JPH07240378A - Semiconductor thin film manufacturing device - Google Patents

Semiconductor thin film manufacturing device

Info

Publication number
JPH07240378A
JPH07240378A JP2982794A JP2982794A JPH07240378A JP H07240378 A JPH07240378 A JP H07240378A JP 2982794 A JP2982794 A JP 2982794A JP 2982794 A JP2982794 A JP 2982794A JP H07240378 A JPH07240378 A JP H07240378A
Authority
JP
Japan
Prior art keywords
substrate
temperature
hydrogen
radiation thermometer
heater
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2982794A
Other languages
Japanese (ja)
Inventor
Yusuke Kawaguchi
雄介 川口
Naoharu Sugiyama
直治 杉山
Seishi Imai
聖支 今井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP2982794A priority Critical patent/JPH07240378A/en
Publication of JPH07240378A publication Critical patent/JPH07240378A/en
Pending legal-status Critical Current

Links

Landscapes

  • Chemical Vapour Deposition (AREA)

Abstract

PURPOSE:To easily correct either the mistaken pattern of a silicon substrate or the errors in measurement of a radiation thermometer resultant from the increase in the film thickness in the film forming step for precisely measuring the substrate surface temperature by calibrating the radiation thermometer by the temperature distribution curve of desorption amount of hydrogen molecules. CONSTITUTION:When a patterned silicon substrate 3 with the surface terminated with hydrogen atoms is heated from about 300 deg.C to 600 deg.C by a heater 2, two peak values of the temperature distribution curve of hydrogen desorption amount attained by a mass spectrometer 7 are 400 deg.C and 500 deg.C. However, it is so far evident that the correct values of these two peaks are to be 425 deg.C and 520 deg.C. Accordingly, the measured values by a radiation thermometer 5 are calibrated to be 425 deg.C and 520 deg.C. Through these procedures, the radiation thermometer 5 can indicate the correct substrate surface temperature thereby enabling a thin film to be grown with excellent reproducibility regardless of the difference in patterns.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、半導体薄膜製造装置に
関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a semiconductor thin film manufacturing apparatus.

【0002】[0002]

【従来の技術】半導体薄膜成長の工程では、熱反応を利
用した工程が多く用いられている。熱反応を利用した薄
膜の成長において、基板温度はこれにもっとも大きく影
響するパラメーターの1つである。このため、これら熱
反応を制御するためには半導体基板の温度管理が非常に
重要であり、正確な基板表面温度の測定法が必要とされ
ている。従来の熱反応を利用した工程では、炉全体を加
熱する熱容量の大きいホットウォール炉がその製造装置
として主に用いられていた。この場合には炉全体の温度
を安定させれば、炉内は熱的に平衡な状態になり、熱電
対などを用いて炉の温度を測定することにより基板表面
の温度を再現性良くモニターすることができるために、
容易にその熱反応を制御することができた。
2. Description of the Related Art In the process of growing a semiconductor thin film, a process utilizing a thermal reaction is often used. Substrate temperature is one of the most influential parameters in the growth of thin films using thermal reaction. Therefore, in order to control these thermal reactions, it is very important to control the temperature of the semiconductor substrate, and an accurate method for measuring the substrate surface temperature is needed. In a conventional process utilizing a thermal reaction, a hot wall furnace having a large heat capacity for heating the entire furnace has been mainly used as a manufacturing apparatus thereof. In this case, if the temperature of the entire furnace is stabilized, the inside of the furnace will be in a thermally equilibrium state, and the temperature of the substrate will be monitored with good reproducibility by measuring the temperature of the furnace using a thermocouple or the like. To be able to
The thermal reaction could be easily controlled.

