JP2005109098A - Thin film forming device and method - Google Patents

Thin film forming device and method Download PDF

Info

Publication number
JP2005109098A
JP2005109098A JP2003339712A JP2003339712A JP2005109098A JP 2005109098 A JP2005109098 A JP 2005109098A JP 2003339712 A JP2003339712 A JP 2003339712A JP 2003339712 A JP2003339712 A JP 2003339712A JP 2005109098 A JP2005109098 A JP 2005109098A
Authority
JP
Japan
Prior art keywords
thin film
susceptor
semiconductor substrate
temperature
thermocouple
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2003339712A
Other languages
Japanese (ja)
Inventor
Junya Okuda
純也 奥田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Renesas Semiconductor Manufacturing Co Ltd
Kansai Nippon Electric Co Ltd
Original Assignee
Renesas Semiconductor Manufacturing Co Ltd
Kansai Nippon Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Renesas Semiconductor Manufacturing Co Ltd, Kansai Nippon Electric Co Ltd filed Critical Renesas Semiconductor Manufacturing Co Ltd
Priority to JP2003339712A priority Critical patent/JP2005109098A/en
Publication of JP2005109098A publication Critical patent/JP2005109098A/en
Pending legal-status Critical Current

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To solve the problem that, in the case of a film forming operation for a plurality of semiconductor substrates 3, there is a limitation in an accurate measurement of an aging change of radiation heat by a thermocouple 8 embedded in a susceptor 4 shielded from the radiation heat under the semiconductor substrate 3. <P>SOLUTION: A CVD device 101 comprises a reaction tube 2, the susceptor 4, an infrared lamp 5, a gas inlet 7a for flowing a mixed gas 6 onto the semiconductor substrate 3 and a gas outlet 7b for exhausting the mixed gas 6, the thermocouple 8 which is embedded in a dummy member 102 composed of the same material with the semiconductor substrate 3 on the susceptor 4 near the semiconductor substrate 3, and a heating temperature control unit 9 for controlling the heating output of the infrared lamp 5 on the basis of a measured temperature of the thermocouple 8. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

本発明は、反応管内に配置したサセプタ上に被処理体を載置して、その被処理体を温度制御しながら薄膜形成を行う、例えば、CVD(化学的気相成長)装置やPVD(物理的気相成長)装置などの薄膜形成に関する。   In the present invention, an object to be processed is placed on a susceptor disposed in a reaction tube, and a thin film is formed while controlling the temperature of the object to be processed. For example, a CVD (chemical vapor deposition) apparatus or a PVD (physical vapor deposition) is used. The present invention relates to thin film formation such as (chemical vapor deposition) equipment.

従来の薄膜形成装置の一例としてCVD装置の断面図を図2に示す。   FIG. 2 shows a sectional view of a CVD apparatus as an example of a conventional thin film forming apparatus.

図2に示すように、CVD装置1は、薄膜形成処理室としての反応管2と、反応管2内に被処理体としての半導体基板3を載置するためのサセプタ4と、半導体基板3やサセプタ4を加熱して所定のプロセス温度に保つ赤外線ランプ5と、化学反応により半導体基板3表面に例えばシリコン層を堆積させるために、水素などのキャリアガスと反応性ガスを混ぜた混合ガス6(図中矢印で示す)を半導体基板3上に流すガス供給口7a及び混合ガス6を排気するガス排気口7bとで構成されている。     As shown in FIG. 2, the CVD apparatus 1 includes a reaction tube 2 as a thin film formation processing chamber, a susceptor 4 for placing a semiconductor substrate 3 as an object to be processed in the reaction tube 2, a semiconductor substrate 3, An infrared lamp 5 that heats the susceptor 4 to maintain a predetermined process temperature, and a mixed gas 6 (for example, a mixture of a carrier gas such as hydrogen and a reactive gas in order to deposit a silicon layer on the surface of the semiconductor substrate 3 by a chemical reaction) A gas supply port 7a that flows over the semiconductor substrate 3 and a gas exhaust port 7b that exhausts the mixed gas 6 are configured.

