WO2014188891A1 - Dryness measurement device and piping for wet steam - Google Patents

Dryness measurement device and piping for wet steam Download PDF

Info

Publication number
WO2014188891A1
WO2014188891A1 PCT/JP2014/062524 JP2014062524W WO2014188891A1 WO 2014188891 A1 WO2014188891 A1 WO 2014188891A1 JP 2014062524 W JP2014062524 W JP 2014062524W WO 2014188891 A1 WO2014188891 A1 WO 2014188891A1
Authority
WO
WIPO (PCT)
Prior art keywords
dryness
light
wet steam
opening
heat loss
Prior art date
Application number
PCT/JP2014/062524
Other languages
French (fr)
Japanese (ja)
Inventor
康博 五所尾
義一 西野
志功 田邉
Original Assignee
アズビル株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by アズビル株式会社 filed Critical アズビル株式会社
Publication of WO2014188891A1 publication Critical patent/WO2014188891A1/en

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/17Systems in which incident light is modified in accordance with the properties of the material investigated
    • G01N21/25Colour; Spectral properties, i.e. comparison of effect of material on the light at two or more different wavelengths or wavelength bands
    • G01N21/31Investigating relative effect of material at wavelengths characteristic of specific elements or molecules, e.g. atomic absorption spectrometry
    • G01N21/35Investigating relative effect of material at wavelengths characteristic of specific elements or molecules, e.g. atomic absorption spectrometry using infrared light
    • G01N21/3554Investigating relative effect of material at wavelengths characteristic of specific elements or molecules, e.g. atomic absorption spectrometry using infrared light for determining moisture content

Definitions

  • the present invention relates to a wet steam measuring device and a wet steam pipe.
  • wet steam After water reaches the boiling point, it becomes wet steam in which water vapor gas (gas phase part: saturated steam) and water droplets (liquid phase part: saturated water) are mixed.
  • dryness the weight ratio of the water vapor gas to the wet steam.
  • dryness the weight ratio of the water vapor gas to the wet steam.
  • the dryness is 0.5.
  • the wet steam dryness is controlled. It is desired to be in a state close to 1.0. Therefore, various methods for measuring the dryness have been proposed.
  • Patent Document 1 utilizes the fact that there is no change in the total enthalpy before and after the pressure control valve provided in the pipe, and based on the wet steam flow and pressure before and after the pressure control valve, the saturated steam table It is related with the technique which calculates
  • Patent Document 2 allows light of a plurality of wavelengths to pass through wet steam from a broadband light source, detects light of a plurality of wavelengths that has passed through the wet steam with an optical detector, and provides dry steam for each wavelength of light. Determining the intensity ratio of the intensity of the detected light to the intensity of the light as it passes through, calculating a scaled intensity ratio by successively applying a scaling factor to the intensity ratio, and for each of the scaling factors, Calculate the residual, determine the minimum residual of the multiple residuals, determine the droplet size distribution by calculating the number density of droplets corresponding to the minimum residual, and based on the droplet size distribution
  • the present invention relates to a technique for determining the steam weight ratio.
  • the technique disclosed in Patent Document 1 has a long time constant of a sensor that detects the flow rate and pressure of wet steam, and changes the state of the wet steam to be measured from a two-phase state to a gas phase state. Since it is necessary to stabilize the measurement object in the gas phase, there is a problem that it takes time to measure the dryness, and it is not suitable for measuring the dryness in a transient state until the wet steam is stabilized. For this reason, the inventor of the present application has studied the improvement of the technique for measuring the dryness of the wet steam by passing light through the wet steam as described in Patent Document 2.
  • an object of the present invention is to measure the dryness with high accuracy by suppressing heat loss that occurs when measuring the dryness of wet steam by light.
  • the inventor of the present application diligently studied a technique for measuring the dryness of wet steam using light. Specifically, the present invention provides the following means to overcome the above problems and solve the above problems. I came up with it.
  • the dryness measuring apparatus transmits a light incident portion through which light enters from an incident opening provided in a pipe through which wet steam to be measured flows, and transmits the wet steam from an injection opening provided in the pipe.
  • the light receiving unit that receives the reflected light and outputs a detection signal
  • the dryness specifying unit that specifies the dryness of the wet steam with reference to the detection signal
  • the heat of at least one of the entrance opening and the exit opening And a heat loss compensator for compensating for the loss.
  • the present invention may have the following configuration as desired.
  • the heat loss compensator includes a heat generation unit and a power supply unit, and the power supply unit generates electric power that can generate heat to compensate the heat loss in the heat generation unit. Supply.
  • the heat generating part is a rubber heater in which a heating wire is laid.
  • the rubber heater is provided around at least one of the entrance opening and the exit opening.
  • the rubber heater is provided around at least one of the light incident part and the light receiving part.
  • the heat generating portion is a transparent conductive film, and is provided on at least one opening surface of the entrance opening and the exit opening.
  • a temperature sensor is provided on at least one of the entrance opening and the exit opening, and the power supply unit is based on a detection signal of the temperature sensor. Electric power is supplied to the heat generating part so that the temperature of the opening surface is equal to or higher than the temperature of the wet steam.
  • the wet steam pipe of the present invention is a pipe through which wet steam to be measured flows, an incident window through which light enters, an exit window through which light transmitted or reflected by the wet steam is emitted, and the detection signal ,
  • a dryness specifying unit that specifies the dryness of the wet steam
  • a heat loss compensator that compensates for heat loss that occurs in at least one of the entrance window and the exit window.
  • the schematic cross section explaining the composition of the dryness measuring apparatus concerning Embodiment 1 of the present invention The schematic plan view of the rubber sheet which concerns on Embodiment 1 of this invention.
  • the first embodiment relates to a dryness measuring apparatus that measures the dryness of wet steam using a light entrance opening and / or an exit opening having a structure like a sight glass provided in a wet steam pipe.
  • the wet steam pipe 30 is a fluid flow passage through which the wet steam SA to be measured flows, and has a structure as a sight glass for transmitting light into the pipe 30.
  • an entrance opening A1 and an exit opening A2 are provided on the side wall of the pipe 30.
