. Difficult, boron or its compound is more than 0.8% by weight and carbon is 5%.
When the content is more than the weight percentage, grain growth tends to occur during sintering, and pores become coarse.

【0014】それらを成形した成形体を焼結する方法と
しては、アルゴン等の不活性ガス雰囲気中で1900〜
2050℃で常圧焼結することとした。この焼結温度
は、通常の焼結温度(2100〜2200℃)より低温
であり、この低温で焼結することにより前記したように
ポアの粗大化を抑制することができる。その温度が19
00℃より低いと緻密に焼結し難く、逆に2050℃よ
り高くなると粒成長が著しく、ポアの粒界相への移動と
粒成長に伴うポアの粗大化が生じる。得られた焼結体を
さらにアルゴン等の不活性ガス雰囲気中で1000kg
/cm2の以上の圧力下でHIP処理する。このHIP
処理でポアをさらに少なくしてほとんど皆無とすること
ができる。HIP圧が1000kg/cm2より低いと
ポアの減少効果が少なく好ましくない。HIP処理温度
は、粒成長によりポアの粗大化を抑制するという点から
焼結温度以下とすることが必要である。
As a method of sintering a molded body obtained by molding them, 1900 to 1900 in an inert gas atmosphere such as argon.
It was decided to perform normal pressure sintering at 2050 ° C. The sintering temperature is lower than the normal sintering temperature (2100 to 2200 ° C.), and sintering at this low temperature can suppress pore coarsening as described above. The temperature is 19
If the temperature is lower than 00 ° C., it is difficult to sinter densely. On the other hand, if the temperature is higher than 2050 ° C., the grain growth is remarkable, and the pores move to the grain boundary phase and the pores become coarse with the grain growth. The obtained sintered body is further subjected to 1000 kg in an inert gas atmosphere such as argon.
HIP treatment under a pressure of not less than / cm 2 . This HIP
The processing can further reduce the pores and make them almost nonexistent. If the HIP pressure is lower than 1000 kg / cm 2 , the effect of reducing pores is small, which is not preferable. The HIP treatment temperature needs to be lower than the sintering temperature from the viewpoint of suppressing pore coarsening due to grain growth.

【0015】こうして得られた炭化珪素焼結体の表面を
2μm以下の平均粒径を有するダイヤモンド砥粒で研磨
することとした。炭化珪素焼結体は高硬度材料であるた
め、ダイヤモンド以外の砥粒による研磨は、所要時間が
かなり長くなり好ましくなく、そのダイヤモンドの細か
さが平均粒径で2μmより粗いと表面粗さが粗くなり、
セラミックスミラーやハンド等に要求される平滑性が得
られない。
The surface of the silicon carbide sintered body thus obtained is polished with diamond abrasive grains having an average particle size of 2 μm or less. Since the silicon carbide sintered body is a high-hardness material, polishing with abrasive grains other than diamond is not preferable because the required time is considerably long. If the fineness of the diamond is coarser than 2 μm in average particle size, the surface roughness becomes rough. Become
Smoothness required for ceramic mirrors and hands cannot be obtained.

【0016】[0016]

【発明の実施の形態】本発明の製造方法をさらに詳しく
述べると、先ず平均粒径で0.7μm以下の炭化珪素粉
末を用意し、それに焼結助剤としてほう素またはその化
合物を0.1〜0.8重量%、炭素を1〜5重量%加
え、成形する。成形は慣用の方法でよく、例えばバキュ
ームピンセットなどの薄板であれば、ドクターブレード
法や押出し成形法により薄板状に成形し、また、セラミ
ックスミラー等の大面積の平板に対しては、CIP(冷
間静水圧プレス)成形、鋳込み成形などで成形すればよ
い。いずれの成形法による場合も、それぞれの成形法に
適した有機バインダー類を成形助剤として用いる。
BEST MODE FOR CARRYING OUT THE INVENTION The production method of the present invention will be described in more detail. First, a silicon carbide powder having an average particle diameter of 0.7 μm or less is prepared, and boron or its compound is added as a sintering aid to 0.1%. 0.8% by weight and 1-5% by weight of carbon are added and molded. The shaping may be performed by a conventional method. For example, if the thin plate is made of vacuum tweezers or the like, the thin plate is formed by a doctor blade method or an extrusion molding method. It may be formed by isostatic pressing), molding or casting. In any case, an organic binder suitable for each molding method is used as a molding aid.