また、サセプタ4内部には熱電対8が埋め込まれており、その熱電対8の測定温度に基づいて赤外線ランプ5の加熱出力を制御する加熱温度制御部9を備えている。   Further, a thermocouple 8 is embedded in the susceptor 4, and a heating temperature control unit 9 that controls the heating output of the infrared lamp 5 based on the measured temperature of the thermocouple 8 is provided.

ここで、このCVD装置1を用いてシリコン層を形成するとき、所望の膜厚ならびに膜質を確保するためには半導体基板3の温度を正確に把握しプロセス温度を最適に保つように温度制御することが重要である。そしてそのためには、赤外線ランプ5を制御する加熱温度制御部9にフィードバックされる熱電対8の測定温度は、できるだけ実際の半導体基板3の温度に近い測定温度を得ることが重要となる。   Here, when a silicon layer is formed using this CVD apparatus 1, in order to ensure a desired film thickness and film quality, the temperature of the semiconductor substrate 3 is accurately grasped and temperature control is performed so as to keep the process temperature optimal. This is very important. For this purpose, it is important to obtain the measured temperature of the thermocouple 8 fed back to the heating temperature control unit 9 that controls the infrared lamp 5 as close to the actual temperature of the semiconductor substrate 3 as possible.

このため、上記のCVD装置1では、予め、初期状態でサセプタ4に埋め込んだ熱電対8の測定温度と半導体基板3の温度との誤差を測定しておき、その誤差を考慮して赤外線ランプ5の加熱出力を制御するようにして、サセプタ4の温度と実際の半導体基板3の温度との相違を補正するようにしている。   For this reason, in the CVD apparatus 1 described above, an error between the measurement temperature of the thermocouple 8 embedded in the susceptor 4 in the initial state and the temperature of the semiconductor substrate 3 is measured in advance, and the infrared lamp 5 The difference between the temperature of the susceptor 4 and the actual temperature of the semiconductor substrate 3 is corrected by controlling the heating output.

しかしながら、このような補正だけでは、多数の半導体基板3を成膜作業する場合、十分とは言えなかった。なぜならば、成膜作業を繰り返し継続するうちに、徐々に不所望な反応生成物(図示せず)が反応管2やサセプタ4表面などに付着していき、これに伴って反応管2やサセプタ4表面からの半導体基板3に対する輻射熱が初期状態から徐々に変化していくため、初期状態での温度差による補正だけでは補正にズレが生じた。そして、このような輻射熱の経時的変化を半導体基板3の下にあって輻射熱から遮熱されたサセプタ4の内部に埋め込んだ熱電対8で正確に測定することには限界があった。   However, such correction alone is not sufficient when a large number of semiconductor substrates 3 are formed. This is because an undesired reaction product (not shown) gradually adheres to the surface of the reaction tube 2 or the susceptor 4 as the film forming operation is repeated, and accordingly the reaction tube 2 or the susceptor. 4 Since the radiant heat from the surface to the semiconductor substrate 3 gradually changes from the initial state, the correction is shifted only by the correction based on the temperature difference in the initial state. Then, there is a limit to accurately measuring such a chronological change of radiant heat with the thermocouple 8 embedded under the semiconductor substrate 3 and shielded from the radiant heat.

即ち、反応管2やサセプタ4表面に徐々に付着する反応生成物(図示せず)の堆積に伴って変化していく輻射熱の変化を含めた実際の半導体基板3温度に、より近い測定温度を得るためには、熱電対8をサセプタ4に埋め込むのではなく、半導体基板3と同一材質あるいは熱吸収率が同等な材質で成る部材に埋め込んで半導体基板3近傍に配置する構成が望ましい。   That is, the measurement temperature closer to the actual semiconductor substrate 3 temperature including the change of radiant heat that changes with the deposition of reaction products (not shown) that gradually adhere to the surfaces of the reaction tube 2 and the susceptor 4 is set. In order to obtain, it is desirable that the thermocouple 8 is not embedded in the susceptor 4 but is embedded in a member made of the same material as that of the semiconductor substrate 3 or a material having the same heat absorption rate and disposed in the vicinity of the semiconductor substrate 3.