  • the entrance opening A ⁇ b> 1 and the exit opening A ⁇ b> 2 are provided at positions facing the axis of the pipe 30.
  • An incident side cylinder 31 is connected to the incident opening A1, and an emission side cylinder 32 is provided at the emission opening A2.
  • Flange 31f and 32f are formed in the edge of entrance side tube 31 and exit side tube 32, respectively, and tempered glass 33 and 34 are being fixed by a screw and other fixing means, respectively.
  • a known heat insulating material such as glass wool is laid on the outer peripheral surface of the wet steam pipe 30 excluding the vicinity of the incident opening A1 and the injection opening A2, and in the region of the wet steam pipe 30 where the heat insulating material is laid, The heat loss to the outside is controlled slightly.
  • these sight glass structures light is incident from the outside of the tempered glass 33 forming the end face of the incident side tube 31 while the inside of the pipe 30 is kept airtight, and is transmitted through the wet steam SA flowing through the pipe 30. It is possible to inject outward from the tempered glass 34 forming the end face of the injection side tube 32.
  • the pipe 30, the incident side tube 31, the emission side tube 32, etc. are made of a durable metal such as carbon steel, stainless steel, or other special materials.
  • a sight glass is also called a flow sight. It is installed in the middle of a pipeline, and it is marketed as an instrument to directly monitor the flow, stop, and flow rate / flow rate of fluid passing through the pipeline. Commercial products are available.
  • the dryness measuring apparatus 1a includes a light incident part 11, a light receiving part 12, a dryness specifying part 13, and a heat loss compensator (20, 21, 22).
  • the light incident part 11 is a means for entering light of a predetermined wavelength into the incident side tube 31 from the entrance opening A1, that is, from the outside of the tempered glass 31, and even if it is a self-light emitting means for generating light itself, It may be a light guiding means for introducing light emitted from the light emitting means.
  • a light emitting diode, a super luminescent diode, a semiconductor laser, a laser oscillator, a fluorescent discharge tube, a low pressure mercury lamp, a xenon lamp, a halogen lamp, a metal halide lamp, an ultraviolet light source, an infrared light source, and a light bulb are used as the self-light emitting means.
  • the light guiding means a plastic optical fiber made of polymethyl methacrylate resin (PMMA: Poly (methymethacrylate)), a glass optical fiber made of quartz glass, or the like can be used.
  • PMMA Poly (methymethacrylate)
  • quartz glass glass optical fiber made of quartz glass, or the like.
  • the present invention is not limited to this as long as it has a function of propagating light emitted from the means.
  • the light receiving unit 12 is a light sensing unit that transmits the wet steam SA, receives the light emitted from the emission opening A2, that is, the emission side tube 32 through the tempered glass 32, and outputs a detection signal Sd.
  • a photoelectric conversion element such as a photodiode or a phototransistor can be used.
  • the light receiving unit 12 is limited to this as long as it can output a light reception signal Sd according to the intensity of light transmitted through the wet steam. Not.
  • the dryness specifying unit 13 is a calculation means for specifying the dryness ⁇ of the wet steam SA by an arbitrary calculation method with reference to the detection signal Sd.
  • the dryness specifying unit 13 is functionally realized by the computer device executing a predetermined software program for specifying the dryness.
  • the computer device is, for example, a general-purpose computer including an input device, an output device, a program storage device, a temporary storage device, and a storage device, and the configuration thereof is not limited.
  • the calculation method of the dryness of the wet steam executed by the dryness specifying unit 13 can apply various known methods, and the calculation method is not limited.
  • the dryness specifying unit 13 refers to the light reception signal Sd, calculates the intensity of light transmitted through the wet steam SA, or a physical quantity related to the intensity of the light, and then stores the light intensity stored in advance in the storage device.
  • a relationship table between physical quantities related to light intensity and dryness ⁇ is referred to. Then, the dryness ⁇ corresponding to the light intensity indicated by the light reception signal Sd or the physical quantity related to the light intensity is read and output as a measured value of the dryness ⁇ .
  • the dryness ⁇ may be calculated based on a relational expression indicating the relationship between the light intensity or a physical quantity related to the light intensity and the dryness ⁇ .
  • the dryness specifying unit 13 may calculate the dryness ⁇ while mutually referring to the light intensity obtained for each of the plurality of wavelengths of light or the physical quantity related to the light intensity.
  • the heat loss compensator is a means for compensating for heat loss that occurs in the entrance aperture A1 and the exit aperture A2.
  • the heat loss compensator includes heat generating units (21, 22) and a power supply unit 20, and the heat generating units are specifically rubber heaters 21 and 22.
  • the rubber heater 21 is provided on the outer wall of the incident side tube 31 and heats the incident side tube 31 to compensate for heat loss generated on the incident opening A1 side.
  • the rubber heater 22 is provided on the outer wall of the injection side tube 32 and heats the injection side tube 32 to compensate for heat loss generated on the injection opening A2 side.
  • the structure of the rubber heater 21 on the incident opening A1 side will be described, but the same applies to the rubber heater 22 on the injection opening A2 side.
  • FIG. 2 shows a plan view of the rubber heater 21.
  • the rubber heater 21 has a long rectangular shape in a belt shape, and is configured by laying a heating element 213 inside the rubber sheet 210. Hook fasteners 214 and 215 are attached to the end of the rubber sheet 210.
  • the rubber sheet 210 is an insulator having flexibility and constant thermal conductivity, and is made of, for example, silicon rubber.
  • the material of the rubber sheet 210 is not limited to silicon rubber, and various materials can be applied as long as they satisfy flexibility, thermal conductivity, insulation, and durability.
  • the rubber heater 21 is configured by sandwiching a heating element 213 between two rubber sheets 210 processed into a planar shape and bonding them with an adhesive or an adhesive film selected according to the operating temperature.
  • the heating element 213 is a linear or planar heating means that has lead wires 211 and 212 attached to both ends and generates heat when power is supplied from the lead wires 211 and 212.
  • a general electrothermal material capable of converting current into heat quantity can be applied, and for example, carbon or nickel alloy resistance wire can be applied.