【0003】しかし、近年、プロセスの清浄化、高精度
化の目的で到達真空度が10-6Pa以下の超高真空を利
用した工程が、多く用いられるようになってきた。この
場合、容器内には熱媒体となる気体分子がなく、容器と
してステンレス鋼を用いていることが多いので、ホット
ウォール炉は利用することはできない。そのため、この
工程では、ヒーターを容器内部に設置し、直接基板を加
熱するコールドウォール炉が装置として用いられてい
る。この装置は炉内が熱的に平衡ではないために、ホッ
トウォール炉の場合のように基板表面温度を容易に、か
つ正確に測定することができず、熱反応を制御するとい
う点で問題を生じている。
However, in recent years, for the purpose of cleaning the process and improving accuracy, a process using an ultra-high vacuum with an ultimate vacuum of 10 −6 Pa or less has been widely used. In this case, since there is no gas molecule serving as a heat medium in the container and stainless steel is often used as the container, the hot wall furnace cannot be used. Therefore, in this process, a cold wall furnace in which a heater is installed inside the container to directly heat the substrate is used as an apparatus. Since this equipment is not in thermal equilibrium in the furnace, it is not possible to measure the substrate surface temperature easily and accurately as in the case of a hot wall furnace, and there is a problem in controlling the thermal reaction. Has occurred.

【0004】これまでに、超高真空中での基板表面の温
度測定の有力な手段として、放射温度計が多く用いられ
てきた。この測定法は、物質から放射される赤外光のス
ペクトルがその物質の温度の関数で表せることを利用し
たもので、加熱された物質表面から放射される赤外線強
度を測定し、これを温度に変換するものである。ここ
で、一般に物質の温度と放射光の線強度の関係はそれぞ
れ物質及びその表面状態に固有のものである。
Up to now, a radiation thermometer has been widely used as an effective means for measuring the temperature of the substrate surface in an ultrahigh vacuum. This measurement method uses the fact that the spectrum of infrared light emitted from a substance can be expressed as a function of the temperature of the substance, and the infrared intensity emitted from the surface of a heated substance is measured, and this is measured as the temperature. It is to convert. Here, generally, the relationship between the temperature of the substance and the line intensity of the radiated light is unique to the substance and its surface state.

【0005】他方、シリコンの選択エピタキシャル成長
技術が近年注目を集めているが、このような半導体製造
工程で用いられるシリコン基板は一般に、酸化物、窒化
物などで表面が覆われた上に回路パターンが刻まれ、こ
の刻まれた部分だけが結晶シリコンが露出しているとい
うものである。つまり、基板表面上には2つ以上の異な
る物質からなる領域が混在しているのである。
On the other hand, although the selective epitaxial growth technique of silicon has been attracting attention in recent years, the silicon substrate used in such a semiconductor manufacturing process is generally covered with an oxide, a nitride or the like and has a circuit pattern. It is carved, and the crystalline silicon is exposed only in this carved part. That is, there are mixed regions of two or more different substances on the surface of the substrate.

【0006】このような基板の表面温度を放射温度計で
測定するためには、従来のコールドウォール炉を用いた
装置においては、表面の状態に応じて物質の温度と放射
光のスペクトルの関係を補正し直す必要がある。つま
り、異なる回路パターンを持つ基板を用いるときは、そ
の簡便な補正の方法はなく、その補正は基板ごとに行う
必要があった。さらに、表面上の回路パターンは一様で
はないために、同一パターンの基板を用いる際にも放射
温度計でモニターする位置によって、測定の再現性に問
題を生ずることがある。
In order to measure the surface temperature of such a substrate with a radiation thermometer, in a conventional apparatus using a cold wall furnace, the relationship between the temperature of the substance and the spectrum of radiant light is determined according to the surface condition. It is necessary to correct again. That is, when using substrates having different circuit patterns, there is no simple correction method, and the correction needs to be performed for each substrate. Further, since the circuit pattern on the surface is not uniform, the reproducibility of the measurement may be affected depending on the position monitored by the radiation thermometer even when the substrates having the same pattern are used.

