JPH11183366A - Measurement cell for spectral analysis - Google Patents

Measurement cell for spectral analysis

Info

Publication number
JPH11183366A
JPH11183366A JP35814497A JP35814497A JPH11183366A JP H11183366 A JPH11183366 A JP H11183366A JP 35814497 A JP35814497 A JP 35814497A JP 35814497 A JP35814497 A JP 35814497A JP H11183366 A JPH11183366 A JP H11183366A
Authority
JP
Japan
Prior art keywords
window material
heating
gas
cell
temperature
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP35814497A
Other languages
Japanese (ja)
Inventor
Takayuki Sato
貴之 佐藤
Hiroshi Masuzaki
宏 増崎
Katsumasa Suzuki
克昌 鈴木
Isao Matsumoto
功 松本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Japan Oxygen Co Ltd
Nippon Sanso Corp
Original Assignee
Japan Oxygen Co Ltd
Nippon Sanso Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Japan Oxygen Co Ltd, Nippon Sanso Corp filed Critical Japan Oxygen Co Ltd
Priority to JP35814497A priority Critical patent/JPH11183366A/en
Priority to PCT/JP1998/005632 priority patent/WO1999034192A1/en
Priority to TW087121308A priority patent/TW376450B/en
Publication of JPH11183366A publication Critical patent/JPH11183366A/en
Pending legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/01Arrangements or apparatus for facilitating the optical investigation
    • G01N21/15Preventing contamination of the components of the optical system or obstruction of the light path

Landscapes

  • Physics & Mathematics (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Optical Measuring Cells (AREA)
  • Investigating Or Analysing Materials By Optical Means (AREA)

Abstract

PROBLEM TO BE SOLVED: To accurately analyze gas containing a constituent which is condensed at an ordinary temperature and decomposed at a high temperature by providing a means for heating a tubular cell main body and a means for heating a transmissive window material. SOLUTION: A measurement cell for spectral analysis is so constructed that a heating means 5 is provided like a cylinder in the outer periphery of the cell main body 1, and as a buffer material 9, a rubber heater having designated elasticity is used. By this arrangement, a transmissive window material 2 can be directly heated by the buffer material 9, and the heating temperature (heating capability) of the transmissive window material 2 can be set separately from the heating temperature of the cell main body 1 by the heating means 5, so that the cell main body 1 and the transmissive window material 2 can be surely heated to the designated temperature. Thus, condensation of gas can be prevented by a portion of the transmissive window material 2, and decomposition of gas in the cell main body 1 can be prevented, so that gas containing a condensed constituent and a decomposited constituent can be analyzed accurately.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、分光分析用測定セ
ルに関し、特に、半導体製造分野で用いられるガスの分
析に利用される分光分析用測定セルに関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a measuring cell for spectroscopic analysis, and more particularly to a measuring cell for spectroscopic analysis used for analyzing a gas used in the field of semiconductor manufacturing.

【0002】[0002]

【従来の技術】ガス中に含まれる微量の不純物を測定す
る方法として、赤外吸収分光法が多く用いられている。
この方法は、測定セル内を流れる被測定ガスに赤外領域
の測定光を照射し、被測定ガスを通過した光の吸収スペ
クトルを測定することによって不純物の種類や含有量を
測定するものであって、測定セルには、被測定ガスが流
れるセル本体の両端に、測定光を透過させる透光性窓材
をそれぞれ装着したものが用いられている。
2. Description of the Related Art Infrared absorption spectroscopy is widely used as a method for measuring trace impurities contained in a gas.
In this method, the measurement gas in the infrared region is irradiated to the gas to be measured flowing in the measurement cell, and the type and content of impurities are measured by measuring the absorption spectrum of the light that has passed through the gas to be measured. As the measurement cell, a cell in which a translucent window material for transmitting measurement light is attached to both ends of a cell body through which a gas to be measured flows is used.

【0003】上記測定セルを用いた分光分析では、測定
セルの一端部に設けたガス導入口からセル内に被測定ガ
スを導入し、他端部に設けたガス導出口から導出するこ
とによってセル内に被測定ガスを流通させ、この状態で
所定の波長の測定光、例えばレーザー光を一端の透光性
窓材を介してセル内に導入し、他端の透光性窓材から導
出した測定光の解析を行うことによって測定データを得
ている。
In the spectroscopic analysis using the measuring cell, the gas to be measured is introduced into the cell from a gas inlet provided at one end of the measuring cell, and is derived from a gas outlet provided at the other end. The gas to be measured is circulated in this state, and in this state, a measurement light having a predetermined wavelength, for example, a laser beam is introduced into the cell through the translucent window material at one end, and is derived from the translucent window material at the other end. The measurement data is obtained by analyzing the measurement light.