  • the hook-and-loop fasteners 214 and 215 have a function of generating an adhesive force when they are brought into contact with each other, and can be detachably locked at a portion to which each hook-and-loop fastener is attached.
  • one of the hook-and-loop fasteners 214 and 215 is a surface raised in a hook shape, and the other is a surface raised in a loop shape.
  • the hook-and-loop fastener 214 is attached with the raised surface facing the surface side at the end of the surface of the rubber sheet 210.
  • the hook-and-loop fastener 215 is attached at the end of the back surface of the rubber sheet 210 with the raised surface facing the back surface.
  • the hook-and-loop fasteners 214 and 215 are optional configurations, and instead of the hook-and-loop fastener, the rubber sheet 210 is fastened from the outside with a string-like member or a band-like member, or the end of the rubber sheet 210 is bonded with an adhesive or the like.
  • the rubber heater 21 may be attached to the incident side tube 33.
  • the rubber heater 21 is processed so as to have a width d1 in the longitudinal direction of the band and a width d2 in the width direction of the band.
  • the width d1 in the longitudinal direction is such that when the rubber sheet 210 is wound around the outer periphery of the incident side tube 31, the hook-and-loop fasteners 214 and 215 are not loosened while the inner surface of the rubber sheet is in contact with the outer peripheral surface of the incident side tube 31. Adjust the length so that they can touch each other.
  • the width d2 in the short direction is adjusted to correspond to the height of the outer periphery of the incident side tube 31, that is, the width from the outer wall of the pipe 30 to the rear surface of the flange 31f.
  • the width d1 and the width d2 of the rubber heater 22 are adjusted so that the rubber heater 22 matches the shape of the emission side cylinder 32.
  • the power supply unit 20 is configured to be able to supply power that can generate heat that compensates for heat loss in the heat generating unit.
  • the power supply unit 20 is connected to the lead wires 211 and 212 from the rubber heater 21, and applies a predetermined voltage between the lead wires, whereby the heating power D ⁇ b> 1 is generated from the heating element 213 of the rubber heater 21. Can be supplied.
  • the power supply unit 20 is connected to the lead wires 211 and 212 from the rubber heater 22, and can apply a predetermined voltage between the lead wires to supply the heating power D ⁇ b> 2 to the heating element 213 of the rubber heater 22. It has become.
  • the power supplied by the power supply unit 20 is set to such an amount that the heat generation unit (rubber heaters 21 and 22) generates a heat quantity that can compensate for heat loss that occurs near the entrance opening A1 and the exit opening A2.
  • Such electric power is, for example, near the entrance opening A1 (specifically, the inner wall surface of the tempered glass 33 and the entrance side tube 31) or near the exit opening A2 (specifically, the tempered glass 34 and the exit side tube 32). It can be obtained by experimentally specifying electric power that does not condense the wet steam SA on the inner wall surface or stagnate the liquid phase.
  • the power supply unit 20 supplies the heating powers D1 and D2 to the rubber heaters 21 and 22 that are the heat generating parts.
  • the heating element 213 receives the heating power and generates heat, and the heat is transmitted to the incident side tube 31 and the emission side tube 32.
  • a heat insulating material cannot be provided in the vicinity of the entrance opening A1 and the exit opening A2, in particular, outside the tempered glass 33 and the tempered glass 34. Therefore, a slight heat loss occurs, but the amount of heat sufficient to compensate for the heat loss is rubber. Supplied from heaters 21 and 22. As a result, the phenomenon that aggregation occurs in the wet steam SA or the liquid phase stagnates is suppressed.
  • light is irradiated from the light incident part 11 into the incident side tube 31 through the tempered glass 33 toward the wet steam SA flowing inside the wet steam pipe 30.
  • the emitted light is received by the light receiving unit 12 and outputs a light reception signal Sd corresponding to the intensity of the light transmitted through the wet steam SA or a physical quantity related to the intensity of the light.
  • the dryness specifying unit 13 refers to the received light reception signal Sd and specifies the dryness ⁇ by a predetermined calculation method.
  • the specified dryness ⁇ is output to an output device provided in the dryness specifying unit 13. This output form may be output information display, printing, or data transmission.
  • the power supply unit 20 performs heating to compensate for the amount of heat lost near the entrance opening A1 and the exit opening A2.
  • Electric power D1 and D2 are supplied, and rubber heaters 21 and 22 provided on the outer circumferences of the incident side cylinder 31 and the emission side cylinder 32 compensate for heat loss. Therefore, it can suppress that wet steam SA condenses near a sight glass, or a liquid phase stagnates, and can prevent the deterioration of the precision of dryness measurement.
  • the rubber heaters 21 and 22 are applied as the heat generating portions, it is easy to process into a shape suitable for the shapes of the incident side tube 31 and the emission side tube 32.
  • Embodiment 2 of the present invention relates to a heat generating portion applied to a light incident portion having a form like an optical fiber.
  • FIG. 3 the structure of the dryness measuring apparatus 1b in this Embodiment 2 is shown.
  • the wet steam pipe 30 according to the second embodiment has a structure in which a head portion of an optical fiber can be inserted into the incident opening A1 instead of the incident side tube.
  • 11b differs from the first embodiment in that it has an optical fiber structure.
  • FIG. 1 In the case where a light receiving means such as an optical probe is provided in the exit aperture A2, a structure corresponding to an optical fiber similar to the entrance aperture A1 side may be adopted.
  • the dryness measuring apparatus 1b in the second embodiment is different from the first embodiment in the structure of the light incident part 11b and the structure of the heat generating part applied to the light incident part 11b, and the other structures are the same as in the above embodiment. is there.
  • FIG. 3 a schematic cross section near the entrance opening A1 including the light entrance portion 11b is shown, and the configuration on the exit opening A2 side is omitted.
  • the light incident portion 11 b is means for causing light of a predetermined wavelength to enter the wet steam pipe 30 from the incident opening A ⁇ b> 1, and includes an optical fiber head 110, a condensing lens 111, and an optical fiber cable 112. , A light emitting unit 113, and a light emitting power supply unit 114.