【0007】さらに、物質からの放射光によって温度を
測定する際に不可避な問題は、成膜過程での膜厚増加に
伴い、成膜した薄膜表面からの放射光と、基板−薄膜界
面からの放射光が干渉することによって、放射温度計の
温度値が振動することである。このような成膜を行う過
程では、正確な基板表面温度が測定できなくなる。
Further, an unavoidable problem when measuring the temperature by the radiant light from a substance is that the radiant light from the thin film surface formed and the substrate-thin film interface increase as the film thickness increases in the film forming process. The interference of the emitted light causes the temperature value of the radiation thermometer to vibrate. In the process of forming such a film, the accurate substrate surface temperature cannot be measured.

【0008】このように、基板表面温度を再現性良く測
定できない装置では、半導体基板の温度管理が難しく、
熱反応の制御という点で重大な問題を生ずる。
As described above, in a device which cannot measure the substrate surface temperature with good reproducibility, it is difficult to control the temperature of the semiconductor substrate,
There are significant problems in controlling the thermal reaction.

【0009】[0009]

【発明が解決しようとする課題】これまでに述べたよう
に、従来のコールドウォール炉を用いた装置では、パタ
ーンが刻まれたような表面状態の一様でないシリコン基
板、あるいは成膜により膜厚が変化した場合の温度を再
現性良く測定することができないために、この工程にお
ける熱反応の制御が非常に困難であった。
As described above, in a device using a conventional cold wall furnace, a silicon substrate having an uneven surface state such as a pattern carved or a film thickness formed by film formation is used. It was very difficult to control the thermal reaction in this step because it was not possible to reproducibly measure the temperature when the temperature changed.

【0010】本発明は、超高真空中でのシリコン基板の
表面温度を簡便に、かつ再現性良く測定する機能を備
え、この工程で用いる熱反応の制御を可能にする半導体
薄膜製造装置を提供することを目的とする。
The present invention provides a semiconductor thin film manufacturing apparatus having a function of simply and reproducibly measuring the surface temperature of a silicon substrate in an ultrahigh vacuum, and capable of controlling the thermal reaction used in this step. The purpose is to do.

【0011】[0011]

【課題を解決するための手段】現在シリコン基板の前処
理として、HFによるウェットエッチングが多く用いら
れているが、この処理を施したシリコン基板表面は、H
原子で終端化されていることが知られている。基板を加
熱することにより、この表面のH原子は、375℃付近
からH2 分子として脱離し始め、600℃付近で完全に
脱離する。(Stephen M. Gate, Roderick R. Kunz, C.
Michael Greenlief; Surf. Sci. 207 364(1989) 本発明に関わる半導体薄膜製造装置は、少なくとも一部
にシリコン表面を露出した基板と、この表面から375
℃以上で熱脱離する水素分子の脱離量の温度分布を測定
する機能を備え、さらにこの温度分布曲線を用いて、基
板の表面温度を測定するための放射温度計を補正する機
能を備えているという特徴を有する。
At present, wet etching with HF is often used as a pretreatment of a silicon substrate. The surface of the silicon substrate subjected to this treatment is
It is known to be terminated with atoms. By heating the substrate, H atoms on the surface begin to be desorbed as H 2 molecules from around 375 ° C, and are completely desorbed around 600 ° C. (Stephen M. Gate, Roderick R. Kunz, C.
Michael Greenlief; Surf. Sci. 207 364 (1989) A semiconductor thin film manufacturing apparatus according to the present invention comprises a substrate having a silicon surface exposed at least at a part thereof, and 375 from this surface.
Equipped with a function to measure the temperature distribution of the desorption amount of hydrogen molecules that are thermally desorbed above ℃, and to have the function of correcting the radiation thermometer for measuring the substrate surface temperature using this temperature distribution curve. It has the characteristic that

【0012】[0012]

【作用】水素分子の脱離量の温度分布曲線によって放射
温度計を校正することにより、シリコン基板のパターン
の違いや、成膜中の膜厚増加に伴う放射温度計の測定誤
差を簡便に補正することができる。これにより、基板表
面温度を正確に測定することが可能となり、成膜中の熱
反応を制御することができる。
[Function] By calibrating the radiation thermometer with the temperature distribution curve of the desorption amount of hydrogen molecules, it is possible to easily correct the measurement error of the radiation thermometer due to the difference in the pattern of the silicon substrate and the increase in the film thickness during film formation. can do. This makes it possible to accurately measure the substrate surface temperature and control the thermal reaction during film formation.

