JP2001244201A - Moisture monitoring device and semiconductor manufacturing device equipped therewith - Google Patents

Moisture monitoring device and semiconductor manufacturing device equipped therewith

Info

Publication number
JP2001244201A
JP2001244201A JP2000052516A JP2000052516A JP2001244201A JP 2001244201 A JP2001244201 A JP 2001244201A JP 2000052516 A JP2000052516 A JP 2000052516A JP 2000052516 A JP2000052516 A JP 2000052516A JP 2001244201 A JP2001244201 A JP 2001244201A
Authority
JP
Japan
Prior art keywords
moisture
corrosive gas
monitoring device
pipe
moisture meter
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2000052516A
Other languages
Japanese (ja)
Other versions
JP3495965B2 (en
Inventor
Hiroyuki Hasegawa
博之 長谷川
Tomonori Yamaoka
智則 山岡
Hiroshi Masuzaki
宏 増崎
Takayuki Sato
貴之 佐藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Materials Silicon Corp
Japan Oxygen Co Ltd
Nippon Sanso Corp
Original Assignee
Mitsubishi Materials Silicon Corp
Japan Oxygen Co Ltd
Nippon Sanso Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Materials Silicon Corp, Japan Oxygen Co Ltd, Nippon Sanso Corp filed Critical Mitsubishi Materials Silicon Corp
Priority to JP2000052516A priority Critical patent/JP3495965B2/en
Priority to TW089117350A priority patent/TW460942B/en
Priority to KR10-2000-0050604A priority patent/KR100431040B1/en
Priority to US09/651,255 priority patent/US6491758B1/en
Priority to CNB2003101028237A priority patent/CN1282764C/en
Priority to DE10042881A priority patent/DE10042881B4/en
Priority to CN00131310A priority patent/CN1131891C/en
Publication of JP2001244201A publication Critical patent/JP2001244201A/en
Priority to US10/021,259 priority patent/US6887721B2/en
Priority to KR10-2002-0050762A priority patent/KR100415368B1/en
Priority to KR10-2002-0050756A priority patent/KR100391872B1/en
Priority to KR10-2002-0050758A priority patent/KR100445945B1/en
Application granted granted Critical
Publication of JP3495965B2 publication Critical patent/JP3495965B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Drying Of Semiconductors (AREA)
  • Optical Measuring Cells (AREA)
  • Investigating Or Analysing Materials By Optical Means (AREA)
  • Chemical Vapour Deposition (AREA)

Abstract

PROBLEM TO BE SOLVED: To enable a moisture sampling device and a semiconductor manufacturing device equipped with a device to measure the moisture content in a corrosive gas even in processing which preventing blocking in a pipe. SOLUTION: A moisture monitoring device 5 is provided with the pipe 9 one end of which is connected to a reaction chamber 1 to which the corrosive gas is made to flow, and a moisture meter which is connected to the other end of the pipe 9, and measures the moisture content in the corrosive gas introduced from the reaction chamber 1. This device 5 is also provided with at least a pipel heating mechanism 20 which heats the pipeline 9.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、例えば反応室内に
配置したシリコン基板上にエピタキシャル成長等を行う
際に、プロセス中の腐食性ガスに含まれる水分を計測す
る水分モニタリング装置およびこれを備えた半導体製造
装置に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a moisture monitoring apparatus for measuring moisture contained in a corrosive gas during a process, for example, when epitaxial growth or the like is performed on a silicon substrate placed in a reaction chamber, and a semiconductor provided with the same. It relates to a manufacturing device.

【0002】[0002]

【従来の技術】近年、MOSデバイス用のシリコン・ウ
ェーハとして、極めて低い抵抗率のシリコン基板上に、
所定の不純物濃度で単結晶シリコン薄膜(エピタキシャ
ル層)を気相成長させたエピタキシャル・ウェーハが、
エピタキシャル結晶成長装置で製造されている。この装
置は、チャンバ内にシリコン基板を配置して腐食性ガス
を流し、基板上にエピタキシャル成長を行うものであ
る。また、LSI等の半導体製造工程では、腐食性ガス
を用いて基板上に薄膜を形成する種々のCVD装置が用
いられている。
2. Description of the Related Art In recent years, as a silicon wafer for MOS devices, a silicon substrate having an extremely low resistivity has been used.
An epitaxial wafer in which a single crystal silicon thin film (epitaxial layer) is vapor-phase grown at a predetermined impurity concentration,
Manufactured with an epitaxial crystal growth apparatus. In this apparatus, a silicon substrate is placed in a chamber, a corrosive gas is flowed, and epitaxial growth is performed on the substrate. Further, in a process of manufacturing a semiconductor such as an LSI, various CVD apparatuses for forming a thin film on a substrate using a corrosive gas are used.

【0003】これらの半導体製造装置は、超高純度の塩
化水素ガスやアンモニアガスのような腐食性ガスを用い
るが、その中に僅かでも水分が含まれていると、腐食を
起こしやすくなりチャンバ内の金属部分から生じるメタ
ル(重金属)によって汚染の原因となり有害であるた
め、チャンバ内における腐食性ガスの水分を高感度に定
量分析することが求められている。
[0003] These semiconductor manufacturing apparatuses use corrosive gas such as ultra-high purity hydrogen chloride gas or ammonia gas. Since the metal (heavy metal) generated from the metal part causes contamination and is harmful, it is required to quantitatively analyze the moisture of corrosive gas in the chamber with high sensitivity.

【0004】ガス中の水分を計測する水分計として、例
えば水晶振動子の周波数変化を計測する水晶振動子法や
ガス中の水分を吸着させて電気容量変化を計測する静電
容量法によるもの等が知られているが、このような水分
計は、直接ガスに接触する必要があるため腐食性ガスの
場合はガスの腐食性により計測することができなかっ
た。そこで、近年、例えば、特開平5−99845号公
報や特開平11−183366号公報に記載されている
水分計、すなわち、ガス中に含まれる微量の不純物をレ
ーザ光を用いて測定する赤外吸収分光法を用いたレーザ
水分計が提案されている。このレーザ水分計は、測定セ
ル内に腐食性ガスを導入するとともに測定セル内に所定
の波長を有するレーザ光を入射し、透過したレーザ光を
解析することにより吸収波長の強度から水分等の不純物
を検出するものであり、腐食性ガスを吸着等させる必要
がなく高感度かつ高速に計測が可能になるものである。
As a moisture meter for measuring moisture in a gas, for example, a quartz oscillator method for measuring a frequency change of a quartz oscillator or a capacitance method for measuring a change in electric capacity by adsorbing moisture in a gas, etc. However, such a moisture meter cannot be measured in the case of corrosive gas due to the corrosiveness of the gas because it is necessary to directly contact the gas. Therefore, in recent years, for example, a moisture meter described in JP-A-5-99845 or JP-A-11-183366, that is, infrared absorption for measuring a trace amount of impurities contained in a gas using a laser beam. A laser moisture meter using spectroscopy has been proposed. This laser moisture meter introduces a corrosive gas into the measurement cell, irradiates a laser beam having a predetermined wavelength into the measurement cell, and analyzes the transmitted laser beam to determine the impurity such as moisture from the intensity of the absorption wavelength. This makes it possible to measure at high sensitivity and at high speed without having to adsorb corrosive gas.