このような構成と類似した構成として、図3に示すように、半導体基板3と同一材質でなる物質3aで被覆した熱電対8を赤外線透過性物質からなる石英ガラス管10内に真空封入して、反応管2内に配置する構成が提案されている(特許文献1参照。)。
特開昭62−163323号公報
As shown in FIG. 3, a thermocouple 8 covered with a material 3a made of the same material as that of the semiconductor substrate 3 is vacuum sealed in a quartz glass tube 10 made of an infrared transmitting material. The structure arrange | positioned in the reaction tube 2 is proposed (refer patent document 1).
Japanese Patent Laid-Open No. Sho 62-163323

しかしながら、上記の構成(特開昭62−163323号公報記載の構成)では、熱電対8は透過性の石英ガラス管10に真空封入されているため、反応生成物(図示せず)の付着に伴う輻射熱の経時的変化に対しては追従性があるが、熱電対8が直接、サセプタ4や混合ガス6と接していないためサセプタ4や混合ガス6からの伝導熱を含めた測定温度を得ることはできないと言う問題があった。   However, in the above configuration (the configuration described in Japanese Patent Laid-Open No. 62-163323), the thermocouple 8 is vacuum-sealed in the permeable quartz glass tube 10, so that the reaction product (not shown) adheres to it. Although there is a follow-up capability with respect to the time-dependent change of the radiant heat, since the thermocouple 8 is not directly in contact with the susceptor 4 or the mixed gas 6, a measurement temperature including conduction heat from the susceptor 4 or the mixed gas 6 is obtained. There was a problem that I couldn't.

即ち、サセプタ4や混合ガス6からの伝導熱も含めた測定温度を得るためには、その部材は直接サセプタ4に接し、かつ、混合ガス6に対して露出して配置されることが望ましい。   That is, in order to obtain a measurement temperature including conduction heat from the susceptor 4 and the mixed gas 6, it is desirable that the member is in direct contact with the susceptor 4 and exposed to the mixed gas 6.

本発明の目的は、実際の被処理体の温度により近い測定温度として、反応管やサセプタ表面に徐々に付着する反応生成物の堆積に伴って変化していく輻射熱の変化を含み、かつ、サセプタや反応管内の雰囲気からの伝導熱も含めた測定温度を得て、その測定温度に基づいて加熱手段を制御しながら薄膜形成することができる薄膜形成装置及び薄膜形成方法を提供することである。   An object of the present invention includes a change in radiant heat that changes with the deposition of reaction products that gradually adhere to the surface of a reaction tube or susceptor as a measured temperature that is closer to the actual temperature of the object to be processed. Another object of the present invention is to provide a thin film forming apparatus and a thin film forming method capable of obtaining a measurement temperature including conduction heat from the atmosphere in the reaction tube and forming a thin film while controlling the heating means based on the measurement temperature.

本発明の薄膜成長装置は、反応管内に配置したサセプタ上に載置した被処理体を加熱手段で加熱して温度制御しながら、被処理体表面に薄膜形成を行う薄膜形成装置において、被処理体近傍のサセプタ上に接して、被処理体と同一材質あるいは熱吸収率が同等な材質で成るダミー部材に埋め込まれた熱電対を配置したことを特徴とする薄膜形成装置である。   The thin film growth apparatus of the present invention is a thin film forming apparatus that forms a thin film on the surface of a target object while heating the temperature of the target object placed on a susceptor disposed in a reaction tube by heating means. The thin film forming apparatus is characterized in that a thermocouple embedded in a dummy member made of the same material as the object to be processed or a material having the same heat absorption rate is disposed in contact with the susceptor in the vicinity of the body.