【0013】[0013]

【実施例】【Example】

(実施例1)以下、本発明の実施例につき図面を参照し
て説明する。
(Embodiment 1) An embodiment of the present invention will be described below with reference to the drawings.

【0014】図1に本発明に係る半導体薄膜製造装置を
断面図で示す。図1における1は一例のステンレスで構
成された真空容器で、基板加熱用ヒーター2と、これに
対向して水素終端化されたシリコンの基板3が配置され
ている。4は真空ポンプ、例えばターボ分子ポンプであ
り、前記真空容器1内を排気する。また、7は質量分析
計であり、これを用いて基板表面から脱離する水素分子
の量を測定することができる。さらにコントローラ8に
よってヒーター2、放射温度計5、質量分析計7を制御
することができ、これにより水素脱離量の温度分布曲線
を取得し、放射温度計5の読みを補正することができ
る。
FIG. 1 is a sectional view showing a semiconductor thin film manufacturing apparatus according to the present invention. Reference numeral 1 in FIG. 1 denotes a vacuum container made of an example of stainless steel, in which a substrate heating heater 2 and a hydrogen-terminated silicon substrate 3 are arranged facing the heater 2. Reference numeral 4 denotes a vacuum pump, for example, a turbo molecular pump, which exhausts the inside of the vacuum container 1. Further, 7 is a mass spectrometer, which can be used to measure the amount of hydrogen molecules desorbed from the substrate surface. Further, the heater 2, the radiation thermometer 5, and the mass spectrometer 7 can be controlled by the controller 8, whereby the temperature distribution curve of the hydrogen desorption amount can be acquired and the reading of the radiation thermometer 5 can be corrected.

【0015】上記一例の装置により次のようにして放射
温度計に対しコントローラの補正機能部10により補正
を施し、正確な表面温度の測定を可能にすることによっ
て、再現性良く半導体薄膜の成長が行われる。すなわ
ち、表面を水素原子で終端化したパターン付きのシリコ
ン基板3を、ヒーター2により約300℃から600℃
まで加熱したときに質量分析計7を用いて得られる水素
脱離量の温度分布曲線が、図2に示される。このときの
温度値(Tpyro)は放射温度計によって測定したも
のであるが、温度分布曲線の二つのピーク値は400
℃、500℃であることが分かる。しかし、これら2つ
のピークの正確な値は、425℃、520℃であること
がこれまでに明らかになっている。そこでコントローラ
ー8により放射温度計5の測定値が425℃、520℃
となるように校正を行う。この操作により、放射温度計
は正しい基板表面温度の値を示し、パターンの違いに関
わらず、再現性よく薄膜を成長させることが可能になっ
た。
By correcting the radiation thermometer by the correction function unit 10 of the controller by the apparatus of the above-described example as described below and enabling accurate surface temperature measurement, the growth of the semiconductor thin film can be performed with good reproducibility. Done. That is, the patterned silicon substrate 3 whose surface is terminated by hydrogen atoms is heated by the heater 2 at about 300 to 600 ° C.
A temperature distribution curve of the amount of desorbed hydrogen obtained by using the mass spectrometer 7 when heated up to is shown in FIG. The temperature value (Tpyro) at this time is measured by a radiation thermometer, and the two peak values of the temperature distribution curve are 400
It can be seen that the temperature is 500 ° C. However, the exact values of these two peaks have so far been found to be 425 ° C and 520 ° C. Therefore, the measured value of the radiation thermometer 5 by the controller 8 is 425 ° C and 520 ° C.
Calibrate so that By this operation, the radiation thermometer showed the correct value of the substrate surface temperature, and it became possible to grow the thin film with good reproducibility regardless of the difference in the pattern.