【0004】[0004]

【発明が解決しようとする課題】一方、近年の半導体製
造分野では、常温で凝縮する成分と、高温で分解する成
分とを含むガスの分析を高感度で行う必要が生じてい
る。このような成分を含むガスの分析においては、セル
内や透光性窓材にガスが凝縮して付着堆積すると、ガス
の流通や測定光の透過の妨げとなるため、測定セルを所
定温度に加熱してガスの凝縮を防止しなければならな
い。このとき、測定セルにおけるセル本体は、通常、ス
テンレス鋼等の金属で形成されているため、その外周を
ヒーター等で覆うことによって容易に所定温度に加熱す
ることができるが、透光性窓材をヒーター等で覆うこと
はできないため、透光性窓材は、セル本体からの熱伝導
で所定温度に加熱するようにしている。
On the other hand, in the field of semiconductor manufacturing in recent years, it has become necessary to analyze a gas containing a component condensing at room temperature and a component decomposing at high temperature with high sensitivity. In the analysis of a gas containing such components, if the gas is condensed and adheres to the inside of the cell or the light-transmitting window material, it will hinder the flow of gas and the transmission of measurement light. Heat must be applied to prevent condensation of the gas. At this time, since the cell body of the measurement cell is usually formed of a metal such as stainless steel, it can be easily heated to a predetermined temperature by covering its outer periphery with a heater or the like. Cannot be covered with a heater or the like, so that the translucent window material is heated to a predetermined temperature by heat conduction from the cell body.

【0005】ところが、透光性窓材を、凝縮成分が付着
しない温度までセル本体からの熱伝導によって加熱する
ためには、セル本体を必要以上に高温に加熱する必要が
あり、例えば、透光性窓材を100℃程度に加熱するた
めには、セル本体を数百℃にまで加熱する必要があっ
た。しかし、セル本体がこのような高温状態になると、
高温で分解する成分、例えば、シラン,ジクロロシラ
ン,トリクロルシラン等は、200℃程度から分解が始
まるため、これらがセル本体内で分解してしまうことに
なる。
However, in order to heat the translucent window material to a temperature at which condensed components do not adhere by heat conduction from the cell body, it is necessary to heat the cell body to an unnecessarily high temperature. In order to heat the conductive window material to about 100 ° C., it was necessary to heat the cell body to several hundred degrees Celsius. However, when the cell body is in such a high temperature state,
Components that decompose at high temperatures, for example, silane, dichlorosilane, trichlorosilane, etc., begin to decompose at about 200 ° C., and thus decompose in the cell body.

【0006】すなわち、透光性窓材を凝縮成分が付着し
ない温度に加熱しようとすると、セル本体を過剰に加熱
しなければならないため、セル本体内でガスが分解して
しまうことになり、逆に、ガスの分解が生じない範囲に
セル本体を加熱した場合は、透光性窓材を十分に加熱で
きないため、透光性窓材に凝縮成分が付着堆積して測定
光の透過が妨げられることになる。したがって、常温で
凝縮する成分、高温で分解する成分を含むガス、特に、
凝縮温度と分解温度との差が少ない成分を含むガスの測
定は、従来の分光分析器では正確に行うことができなか
った。
That is, if the translucent window material is heated to a temperature at which the condensed component does not adhere, the cell body must be excessively heated, so that the gas is decomposed in the cell body. However, if the cell body is heated to a range where the gas does not decompose, the light-transmitting window material cannot be sufficiently heated, and condensed components adhere to and accumulate on the light-transmitting window material, thereby impeding the transmission of the measurement light. Will be. Therefore, gases containing components that condense at room temperature and components that decompose at high temperatures,
The measurement of a gas containing a component having a small difference between the condensation temperature and the decomposition temperature cannot be performed accurately with a conventional spectroscopic analyzer.

【0007】そこで本発明は、常温で凝縮し、高温で分
解する成分を含むガスの分析も正確に行うことができる
分光分析用測定セルを提供することを目的としている。
SUMMARY OF THE INVENTION It is an object of the present invention to provide a spectroscopic measuring cell capable of accurately analyzing a gas containing a component which condenses at room temperature and decomposes at high temperature.

【0008】[0008]

【課題を解決するための手段】上記目的を達成するた
め、本発明の分光分析用測定セルは、一端部にガス導入
口を、他端部にガス導出口をそれぞれ備えた管状セル本
体の両端に透光性窓材をそれぞれ装着した分光分析用測
定セルにおいて、前記管状セル本体を加熱する手段と、
前記透光性窓材を加熱する手段とを設けたことを特徴と
している。
In order to achieve the above object, a measuring cell for spectroscopic analysis of the present invention comprises a tubular cell body having a gas inlet at one end and a gas outlet at the other end. In the measurement cell for spectroscopic analysis, each equipped with a translucent window material, means for heating the tubular cell body,
Means for heating the translucent window material is provided.