【0005】[0005]

【発明が解決しようとする課題】しかしながら、上記従
来の水分計による計測手段では、以下のような課題が残
されている。すなわち、腐食性ガスは、チャンバ内で加
熱された後に一部がサンプリング配管を介して上記水分
計に導入されるが、水分計までのサンプリング配管中で
その内壁に副反応生成物が付着堆積してしまい、サンプ
リング配管を閉塞するおそれがあった。このため、プロ
セス中に常時腐食性ガス中の水分を計測する、すなわち
in-situモニタリングを行うことが困難であった。
However, the above-described conventional measuring means using a moisture meter has the following problems. That is, the corrosive gas is partially introduced into the above-mentioned moisture meter via the sampling pipe after being heated in the chamber, but by-products adhere to and accumulate on the inner wall of the sampling pipe up to the moisture meter. As a result, the sampling pipe may be blocked. For this reason, the moisture in the corrosive gas is always measured during the process,
It was difficult to perform in-situ monitoring.

【0006】本発明は、前述の課題に鑑みてなされたも
ので、配管の閉塞を防いで、プロセス中でも腐食性ガス
の水分を計測することができる水分モニタリング装置お
よびこれを備えた半導体製造装置を提供することを目的
とする。
SUMMARY OF THE INVENTION The present invention has been made in view of the above-mentioned problems, and has an object to provide a moisture monitoring device capable of measuring the moisture of a corrosive gas even during a process while preventing a pipe from being clogged, and a semiconductor manufacturing apparatus having the same. The purpose is to provide.

【0007】[0007]

【課題を解決するための手段】本発明は、前記課題を解
決するために以下の構成を採用した。すなわち、請求項
1記載の水分モニタリング装置では、腐食性ガスが流さ
れる反応室に一端が接続された配管と、該配管の他端に
接続され前記反応室から導入される腐食性ガスに含まれ
る水分を計測する水分計とを備えた水分モニタリング装
置であって、少なくとも前記配管を加熱する配管加熱機
構を備えている技術が採用される。
The present invention has the following features to attain the object mentioned above. That is, in the moisture monitoring device according to claim 1, the pipe is connected to one end of the reaction chamber through which the corrosive gas flows, and is included in the corrosive gas connected to the other end of the pipe and introduced from the reaction chamber. A moisture monitoring device including a moisture meter for measuring moisture, which employs a technology including a pipe heating mechanism for heating at least the pipe.

【0008】この水分モニタリング装置では、少なくと
も配管を加熱する配管加熱機構を備えているので、配管
を加熱して所定の高温状態にすることができ、反応室で
加熱された腐食性ガスが配管部分で急速に冷却されて配
管内に副反応生成物が付着堆積することを防止すること
ができる。したがって、配管が閉塞することを防ぐこと
ができ、プロセス中でも常時水分を計測することが可能
になる。
In this moisture monitoring apparatus, since a pipe heating mechanism for heating at least the pipe is provided, the pipe can be heated to a predetermined high temperature state, and the corrosive gas heated in the reaction chamber is discharged from the pipe section. Thus, it is possible to prevent the by-products from being rapidly cooled and adhered and deposited in the piping. Therefore, it is possible to prevent the pipe from being clogged, and it is possible to constantly measure moisture even during the process.

【0009】請求項2記載の水分モニタリング装置で
は、請求項1記載の水分モニタリング装置において、前
記配管加熱機構は、前記配管の外周に巻回された電熱線
を備えている技術が採用される。
According to a second aspect of the present invention, in the moisture monitoring apparatus according to the first aspect, a technique is employed in which the pipe heating mechanism includes a heating wire wound around the outer circumference of the pipe.

【0010】この水分モニタリング装置では、配管加熱
機構が配管の外周に巻回された電熱線を備えているの
で、簡易な構成で配管を加熱することができ、電熱線に
供給する電流を調整するだけで容易に配管の温度を調整
することができる。なお、この電熱線を耐熱性の絶縁材
で覆って、断熱性・保温性を向上させても構わない。
In this moisture monitoring device, since the pipe heating mechanism includes the heating wire wound around the outer circumference of the pipe, the pipe can be heated with a simple configuration, and the current supplied to the heating wire is adjusted. The temperature of the pipe can be easily adjusted only by using the above. The heating wire may be covered with a heat-resistant insulating material to improve heat insulation and heat retention.

【0011】請求項3記載の水分モニタリング装置で
は、請求項1または2記載の水分モニタリング装置にお
いて、前記水分計は、前記配管の他端に接続された管状
セル本体内にレーザ光を入射させ透過したレーザ光の吸
収スペクトルを測定するレーザ水分計である技術が採用
される。
According to a third aspect of the present invention, in the moisture monitoring apparatus according to the first or second aspect, the moisture meter transmits and transmits laser light into a tubular cell body connected to the other end of the pipe. A technique that is a laser moisture meter that measures the absorption spectrum of the laser beam is adopted.

【0012】この水分モニタリング装置では、水分計
が、前記配管の他端に接続された管状セル本体内にレー
ザ光を入射させ透過したレーザ光の吸収スペクトルを測
定するレーザ水分計であるので、腐食性ガスであっても
高精度に水分の定量分析が可能になる。
In this moisture monitoring apparatus, since the moisture meter is a laser moisture meter for measuring the absorption spectrum of the transmitted laser light by irradiating the laser light into the tubular cell body connected to the other end of the pipe, Even with an inert gas, quantitative analysis of moisture can be performed with high accuracy.

【0013】請求項4記載の水分モニタリング装置で
は、請求項3記載の水分モニタリング装置において、前
記水分計は、前記管状セル本体を加熱するセル加熱機構
を備えている技術が採用される。
According to a fourth aspect of the present invention, in the moisture monitoring apparatus according to the third aspect, a technique is employed in which the moisture meter includes a cell heating mechanism for heating the tubular cell body.