【0016】図3に前記パターン付き基板の上に約20
0nmに厚さに成膜したものを約300℃から600℃
まで加熱したときに得られる水素脱離量の温度分布を示
す。このときの校正前の放射温度計による2つのピーク
の測定値(Tpyro)は、放射光の干渉により470
℃、370℃と先の例よりもさらに大きくシフトしてい
ることがわかる。この場合にもコントローラー8によっ
て校正を行うことにより、放射温度計はやはり正しい基
板表面温度の値を示す。これにより、放射光の干渉が起
こるような厚さの薄膜を成長させた後の工程においても
正確な基板表面温度の測定が可能となった。
FIG. 3 shows about 20 layers on the patterned substrate.
The film thickness of 0 nm is about 300 to 600 ℃
The temperature distribution of the amount of hydrogen desorption obtained when heated up to is shown. At this time, the measured values (Tpyro) of the two peaks by the radiation thermometer before calibration are 470 due to the interference of the radiated light.
It can be seen that the temperature shifts to 370 ° C., which is a larger shift than the previous example. In this case, the radiation thermometer also shows the correct value of the substrate surface temperature by performing the calibration by the controller 8. As a result, it becomes possible to accurately measure the substrate surface temperature even in the step after growing a thin film having a thickness that causes interference of emitted light.

【0017】以上に示した例は、水素の脱離量を測定す
る際に質量分析計を用いたが、容器1が超高真空装置の
場合には、ベース圧が約10-6Paと十分低いために基
板の昇温中は水素分子が容器内で支配的な分子種とな
る。そこでこの場合には、質量分析計7の代わりに、よ
り簡便な電離真空計などの全圧真空計を用いることによ
っても水素の脱離量を定量することができる。さらに容
器1が常圧CVDなどのように減圧系でない場合にも、
大気圧質量分析計を用いることにより水素の脱離量の定
量を行なうことができる。
In the examples shown above, a mass spectrometer was used to measure the amount of desorbed hydrogen, but when the container 1 is an ultrahigh vacuum device, the base pressure is sufficient to be about 10 -6 Pa. Since the temperature is low, hydrogen molecules become the predominant molecular species in the container during the temperature rise of the substrate. Therefore, in this case, the desorption amount of hydrogen can be quantified by using a simpler total pressure vacuum gauge such as an ionization vacuum gauge instead of the mass spectrometer 7. Furthermore, even when the container 1 is not a reduced pressure system such as atmospheric pressure CVD,
The amount of desorbed hydrogen can be quantified by using an atmospheric pressure mass spectrometer.

【0018】(実施例2)以下、本発明の別の実施例に
つき図面を参照して説明する。
(Embodiment 2) Another embodiment of the present invention will be described below with reference to the drawings.

【0019】図4に本発明に係る半導体薄膜製造装置を
断面図で示す。図4における1は一例のステンレスで構
成された真空容器で、基板加熱用ヒーター2と、これに
対向して水素終端化されたシリコンの基板3が配置され
ている。4は真空ポンプ、例えばターボ分子ポンプであ
り、メカニカルブースタポンプ14,ロータリポンプ2
4で背圧を保ち前記真空容器1内を排気する。
FIG. 4 is a sectional view showing a semiconductor thin film manufacturing apparatus according to the present invention. Reference numeral 1 in FIG. 4 is a vacuum container made of an example of stainless steel, in which a substrate heating heater 2 and a hydrogen-terminated silicon substrate 3 are arranged facing the heater 2. Reference numeral 4 denotes a vacuum pump, for example, a turbo molecular pump, which includes a mechanical booster pump 14 and a rotary pump 2.
At 4 the back pressure is maintained and the inside of the vacuum container 1 is evacuated.