【0009】特に、本発明の分光分析用測定セルは、前
記透光性窓材を加熱する手段が、該透光性窓材を管状セ
ル本体に装着するためのリング状の緩衝材を発熱体とし
たもの、あるいは、透光性窓材の表面にリング状に堆積
させた発熱体であることを特徴としている。
In particular, in the measurement cell for spectroscopic analysis of the present invention, the means for heating the light-transmitting window material may include a ring-shaped buffer material for mounting the light-transmitting window material on the tubular cell body. Or a heating element deposited in a ring shape on the surface of a translucent window material.

【0010】[0010]

【発明の実施の形態】図1は本発明の分光分析用測定セ
ルの第1形態例を示す一部断面正面図である。この分光
分析用測定セルは、所定長さの管状のセル本体1と、該
セル本体1の両端開口部に所定角度でそれぞれ装着され
た透光性窓材2と、セル本体1の一端部に接続されたガ
ス導入管3及び他端部に接続されたガス導出管4と、セ
ル本体1の外周に筒状に設けられた加熱手段5と、前記
透光性窓材2をセル本体1に固着するための固定フラン
ジ6及び押えフランジ7と、透光性窓材2の内外に設け
られるOリング8及び緩衝材9と、両フランジ6,7を
締結するためのボルト10とによって形成されている。
FIG. 1 is a partially sectional front view showing a first embodiment of a measuring cell for spectroscopic analysis of the present invention. The measuring cell for spectroscopic analysis has a tubular cell body 1 having a predetermined length, a light-transmissive window material 2 which is attached to both ends of the cell body 1 at a predetermined angle, and one end of the cell body 1. The gas introduction pipe 3 connected to the gas supply pipe 4 connected to the other end, the heating means 5 provided in a cylindrical shape on the outer periphery of the cell main body 1, and the translucent window material 2 are attached to the cell main body 1. It is formed by a fixing flange 6 and a holding flange 7 for fixing, an O-ring 8 and a cushioning material 9 provided inside and outside the translucent window material 2, and a bolt 10 for fastening the flanges 6 and 7. I have.

【0011】前記セル本体1は、通常はSUS316で
形成されるが、他のステンレス鋼をはじめとして、ニッ
ケル鋼、クロム・モリブデン鋼、ハステロイ等、表面に
おける水分の吸着が少なく、耐食性に優れた金属で形成
することができる。また、セル本体1等において、被測
定ガスが接触する部分には、電界研磨処理や酸化クロム
被覆処理のようなパッシベーションを施しておくことが
好ましい。また、両フランジ6,7には、通常はセル本
体1と同一の材料が用いられるが、フランジ6は、セル
本体1と溶着(溶接)等によって一体化が可能なものが
好ましいが、接触腐食の問題がなければ、各種材料を適
宜組合わせて使用することができる。さらに、前記加熱
手段5には、通常の電熱線と断熱材とからなるものやラ
バーヒーター等を用いることができる。また、フランジ
部分等にも、必要に応じて同様の加熱手段を設けること
ができる。
The cell body 1 is usually formed of SUS316, but is made of metal such as other stainless steel, nickel steel, chromium-molybdenum steel, hastelloy, etc., which has little moisture adsorption on the surface and has excellent corrosion resistance. Can be formed. Further, in the cell body 1 and the like, it is preferable to passivate portions to be contacted by the gas to be measured, such as an electric field polishing process or a chromium oxide coating process. The same material as that of the cell body 1 is usually used for the two flanges 6 and 7, but the flange 6 is preferably one that can be integrated with the cell body 1 by welding (welding) or the like. If there is no problem, various materials can be used in appropriate combination. Further, the heating means 5 may be a normal heating wire and a heat insulating material, a rubber heater, or the like. Further, the same heating means can be provided in the flange portion and the like as necessary.

【0012】前記透光性窓材2は、通常のガラス、一般
の可視域用光学ガラス(例えばBK−7)、石英ガラ
ス,サファイヤ等のガラス系材料の他、CaFのよう
なセラミック等の絶縁物で、表面に触媒作用がない光透
過材料であれば、各種のものを用いることができる。こ
の透光性窓材2の設置角度は、セル本体1の軸線と、透
光性窓材2の軸線とが、例えば石英ガラスの場合は56
度で交わる、いわゆるブリュスターアングルと呼ばれる
角度に設定されている。このブリュスターアングルは、
光の反射を軽減できる角度であって、分光分析用測定セ
ルには好適に用いられている。
The translucent window material 2 is made of a glass material such as ordinary glass, ordinary optical glass for visible region (for example, BK-7), quartz glass, sapphire or the like, or ceramic such as CaF 2 . Various kinds of insulators can be used as long as they are light-transmitting materials having no catalytic action on the surface. The angle at which the translucent window material 2 is set is 56 when the axis of the cell body 1 and the axis of the translucent window material 2 are, for example, quartz glass.
It is set at an angle called the Brewster angle that crosses in degrees. This Brewster angle
This is an angle at which light reflection can be reduced, and is suitably used for a measurement cell for spectroscopic analysis.