  • a rubber heater 21b is provided.
  • the light emitting power supply unit 114 is a driving unit that supplies predetermined power to the light emitting unit 113 to cause the light emitting unit 113 to emit light with a light amount sufficient to measure the dryness of wet steam.
  • the power supplied to the light emitting unit 113 is an amount of power corresponding to the specification of the light emitting unit 113.
  • power is further supplied with a frequency and voltage waveform according to the specifications of the light emitting unit 113.
  • the light emitting unit 113 is a self-light emitting means for generating light itself.
  • a light emitting diode, a super luminescent diode, a semiconductor laser, a laser oscillator, a fluorescent discharge tube, a low pressure mercury lamp, a xenon lamp, a halogen lamp, a metal halide lamp, an ultraviolet ray A light source, an infrared light source, a light bulb, and the like can be used, but are not limited to the above as long as they can generate light having a stable wavelength and intensity.
  • the optical fiber cable 112 is a light guiding unit that transmits light output from the light emitting unit 113.
  • a plastic optical fiber made of polymethyl methacrylate resin (PMMA: Poly (methyl methacrylate)), a glass optical fiber made of quartz glass, or the like can be used.
  • PMMA Poly (methyl methacrylate)
  • quartz glass glass optical fiber made of quartz glass, or the like
  • the present invention is not limited to this as long as it has a function of propagating light.
  • the optical fiber head 110 is a container that houses the tip of the optical fiber cable 112 for a predetermined length, and includes a condenser lens 111 at the tip.
  • the optical fiber head 110 blocks external light, connects the internal optical fiber cable 112 and the condenser lens 111 optically without loss, and connects the optical fiber cable 112 and the condenser lens 111 physically and chemically.
  • the optical fiber head 110 is preferably made of a chemically stable material having mechanical strength such as metal or resin.
  • the entrance opening A1 of the wet steam pipe 30 has a diameter that matches the tip diameter of the optical fiber head 110, and the tip of the optical fiber head 110 is the entrance opening A1. It is being fixed in the state inserted in the piping 30.
  • the optical fiber head 110 may protrude from the entrance opening A1 to the back of the pipe 30 within a range that does not affect the flow of the wet steam SA.
  • a rubber heater 21b and a power supply unit 20 are provided as a heat loss compensation device that compensates for heat loss generated in the incident aperture A1.
  • the power supply unit 20 is the same as the power supply unit 20 in the first embodiment, and a description thereof will be omitted.
  • the rubber heater 21b is a heat generating portion provided so as to cover the outer periphery in the vicinity of the tip of the optical fiber head 110, and the detailed structure except for the overall dimensions has been described with reference to FIG. The same as the rubber heater 21. That is, as described in the first embodiment, the rubber heater 21b has a structure in which the heating element 213 is provided inside a rubber sheet having a long rectangular band shape, and supplies power to the heating element 213. Lead wires 211 and 212 are provided, and the lead wires 211 and 212 are connected to the power supply unit. Surface fasteners 214 and 215 are attached to the end of the rubber heater 21b.
  • the rubber fastener 21b is attached to the optical fiber head 110 by winding the surface fasteners 214 and 215 around the outer periphery of the optical fiber head 110.
  • the outer periphery of 110 can be tightly fixed.
  • the heating element 213 and the hook-and-loop fasteners 214 and 215 are not shown.
  • the width d1 in the longitudinal direction of the rubber heater 21b is such that when the rubber heater 21b is wound around the outer periphery of the optical fiber head 110, the inner surface of the rubber sheet is in contact with the outer peripheral surface of the optical fiber head 110 without looseness.
  • the length is adjusted such that 214 and 215 can be brought into contact with each other.
  • the width in the short direction of the rubber heater 21b is adjusted so that an area capable of transmitting a sufficient amount of heat to the optical fiber head 110 can be supplied.
  • the power supply unit 20 supplies the heating power D1 to the rubber heater 21b, which is a heat generating part.
  • the heating element 213 receives the heating power and generates heat, and the heat is transmitted to the optical fiber head 110.
  • a heat insulating material cannot be provided in the vicinity of the incident aperture A1, a slight heat loss occurs.
  • an amount of heat sufficient to compensate for the heat loss is supplied from the rubber heater 21b. Therefore, it is possible to prevent the wet steam SA from condensing near the tip of the optical fiber head 110 and the liquid phase from stagnation, and it is possible to prevent deterioration in accuracy of dryness measurement.
  • the power supply portion 20 supplies the heating power D1 that compensates for the amount of heat lost near the entrance opening A1, and the outer periphery of the optical fiber head 110 is supplied. Since the provided rubber heater 21b compensates for heat loss, it is possible to prevent the wet steam SA from condensing in the vicinity of the incident aperture A1 and the liquid phase from stagnation, and it is possible to prevent deterioration in accuracy of dryness measurement.
  • Embodiment 3 of the present invention relates to a modified example of the heat generating portion in which a transparent conductive film is provided in an incident opening.
  • FIG. 4 the schematic cross section explaining the structure of the dryness measuring apparatus which concerns on Embodiment 3 of this invention is shown.
  • the wet steam pipe 30 applied in the third embodiment has the same sight glass structure as in the first embodiment.
  • FIG. 4 shows only the structure on the incident aperture A1 side, and omits the structure on the exit aperture A2 side. On the exit aperture A2 side, a structure similar to that on the entrance aperture A1 side may be provided.
  • the dryness measuring apparatus 1 c is a transparent film heater 21 c and a power supply unit 20 (not shown) as a heat loss compensator that compensates for heat loss generated in the incident aperture A ⁇ b> 1. Is provided.
  • the power supply unit 20 is the same as the power supply unit 20 in the first embodiment, and a description thereof will be omitted.
  • the transparent film heater 21c is a transparent conductive film that rises to a predetermined temperature and maintains the temperature when a predetermined voltage is applied through the lead wires 211 and 212, and generates heat having a predetermined sheet resistance. Part.