【0014】この水分モニタリング装置では、水分計
が、管状セル本体を加熱するセル加熱機構を備えている
ので、管状セル本体も加熱されてその内部に副反応生成
物が付着堆積することを防ぐことができ、常時、高感度
な測定が可能になる。
In this moisture monitoring apparatus, since the moisture meter is provided with the cell heating mechanism for heating the tubular cell body, the tubular cell body is also heated to prevent the by-products from adhering and depositing inside the tubular cell body. And high-sensitivity measurement is always possible.

【0015】請求項5記載の水分モニタリング装置で
は、請求項1から4のいずれかに記載の水分モニタリン
グ装置において、前記水分計は、加熱された前記腐食性
ガスの温度に応じて測定感度が調整されている技術が採
用される。
According to a fifth aspect of the present invention, in the moisture monitoring apparatus according to any one of the first to fourth aspects, the moisture sensitivity of the moisture meter is adjusted according to the temperature of the heated corrosive gas. The technology that has been adopted.

【0016】水分計には、測定対象のガスの温度が変わ
ると、その測定感度が変動するものがあり、特にレーザ
水分計等の高精度な測定が要求されるものでは、温度の
影響を無視することができない。しかしながら、この水
分モニタリング装置では、加熱された腐食性ガスの温度
に応じて水分計の測定感度が調整されているので、配管
加熱機構等により測定対象である腐食性ガスの温度が変
わっても調整・校正された水分計の測定感度により、高
精度に水分濃度を測定することができる。
Some moisture meters vary in sensitivity when the temperature of the gas to be measured changes. In particular, in the case of a laser moisture meter or the like that requires high-precision measurement, the influence of the temperature is ignored. Can not do it. However, in this moisture monitoring device, the measurement sensitivity of the moisture meter is adjusted according to the temperature of the heated corrosive gas, so even if the temperature of the corrosive gas to be measured changes due to a piping heating mechanism, etc.・ Moisture concentration can be measured with high accuracy by the calibrated sensitivity of the moisture meter.

【0017】請求項6記載の半導体製造装置では、反応
室内の基板上に腐食性ガスを流して基板表面で腐食性ガ
スを反応させる半導体製造装置であって、請求項1から
5のいずれかに記載の水分モニタリング装置を備えてい
る技術が採用される。
According to a sixth aspect of the present invention, there is provided a semiconductor manufacturing apparatus for causing a corrosive gas to flow on a substrate in a reaction chamber and react the corrosive gas on a surface of the substrate. A technique comprising the described moisture monitoring device is employed.

【0018】この半導体製造装置では、請求項1から5
のいずれかに記載の水分モニタリング装置を備えている
ので、プロセス中でも高感度に水分の定量分析が可能に
なり、腐食性ガスによる結晶成長、薄膜形成およびエッ
チング等の品質や条件と水分量との相関を高精度に得る
ことができる。
In this semiconductor manufacturing apparatus, claims 1 to 5
The moisture monitoring device described in any one of the above, enables quantitative analysis of moisture with high sensitivity even during the process, the quality and conditions such as crystal growth, thin film formation and etching by corrosive gas and the moisture amount Correlation can be obtained with high accuracy.

【0019】請求項7記載の半導体製造装置では、請求
項6記載の半導体製造装置において、前記反応室に密閉
空間を介して前記基板を搬送する基板搬送系を備え、該
基板搬送系は、前記水分計とは別に前記密閉空間内の水
分を計測する水分計を備えている技術が採用される。
According to a seventh aspect of the present invention, in the semiconductor manufacturing apparatus according to the sixth aspect, the reaction chamber further includes a substrate transfer system for transferring the substrate through a closed space, wherein the substrate transfer system includes the substrate transfer system. In addition to the moisture meter, a technique including a moisture meter for measuring moisture in the closed space is employed.

【0020】この半導体製造装置では、基板搬送系が、
前記水分計とは別に密閉空間内の水分を計測する水分計
を備えているので、基板を基板搬送系で反応室に搬入す
る際に、基板搬送系の密閉空間内の水分を別個に測定し
確認することができ、該密閉空間内の水分が不用意に反
応室に流入してしまうことを防ぐことが可能になる。
In this semiconductor manufacturing apparatus, the substrate transport system comprises:
Since a moisture meter for measuring moisture in the sealed space is provided separately from the moisture meter, when the substrate is carried into the reaction chamber by the substrate transfer system, the moisture in the sealed space of the substrate transfer system is separately measured. This makes it possible to prevent the water in the closed space from inadvertently flowing into the reaction chamber.

【0021】[0021]

【発明の実施の形態】以下、本発明に係る水分モニタリ
ング装置およびこれを備えた半導体製造装置の一実施形
態を、図1から図3を参照しながら説明する。これらの
図にあって、符号1はプロセスチャンバ、2は搬送用チ
ャンバ、3は搬入ロードロック室、4は搬出ロードロッ
ク室、5は水分モニタリング装置を示している。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS An embodiment of a moisture monitoring apparatus according to the present invention and a semiconductor manufacturing apparatus having the same will be described below with reference to FIGS. In these figures, reference numeral 1 denotes a process chamber, 2 denotes a transfer chamber, 3 denotes a load lock chamber, 4 denotes a load lock chamber, and 5 denotes a moisture monitoring device.

【0022】図1は、本発明の半導体製造装置を例えば
枚葉式のエピタキシャル結晶成長装置に適用した場合を
示すものである。該エピタキシャル結晶成長装置は、図
1に示すように、内部にシリコン基板(基板)Wが配置
される中空の気密容器である3つの石英製のプロセスチ
ャンバ(反応室)1と、これらプロセスチャンバ1内に
シリコン基板Wを搬入する際に内部の密閉空間で雰囲気
の置換を行う搬送用チャンバ(基板搬送系)2と、該搬
送用チャンバ2にプロセス前のシリコン基板Wを搬入す
る搬入ロードロック室3および搬送用チャンバ2からプ
ロセス後のシリコン基板Wを取り出すための搬出ロード
ロック室4とを備えている。
FIG. 1 shows a case where the semiconductor manufacturing apparatus of the present invention is applied to, for example, a single wafer type epitaxial crystal growing apparatus. As shown in FIG. 1, the epitaxial crystal growth apparatus includes three process chambers (reaction chambers) 1 made of quartz, each of which is a hollow airtight container in which a silicon substrate (substrate) W is disposed, and A transfer chamber (substrate transfer system) 2 for replacing the atmosphere in an enclosed space when the silicon substrate W is loaded into the inside, and a load lock chamber for loading the silicon substrate W before the process into the transfer chamber 2. 3 and an unloading load lock chamber 4 for unloading the processed silicon substrate W from the transfer chamber 2.