【0013】また、前記ガス導入管3のガス導入口3a
及びガス導出管4のガス導出口は、管路の軸線が透光性
窓材2の中心を向き、かつ、セル本体1の軸線を含めた
3本の軸線が一つの平面上に存在する位置に設けられて
いる。このように形成することにより、ガス導入管3か
らセル本体1内に導入される被測定ガスが透光性窓材2
に反射してからセル本体1内を軸線方向に流れる状態に
することができるので、ガス流を円滑に形成できるとと
もに、温度ムラも低減することができる。さらに、導入
・導出部を上述のように形成することにより、セル本体
1の両端におけるガス溜まりもほとんど無くすことがで
きる。
The gas inlet 3a of the gas inlet tube 3
The gas outlet of the gas outlet pipe 4 is located at a position where the axis of the pipe is oriented toward the center of the translucent window material 2 and three axes including the axis of the cell body 1 are present on one plane. It is provided in. By forming in this manner, the gas to be measured introduced into the cell main body 1 from the gas introduction pipe 3 is transmitted through the translucent window material 2.
After the reflection, the gas can flow into the cell body 1 in the axial direction, so that the gas flow can be formed smoothly and the temperature unevenness can be reduced. Further, by forming the inlet / outlet as described above, gas accumulation at both ends of the cell body 1 can be almost eliminated.

【0014】透光性窓材2を支持する内側のOリング8
には、バイトンゴムやフッ素系ゴム等のゴム系材料ある
いはメタルCリング等が用いられており、外側の緩衝材
9は、透光性窓材2をOリング8を介してフランジ6に
均等に押圧するとともに、熱膨張等による応力を吸収す
ることができるように、適度な弾性を有する材料で形成
されている。
An inner O-ring 8 for supporting the translucent window material 2
Is made of a rubber material such as viton rubber or fluorine rubber or a metal C-ring. The outer cushioning material 9 presses the light-transmitting window material 2 evenly against the flange 6 via the O-ring 8. In addition, it is formed of a material having appropriate elasticity so that stress due to thermal expansion or the like can be absorbed.

【0015】そして、本形態例では、緩衝材9として、
ラバーヒーターを所定のリング状に形成したものを用い
ている。このラバーヒーターは、適度な弾性と耐熱性と
を有するゴム系材料に発熱線を埋めこんで発熱体とした
ものであって、該ラバーヒーターに接続したヒーター線
11から電力を供給することによって発熱するように形
成されている。
In this embodiment, as the cushioning material 9,
A rubber heater having a predetermined ring shape is used. This rubber heater is a heating element in which a heating wire is embedded in a rubber-based material having appropriate elasticity and heat resistance, and heat is generated by supplying power from a heater wire 11 connected to the rubber heater. It is formed so that.

【0016】このように、緩衝材9として、通常のゴム
製緩衝材に代えて、所定の弾性を有するラバーヒーター
を使用することにより、透光性窓材2を緩衝材9で直接
加熱することができ、加熱手段5によるセル本体1の加
熱温度とは別に透光性窓材2の加熱温度(加熱能力)を
設定することができるので、セル本体1及び透光性窓材
2を所定の温度に確実に加熱することができる。
As described above, by using a rubber heater having a predetermined elasticity instead of a normal rubber cushioning material as the cushioning material 9, the light-transmitting window material 2 is directly heated by the cushioning material 9. Since the heating temperature (heating ability) of the translucent window material 2 can be set separately from the heating temperature of the cell body 1 by the heating means 5, the cell body 1 and the translucent window material 2 can be set to a predetermined temperature. It can be reliably heated to the temperature.

【0017】これにより、透光性窓材2の部分でのガス
の凝縮を防止できるとともに、セル本体1内でのガスの
分解も防止でき、凝縮成分と分解成分とを含むガスの分
析も正確に行うことができ、半導体製造分野で用いる特
殊ガス中の微量成分の分析を確実に行うことができる。
As a result, the gas can be prevented from being condensed in the translucent window member 2, the gas can be prevented from being decomposed in the cell body 1, and the analysis of the gas containing the condensed component and the decomposed component can be performed accurately. The analysis of trace components in the special gas used in the semiconductor manufacturing field can be performed reliably.

【0018】図2は、本発明の第2形態例を示す要部の
断面図である。本形態例では、透光性窓材2の外側に通
常の緩衝材9を用いるとともに、緩衝材9の内周側にリ
ング状に形成したヒーター12を設け、このヒーター1
2を、押え金具13によって透光性窓材2の外面に押し
付けるようにしたものである。なお、前記第1形態例と
同一の構成要素には同一符号を付して詳細な説明は省略
する。
FIG. 2 is a sectional view of a main part showing a second embodiment of the present invention. In this embodiment, a normal cushioning material 9 is used outside the translucent window material 2, and a ring-shaped heater 12 is provided on the inner peripheral side of the cushioning material 9.
2 is pressed against the outer surface of the translucent window material 2 by the holding metal 13. The same components as those in the first embodiment are denoted by the same reference numerals, and detailed description is omitted.