【0020】また、真空容器1内の全圧を測定するため
に電離真空計17が設けられている。なお、27はピラ
ニ真空計で、前記ターボ分子ポンプ4の背圧を測定す
る。
An ionization vacuum gauge 17 is provided to measure the total pressure inside the vacuum container 1. A Pirani vacuum gauge 27 measures the back pressure of the turbo molecular pump 4.

【0021】上記一例の半導体薄膜製造装置により、水
素で表面を終端化したシリコン基板3を真空容器1内に
図4に示す如く配置し、375℃から600℃の範囲の
加熱を施し、上記電離真空計17で全圧を測定し、付設
された記録装置20に記録する。この記録結果を図5に
例示する。この結果は基板表面の温度を反映して水素分
子の離脱に起因する容器内の圧力変化を示すものに他な
らず、前記引用文献に示された技術における「基板温度
に対応して水素離脱量が変化すること」と一致する。ま
た、二つのピーク温度は425℃、520℃であること
が明らかになっているので、これを用いて基板の温度測
定を行う事ができる。真空度が10-6Pa程度の超高真
空容器中では、この水素分子が支配的な種となるので、
電離真空計17で容器内の圧力変化を、またはピラニ真
空計27でポンプ背圧の変化を測定する簡便な手段によ
って水素分子の離脱量を測定することができる。また、
基板が、その表面にパターンが刻まれたような一様でな
い表面状態の場合についても、水素分子の離脱は表面温
度と対応するので再現性よく表面温度を測定できる。
Using the semiconductor thin film manufacturing apparatus of the above example, the silicon substrate 3 whose surface is terminated with hydrogen is placed in the vacuum container 1 as shown in FIG. 4, and heated in the range of 375 ° C. to 600 ° C., and ionized. The total pressure is measured by the vacuum gauge 17 and recorded in the recording device 20 attached. This recording result is illustrated in FIG. This result is nothing but the change in pressure inside the container due to the desorption of hydrogen molecules that reflects the temperature of the substrate surface. Is changing. ” Further, since it has been clarified that the two peak temperatures are 425 ° C. and 520 ° C., it is possible to measure the temperature of the substrate by using them. In an ultra-high vacuum container with a degree of vacuum of about 10 -6 Pa, this hydrogen molecule becomes the dominant species.
The desorption amount of hydrogen molecules can be measured by a simple means for measuring the pressure change in the container with the ionization vacuum gauge 17 or the change in the pump back pressure with the Pirani vacuum gauge 27. Also,
Even when the substrate has a non-uniform surface state in which a pattern is engraved on the surface, the desorption of hydrogen molecules corresponds to the surface temperature, and therefore the surface temperature can be measured with good reproducibility.

【0022】[0022]

【発明の効果】以上説明したように、本発明によればパ
ターンの違い、放射光の干渉による放射温度計の測定誤
差を簡便に補正することが可能であり、再現性良く半導
体薄膜の製造が可能になるという顕著な利点がある。
As described above, according to the present invention, it is possible to easily correct the measurement error of the radiation thermometer due to the difference in the pattern and the interference of the emitted light, and it is possible to manufacture the semiconductor thin film with good reproducibility. There is a significant advantage of being possible.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明に係る一実施例の半導体薄膜製造装置の
断面図。
FIG. 1 is a cross-sectional view of a semiconductor thin film manufacturing apparatus according to an embodiment of the present invention.

【図2】水素終端化したパターン付きシリコン基板の昇
温に伴う水素分子の脱離量の変化を示す線図。ここでT
pyroは補正前の放射温度計による測定値、T′pr
yo=Tsubは補正後の放射温度計による測定値(真
の基板表面温度)。
FIG. 2 is a diagram showing a change in the amount of desorbed hydrogen molecules as the temperature of a hydrogen-terminated patterned silicon substrate increases. Where T
Pyro is the value measured by the radiation thermometer before correction, T'pr
yo = Tsub is a corrected radiation thermometer measurement value (true substrate surface temperature).