【0023】前記各プロセスチャンバ1には、該プロセ
スチャンバ1に導入された腐食性ガスをサンプリングし
て腐食性ガスに含まれる水分を計測する水分モニタリン
グ装置5が設けられている。また、搬送用チャンバ2内
にも、内部の雰囲気中の水分を計測する搬送系水分計6
が設置されている。該搬送系水分計6は、例えば、精度
及び応答速度が高い後述するレーザ水分計10と同様の
レーザ水分計が望ましいが、アルミナ・コンデンサ等に
水分を吸着させてその電気容量の変化を計測する静電容
量方式の水分計や質量分析法を用いた水分計等でも構わ
ない。
Each of the process chambers 1 is provided with a moisture monitoring device 5 for sampling the corrosive gas introduced into the process chamber 1 and measuring the moisture contained in the corrosive gas. In the transfer chamber 2, a transfer moisture meter 6 for measuring the moisture in the internal atmosphere is provided.
Is installed. The transport system moisture meter 6 is desirably a laser moisture meter similar to a laser moisture meter 10 described later, which has high accuracy and high response speed, for example, but absorbs moisture into an alumina capacitor or the like and measures a change in the electric capacity. A capacitance-type moisture meter or a moisture meter using mass spectrometry may be used.

【0024】前記プロセスチャンバ1には、図2に示す
ように、腐食性ガス等のガス供給源(図示略)からのガ
ス(SiCl22、SiCl3H、HCl、H2、N2
2 6、PH3等)を導入するためのプロセスガス導入
管7と、プロセスチャンバ1内で反応に供された後に腐
食性ガス等を排ガス処理設備(図示略)へ排気するプロ
セスガス排気管8とが接続されている。
The process chamber 1 is shown in FIG.
Gas from a gas supply source (not shown) such as a corrosive gas
(SiClTwoHTwo, SiClThreeH, HCl, HTwo, NTwo,
BTwoH 6, PHThreeEtc.) to introduce process gas
After being subjected to a reaction in the process chamber 1,
A professional that exhausts edible gas, etc. to exhaust gas treatment equipment (not shown)
And a gas outlet pipe 8.

【0025】前記水分モニタリング装置5は、バルブ9
aを備えた一端側がプロセスガス排気管8の基端側を介
してプロセスチャンバ1に接続されたサンプルラインで
あるサンプリング配管9と、該サンプリング配管9の他
端に可変バルブ9bを介して接続されプロセスチャンバ
1からの腐食性ガスに含まれる水分を計測するレーザ水
分計10と、該レーザ水分計10の後端に可変バルブ1
1aを介して接続管11で接続されたロータリーポンプ
12とを備えている。
The moisture monitoring device 5 includes a valve 9
a sampling pipe 9 which is a sample line having one end connected to the process chamber 1 via the base end of the process gas exhaust pipe 8, and connected to the other end of the sampling pipe 9 via a variable valve 9b. A laser moisture meter 10 for measuring the moisture contained in the corrosive gas from the process chamber 1, and a variable valve 1 at the rear end of the laser moisture meter 10.
And a rotary pump 12 connected by a connection pipe 11 via 1a.

【0026】前記サンプリング配管9の基端側には、サ
ンプルラインN2パージ用の配管パージライン13がバ
ルブ13aを介して接続され、また、プロセスガス導入
管7は、バルブ14aを介して分岐管14で配管パージ
ライン13に接続されている。なお、配管パージライン
13は、分岐管14との接続部分より上流にバルブ13
bを備えている。前記レーザ水分計10には、図2およ
び図3に示すように、その筐体10a内をN2パージす
るための筐体パージライン15が接続されているととも
に、このN2を排気するためにプロセスガス排気管8に
他端が接続されたN2排気ライン16が接続されてい
る。なお、前記ロータリーポンプ12は、プロセスガス
排気管8にバルブ17aを介してサンプリング排気管1
7で接続されている。また、ロータリーポンプ12に
は、ガスバラスト用のN2パージライン18が接続され
ている。
A pipe purge line 13 for purging a sample line N 2 is connected to the base end side of the sampling pipe 9 via a valve 13a, and the process gas introduction pipe 7 is connected to a branch pipe via a valve 14a. At 14 is connected to the pipe purge line 13. Note that the pipe purge line 13 is provided with a valve 13 upstream of a connection portion with the branch pipe 14.
b. The said laser moisture meter 10, as shown in FIGS. 2 and 3, together with the housing purge line 15 to the casing 10a N 2 purge is connected, in order to exhaust the N 2 An N 2 exhaust line 16 whose other end is connected to the process gas exhaust pipe 8 is connected. The rotary pump 12 is connected to the process gas exhaust pipe 8 via a valve 17a.
7 are connected. Further, an N 2 purge line 18 for gas ballast is connected to the rotary pump 12.

【0027】前記レーザ水分計10は、図3に示すよう
に、筐体10a内に管状セル本体19が設けられ、該管
状セル本体19には、一端側にサンプリング配管9が接
続されているとともに他端側に接続管11が接続されて
いる。管状セル本体19は、両端に透光性窓材19aが
装着され、一方の透光性窓材19aの外側には赤外レー
ザ光L(波長1.3〜1.55μm)を発生する波長可
変半導体レーザLDが対向して設けられ、他方の透光性
窓材19aの外側には管状セル本体19内を透過した赤
外レーザ光Lを受光してその受光強度を電気信号に変換
する光検出器PDが対向して設けられている。
As shown in FIG. 3, the laser moisture meter 10 has a tubular cell body 19 provided in a housing 10a, and the tubular cell body 19 has a sampling pipe 9 connected to one end thereof. The connection pipe 11 is connected to the other end. The tubular cell body 19 has a light-transmitting window material 19a attached to both ends, and a wavelength variable for generating infrared laser light L (wavelength: 1.3 to 1.55 μm) outside one of the light-transmitting window materials 19a. A semiconductor laser LD is provided to face the other side, and outside the other translucent window member 19a, an infrared laser beam L transmitted through the inside of the tubular cell body 19 is received, and light detection for converting the received light intensity into an electric signal The vessel PD is provided to face.