【0017】得られた成形体をアルゴン等の不活性ガス
雰囲気中で1900〜2050℃の温度で常圧焼結し、
得られた焼結体をさらにアルゴン等の不活性ガス雰囲気
中で1000kg/cm2以上の圧力下で焼結温度より
低い温度でHIP処理し、得られたHIP処理体の表面
を平面研削した後、平均粒径が2μm以下のダイヤモン
ド砥粒で研磨する。
The obtained compact is sintered under normal pressure at a temperature of 1900 to 2050 ° C. in an inert gas atmosphere such as argon,
The obtained sintered body is further subjected to HIP treatment at a temperature lower than the sintering temperature under a pressure of 1000 kg / cm 2 or more in an inert gas atmosphere such as argon, and the surface of the obtained HIP-treated body is subjected to surface grinding. Polishing is performed with diamond abrasive grains having an average particle size of 2 μm or less.

【0018】以上述べた方法で炭化珪素焼結体を製造す
れば、極めて平滑な研磨面を有する炭化珪素焼結体を得
ることができる。
When a silicon carbide sintered body is manufactured by the method described above, a silicon carbide sintered body having an extremely smooth polished surface can be obtained.

【0019】[0019]

【実施例】以下、本発明の実施例を比較例と共に具体的
に挙げ、本発明をより詳細に説明する。
EXAMPLES Hereinafter, the present invention will be described in more detail with reference to Examples of the present invention and Comparative Examples.

【0020】(実施例1〜5) (1)研磨面を有する炭化珪素焼結体の作製 平均粒径が0.5μmの炭化珪素粉末(太平洋ランダム
社製、CMF−15H)にほう素及びカーボンブラック
を表1に示す量添加し、それを混合、乾燥した後、整粒
した。この粉末を200kg/cm2の圧力でCIP成
形した後、アルゴン雰囲気中で表1に示す温度で常圧焼
結した。得られた焼結体をさらにアルゴン雰囲気中で1
700℃の温度で1200kg/cm2の圧力下でHI
P処理した。得られたHIP処理体の表面を平面研削盤
で研削し、さらにその表面を表1に示す平均粒径を有す
るダイヤモンド砥粒で研磨した。
(Examples 1 to 5) (1) Production of silicon carbide sintered body having polished surface Boron and carbon were added to silicon carbide powder (CMF-15H, manufactured by Taiheiyo Random Co., Ltd.) having an average particle size of 0.5 μm. Black was added in the amount shown in Table 1, mixed, dried and then sized. This powder was subjected to CIP molding at a pressure of 200 kg / cm 2 , and then sintered under normal pressure at a temperature shown in Table 1 in an argon atmosphere. The obtained sintered body was further subjected to an argon atmosphere for 1 hour.
HI at a temperature of 700 ° C. and a pressure of 1200 kg / cm 2
P processed. The surface of the obtained HIP-treated body was ground with a surface grinder, and the surface was further polished with diamond abrasive grains having an average particle size shown in Table 1.

【0021】(2)評価 得られた焼結体の研磨面の表面粗さをナノステップ(R
ank TaylerHobson社製、接触式、差動
変圧タイプ)で中心線平均粗さ(Ra)を測定した。そ
の結果を表1に示す。
(2) Evaluation The surface roughness of the polished surface of the obtained sintered body was measured using a nano step (R).
The center line average roughness (Ra) was measured using an ank Taylor Hobson company (contact type, differential transformer type). Table 1 shows the results.

【0022】(比較例1〜6)比較のために、比較例1
では、ほう素の添加量を本発明より少なくした他は、比
較例2では、カーボンブラックの添加量を本発明より多
くした他は、比較例3では、炭化珪素粉末の細かさを本
発明より粗くした他は、比較例4では、常圧焼結温度を
本発明より高くした他は、比較例5では、常圧焼結温度
を本発明より低くした他は、比較例6では、ダイヤモン
ド砥粒の細かさを本発明より粗くした他は実施例1と同
様に研磨面を有した炭化珪素焼結体を作製し、評価し
た。その結果を表1に示す。
(Comparative Examples 1 to 6) For comparison, Comparative Example 1
In Comparative Example 2, except that the amount of boron added was smaller than that of the present invention, the fineness of the silicon carbide powder was smaller than that of the present invention. Except for roughening, in Comparative Example 4, except that the normal-pressure sintering temperature was higher than that of the present invention, in Comparative Example 5, except that the normal-pressure sintering temperature was lower than that of the present invention, in Comparative Example 6, the diamond grinding was performed. A silicon carbide sintered body having a polished surface was prepared and evaluated in the same manner as in Example 1 except that the fineness of the grains was coarser than that of the present invention. Table 1 shows the results.