【図3】約200nmの厚さの薄膜を成長させたシリコ
ン基板の昇温に伴う水素分子の脱離量の変化を示す線
図。Tpyro、T′pyro=Tsubは図2と同
じ。
FIG. 3 is a diagram showing a change in the amount of desorbed hydrogen molecules with temperature rise of a silicon substrate on which a thin film having a thickness of about 200 nm is grown. Tpyro and T'pyro = Tsub are the same as in FIG.

【図4】本発明に係る別の一実施例の半導体薄膜製造装
置の断面図。
FIG. 4 is a sectional view of a semiconductor thin film manufacturing apparatus according to another embodiment of the present invention.

【図5】基板の温度変化に伴なう真空容器内真空度の変
化を示す線図。
FIG. 5 is a diagram showing a change in the degree of vacuum in the vacuum container with a change in the temperature of the substrate.

【符号の説明】[Explanation of symbols]

1 真空容器 2 基板加熱用ヒーター 3 基板 4,14,24 真空ポンプ 5 放射温度計 6 ビューポート 7 質量分析計 8 コントローラー 17 電離真空計 27 ピラニ真空計 20 記録装置 1 vacuum container 2 heater for heating substrate 3 substrate 4, 14, 24 vacuum pump 5 radiation thermometer 6 viewport 7 mass spectrometer 8 controller 17 ionization vacuum gauge 27 Pirani vacuum gauge 20 recording device

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 真空容器と;前記真空容器内に設けられ
た基板加熱用ヒーターと;前記基板加熱用ヒーターに対
向して配置され少なくとも一部に水素終端化されたシリ
コン表面を露出した基板と;前記基板の表面温度を測定
する放射温度計と;前記水素終端化シリコン表面から離
脱する水素分子の温度分布曲線を取得する水素分子分圧
測定機能部と;この水素分子分圧測定機能部により得ら
れた温度分布曲線によって前記放射温度計の測定誤差に
補正を施す補正機能部を有するコントローラとを具備し
たことを特徴とする半導体薄膜製造装置。
1. A vacuum container; a substrate heating heater provided in the vacuum container; a substrate having a hydrogen-terminated silicon surface exposed at least partially facing the substrate heating heater. A radiation thermometer for measuring the surface temperature of the substrate; a hydrogen molecule partial pressure measuring function unit for obtaining a temperature distribution curve of hydrogen molecules leaving the hydrogen-terminated silicon surface; and a hydrogen molecule partial pressure measuring function unit. A semiconductor thin film manufacturing apparatus, comprising: a controller having a correction function unit that corrects a measurement error of the radiation thermometer based on the obtained temperature distribution curve.
【請求項2】 真空容器と、前記真空容器内に設けられ
た基板加熱用ヒーターと、前記基板加熱用ヒーターの温
度調整を行うコントローラと、前記基板加熱用ヒーター
に対向して配置され少なくとも一部に水素終端化された
シリコン表面を露出した基板と、前記基板の昇温により
熱離脱する水素分子の分圧が全圧を支配する高真空度に
前記真空容器内を排気する排気装置と、基板を375℃
以上に加熱しその温度分布に対応し真空容器内の真空度
を測定する真空計と、前記真空計による測定全圧値を表
面温度に変換する機能部とを具備したことを特徴とする
半導体薄膜製造装置。
2. A vacuum container, a heater for heating the substrate provided in the vacuum container, a controller for adjusting the temperature of the heater for heating the substrate, and at least a part of the heater arranged to face the heater for heating the substrate. A substrate having a hydrogen-terminated silicon surface exposed to the inside, an exhaust device for exhausting the inside of the vacuum container to a high vacuum degree in which the partial pressure of hydrogen molecules thermally released by the temperature rise of the substrate controls the total pressure, and the substrate To 375 ° C
A semiconductor thin film comprising: a vacuum gauge for heating the above and measuring the degree of vacuum in a vacuum container corresponding to the temperature distribution; and a functional unit for converting a total pressure value measured by the vacuum gauge into a surface temperature. Manufacturing equipment.
JP2982794A 1994-02-28 1994-02-28 Semiconductor thin film manufacturing device Pending JPH07240378A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2982794A JPH07240378A (en) 1994-02-28 1994-02-28 Semiconductor thin film manufacturing device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2982794A JPH07240378A (en) 1994-02-28 1994-02-28 Semiconductor thin film manufacturing device