  • the sheet resistance range may be any resistance value suitable for heat generation in relation to the applied voltage, and is not limited, but is, for example, in the range of several thousand ⁇ / ⁇ to several tens of ⁇ / ⁇ .
  • the transparent conductive film has a layer structure in which a transparent conductive material layer is formed on a substrate and a protective layer is formed thereon.
  • the base material is a resin film (for example, PET, PPS, PI film, etc.) that has optical transparency and can be bonded to the tempered glass 33.
  • the transparent conductive material layer a conductive material that is light transmissive and has a certain sheet resistance can be applied.
  • a self-assembled film made of carbon nanotubes (CNT), ITO, or nano-sized metal (Ag, etc.), a film in which a metal (for example, Ag, etc.) that adjusts resistance is scattered on ITO, etc. can be applied.
  • the transparent film heater 21c may be a film obtained by patterning a large number of resistance lines having a fine width on a substrate.
  • the transparent film heater 21c is bonded to the tempered glass 33 with an adhesive or an adhesive film.
  • the transparent film heater 21 c is shaped to a size adapted to the size of the tempered glass 33.
  • the power supply unit 20 supplies the heating power D ⁇ b> 1 via the lead lines 211 and 212 to the transparent film heater 21 c that is a heat generating part.
  • the transparent film heater 21c generates heat by receiving the supply of the heating power D1, thereby heating the surface of the tempered glass 33 to a temperature that is the same as or slightly higher than the temperature of the wet steam SA in the pipe 30, for example, 170 ° C.
  • an amount of heat sufficient to compensate for the heat loss generated on the incident aperture A1 side is generated. Therefore, it is possible to prevent the wet steam SA from condensing near the back surface of the tempered glass or the liquid phase from stagnation, and it is possible to prevent deterioration in accuracy of dryness measurement.
  • the power supply unit 20 supplies power to compensate for the amount of heat lost near the entrance opening A1, and the transparent film heater 21c provided on the surface of the tempered glass 33 compensates for heat loss.
  • the transparent film heater 21c provided on the surface of the tempered glass 33 compensates for heat loss.
  • the transparent film heater 21c since the transparent film heater 21c generates heat by covering the surface of the tempered glass where heat loss is likely to occur, heat loss at the opening surface can be compensated efficiently.
  • Embodiment 4 of the present invention relates to a dryness measuring apparatus in which a temperature sensor is provided on an opening surface of an incident opening.
  • the dryness measuring apparatus 1d in this Embodiment 4 includes the temperature sensor 23 on the surface of the tempered glass 33 on the incident opening A1 side. This is different from the first embodiment in that the temperature sensor 24 is provided on the surface of the tempered glass 34 on the injection opening A2 side. Since other configurations are the same as those in the first embodiment, description thereof is omitted.
  • the temperature sensor 23 is a detection unit that measures the surface temperature of the tempered glass 33 and outputs a detection signal S1 indicating the measured temperature to the power supply unit 20.
  • the temperature sensor 24 is a detection unit that measures the surface temperature of the tempered glass 34 and outputs a detection signal S2 indicating the measured temperature to the power supply unit 20.
  • the temperature sensors 23 and 24 are not limited in form as long as the temperature of the tempered glass surface can be measured.
  • the temperature sensors 23 and 24 are contact type and electric type temperature detection means such as a resistance temperature detector (RTD), a linear resistor. A thermistor, a thermocouple, an IC temperature sensor, etc. can be applied.
  • the temperature sensors 23 and 24 are preferably small so as not to block light when provided on the surface of the tempered glass.
  • the power supply unit 20 receives the detection signal S1 from the temperature sensor 23 and supplies the detection signal S1 to the rubber heater 21 so that the surface temperature of the tempered glass 33 is maintained near the temperature of the wet steam SA.
  • the heating power D1 is controlled.
  • the power supply unit 20 receives the detection signal S2 from the temperature sensor 24, and controls the heating power D2 supplied to the rubber heater 22 so that the surface temperature of the tempered glass 34 is maintained near the temperature of the wet steam SA. Is configured to do.
  • the power supply unit 20 controls the heating power D ⁇ b> 1 supplied to the rubber heater 21 based on the detection signal S ⁇ b> 1 from the temperature sensor 23.
  • the power supply unit 20 controls the heating of the power D2 supplied to the rubber heater 22 based on the detection signal S2 from the temperature sensor 24.
  • the power supply unit 20 supplies power by applying a predetermined voltage between the lead wires 211 and 212 of the rubber heater 21 (22), When the surface temperature of the tempered glass reaches the temperature of the wet steam SA, the power supply is stopped.
  • the power supply unit 20 may change the heating power supplied to the rubber heater 21 (22) stepwise or gradually.
  • the power supply unit 20 gradually applies a voltage to be applied between the lead wires 211 and 212 of the rubber heater 21 (22) in accordance with the magnitude of the difference between the surface temperature of the tempered glass and the temperature of the wet steam SA.
  • the heating power to be supplied may be controlled to gradually decrease and gradually decrease or gradually decrease. In this way, by gradually or gradually reducing the power supplied to the heat generating part, it is possible to prevent the measured value of the dryness from becoming inaccurate due to overheating of the tempered glass. .
  • the power supply unit 20 controls the power supplied to the rubber heater 21 (22) based on the detection signal S1 (S2) of the temperature sensor 23 (24). It is possible to supply the necessary and sufficient power to make up for the amount of heat lost.
  • the heating temperature is suppressed from becoming higher than the temperature of the wet steam SA, it is possible to prevent the measurement value of the dryness from being inaccurate due to the influence of overheating.
  • the present invention is not limited to the above-described embodiment, and can be variously modified and applied.
  • the rubber heater 21 (22) is provided as a heat generating part in both the incident side cylinder 31 on the incident opening A1 side and the emission side cylinder 32 on the emission opening A2 side.
  • the heat generating portion on the opening side with little heat loss may be omitted.
  • Embodiment 2 and Embodiment 3 described above only the structure of the heat generating portion on the incident opening A1 side is described, but when the heat loss from the exit opening A2 side is large, the heat generating portion can be provided, If the heat loss is small, the heat generating part may be omitted.