【0023】[0023]

【表1】 [Table 1]

【0024】表1から明らかなように、実施例において
は、いずれも研磨面の表面粗さがRaで2.1nm以下
であり、極めて平滑な研磨面を有していた。このこと
は、炭化珪素焼結体の表面に炭化珪素膜を形成しなくて
も、焼結体の表面を研磨するだけで十分平滑性を満足で
きる焼結体が得られることを示している。
As is evident from Table 1, in each of the examples, the polished surface had a surface roughness Ra of 2.1 nm or less and had an extremely smooth polished surface. This indicates that a sinter having satisfactory smoothness can be obtained only by polishing the surface of the sintered body without forming a silicon carbide film on the surface of the silicon carbide sintered body.

【0025】これに対して、比較例1においては、ほう
素の添加量が少なすぎるため、比較例2においては、カ
ーボンブラックの添加量が多すぎるため、比較例3で
は、炭化珪素粉末の細かさが粗すぎるため、比較例4で
は、常圧焼結温度が高すぎるため、比較例5では、常圧
焼結温度が低すぎるため、比較例6では、ダイヤモンド
砥粒の細かさが粗すぎるためいずれも満足できる平滑性
が得られなかった。
On the other hand, in Comparative Example 1, the addition amount of boron was too small, and in Comparative Example 2, the addition amount of carbon black was too large. In Comparative Example 4, the normal pressure sintering temperature is too high, and in Comparative Example 5, the normal pressure sintering temperature is too low. In Comparative Example 6, the fineness of the diamond abrasive grains is too coarse. Therefore, no satisfactory smoothness was obtained.

【0026】[0026]

【発明の効果】以上の通り、本発明によれば、接触式に
よる中心線平均粗さ(Ra)で3nm以下の極めてポア
の少ない平滑な研磨面を有する炭化珪素焼結体が得られ
る。このことにより、ゴミ、埃などを特に嫌う半導体工
業分野の部品、あるいは工業用ミラーに使用可能な部品
等に用いるセラミックス部材として、研磨するだけで極
めて平滑な表面を得ることのできる炭化珪素焼結体を提
供することができるようになった。
As described above, according to the present invention, a silicon carbide sintered body having a smooth polished surface with extremely few pores having a center line average roughness (Ra) of 3 nm or less by a contact method can be obtained. As a result, silicon carbide sintering that can obtain an extremely smooth surface only by polishing, as a ceramic member used for parts in the semiconductor industry field that particularly dislikes dust and dust, or parts that can be used for industrial mirrors, etc. You can now provide your body.

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 多結晶から成る炭化珪素焼結体におい
て、該焼結体の研磨面の表面粗さが、接触式による中心
線平均粗さ(Ra)で3nm以下であることを特徴とす
る炭化珪素焼結体。
1. A polycrystalline silicon carbide sintered body, characterized in that the polished surface of the sintered body has a surface roughness of 3 nm or less as a center line average roughness (Ra) by a contact method. Silicon carbide sintered body.
【請求項2】 0.7μm以下の平均粒径を有する炭化
珪素粉末に、焼結助剤としてほう素またはその化合物を
0.1〜0.8重量%、炭素を1〜5重量%添加し、成
形し、それを1900〜2050℃の不活性ガス雰囲気
中で常圧焼結した後、それをさらに1000kg/cm
2以上の圧力下で焼結温度より低い温度で熱間静水圧プ
レス(HIP)処理し、得られたHIP処理体の表面を
2μm以下の平均粒径を有するダイヤモンド砥粒で研磨
することを特徴とする炭化珪素焼結体の製造方法。
2. A silicon carbide powder having an average particle diameter of 0.7 μm or less is added with 0.1 to 0.8% by weight of boron or a compound thereof as a sintering aid and 1 to 5% by weight of carbon. After sintering under normal pressure in an inert gas atmosphere at 1900 to 2050 ° C., it was further cooled to 1000 kg / cm.
Hot isostatic pressing (HIP) at a temperature lower than the sintering temperature under a pressure of 2 or more, and polishing the surface of the obtained HIP-treated body with diamond abrasive grains having an average particle size of 2 μm or less. Production method of a silicon carbide sintered body.
JP9329680A 1997-11-14 1997-11-14 Silicon carbide sintered product and its production Withdrawn JPH11147766A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP9329680A JPH11147766A (en) 1997-11-14 1997-11-14 Silicon carbide sintered product and its production