Publications (1)

Publication Number Publication Date
JPH07240378A true JPH07240378A (en) 1995-09-12

Family

ID=12286864

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2982794A Pending JPH07240378A (en) 1994-02-28 1994-02-28 Semiconductor thin film manufacturing device

Country Status (1)

Country Link
JP (1) JPH07240378A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1997034318A1 (en) * 1996-03-12 1997-09-18 Shin-Etsu Handotai Co., Ltd. Heat-treating method and radiant heating device
US8552533B2 (en) 2007-09-12 2013-10-08 Asahi Kasei Emd Corporation Compound semiconductor substrate and method for manufacturing the same

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1997034318A1 (en) * 1996-03-12 1997-09-18 Shin-Etsu Handotai Co., Ltd. Heat-treating method and radiant heating device
US6072164A (en) * 1996-03-12 2000-06-06 Shin-Estu Handotai Co., Ltd. Heat-treating method and radiant heating device
US8552533B2 (en) 2007-09-12 2013-10-08 Asahi Kasei Emd Corporation Compound semiconductor substrate and method for manufacturing the same
JP5428023B2 (en) * 2007-09-12 2014-02-26 旭化成エレクトロニクス株式会社 Compound semiconductor substrate, method of manufacturing compound semiconductor substrate, and semiconductor device

Similar Documents

Publication Publication Date Title
KR102627235B1 (en) Methods for thermally calibrating reaction chambers
JP2923008B2 (en) Film forming method and film forming apparatus
US6622104B2 (en) Heat treatment apparatus, calibration method for temperature measuring system of the apparatus, and heat treatment system
US6924463B2 (en) Pyrometer calibrated wafer temperature estimator
JP2002091574A (en) Batch type heat treatment equipment and its control method
JP2009055000A (en) Novel method of monitoring and regulating temperature in semiconductor process chamber
JP3857623B2 (en) Temperature control method and semiconductor device manufacturing method
US11747209B2 (en) System and method for thermally calibrating semiconductor process chambers
TWI343474B (en) Methods and apparatus for determining the temperature of a substrate
US6924231B2 (en) Single wafer processing method and system for processing semiconductor
JP3764689B2 (en) Semiconductor manufacturing method and semiconductor manufacturing apparatus
JPH07240378A (en) Semiconductor thin film manufacturing device
JP2005518095A (en) Method for calibrating and using a semiconductor processing system
TWI828239B (en) A temperature calibration and control method for chemical vapor deposition equipment
JP3244463B2 (en) Vacuum processing apparatus, film forming apparatus and film forming method using the same
JP2008098214A (en) Correction method of heat treatment temperature and heat treatment method
JP2001289714A (en) Temperature measurement method and measurement device of substrate and treating device of the substrate
JP3244462B2 (en) Film formation method
JPH07150353A (en) Vacuum treating device and film forming device and film forming method using the same
JPS6358913B2 (en)
JP2010040575A (en) Temperature calibration method of vapor deposition equipment, method of manufacturing semiconductor wafer
KR100377012B1 (en) Method for repairing temperature of rapid thermal apparatus
JP3351544B2 (en) Substrate temperature control method
JPH04247870A (en) Vacuum treating device and film forming method using this device, and film formation
JPH07150352A (en) Film formation