【0028】前記サンプリング配管9および前記接続管
11には、リボンヒータ(配管加熱機構、電熱線)20
が巻回され、さらにその上にシリコンゴムの断熱材21
が巻かれている。なお、リボンヒータ20は、図示しな
い電流供給源に接続されている。そして、リボンヒータ
20に流す電流を調整して、サンプリング配管9および
接続管11は100℃程度に加熱される。また、レーザ
水分計10の管状セル本体19および透光性窓材19a
にも、これらを加熱する電熱線を主としたセル用ヒータ
(セル加熱機構)22が取り付けられ、100℃程度に
加熱される。さらに、レーザ水分計10は、リボンヒー
タ20及びセル用ヒータ22によって100℃程度に加
熱された腐食性ガスの温度に応じて、その測定感度の調
整・校正が予め行われている。
A ribbon heater (pipe heating mechanism, heating wire) 20 is provided in the sampling pipe 9 and the connection pipe 11.
Is wound thereon, and a heat insulating material 21 of silicon rubber is further placed thereon.
Is wound. The ribbon heater 20 is connected to a current supply source (not shown). The current flowing through the ribbon heater 20 is adjusted, and the sampling pipe 9 and the connection pipe 11 are heated to about 100 ° C. Further, the tubular cell body 19 of the laser moisture meter 10 and the translucent window material 19a
In addition, a cell heater (cell heating mechanism) 22 mainly including a heating wire for heating them is attached and heated to about 100 ° C. Further, in the laser moisture meter 10, adjustment and calibration of the measurement sensitivity are performed in advance in accordance with the temperature of the corrosive gas heated to about 100 ° C. by the ribbon heater 20 and the cell heater 22.

【0029】次に、本発明に係る水分モニタリング装置
およびこれを備えた半導体製造装置の一実施形態におけ
るエピタキシャル結晶成長中の水分モニタリング方法に
ついて説明する。
Next, a moisture monitoring method during epitaxial crystal growth in one embodiment of the moisture monitoring apparatus according to the present invention and a semiconductor manufacturing apparatus including the same will be described.

【0030】まず、エピタキシャル成長を行うシリコン
基板Wを搬入ロードロック室3から搬送用チャンバ2内
に搬入し、搬送用チャンバ2内の雰囲気をN2等の不活
性ガスに置換する。この際、搬送系水分計6により、雰
囲気中の水分を計測し、十分に水分が低減された状態を
確認した後に、プロセスチャンバ1内にシリコン基板W
を搬送する。
First, a silicon substrate W to be subjected to epitaxial growth is loaded from the loading load lock chamber 3 into the transfer chamber 2, and the atmosphere in the transfer chamber 2 is replaced with an inert gas such as N 2 . At this time, the moisture in the atmosphere is measured by the transport system moisture meter 6, and after confirming that the moisture has been sufficiently reduced, the silicon substrate W is placed in the process chamber 1.
Is transported.

【0031】プロセスチャンバ1内は、プロセス前で
は、N2等の不活性ガスでパージ状態とされているが、
搬送用チャンバ2から搬入したシリコン基板Wを配置し
て所定温度まで加熱した後、バルブ13a、13b、1
4aを閉じ、プロセスガス導入管7により所定の腐食性
ガス等を導入してシリコン基板Wの表面上にエピタキシ
ャル成長を行う。このとき、バルブ9a、17aを開く
とともにロータリーポンプ12を駆動し、さらに可変バ
ルブ9b、11aで流入量を調整しながら、プロセスチ
ャンバ1で反応に供され加熱された腐食性ガスの一部を
サンプリング配管9を介してレーザ水分計10に常時導
入する。
Before the process, the inside of the process chamber 1 is purged with an inert gas such as N 2 .
After the silicon substrate W carried in from the transfer chamber 2 is arranged and heated to a predetermined temperature, the valves 13a, 13b, 1
4a is closed, a predetermined corrosive gas or the like is introduced through the process gas introduction pipe 7, and epitaxial growth is performed on the surface of the silicon substrate W. At this time, while the valves 9a and 17a are opened, the rotary pump 12 is driven, and the flow rate is adjusted by the variable valves 9b and 11a, a part of the corrosive gas used for the reaction in the process chamber 1 and heated is sampled. It is always introduced into the laser moisture meter 10 via the pipe 9.

【0032】サンプリングされた腐食性ガスは、レーザ
水分計10内の管状セル本体19内に流入し、半導体レ
ーザLDからの赤外レーザ光Lが照射される。管状セル
本体19内の腐食性ガスを透過した赤外レーザ光Lは、
光検出器PDで受光され、その受光量から得られた吸収
スペクトル強度により腐食性ガスに含まれる水分の定量
分析が行われる。管状セル本体19に流入した腐食性ガ
スは、接続管11、ロータリーポンプ12およびサンプ
リング排気管17を介してプロセスガス排気管8に排出
される。
The sampled corrosive gas flows into the tubular cell body 19 in the laser moisture meter 10 and is irradiated with the infrared laser light L from the semiconductor laser LD. The infrared laser light L transmitted through the corrosive gas in the tubular cell body 19 is
Light is received by the photodetector PD, and quantitative analysis of water contained in the corrosive gas is performed based on the absorption spectrum intensity obtained from the received light amount. The corrosive gas that has flowed into the tubular cell body 19 is discharged to the process gas exhaust pipe 8 via the connection pipe 11, the rotary pump 12, and the sampling exhaust pipe 17.

【0033】本実施形態では、レーザ水分計10のみな
らず、サンプリング配管9および接続管11にもこれら
を加熱するリボンヒータ20を備えているので、サンプ
リング配管9および接続管11を加熱して100℃程度
の高温状態にすることができ、プロセスチャンバ1で加
熱された腐食性ガスの配管内部における副反応が抑制さ
れ、副反応生成物が配管を閉塞してしまうことを防止す
ることができる。したがって、in-situで常時水分を計
測することが可能になる。さらに、レーザ水分計10
は、100℃程度に加熱された腐食性ガスの温度に応じ
て、その測定感度の調整・校正が予め行われているの
で、高温の腐食性ガスでも適正な感度で高精度に水分濃
度を測定することができる。なお、測定感度の調整・校
正は、例えば、光検出器PDからの信号を光検出器PD
に接続された制御部(図示略)において演算処理するこ
とで行われる。
In the present embodiment, not only the laser moisture meter 10 but also the sampling pipe 9 and the connecting pipe 11 are provided with the ribbon heaters 20 for heating them. The temperature can be set to a high temperature of about ° C., and a side reaction of the corrosive gas heated in the process chamber 1 inside the pipe can be suppressed, and a side reaction product can be prevented from blocking the pipe. Therefore, it is possible to always measure moisture in-situ. Further, the laser moisture meter 10
Has been adjusted and calibrated in advance according to the temperature of the corrosive gas heated to about 100 ° C, so that even with high-temperature corrosive gas, the moisture concentration can be measured with high sensitivity and high accuracy. can do. The adjustment / calibration of the measurement sensitivity is performed, for example, by converting the signal from the photodetector PD to the photodetector PD.
The calculation is performed by a control unit (not shown) connected to the control unit.