  • the dryness is calculated based on the intensity of light that passes through the wet steam SA or a physical quantity related to the intensity of light, but the intensity of light reflected by the wet steam SA or the light intensity You may comprise so that a dryness may be calculated based on the physical quantity relevant to intensity
  • the dryness is calculated based on the light reflected by the wet steam, the light incident part and the light receiving part are provided in the same opening to reduce heat loss from the pipe itself, It is possible to reduce the cost by providing only one location near the shared opening.
  • the dryness measuring device of the present invention can be applied to heavy and large industrial fields.
  • the flow rate at the turbine inlet can be controlled according to the load by accurately measuring the dryness at the turbine outlet. Heat loss can be reduced.

Landscapes

  • Physics & Mathematics (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Investigating Or Analysing Materials By Optical Means (AREA)

Abstract

The present invention addresses the problem of suppressing the heat loss that occurs when the dryness of wet steam is measured using light and measuring dryness with high accuracy. The present invention is provided with a light introduction unit (11) for causing light to pass through a light entry opening (A1) provided in piping (30) through which wet steam (SA) under measurement flows; a light reception unit (12) for receiving, from a light exit opening (A2) provided in the piping (30), light that has passed through or been reflected by the wet steam (SA) and outputting a detection signal (Sd); a dryness determining unit (13) for referring to the detection signal (Sd) and determining the dryness of the wet steam (SA); and heat loss compensation devices (20, 21, 22) for compensating for the heat loss of the light entry opening (A1), the light exit opening (A2), or both.

Description

乾き度測定装置および湿り蒸気用配管Dryness measuring device and piping for wet steam
 本発明は湿り蒸気の測定装置および湿り蒸気用配管に関する。 The present invention relates to a wet steam measuring device and a wet steam pipe.
 水は沸点に達した後、水蒸気ガス(気相部分:飽和蒸気)と、水滴(液相部分:飽和水)と、が混合した湿り蒸気となる。ここで、湿り蒸気に対する水蒸気ガスの重量比を、「乾き度」という。例えば、水蒸気ガスと、水滴と、が半分ずつ存在すれば、乾き度は0.5となる。また、水滴が存在せず、水蒸気ガスのみが存在する場合は、乾き度は1.0となる。熱交換器等において、湿り蒸気が保有する顕熱と、潜熱と、を有効に利用することや、水蒸気タービンにおいて、タービン翼の腐食を防止すること、等の観点から、湿り蒸気の乾き度を1.0に近い状態にすることが望まれている。そのため、乾き度を測定する様々な方法が提案されている。 After water reaches the boiling point, it becomes wet steam in which water vapor gas (gas phase part: saturated steam) and water droplets (liquid phase part: saturated water) are mixed. Here, the weight ratio of the water vapor gas to the wet steam is referred to as “dryness”. For example, if water vapor gas and water droplets are present in half, the dryness is 0.5. Moreover, when there is no water droplet and only water vapor gas is present, the dryness is 1.0. From the viewpoints of effectively utilizing the sensible heat and latent heat possessed by wet steam in heat exchangers, etc., and preventing corrosion of turbine blades in steam turbines, the wet steam dryness is controlled. It is desired to be in a state close to 1.0. Therefore, various methods for measuring the dryness have been proposed.
 例えば、特許文献1記載の発明は、配管に設けられた圧力調節弁の前後で全エンタルピーに変化がないことを利用して、圧力調節弁の前後の湿り蒸気流量及び圧力に基づき、飽和蒸気表を用いて飽和水エンタルピーと飽和蒸気エンタルピーとを求めて、乾き度を算出する技術に関する。 For example, the invention described in Patent Document 1 utilizes the fact that there is no change in the total enthalpy before and after the pressure control valve provided in the pipe, and based on the wet steam flow and pressure before and after the pressure control valve, the saturated steam table It is related with the technique which calculates | requires saturated water enthalpy and saturated vapor | steam enthalpy using, and calculates dryness.
 特許文献2記載の発明は、広帯域光源から複数の波長の光を湿り蒸気に通過させ、湿り蒸気を通過した複数の波長の光を光学検出器で検出し、各波長の光ごとに、乾燥蒸気を通過する際の光の強度に対する検出光の強度の強度比を決定し、強度比にスケーリングファクタを連続的に適用してスケーリングされた強度比を算出し、スケーリングファクタの各々に対して複数の残差を算出し、複数の残差のうちの最小残差を決定し、最小残差に対応する液滴の数密度を計算することにより液滴粒度分布を決定し、液滴粒度分布に基づいて蒸気重量率を決定する技術に関する。 The invention described in Patent Document 2 allows light of a plurality of wavelengths to pass through wet steam from a broadband light source, detects light of a plurality of wavelengths that has passed through the wet steam with an optical detector, and provides dry steam for each wavelength of light. Determining the intensity ratio of the intensity of the detected light to the intensity of the light as it passes through, calculating a scaled intensity ratio by successively applying a scaling factor to the intensity ratio, and for each of the scaling factors, Calculate the residual, determine the minimum residual of the multiple residuals, determine the droplet size distribution by calculating the number density of droplets corresponding to the minimum residual, and based on the droplet size distribution The present invention relates to a technique for determining the steam weight ratio.
特開平8-312908号公報JP-A-8-312908 特開2012-103254号公報JP 2012-103254 A
 ここで、特許文献1に開示された技術は、湿り蒸気の流量及び圧力を検出するセンサの時定数が長く、また、測定対象の湿り蒸気を二相状態から気相状態に状態変化させ、さらに測定対象を気相状態で安定化させる必要があるため、乾き度の測定に時間がかかるという問題があり、湿り蒸気が安定するまでの過渡状態にあるときの乾き度測定には適さなかった。このため本願発明者は、特許文献2に記載されたような、湿り蒸気に光を通過させて湿り蒸気の乾き度を測定する技術の改良を研究してきた。 Here, the technique disclosed in Patent Document 1 has a long time constant of a sensor that detects the flow rate and pressure of wet steam, and changes the state of the wet steam to be measured from a two-phase state to a gas phase state. Since it is necessary to stabilize the measurement object in the gas phase, there is a problem that it takes time to measure the dryness, and it is not suitable for measuring the dryness in a transient state until the wet steam is stabilized. For this reason, the inventor of the present application has studied the improvement of the technique for measuring the dryness of the wet steam by passing light through the wet steam as described in Patent Document 2.