【0019】前記ヒーター12は、透光性窓材2におけ
る測定光の通過部分を避けた大きさ(径)で、透光性窓
材2を所定の温度範囲に加熱することができれば、任意
の形状で形成することができる。また、ヒーター12と
しては、透光性窓材2の表面に電熱線を直接設けること
もでき、電熱線を耐熱性絶縁材で覆ったものなども使用
することができる。
The heater 12 has a size (diameter) avoiding a portion of the translucent window material 2 through which the measurement light passes, and is capable of heating the translucent window material 2 to a predetermined temperature range. It can be formed in a shape. Further, as the heater 12, a heating wire can be directly provided on the surface of the translucent window material 2, and a heater in which the heating wire is covered with a heat-resistant insulating material can be used.

【0020】図3は、本発明の第3形態例を示す要部の
断面図である。本形態例は、前記第2形態例における押
え金具13の部分にバネ14を介在させ、バネ14によ
ってヒーター12を均等に透光性窓材2の外面に押し付
けるようにしたものである。すなわち、押え金具13で
直接ヒーター12を押し付けると、押し付け量のバラン
スによって透光性窓材2に歪みを発生させたり、Oリン
グ8との間の気密性が損なわれるおそれがあるが、この
ようにバネ14を介在させることにより、歪みの発生を
防止でき、ヒーター12の寸法精度も緩和できる。
FIG. 3 is a sectional view of a main part showing a third embodiment of the present invention. In the present embodiment, a spring 14 is interposed in the presser fitting 13 in the second embodiment, and the heater 14 is uniformly pressed against the outer surface of the translucent window material 2 by the spring 14. That is, when the heater 12 is directly pressed by the holding metal 13, there is a possibility that the light-transmitting window material 2 may be distorted or the airtightness between the O-ring 8 and the O-ring 8 may be deteriorated due to the balance of the pressing amount. By interposing a spring 14 in the heater 12, distortion can be prevented, and the dimensional accuracy of the heater 12 can be reduced.

【0021】図4は、本発明の第4形態例を示す要部の
断面図である。本形態例に示す加熱手段15は、透光性
窓材2における測定光通過部16の外周に、カーボン膜
やタングステン膜、SnO膜(透明導伝膜)を、真空
蒸着,スパッタ,CVD等の方法で堆積させ、その両端
にヒーター線11を接続したものである。このように加
熱手段15として、発熱性を有する膜を透光性窓材2に
一体的に形成することにより、セル本体1への透光性窓
材2の装着を容易に行うことができる。なお、加熱手段
15の外面側を、適宜な断熱材で覆うようにしてもよ
い。
FIG. 4 is a sectional view of a main part showing a fourth embodiment of the present invention. The heating means 15 shown in the present embodiment is configured such that a carbon film, a tungsten film, a SnO 2 film (transparent conductive film) is formed on the outer periphery of the measurement light passage portion 16 in the translucent window material 2 by vacuum evaporation, sputtering, CVD, or the like. And the heater wire 11 is connected to both ends. As described above, by forming a film having a heat-generating property integrally with the translucent window material 2 as the heating means 15, the translucent window material 2 can be easily mounted on the cell body 1. Note that the outer surface side of the heating means 15 may be covered with a suitable heat insulating material.

【0022】また、各形態例において、セル本体1及び
透光性窓材2にそれぞれ熱電対等の温度検出手段を設
け、両温度検出手段と両加熱手段の電源制御部とを適当
に組合わせることにより、測定セル全体を所定の温度に
効率よく加熱保持することができる。なお、セル本体1
と透光性窓材2とは、必ずしも同一温度に加熱する必要
はなく、セル本体1は、高温で分解する成分が分解しな
い範囲に加熱し、透光性窓材2は、透光性窓材2に設け
た加熱手段による直接加熱とセル本体1からの熱伝導と
により、凝縮する可能性のある成分が凝縮して付着しな
い程度の温度に加熱すればよい。
In each embodiment, a temperature detecting means such as a thermocouple is provided on each of the cell body 1 and the translucent window member 2, and the temperature control means and the power control sections of both the heating means are appropriately combined. Accordingly, the entire measurement cell can be efficiently heated and maintained at a predetermined temperature. The cell body 1
And the translucent window material 2 do not necessarily need to be heated to the same temperature, the cell body 1 is heated to a range where the components that decompose at high temperatures are not decomposed, and the translucent window material 2 is It is sufficient to heat the material 2 to a temperature at which the components which may be condensed do not condense and adhere by direct heating by the heating means provided on the material 2 and heat conduction from the cell body 1.