【0034】また、搬送用チャンバ2が、レーザ水分計
10とは別に内部の密閉空間の水分を計測する搬送系水
分計6を備えているので、シリコン基板Wを搬送用チャ
ンバ2を介してプロセスチャンバ1に搬入する際に、搬
送用チャンバ2内の水分を測定し確認することができ、
搬送用チャンバ2内の水分が不用意にプロセスチャンバ
1に流入してしまうことを防ぐことが可能になる。
Further, since the transfer chamber 2 is provided with the transfer system moisture meter 6 for measuring the moisture in the internal sealed space separately from the laser moisture meter 10, the silicon substrate W is processed through the transfer chamber 2. When loading into the chamber 1, the moisture in the transfer chamber 2 can be measured and confirmed,
It is possible to prevent the water in the transfer chamber 2 from flowing into the process chamber 1 carelessly.

【0035】なお、本発明は、次のような実施形態をも
含むものである。上記実施形態では、半導体製造装置と
してエピタキシャル成長を行う気相成長装置に適用した
が、反応室内の基板上で腐食性ガスを反応させる装置で
あれば、他の半導体製造装置に用いても構わない。例え
ば、他の薄膜を基板上に形成するCVD装置や腐食性ガ
スを用いて基板表面をエッチングするドライエッチング
装置等に採用しても構わない。また、上記実施形態で
は、枚葉式のエピタキシャル成長装置に適用したが、こ
れに限定されるものではなく、他の方式(種々のバッチ
式等)に適用しても構わない。
The present invention includes the following embodiments. In the above embodiment, the present invention is applied to a vapor phase growth apparatus for performing epitaxial growth as a semiconductor manufacturing apparatus, but may be used for another semiconductor manufacturing apparatus as long as the apparatus causes a corrosive gas to react on a substrate in a reaction chamber. For example, the present invention may be applied to a CVD apparatus for forming another thin film on a substrate, a dry etching apparatus for etching a substrate surface using a corrosive gas, or the like. Further, in the above embodiment, the present invention is applied to a single wafer type epitaxial growth apparatus. However, the present invention is not limited to this, and may be applied to other methods (such as various batch methods).

【0036】さらに、プロセス前に、各配管およびプロ
セスチャンバ内をN2パージしてから反応ガスとしての
腐食性ガスを導入したが、十分なN2パージ後にさらに
HCl(塩化水素)でパージを行い、その後に成長に供
する腐食性ガスを導入しても構わない。この場合、各配
管およびプロセスチャンバの内壁に吸着している水分子
が、HCl分子と結合して運び出され、後に供給される
腐食性ガス中に入る水分を低減することができる。
Further, before the process, each pipe and the inside of the process chamber were purged with N 2 and then a corrosive gas as a reaction gas was introduced. However, after sufficient N 2 purge, purging with HCl (hydrogen chloride) was further performed. Thereafter, a corrosive gas to be used for growth may be introduced. In this case, the water molecules adsorbed on the respective pipes and the inner wall of the process chamber are combined with the HCl molecules and carried out, so that the amount of water entering the corrosive gas supplied later can be reduced.

【0037】[0037]

【発明の効果】本発明の水分サンプリング装置およびこ
れを備えた半導体製造装置によれば、少なくとも配管を
加熱する配管加熱機構を備えているので、配管を加熱し
て配管内に副反応生成物が付着堆積することを防止する
ことができ、配管が閉塞することを防いで、プロセス中
でも常時水分を計測することができる。したがって、プ
ロセス中でも高感度かつ高速に水分の定量分析が可能に
なり、腐食性ガスによる結晶成長、薄膜形成およびエッ
チング等の品質や条件と水分量との相関を高精度に得る
ことができ、高品質な半導体基板や半導体素子等の半導
体装置を製造することができる。
According to the moisture sampling apparatus of the present invention and the semiconductor manufacturing apparatus having the same, since at least the pipe heating mechanism for heating the pipe is provided, the pipe is heated so that the by-products are formed in the pipe. Adhesion and deposition can be prevented, and pipes can be prevented from being blocked, so that moisture can be constantly measured even during the process. Therefore, high-sensitivity and high-speed quantitative analysis of water is possible even during the process, and the correlation between the quality and conditions such as crystal growth, thin film formation and etching by corrosive gas and the water content can be obtained with high accuracy. A high quality semiconductor device such as a semiconductor substrate or a semiconductor element can be manufactured.

【図面の簡単な説明】[Brief description of the drawings]

【図1】 本発明に係る水分サンプリング装置およびこ
れを備えた半導体製造装置の一実施形態におけるエピタ
キシャル結晶成長装置を示す概略的な全体平面図であ
る。
FIG. 1 is a schematic overall plan view showing an epitaxial crystal growth apparatus in one embodiment of a moisture sampling apparatus according to the present invention and a semiconductor manufacturing apparatus including the same.

【図2】 本発明に係る水分サンプリング装置およびこ
れを備えた半導体製造装置の一実施形態における水分サ
ンプリング装置の構成を示す配管図である。
FIG. 2 is a piping diagram illustrating a configuration of a moisture sampling device according to an embodiment of the present invention;

【図3】 本発明に係る水分サンプリング装置およびこ
れを備えた半導体製造装置の一実施形態におけるレーザ
水分計の構成を示す断面図である。
FIG. 3 is a cross-sectional view showing a configuration of a laser moisture meter in an embodiment of the moisture sampling device according to the present invention and a semiconductor manufacturing apparatus including the same.

【符号の説明】[Explanation of symbols]

1 プロセスチャンバ(反応室) 2 搬送用チャンバ(基板搬送系) 5 水分モニタリング装置 6 搬送系水分計 9 サンプリング配管 10 レーザ水分計 19 管状セル本体 20 リボンヒータ(配管加熱機構、電熱線) 22 セル用ヒータ(セル加熱機構) W シリコン基板 REFERENCE SIGNS LIST 1 process chamber (reaction chamber) 2 transfer chamber (substrate transfer system) 5 moisture monitoring device 6 transfer system moisture meter 9 sampling pipe 10 laser moisture meter 19 tubular cell body 20 ribbon heater (pipe heating mechanism, heating wire) 22 cell Heater (cell heating mechanism) W Silicon substrate