本発明の薄膜成長方法は、反応管内に配置したサセプタ上に被処理体を載置して、被処理体を加熱手段で加熱して温度制御しながら、被処理体表面に薄膜形成を行う薄膜形成方法において、被処理体近傍のサセプタ上に接して配置された、被処理体と同一材質あるいは熱吸収率が同等な材質で成るダミー部材に埋め込まれた熱電対の測定温度に基づいて、加熱手段を制御しながら薄膜形成を行うことを特徴とする薄膜形成方法である。   In the thin film growth method of the present invention, a thin film is formed on the surface of a target object by placing the target object on a susceptor disposed in a reaction tube and controlling the temperature by heating the target object with a heating means. In the forming method, heating is performed based on the measured temperature of a thermocouple embedded in a dummy member made of the same material as the object to be processed or a material having the same heat absorption rate, which is disposed in contact with the susceptor in the vicinity of the object to be processed. A thin film forming method is characterized in that a thin film is formed while controlling the means.

本発明の薄膜成長装置及び薄膜形成方法によれば、実際の被処理体の温度により近い測定温度として、反応管やサセプタ表面に徐々に付着する反応生成物の堆積に伴って変化していく輻射熱の変化を含み、かつ、サセプタや混合ガスからの伝導熱も含めた測定温度を得ることができる。   According to the thin film growth apparatus and thin film formation method of the present invention, the radiant heat that changes as the reaction product gradually adheres to the reaction tube or susceptor surface is measured as a measurement temperature that is closer to the actual temperature of the object to be processed. In addition, a measurement temperature including the heat of conduction from the susceptor and the mixed gas can be obtained.

薄膜形成装置において、実際の被処理体の温度により近い測定温度として、反応管やサセプタ表面に徐々に付着する反応生成物の堆積に伴って変化していく輻射熱の変化を含み、かつ、サセプタや混合ガスからの伝導熱も含めた測定温度を得て、その測定温度に基づいて加熱手段を制御しながら薄膜形成すると言う目的を、被処理体近傍のサセプタ上に接して被処理体と同一材質あるいは熱吸収率が同等な材質で成るダミー部材に埋め込まれた熱電対を配置することで実現した。   In a thin film forming apparatus, the measurement temperature is closer to the actual temperature of the object to be processed, including a change in radiant heat that changes with the deposition of reaction products that gradually adhere to the reaction tube and susceptor surface, For the purpose of obtaining a measurement temperature including conduction heat from the mixed gas and forming a thin film while controlling the heating means based on the measurement temperature, the same material as the object to be processed is in contact with the susceptor near the object to be processed. Alternatively, it was realized by arranging a thermocouple embedded in a dummy member made of a material having the same heat absorption rate.

また、薄膜形成方法において、被処理体の温度により近い測定温度として、反応管やサセプタ表面に徐々に付着する反応生成物の堆積に伴って変化していく輻射熱の変化を含み、かつ、サセプタや混合ガスからの伝導熱も含めた測定温度を得て、その測定温度に基づいて加熱手段を制御しながら薄膜形成すると言う目的を、被処理体近傍のサセプタ上に接して配置された被処理体と同一材質あるいは熱吸収率が同等な材質で成るダミー部材に埋め込まれた熱電対の測定温度に基づいて、加熱手段を制御しながら薄膜形成を行うことで実現した。   Further, in the thin film forming method, the measurement temperature is closer to the temperature of the object to be processed, including a change in radiant heat that changes with the deposition of reaction products that gradually adhere to the reaction tube and the susceptor surface, An object to be processed placed on a susceptor in the vicinity of the object for the purpose of obtaining a measured temperature including conduction heat from the mixed gas and forming a thin film while controlling the heating means based on the measured temperature. This was realized by forming a thin film while controlling the heating means based on the measured temperature of a thermocouple embedded in a dummy member made of the same material or a material having the same heat absorption rate.

本発明の薄膜形成装置の一例としてCVD装置の断面図を図1に示す。   FIG. 1 shows a cross-sectional view of a CVD apparatus as an example of the thin film forming apparatus of the present invention.