【0023】したがって、常温で凝縮し、高温で分解す
る成分を含むガスの分析を行う場合、該ガスに含まれる
各種成分の凝縮温度や分解温度に応じて各部を適当な温
度に加熱することができるので、ガス成分の凝縮や分解
を生じることがなくなり、正確な分光分析を行うことが
可能となる。また、セル本体1を必要以上に加熱する必
要がなくなるので、測定セル全体の温度分布における温
度差を小さくすることができ、温度差による金属等の負
担も軽減できる。
Therefore, when analyzing a gas containing a component that condenses at room temperature and decomposes at a high temperature, it is necessary to heat each part to an appropriate temperature according to the condensation temperature and decomposition temperature of various components contained in the gas. As a result, condensation and decomposition of gas components do not occur, and accurate spectroscopic analysis can be performed. Further, since it is not necessary to heat the cell main body 1 more than necessary, the temperature difference in the temperature distribution of the entire measurement cell can be reduced, and the burden of metal or the like due to the temperature difference can be reduced.

【0024】[0024]

【実施例】MOCVD法により、トリメチルインジウム
(TMIn)とホスフィン(PH)とを原料としてI
nPを成長させる場合に、装置から排出される排ガス中
の未分解のTMInの濃度を近赤外分光分析法で測定し
た。測定セルには、緩衝材にラバーヒーターを用いた図
1に示す構成のもの(実施例セル)と、緩衝材を通常の
ゴム製としたもの(比較例セル)とを使用した。なお、
セル本体及び各フランジはSS316製とし、セル本体
は長さ50cm、内径20mmとした。また、透光性窓
材には、厚さ10mmの透明石英ガラスを使用した。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS Trimethylindium (TMIn) and phosphine (PH 3 ) were used as starting materials by MOCVD.
When growing nP, the concentration of undecomposed TMIn in the exhaust gas discharged from the apparatus was measured by near-infrared spectroscopy. As the measurement cells, those having the configuration shown in FIG. 1 using a rubber heater as a buffer material (Example cells) and those using a normal rubber cushion material (Comparative Example cells) were used. In addition,
The cell body and each flange were made of SS316, and the cell body was 50 cm long and 20 mm inside diameter. In addition, a transparent quartz glass having a thickness of 10 mm was used for the translucent window material.

【0025】排ガス中に含まれる副生成物のリン
(P,P)が凝縮して透光性窓材に付着しないよう
に、透光性窓材を100℃に加熱した。その結果、図5
の温度分布に示すように、実施例セルの場合は、セル本
体中央部Cの温度が120℃程度のときに,両側の透光
性窓材部分A,Bが100℃となり、リンの凝縮やTM
Inの分解を生じることなくTMInの濃度を正確に測
定することができた。一方、比較例セルの場合は、透光
性窓材部分A,Bを100℃に加熱するためには、セル
本体中央部Cの温度を200℃にしなければならなかっ
た。TMInは、130℃程度から分解が始まるため、
加熱途中でTMInの分解が生じるとともに、透光性窓
材にリンが付着し、正確な測定を行うことができなかっ
た。
The light-transmitting window material was heated to 100 ° C. so that the by-product phosphorus (P 2 , P 4 ) contained in the exhaust gas was not condensed and adhered to the light-transmitting window material. As a result, FIG.
In the case of the example cell, when the temperature of the central portion C of the cell body is about 120 ° C., the translucent window material portions A and B on both sides become 100 ° C. as shown in FIG. TM
The concentration of TMIn could be accurately measured without decomposition of In. On the other hand, in the case of the cell of the comparative example, the temperature of the central portion C of the cell body had to be 200 ° C. in order to heat the translucent window material portions A and B to 100 ° C. Since TMIn starts to decompose at about 130 ° C,
TMIn was decomposed during heating, and phosphorus adhered to the light-transmitting window material, so that accurate measurement could not be performed.

【0026】[0026]

【発明の効果】以上説明したように、本発明の分光分析
用測定セルによれば、セル本体と透光性窓材とを所定の
温度に加熱することができるので、凝縮温度と分解温度
との差が少ない成分を含むガス中の特定成分を分光分析
によって正確に測定することができる。
As described above, according to the measuring cell for spectroscopic analysis of the present invention, the cell body and the translucent window material can be heated to a predetermined temperature. A specific component in a gas containing a component having a small difference can be accurately measured by spectroscopic analysis.

【図面の簡単な説明】[Brief description of the drawings]

【図1】 本発明の分光分析用測定セルの第1形態例を
示す一部断面正面図である。
FIG. 1 is a partially sectional front view showing a first embodiment of a measurement cell for spectroscopic analysis of the present invention.

【図2】 測定セルの第2形態例を示す要部の断面図で
ある。
FIG. 2 is a sectional view of a main part showing a second embodiment of the measuring cell.

【図3】 測定セルの第3形態例を示す要部の断面図で
ある。
FIG. 3 is a sectional view of a main part showing a third embodiment of a measuring cell.

【図4】 測定セルの第4形態例を示す要部の断面図で
ある。
FIG. 4 is a sectional view of a main part showing a fourth embodiment of a measuring cell.

【図5】 測定セルの温度分布を示す図である。FIG. 5 is a diagram showing a temperature distribution of a measurement cell.