 しかしながら、光により湿り蒸気の乾き度を測定する技術では、湿り蒸気が流通する配管への光の入射部分や射出部分において熱損失が生じるため、湿り蒸気の凝縮や液相の停滞が発生し、湿り蒸気の乾き度を正確に測定できなくなるという問題があった。 However, in the technology that measures the dryness of the wet steam by light, heat loss occurs in the light incident part and emission part to the pipe through which the wet steam circulates, resulting in condensation of the wet steam and stagnation of the liquid phase, There was a problem that the dryness of wet steam could not be measured accurately.
 そこで、本願発明は、光による湿り蒸気の乾き度測定の際に発生する熱損失を抑制し高い精度で乾き度を測定することを課題の1つとする。 Therefore, an object of the present invention is to measure the dryness with high accuracy by suppressing heat loss that occurs when measuring the dryness of wet steam by light.
 本願発明者は、光を利用した湿り蒸気の乾き度の測定技術を鋭意研究したところ、具体的には、本発明は以下の手段を備えることにより、上記問題を克服し上記課題を解決することに想到した。 The inventor of the present application diligently studied a technique for measuring the dryness of wet steam using light. Specifically, the present invention provides the following means to overcome the above problems and solve the above problems. I came up with it.
 (1)本発明の乾き度測定装置は、測定対象の湿り蒸気が流れる配管に設けられた入射開口から光を入射させる光入射部と、前記配管に設けられた射出開口から前記湿り蒸気を透過または反射した光を受けて検出信号を出力する受光部と、前記検出信号を参照して前記湿り蒸気の乾き度を特定する乾き度特定部と、前記入射開口および前記射出開口の少なくとも一方の熱損失を補償する熱損失補償装置と、を備える。 (1) The dryness measuring apparatus according to the present invention transmits a light incident portion through which light enters from an incident opening provided in a pipe through which wet steam to be measured flows, and transmits the wet steam from an injection opening provided in the pipe. Alternatively, the light receiving unit that receives the reflected light and outputs a detection signal, the dryness specifying unit that specifies the dryness of the wet steam with reference to the detection signal, and the heat of at least one of the entrance opening and the exit opening And a heat loss compensator for compensating for the loss.
 本発明は、所望により、以下の構成を備えていてもよい。
 (2)上記(1)において、前記熱損失補償装置は、発熱部と電力供給部とを有し、前記電力供給部は、前記発熱部に前記熱損失を補償する熱を発生させうる電力を供給する。
The present invention may have the following configuration as desired.
(2) In the above (1), the heat loss compensator includes a heat generation unit and a power supply unit, and the power supply unit generates electric power that can generate heat to compensate the heat loss in the heat generation unit. Supply.
 (3)上記(2)において、前記発熱部は、電熱線が敷設されたラバーヒーターである。 (3) In the above (2), the heat generating part is a rubber heater in which a heating wire is laid.
 (4)前記ラバーヒーターは、前記入射開口および前記射出開口の少なくとも一方の周囲に設けられる。 (4) The rubber heater is provided around at least one of the entrance opening and the exit opening.
 (5)上記(3)において、前記ラバーヒーターは、前記光入射部および前記受光部の少なくとも一方の周囲に設けられる。 (5) In the above (3), the rubber heater is provided around at least one of the light incident part and the light receiving part.
 (6)上記(2)において、前記発熱部は、透明導電膜であり、前記入射開口および前記射出開口の少なくとも一方の開口面に設けられる。 (6) In the above (2), the heat generating portion is a transparent conductive film, and is provided on at least one opening surface of the entrance opening and the exit opening.
 (7)上記(2)~(6)のいずれかにおいて、前記入射開口および前記射出開口の少なくとも一方の開口面に温度センサを備え、前記電力供給部は、前記温度センサの検出信号に基づいて前記開口面の温度が前記湿り蒸気の温度以上となるように前記発熱部に電力を供給する。 (7) In any one of the above (2) to (6), a temperature sensor is provided on at least one of the entrance opening and the exit opening, and the power supply unit is based on a detection signal of the temperature sensor. Electric power is supplied to the heat generating part so that the temperature of the opening surface is equal to or higher than the temperature of the wet steam.
 (8)本発明の湿り蒸気配管は、測定対象の湿り蒸気が流れる配管であって、光を入射させる入射窓と、前記湿り蒸気を透過または反射した光を射出させる射出窓と、前記検出信号を参照して前記湿り蒸気の乾き度を特定する乾き度特定部と、前記入射窓および前記射出窓の少なくとも一方において生ずる熱損失を補償する熱損失補償装置と、を備える。 (8) The wet steam pipe of the present invention is a pipe through which wet steam to be measured flows, an incident window through which light enters, an exit window through which light transmitted or reflected by the wet steam is emitted, and the detection signal , A dryness specifying unit that specifies the dryness of the wet steam, and a heat loss compensator that compensates for heat loss that occurs in at least one of the entrance window and the exit window.
 なお、前記目的に限らず、後述する実施形態に示す解決原理を有する解決手段を得ることも本発明の他の目的の一つとして位置付けることができる。 In addition, not only the said objective but obtaining the solution means which has the solution principle shown in embodiment mentioned later can be positioned as one of the other objectives of this invention.
 本発明によれば、光による湿り蒸気の乾き度測定の際に生ずる熱損失が効果的に補償されるので、湿り上記の凝縮や液相の停滞を抑制し、高い精度で乾き度を測定することが可能である。 According to the present invention, since heat loss caused when measuring the dryness of wet steam by light is effectively compensated, the above-mentioned condensation and liquid phase stagnation are suppressed, and the dryness is measured with high accuracy. It is possible.