図1に示すように、CVD装置101は、薄膜形成処理室としての反応管2と、反応管2内に被処理体としての半導体基板3を載置するためのサセプタ4と、半導体基板3やサセプタ4を加熱して所定のプロセス温度に保つ赤外線ランプ5と、化学反応により半導体基板3表面に例えばシリコン層を堆積させるために、水素などのキャリアガスと反応性ガスを混ぜた混合ガス6(図中矢印で示す)を半導体基板3上に流すガス供給口7a及び混合ガス6を排気するガス排気口7bとで構成されている。     As shown in FIG. 1, a CVD apparatus 101 includes a reaction tube 2 as a thin film formation processing chamber, a susceptor 4 for placing a semiconductor substrate 3 as an object to be processed in the reaction tube 2, a semiconductor substrate 3, An infrared lamp 5 that heats the susceptor 4 to maintain a predetermined process temperature, and a mixed gas 6 (for example, a mixture of a carrier gas such as hydrogen and a reactive gas in order to deposit a silicon layer on the surface of the semiconductor substrate 3 by a chemical reaction) A gas supply port 7a that flows over the semiconductor substrate 3 and a gas exhaust port 7b that exhausts the mixed gas 6 are configured.

また、半導体基板3近傍のサセプタ4上に接して、半導体基板3と同一材質で成るダミー部材102に埋め込まれた熱電対8が配置されている。そして、その熱電対8の測定温度に基づいて赤外線ランプ5の加熱出力を制御する加熱温度制御部9を備えている。   A thermocouple 8 embedded in a dummy member 102 made of the same material as the semiconductor substrate 3 is disposed in contact with the susceptor 4 in the vicinity of the semiconductor substrate 3. And the heating temperature control part 9 which controls the heating output of the infrared lamp 5 based on the measured temperature of the thermocouple 8 is provided.

本発明のCVD装置101を用いて、シリコン層を形成させる方法は、反応管2内に配置したサセプタ4上に半導体基板3を載置して、半導体基板3やサセプタ4を赤外線ランプ5で加熱して薄膜形成を行うに際し、半導体基板3近傍のサセプタ4上に接して配置された、半導体基板3と同一材質で成るダミー部材102に埋め込まれた熱電対8の測定温度に基づいて赤外線ランプ5の加熱出力を制御しながら薄膜形成を行う。   In the method of forming a silicon layer using the CVD apparatus 101 of the present invention, the semiconductor substrate 3 is placed on the susceptor 4 disposed in the reaction tube 2 and the semiconductor substrate 3 and the susceptor 4 are heated by the infrared lamp 5. When the thin film is formed, the infrared lamp 5 is based on the measured temperature of the thermocouple 8 embedded in the dummy member 102 made of the same material as the semiconductor substrate 3 disposed in contact with the susceptor 4 near the semiconductor substrate 3. The thin film is formed while controlling the heating output.

このようにすると、熱電対8を半導体基板3と熱吸収率が同じダミー部材102に埋め込んでいるため、輻射熱の経時的変化に対してもほぼ同等の影響を受け、熱電対8の測定温度は半導体基板3とほぼ同様の変化を示す。また、ダミー部材102は半導体基板3近傍で直接サセプタ4に接し、かつ、混合ガス6に対して露出して配置されており、半導体基板3に対して測定ポイントが近いことに加えて、サセプタ4及び混合ガス6からの伝導熱を含んだ測定温度を得ることができる。このため、実際の半導体基板3の温度により近い測定温度が得られ、その測定温度に基づいて加熱温度制御部9によって赤外線ランプ5の加熱出力を制御するためプロセス温度を最適に保つことができ、多数の半導体基板3を成膜作業する場合にも、結果として、所望の膜厚ならびに膜質を確保できる。   In this case, since the thermocouple 8 is embedded in the dummy member 102 having the same heat absorption rate as that of the semiconductor substrate 3, the measurement temperature of the thermocouple 8 is affected by almost the same effect with respect to the change with time of the radiant heat. Changes similar to those of the semiconductor substrate 3 are shown. Further, the dummy member 102 is disposed in direct contact with the susceptor 4 in the vicinity of the semiconductor substrate 3 and is exposed to the mixed gas 6. In addition to the fact that the measurement point is close to the semiconductor substrate 3, the dummy member 102 is provided. And the measurement temperature containing the heat of conduction from the mixed gas 6 can be obtained. For this reason, a measurement temperature closer to the actual temperature of the semiconductor substrate 3 is obtained, and the process temperature can be kept optimal because the heating temperature control unit 9 controls the heating output of the infrared lamp 5 based on the measurement temperature, Even when a large number of semiconductor substrates 3 are formed, a desired film thickness and film quality can be secured as a result.