【符号の説明】[Explanation of symbols]

1…セル本体、2…透光性窓材、3…ガス導入管、3a
…ガス導入口、4…ガス導出管、5…加熱手段、6…固
定フランジ、7…押えフランジ、8…Oリング、9…緩
衝材、10…ボルト、11…ヒーター線、12…ヒータ
ー、13…押え金具、14…バネ
DESCRIPTION OF SYMBOLS 1 ... Cell main body, 2 ... Translucent window material, 3 ... Gas introduction pipe, 3a
... gas inlet, 4 ... gas outlet pipe, 5 ... heating means, 6 ... fixed flange, 7 ... holding flange, 8 ... O-ring, 9 ... cushioning material, 10 ... bolt, 11 ... heater wire, 12 ... heater, 13 … Holding bracket, 14… Spring

───────────────────────────────────────────────────── フロントページの続き (72)発明者 松本 功 東京都港区西新橋1−16−7 日本酸素株 式会社内 ──────────────────────────────────────────────────続 き Continuing on the front page (72) Inventor Isao Matsumoto 1-16-7 Nishi-Shimbashi, Minato-ku, Tokyo Nippon Sanso Corporation

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】 一端部にガス導入口を、他端部にガス導
出口をそれぞれ備えた管状セル本体の両端に透光性窓材
をそれぞれ装着した分光分析用測定セルにおいて、前記
管状セル本体を加熱する手段と、前記透光性窓材を加熱
する手段とを設けたことを特徴とする分光分析用測定セ
ル。
1. A spectroscopic measurement cell comprising a tubular cell body having a gas inlet at one end and a gas outlet at the other end, and a translucent window material attached to both ends of the tubular cell body. And a means for heating the light-transmitting window material.
【請求項2】 前記透光性窓材を加熱する手段は、該透
光性窓材を管状セル本体に装着するためのリング状の緩
衝材を発熱体としたものであることを特徴とする請求項
1記載の分光分析用測定セル。
2. The heating means for heating the light-transmitting window material comprises a ring-shaped buffer for mounting the light-transmitting window material on the tubular cell body as a heating element. The measurement cell for spectroscopic analysis according to claim 1.
【請求項3】 前記透光性窓材を加熱する手段は、該透
光性窓材の表面にリング状に堆積させた発熱体であるこ
とを特徴とする請求項1記載の分光分析用測定セル。
3. The measurement for spectroscopic analysis according to claim 1, wherein the means for heating the translucent window member is a heating element deposited in a ring shape on the surface of the translucent window member. cell.
JP35814497A 1997-12-25 1997-12-25 Measurement cell for spectral analysis Pending JPH11183366A (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP35814497A JPH11183366A (en) 1997-12-25 1997-12-25 Measurement cell for spectral analysis
PCT/JP1998/005632 WO1999034192A1 (en) 1997-12-25 1998-12-14 Measuring cell for spectral analysis
TW087121308A TW376450B (en) 1997-12-25 1998-12-21 Measurement cell for spectral analysis

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP35814497A JPH11183366A (en) 1997-12-25 1997-12-25 Measurement cell for spectral analysis

Publications (1)

Publication Number Publication Date
JPH11183366A true JPH11183366A (en) 1999-07-09

Family

ID=18457778

Family Applications (1)

Application Number Title Priority Date Filing Date
JP35814497A Pending JPH11183366A (en) 1997-12-25 1997-12-25 Measurement cell for spectral analysis

Country Status (3)

Country Link
JP (1) JPH11183366A (en)
TW (1) TW376450B (en)
WO (1) WO1999034192A1 (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6491758B1 (en) 1999-08-31 2002-12-10 Mitsubishi Materials Silicon Corporation CVD apparatus equipped with moisture monitoring
US6776805B2 (en) 2000-02-28 2004-08-17 Mitsubishi Materials Silicon Corporation Semiconductor manufacturing apparatus having a moisture measuring device
US7193213B2 (en) 2002-08-09 2007-03-20 Toagosei Co., Ltd. Method for measurement of silanol group concentration and cell for measurement
JP2008164304A (en) * 2006-12-26 2008-07-17 Horiba Ltd Measuring cell, and gas analyzer using measuring cell
US8253930B2 (en) 2009-02-20 2012-08-28 Shimadzu Corporation Absorption spectrometric apparatus for semiconductor production process
WO2014188891A1 (en) * 2013-05-24 2014-11-27 アズビル株式会社 Dryness measurement device and piping for wet steam
JP2014238391A (en) * 2013-05-09 2014-12-18 国立大学法人徳島大学 Raw material fluid concentration detector
WO2016017122A1 (en) * 2014-07-29 2016-02-04 国立大学法人徳島大学 Inline concentration measurement device