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP9329680A JPH11147766A (en) 1997-11-14 1997-11-14 Silicon carbide sintered product and its production

Publications (1)

Publication Number Publication Date
JPH11147766A true JPH11147766A (en) 1999-06-02

Family

ID=18224075

Family Applications (1)

Application Number Title Priority Date Filing Date
JP9329680A Withdrawn JPH11147766A (en) 1997-11-14 1997-11-14 Silicon carbide sintered product and its production

Country Status (1)

Country Link
JP (1) JPH11147766A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002037668A (en) * 2000-07-26 2002-02-06 Hitachi Chem Co Ltd Silicon carbide sintered compact and method for producing the same
WO2018159754A1 (en) 2017-03-02 2018-09-07 信越化学工業株式会社 Silicon carbide substrate production method and silicon carbide substrate

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002037668A (en) * 2000-07-26 2002-02-06 Hitachi Chem Co Ltd Silicon carbide sintered compact and method for producing the same
WO2018159754A1 (en) 2017-03-02 2018-09-07 信越化学工業株式会社 Silicon carbide substrate production method and silicon carbide substrate
CN110366611A (en) * 2017-03-02 2019-10-22 信越化学工业株式会社 The manufacturing method and silicon carbide substrate of silicon carbide substrate
KR20190121366A (en) 2017-03-02 2019-10-25 신에쓰 가가꾸 고교 가부시끼가이샤 Method for producing silicon carbide substrate and silicon carbide substrate
CN110366611B (en) * 2017-03-02 2021-07-27 信越化学工业株式会社 Method for producing silicon carbide substrate and silicon carbide substrate
US11346018B2 (en) 2017-03-02 2022-05-31 Shin-Etsu Chemical Co., Ltd. Silicon carbide substrate production method and silicon carbide substrate

Similar Documents

Publication Publication Date Title
US5665663A (en) Method for manufacturing oxide ceramic sintered bodies
JP2013535389A (en) Polycrystalline aluminum nitride material and method for producing the same
US6150023A (en) Dummy wafer
JP3618048B2 (en) Components for semiconductor manufacturing equipment
JP5396176B2 (en) Wafer mounting table and manufacturing method thereof
EP0673023B1 (en) Vacuum-clamping device using ceramic vacuum-clamping board
JPH11147766A (en) Silicon carbide sintered product and its production
JPH11209171A (en) Dense low thermal expansion ceramics, its production and member for semiconductor producing device
US6953538B2 (en) Electroconductive low thermal expansion ceramic sintered body
EP0559917B1 (en) Method of manufacturing a ceramic mirror
JP3799139B2 (en) Ceramic composite material
JP4382919B2 (en) Method for producing silicon-impregnated silicon carbide ceramic member
JP5038553B2 (en) Manufacturing method of sputtering target
JPH11255523A (en) Mold for forming glass mold and its production
JP2001233676A (en) Plasma corrosion-resistant member and method for producing the same
JP2001302340A (en) High density low thermal expansion ceramic and manufacturing method thereof and member for semiconductor manufacturing device
JPH10203870A (en) Silicon carbide sintered compact and its production
JP4062059B2 (en) Low thermal expansion ceramic member, method for manufacturing the same, and member for semiconductor manufacturing apparatus
JP2001172090A (en) Ceramics
JP4766289B2 (en) Silicon carbide sintered body and manufacturing method thereof
JPH06144920A (en) Oxide ceramic sintered compact and its production
JP3970629B2 (en) Low thermal expansion ceramics and method for producing the same
JPH11214491A (en) Wafer holder and production thereof
JP2001220239A (en) Silicon carbide sintered compact and method for producing the same
JP2000072453A (en) Forming mold for glass mold and its production

Legal Events

Date Code Title Description
A761 Written withdrawal of application

Free format text: JAPANESE INTERMEDIATE CODE: A761

Effective date: 20041202