尚、上記の例では、ダミー部材102に埋め込んだ熱電対8の測定温度に基づいて赤外線ランプ5の加熱出力を制御する構成で説明したが、さらに、これとは別の熱電対をサセプタ4に埋め込んでおいて、その両方の熱電対の測定温度を考慮して赤外線ランプ5の加熱出力を制御する構成としてもよいことは言うまでもない。   In the above example, the heating output of the infrared lamp 5 is controlled based on the measured temperature of the thermocouple 8 embedded in the dummy member 102. Further, another thermocouple is used for the susceptor 4. It goes without saying that the heating output of the infrared lamp 5 may be controlled in consideration of the measurement temperature of both thermocouples.

実際の被処理体の温度により近い測定温度として、反応管やサセプタ表面に徐々に付着する反応生成物の堆積に伴って変化していく輻射熱の変化を含み、かつ、サセプタや反応管内の雰囲気からの伝導熱も含めた測定温度を得て、その測定温度に基づいて加熱手段を制御しながら薄膜形成することができる薄膜形成装置及び薄膜形成方法に適用できる。   Measurement temperature closer to the actual temperature of the object to be processed includes changes in radiant heat that change with the deposition of reaction products that gradually adhere to the surface of the reaction tube and susceptor, and from the atmosphere in the susceptor and reaction tube. It can be applied to a thin film forming apparatus and a thin film forming method capable of obtaining a measured temperature including the conduction heat of and forming a thin film while controlling the heating means based on the measured temperature.

本発明の薄膜形成装置の一例の断面図Sectional drawing of an example of the thin film forming apparatus of this invention 従来の薄膜形成装置の一例の断面図Sectional view of an example of a conventional thin film forming apparatus 従来の薄膜形成装置の他の例の要部断面図Sectional drawing of the principal part of another example of a conventional thin film forming apparatus

符号の説明Explanation of symbols

1 従来のCVD装置
2 反応管
3 半導体基板
3a 半導体基板と同一材質でなる物質
4 サセプタ
5 赤外線ランプ
6 混合ガス
7a ガス供給口
7b ガス排気口
8 熱電対
9 加熱温度制御部
10 石英ガラス管
101 本発明のCVD装置
102 ダミー部材
DESCRIPTION OF SYMBOLS 1 Conventional CVD apparatus 2 Reaction tube 3 Semiconductor substrate 3a Substance made of the same material as the semiconductor substrate 4 Susceptor 5 Infrared lamp 6 Mixed gas 7a Gas supply port 7b Gas exhaust port 8 Thermocouple 9 Heating temperature controller 10 Quartz glass tube 101 Invention CVD apparatus 102 Dummy member

Claims (3)

反応管内に配置したサセプタ上に載置した被処理体を加熱手段で加熱して温度制御しながら、前記被処理体表面に薄膜形成を行う薄膜形成装置において、前記被処理体近傍の前記サセプタ上に接して前記被処理体と同一材質あるいは熱吸収率が同等な材質で成るダミー部材に埋め込まれた熱電対を配置したことを特徴とする薄膜形成装置。   In a thin film forming apparatus for forming a thin film on the surface of the object to be processed while controlling the temperature by heating the object to be processed placed on the susceptor disposed in the reaction tube with a heating means, the surface of the susceptor in the vicinity of the object to be processed A thin film forming apparatus characterized in that a thermocouple embedded in a dummy member made of the same material as the object to be processed or a material having the same heat absorption rate is disposed in contact with the object. 前記ダミー部材に埋め込まれた熱電対の測定温度に基づいて、前記加熱手段を制御する加熱温度制御部を備えたことを特徴とする請求項1に記載の薄膜形成装置。   The thin film forming apparatus according to claim 1, further comprising a heating temperature control unit that controls the heating unit based on a measured temperature of a thermocouple embedded in the dummy member. 反応管内に配置したサセプタ上に被処理体を載置して、前記被処理体を加熱手段で加熱して温度制御しながら前記被処理体表面に薄膜形成を行う薄膜形成方法において、前記被処理体近傍の前記サセプタ上に接して配置された前記被処理体と同一材質あるいは熱吸収率が同等な材質で成るダミー部材に埋め込まれた熱電対の測定温度に基づいて、前記加熱手段を制御しながら薄膜形成を行うことを特徴とする薄膜形成方法。
In the thin film formation method of placing a target object on a susceptor disposed in a reaction tube and forming a thin film on the target object surface while heating the target object with a heating means and controlling the temperature, the target object The heating means is controlled based on the measured temperature of a thermocouple embedded in a dummy member made of the same material as that of the object to be processed and disposed on the susceptor in the vicinity of the body, or a material having the same heat absorption rate. A thin film forming method characterized in that a thin film is formed.
JP2003339712A 2003-09-30 2003-09-30 Thin film forming device and method Pending JP2005109098A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003339712A JP2005109098A (en) 2003-09-30 2003-09-30 Thin film forming device and method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003339712A JP2005109098A (en) 2003-09-30 2003-09-30 Thin film forming device and method