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.7 識別記号 FI テーマコート゛(参考) G01N 21/39 G01N 21/39 H01L 21/3065 H01L 21/302 N (72)発明者 山岡 智則 東京都千代田区大手町一丁目5番1号 三 菱マテリアルシリコン株式会社内 (72)発明者 増崎 宏 東京都港区西新橋1−16−7 日本酸素株 式会社内 (72)発明者 佐藤 貴之 東京都港区西新橋1−16−7 日本酸素株 式会社内 Fターム(参考) 2G057 AA01 AB02 AB04 AC03 BA01 BC05 DB05 DC01 DC05 EA01 EA06 GA01 JA14 2G059 AA05 BB05 CC09 DD12 DD16 EE01 EE12 GG01 HH01 KK01 MM14 NN07 4K030 AA03 HA15 KA22 KA36 KA39 5F004 AA15 BC05 BC06 BD04 CA01 CA02 CB02 CB03 DA24 DA25 DA29 DB01 5F045 AB02 AC05 AC15 AC19 AF03 BB14 DQ17 EB08 EC09 GB05 GB07 HA24 ──────────────────────────────────────────────────の Continued on the front page (51) Int.Cl. 7 Identification symbol FI Theme coat ゛ (Reference) G01N 21/39 G01N 21/39 H01L 21/3065 H01L 21/302 N (72) Inventor Tomonori Yamaoka Chiyoda, Tokyo 1-5-1, Otemachi-ku, Tokyo Mitsubishi Materials Silicon Co., Ltd. (72) Inventor Hiroshi Masuzaki 1-16-7 Nishi-Shimbashi, Minato-ku, Tokyo Inside Nippon Sanso Corporation (72) Inventor Takayuki Sato Tokyo 1-16-7 Nishi-Shimbashi, Minato-ku, Japan F-term (reference) 2G057 AA01 AB02 AB04 AC03 BA01 BC05 DB05 DC01 DC05 EA01 EA06 GA01 JA14 2G059 AA05 BB05 CC09 DD12 DD16 EE01 EE12 GG01 HH01 KK01 MM14 NN07 4K030A KA22 KA36 KA39 5F004 AA15 BC05 BC06 BD04 CA01 CA02 CB02 CB03 DA24 DA25 DA29 DB01 5F045 AB02 AC05 AC15 AC19 AF03 BB14 DQ17 EB08 EC09 GB05 GB07 HA24

Claims (7)

【特許請求の範囲】[Claims] 【請求項1】 腐食性ガスが流される反応室に一端が接
続された配管と、該配管の他端に接続され前記反応室か
ら導入される腐食性ガスに含まれる水分を計測する水分
計とを備えた水分モニタリング装置であって、 少なくとも前記配管を加熱する配管加熱機構を備えてい
ることを特徴とする水分モニタリング装置。
1. A piping connected at one end to a reaction chamber through which a corrosive gas flows, and a moisture meter connected to the other end of the piping and measuring moisture contained in the corrosive gas introduced from the reaction chamber. A moisture monitoring device comprising: a piping heating mechanism for heating at least the piping.
【請求項2】 請求項1記載の水分モニタリング装置に
おいて、 前記配管加熱機構は、前記配管の外周に巻回された電熱
線を備えていることを特徴とする水分モニタリング装
置。
2. The moisture monitoring device according to claim 1, wherein the piping heating mechanism includes a heating wire wound around an outer periphery of the piping.
【請求項3】 請求項1または2記載の水分モニタリン
グ装置において、 前記水分計は、前記配管の他端に接続された管状セル本
体内にレーザ光を入射させ透過したレーザ光の吸収スペ
クトルを測定するレーザ水分計であることを特徴とする
水分モニタリング装置。
3. The moisture monitoring device according to claim 1, wherein the moisture meter measures an absorption spectrum of the laser light transmitted by transmitting the laser light into a tubular cell main body connected to the other end of the pipe. A moisture monitoring device characterized in that the moisture monitoring device is a laser moisture meter.
【請求項4】 請求項3記載の水分モニタリング装置に
おいて、 前記水分計は、前記管状セル本体を加熱するセル加熱機
構を備えていることを特徴とする水分モニタリング装
置。
4. The moisture monitoring device according to claim 3, wherein the moisture meter includes a cell heating mechanism for heating the tubular cell body.
【請求項5】 請求項1から4のいずれかに記載の水分
モニタリング装置において、 前記水分計は、加熱された前記腐食性ガスの温度に応じ
て測定感度が調整されていることを特徴とする水分モニ
タリング装置。
5. The moisture monitoring device according to claim 1, wherein a measurement sensitivity of the moisture meter is adjusted in accordance with a temperature of the heated corrosive gas. Moisture monitoring device.
【請求項6】 反応室内の基板上に腐食性ガスを流して
基板表面で腐食性ガスを反応させる半導体製造装置であ
って、 請求項1から5のいずれかに記載の水分モニタリング装
置を備えていることを特徴とする半導体製造装置。
6. A semiconductor manufacturing apparatus for causing a corrosive gas to flow on a substrate in a reaction chamber and reacting the corrosive gas on the surface of the substrate, comprising the moisture monitoring apparatus according to claim 1. A semiconductor manufacturing apparatus.
【請求項7】 請求項6記載の半導体製造装置におい
て、 前記反応室に密閉空間を介して前記基板を搬送する基板
搬送系を備え、 該基板搬送系は、前記水分計とは別に前記密閉空間内の
水分を計測する水分計を備えていることを特徴とする半
導体製造装置。
7. The semiconductor manufacturing apparatus according to claim 6, further comprising: a substrate transport system for transporting the substrate through a closed space in the reaction chamber, wherein the substrate transport system is separate from the moisture meter in the closed space. A semiconductor manufacturing apparatus comprising a moisture meter for measuring moisture in the inside.
JP2000052516A 1999-08-31 2000-02-28 Moisture monitoring device and semiconductor manufacturing device having the same Expired - Lifetime JP3495965B2 (en)

Priority Applications (11)

Application Number Priority Date Filing Date Title
JP2000052516A JP3495965B2 (en) 2000-02-28 2000-02-28 Moisture monitoring device and semiconductor manufacturing device having the same
TW089117350A TW460942B (en) 1999-08-31 2000-08-28 CVD device, purging method, method for determining maintenance time for a semiconductor making device, moisture content monitoring device, and semiconductor making device with such moisture content monitoring device
US09/651,255 US6491758B1 (en) 1999-08-31 2000-08-30 CVD apparatus equipped with moisture monitoring
KR10-2000-0050604A KR100431040B1 (en) 1999-08-31 2000-08-30 Cvd apparatus and purging method thereof
DE10042881A DE10042881B4 (en) 1999-08-31 2000-08-31 A CVD device for forming a semiconductor film on a wafer and a method for judging maintenance times of a CVD device
CN00131310A CN1131891C (en) 1999-08-31 2000-08-31 Chemical vapor phase deposition apparatus, its purification and apparatus for manufacturing semiconductors
CNB2003101028237A CN1282764C (en) 1999-08-31 2000-08-31 Purifying metod and chemical vapour-phase deposition deivce
US10/021,259 US6887721B2 (en) 1999-08-31 2001-12-19 Method of purging CVD apparatus and method for judging maintenance of times of semiconductor production apparatuses
KR10-2002-0050762A KR100415368B1 (en) 1999-08-31 2002-08-27 Method for determining maintenance time for semiconductor manufacturing apparatus
KR10-2002-0050756A KR100391872B1 (en) 1999-08-31 2002-08-27 Moisture monitoring apparatus and semiconductor manufacturing apparatus having same
KR10-2002-0050758A KR100445945B1 (en) 1999-08-31 2002-08-27 Purging method of cvd apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000052516A JP3495965B2 (en) 2000-02-28 2000-02-28 Moisture monitoring device and semiconductor manufacturing device having the same