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS52159277U (en) * 1976-05-28 1977-12-03
US5083865A (en) * 1990-05-11 1992-01-28 Applied Materials, Inc. Particle monitor system and method
US5463460A (en) * 1993-07-08 1995-10-31 Applied Materials, Inc. Particle monitoring sensor
JP2995450B2 (en) * 1994-06-24 1999-12-27 株式会社ベンカン Vacuum exhaust valve for CVD equipment
JPH09258154A (en) * 1996-03-18 1997-10-03 Citizen Watch Co Ltd Apparatus for producing liquid crystal cell and production of liquid crystal cell by using the apparatus

Cited By (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6491758B1 (en) 1999-08-31 2002-12-10 Mitsubishi Materials Silicon Corporation CVD apparatus equipped with moisture monitoring
US6887721B2 (en) 1999-08-31 2005-05-03 Mitsubishi Materials Silicon Corporation Method of purging CVD apparatus and method for judging maintenance of times of semiconductor production apparatuses
DE10042881B4 (en) * 1999-08-31 2012-06-06 Sumco Corporation A CVD device for forming a semiconductor film on a wafer and a method for judging maintenance times of a CVD device
US6776805B2 (en) 2000-02-28 2004-08-17 Mitsubishi Materials Silicon Corporation Semiconductor manufacturing apparatus having a moisture measuring device
US6794204B2 (en) 2000-02-28 2004-09-21 Mitsubishi Materials Silicon Corporation Semiconductor manufacturing method and semiconductor manufacturing apparatus
US7033843B2 (en) 2000-02-28 2006-04-25 Taiyo Nippon Sanso Corporation Semiconductor manufacturing method and semiconductor manufacturing apparatus
US7193213B2 (en) 2002-08-09 2007-03-20 Toagosei Co., Ltd. Method for measurement of silanol group concentration and cell for measurement
JP2008164304A (en) * 2006-12-26 2008-07-17 Horiba Ltd Measuring cell, and gas analyzer using measuring cell
US8253930B2 (en) 2009-02-20 2012-08-28 Shimadzu Corporation Absorption spectrometric apparatus for semiconductor production process
JP2014238391A (en) * 2013-05-09 2014-12-18 国立大学法人徳島大学 Raw material fluid concentration detector
WO2014188891A1 (en) * 2013-05-24 2014-11-27 アズビル株式会社 Dryness measurement device and piping for wet steam
JP2014228493A (en) * 2013-05-24 2014-12-08 アズビル株式会社 Dryness measurement device and piping for wet steam
WO2016017122A1 (en) * 2014-07-29 2016-02-04 国立大学法人徳島大学 Inline concentration measurement device
JPWO2016017122A1 (en) * 2014-07-29 2017-04-27 国立大学法人徳島大学 Inline type concentration measuring device
CN106662524A (en) * 2014-07-29 2017-05-10 国立大学法人德岛大学 Inline concentration measurement device
KR20180095113A (en) * 2014-07-29 2018-08-24 토쿠시마 대학 Inline concentration measurement device
US10222323B2 (en) 2014-07-29 2019-03-05 Tokushima University Inline concentration measurement device

Also Published As

Publication number Publication date
WO1999034192A1 (en) 1999-07-08
TW376450B (en) 1999-12-11

Similar Documents

Publication Publication Date Title
AU2013359242B2 (en) Optical reflectors for spectrometer gas cells
US8262287B2 (en) Thermocouple
US6121617A (en) Infrared gas analyzer
US20010034004A1 (en) Quartz window having reinforcing ribs
WO1998038673A1 (en) Substrate temperature measuring instrument, method of measuring substrate temperature, substrate heating method and heat treatment device
JPH11183366A (en) Measurement cell for spectral analysis
JPH08114501A (en) Infrared ray spectral sensor for gas
US20140119993A1 (en) Chemiluminescent detector having coating to reduce excited species adsorption
US10488258B2 (en) Optical reflectors for spectrometer gas cells
WO2009081748A1 (en) Radiometric temperature measuring method and radiometric temperature measuring system
US20120009694A1 (en) Apparatus and method for monitoring precursor flux
EP0834732A2 (en) Gas analyzer
JP2002521817A (en) Infrared transparent thermal reactor cover member
US20150125345A1 (en) Device for determining the concentration of at least one gas in a sample gas stream
WO1998052020A1 (en) Self normalizing radiant energy monitor and apparatus for gain independent material quantity measurements
JP3126759B2 (en) Optical analyzer
JPH10111186A (en) Method and apparatus for measuring temperature of semiconductor substrate
US20200182776A1 (en) Absorption analyzer
JP2001244201A (en) Moisture monitoring device and semiconductor manufacturing device equipped therewith
JP3482441B2 (en) Infrared attenuated total reflection thin film measuring device
JPH08148502A (en) Temperature and semiconductor production system
JP2595475Y2 (en) Infrared gas analyzer
JP3325384B2 (en) Temperature measurement device for heat treatment furnace
JP3360560B2 (en) Infrared thickness gauge infrared light source
TWI837225B (en) Absorption analyzer