Publications (1)

Publication Number Publication Date
JP2005109098A true JP2005109098A (en) 2005-04-21

Family

ID=34534830

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003339712A Pending JP2005109098A (en) 2003-09-30 2003-09-30 Thin film forming device and method

Country Status (1)

Country Link
JP (1) JP2005109098A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013094802A (en) * 2011-10-31 2013-05-20 Ihi Corp Drying device
JP2014207459A (en) * 2006-06-09 2014-10-30 ソイテック High volume delivery method for producing gallium trichloride
DE102020209801A1 (en) 2020-08-04 2022-02-10 Robert Bosch Gesellschaft mit beschränkter Haftung Process for controlling the temperature of a substrate or a component, in particular a surface of the substrate or component to be coated

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014207459A (en) * 2006-06-09 2014-10-30 ソイテック High volume delivery method for producing gallium trichloride
JP2013094802A (en) * 2011-10-31 2013-05-20 Ihi Corp Drying device
DE102020209801A1 (en) 2020-08-04 2022-02-10 Robert Bosch Gesellschaft mit beschränkter Haftung Process for controlling the temperature of a substrate or a component, in particular a surface of the substrate or component to be coated

Similar Documents

Publication Publication Date Title
US20220307139A1 (en) Reactor system and method to reduce residue buildup during a film deposition process
JP6279396B2 (en) Vapor phase growth method and vapor phase growth apparatus
TW201243955A (en) Apparatus for monitoring and controlling substrate temperature
JP2007116094A (en) Temperature control method of epitaxial growth apparatus
TWI757447B (en) Method and apparatus for thermally treating substrates
US6924231B2 (en) Single wafer processing method and system for processing semiconductor
JP5814328B2 (en) Method and apparatus for forming C / SiC gradient coating film
JP5947133B2 (en) Vapor phase growth apparatus and semiconductor device manufacturing method
JP2005109098A (en) Thin film forming device and method
TWI334159B (en) Heating apparatus
JP3922018B2 (en) Vapor growth apparatus and temperature detection method for vapor growth apparatus
JP4392838B2 (en) Film forming apparatus and film forming method
JPH0382017A (en) Manufacture apparatus for semiconductor device
JPS61210622A (en) Semiconductor manufacturing equipment
JPH0586476A (en) Chemical vapor growth device
JPH062147A (en) Gaseous phase chemical reactor
TWI828239B (en) A temperature calibration and control method for chemical vapor deposition equipment
JPH05217930A (en) Wafer heating apparatus
JP2009246071A (en) Substrate treatment device and substrate treatment method
JP3357219B2 (en) Method and apparatus for forming silica-based coating
JPH06104192A (en) Temperature sensor for single-wafer diffusion and cvd system
JPS602667A (en) Sublimating and supplying device of solid raw material
JPH11312651A (en) Substrate processing device
JPH07240378A (en) Semiconductor thin film manufacturing device
KR980011761A (en) Semiconductor device manufacturing apparatus