Publications (2)

Publication Number Publication Date
JP2001244201A true JP2001244201A (en) 2001-09-07
JP3495965B2 JP3495965B2 (en) 2004-02-09

Family

ID=18574020

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000052516A Expired - Lifetime JP3495965B2 (en) 1999-08-31 2000-02-28 Moisture monitoring device and semiconductor manufacturing device having the same

Country Status (1)

Country Link
JP (1) JP3495965B2 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100925186B1 (en) 2007-12-24 2009-11-06 주식회사 케이피씨 Waste Gas Processing
JP2010190824A (en) * 2009-02-20 2010-09-02 Shimadzu Corp Absorption spectrometric apparatus for semiconductor manufacturing process
JP2012002799A (en) * 2010-05-18 2012-01-05 Horiba Ltd Adsorptive gas analyzer
WO2016117251A1 (en) * 2015-01-21 2016-07-28 住友電気工業株式会社 Crystal growth apparatus, method for producing silicon carbide single crystal, silicon carbide single crystal substrate and silicon carbide epitaxial substrate
JP2020025038A (en) * 2018-08-08 2020-02-13 大陽日酸株式会社 Apparatus and method for cleaning vapor growth device component

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02176391A (en) * 1988-12-27 1990-07-09 Tel Sagami Ltd Heat treatment device
JPH0599845A (en) * 1991-10-08 1993-04-23 Nippon Sanso Kk Water content analysis device using semiconductor laser
JPH10144581A (en) * 1996-11-14 1998-05-29 Kokusai Electric Co Ltd Semiconductor device
JPH10335249A (en) * 1997-03-11 1998-12-18 Applied Materials Inc In situ monitoring of contaminant in semiconductor processing chamber

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02176391A (en) * 1988-12-27 1990-07-09 Tel Sagami Ltd Heat treatment device
JPH0599845A (en) * 1991-10-08 1993-04-23 Nippon Sanso Kk Water content analysis device using semiconductor laser
JPH10144581A (en) * 1996-11-14 1998-05-29 Kokusai Electric Co Ltd Semiconductor device
JPH10335249A (en) * 1997-03-11 1998-12-18 Applied Materials Inc In situ monitoring of contaminant in semiconductor processing chamber

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100925186B1 (en) 2007-12-24 2009-11-06 주식회사 케이피씨 Waste Gas Processing
JP2010190824A (en) * 2009-02-20 2010-09-02 Shimadzu Corp Absorption spectrometric apparatus for semiconductor manufacturing process
JP2012002799A (en) * 2010-05-18 2012-01-05 Horiba Ltd Adsorptive gas analyzer
WO2016117251A1 (en) * 2015-01-21 2016-07-28 住友電気工業株式会社 Crystal growth apparatus, method for producing silicon carbide single crystal, silicon carbide single crystal substrate and silicon carbide epitaxial substrate
JP5975192B1 (en) * 2015-01-21 2016-08-23 住友電気工業株式会社 Silicon carbide single crystal growth apparatus and method for producing silicon carbide single crystal
US10494735B2 (en) 2015-01-21 2019-12-03 Sumitomo Electric Industries, Ltd. Crystal growth apparatus, method for manufacturing silicon carbide single crystal, silicon carbide single crystal substrate, and silicon carbide epitaxial substrate
US11066756B2 (en) 2015-01-21 2021-07-20 Sumitomo Electric Industries, Ltd. Crystal growth apparatus, method for manufacturing silicon carbide single crystal, silicon carbide single crystal substrate, and silicon carbide epitaxial substrate
JP2020025038A (en) * 2018-08-08 2020-02-13 大陽日酸株式会社 Apparatus and method for cleaning vapor growth device component

Also Published As

Publication number Publication date
JP3495965B2 (en) 2004-02-09

Similar Documents

Publication Publication Date Title
KR100773636B1 (en) Semiconductor Manufacturing Method and Semiconductor Manufacturing Apparatus
US6887721B2 (en) Method of purging CVD apparatus and method for judging maintenance of times of semiconductor production apparatuses
TW201936985A (en) Apparatus for detecting or monitoring for a chemical precursor in a high temperature environment
TWI814874B (en) Borane concentration sensors
US20220214321A1 (en) Multi-Sensor Gas Sampling Detection System for Radical Gases and Short-Lived Molecules and Method of Use
KR20190133740A (en) Device and method for determining the concentration of steam
JP2001244201A (en) Moisture monitoring device and semiconductor manufacturing device equipped therewith
JP3592603B2 (en) Semiconductor manufacturing method and semiconductor manufacturing apparatus
US7094614B2 (en) In-situ monitoring of chemical vapor deposition process by mass spectrometry
US20220375800A1 (en) In situ film growth sensor assembly, apparatus, and methods
JP3636962B2 (en) Semiconductor manufacturing method
JPH11183366A (en) Measurement cell for spectral analysis
JP3495966B2 (en) Method for determining maintenance time of semiconductor manufacturing equipment
JPH05259082A (en) Epitaxial growth device and method
JP2003115516A (en) Moisture measurement wafer, calibration method of moisture meter and state evaluation method of heat treatment furnace
US20230375460A1 (en) Epi self-heating sensor tube as in-situ growth rate sensor
JPS6074543A (en) Sample temperature measurement by load locking device
JPH04343220A (en) Decompressed cvd device
JP2005109098A (en) Thin film forming device and method
Cui et al. A thermal processing system for microelectronic materials
JPS62120032A (en) Chemical vapor deposition method for phosphosilicate glass film
JPH116070A (en) Instrument for detecting end point in dry type treatment for dry type treating apparatus and method thereof
JPH06283589A (en) Temperature measuring method of substrate surface, semiconductor film forming method using the same and its equipment
JPH06104192A (en) Temperature sensor for single-wafer diffusion and cvd system
JP2001159588A (en) Light analyzer

Legal Events

Date Code Title Description
TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20031028

R150 Certificate of patent or registration of utility model

Ref document number: 3495965

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081121

Year of fee payment: 5

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091121

Year of fee payment: 6

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091121

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101121

Year of fee payment: 7

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101121

Year of fee payment: 7

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313117

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101121

Year of fee payment: 7

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101121

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111121

Year of fee payment: 8

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111121

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121121

Year of fee payment: 9

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121121

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131121

Year of fee payment: 10

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term