本発明の実施形態1に係る乾き度測定装置の構成を説明する模式断面図。The schematic cross section explaining the composition of the dryness measuring apparatus concerning Embodiment 1 of the present invention. 本発明の実施形態1に係るラバーシートの概略平面図。The schematic plan view of the rubber sheet which concerns on Embodiment 1 of this invention. 本発明の実施形態2に係る乾き度測定装置の構成を説明する模式断面図(射出開口側は省略)。The schematic cross section explaining the structure of the dryness measuring apparatus which concerns on Embodiment 2 of this invention (The injection opening side is abbreviate | omitted). 本発明の実施形態3に係る乾き度測定装置の構成を説明する模式断面図(射出開口側は省略)。The schematic cross section explaining the structure of the dryness measuring apparatus which concerns on Embodiment 3 of this invention (The injection opening side is abbreviate | omitted). 本発明の実施形態4に係る乾き度測定装置の構成を説明する模式断面図。The schematic cross section explaining the structure of the dryness measuring apparatus which concerns on Embodiment 4 of this invention.
 以下、図面を参照して本発明の実施の形態を説明する。ただし、以下に説明する実施形態は、あくまでも例示であり、以下に明示しない種々の変形や技術の適用を排除する意図はない。即ち、本発明は、その趣旨を逸脱しない範囲で種々変形(各実施例を組み合わせる等)して実施することができる。また、以下の図面の記載において、同一又は類似の部分には同一又は類似の符号を付して表している。図面は模式的なものであり、必ずしも実際の寸法や比率等とは一致しない。図面相互間においても互いの寸法の関係や比率が異なる部分が含まれていることがある。 Hereinafter, embodiments of the present invention will be described with reference to the drawings. However, the embodiment described below is merely an example, and there is no intention to exclude various modifications and technical applications that are not explicitly described below. In other words, the present invention can be implemented with various modifications (combining the embodiments, etc.) without departing from the spirit of the present invention. In the following description of the drawings, the same or similar parts are denoted by the same or similar reference numerals. The drawings are schematic and do not necessarily match actual dimensions and ratios. In some cases, the dimensional relationships and ratios may be different between the drawings.
 (定義)
 本明細書で使用する主たる用語を以下のとおりに定義する。
 「蒸気」:各実施形態では、水蒸気のことを意味するが、気相部分と液相部分との二相状態となる物質の蒸気であればよく、水蒸気に限定されない。
 「乾き度」:蒸気中の気相部分と液相部分との重量割合のことをいう。乾き度[%]=100[%]-湿り度[%]の関係がある。
 「湿り蒸気」:乾き度χが0-100[%]の蒸気をいう。
 「光の強度」(光強度):光(電磁波)の強さを表す物理量をいい、その称呼や単位に限定はない。例えば、放射強度、光度、光量子束密度など、それぞれ単位が異なるが相互に換算可能な物理量である。
(Definition)
The main terms used in this specification are defined as follows.
“Vapor”: In each embodiment, it means water vapor, but it is not limited to water vapor as long as it is a vapor of a substance that is in a two-phase state of a gas phase portion and a liquid phase portion.
“Dryness”: Refers to the weight ratio of the vapor phase portion and the liquid phase portion in the vapor. There is a relationship of dryness [%] = 100 [%] − wetness [%].
“Wet steam”: refers to steam having a dryness χ of 0 to 100%.
“Light intensity” (light intensity): A physical quantity indicating the intensity of light (electromagnetic wave), and there is no limitation on its name or unit. For example, these are physical quantities that are mutually different but can be converted into each other, such as radiation intensity, luminous intensity, and photon flux density.
 (実施形態1)
 本実施形態1は、湿り蒸気用配管に設けられたサイトグラスのような構造を有する、光の入射開口および/または射出開口を利用して湿り蒸気の乾き度を測定する乾き度測定装置に関する。
(Embodiment 1)
The first embodiment relates to a dryness measuring apparatus that measures the dryness of wet steam using a light entrance opening and / or an exit opening having a structure like a sight glass provided in a wet steam pipe.
 (構成)
 図1に、本発明の実施形態1に係る乾き度測定装置の構成を説明する模式断面図を示す。図1に示すように、本実施形態1における湿り蒸気用配管30は、測定対象の湿り蒸気SAを流通させる流体流通路であり、配管30内に光を透過させるためのサイトグラスとしての構造を備える。具体的には、配管30の側壁に入射開口A1および射出開口A2が設けられている。入射開口A1と射出開口A2とは、配管30の軸芯に対して対向した位置に設けられている。入射開口A1には入射側筒31が接続されており、射出開口A2には射出側筒32が設けられている。入射側筒31および射出側筒32の端縁には、フランジ31fおよび32fがそれぞれ形成されており、強化ガラス33および34が螺子その他の固定手段でそれぞれ固定されている。図示しないが、入射開口A1および射出開口A2付近を除く湿り蒸気用配管30の外周面には、グラスウール等公知の断熱材が敷設されており、断熱材の敷設された湿り蒸気配管30の領域では、外部への熱損失が些少に抑制されるようになっている。これらのサイトグラス構造により、配管30の内部を気密に保持したまま、入射側筒31の端面を形成する強化ガラス33の外側から光を入射させ、配管30を流通する湿り蒸気SA内を透過させ、射出側筒32の端面を形成する強化ガラス34から外側に向けて射出させることが可能になっている。
(Constitution)
In FIG. 1, the schematic cross section explaining the structure of the dryness measuring apparatus which concerns on Embodiment 1 of this invention is shown. As shown in FIG. 1, the wet steam pipe 30 according to the first embodiment is a fluid flow passage through which the wet steam SA to be measured flows, and has a structure as a sight glass for transmitting light into the pipe 30. Prepare. Specifically, an entrance opening A1 and an exit opening A2 are provided on the side wall of the pipe 30. The entrance opening A <b> 1 and the exit opening A <b> 2 are provided at positions facing the axis of the pipe 30. An incident side cylinder 31 is connected to the incident opening A1, and an emission side cylinder 32 is provided at the emission opening A2. Flange 31f and 32f are formed in the edge of entrance side tube 31 and exit side tube 32, respectively, and tempered glass 33 and 34 are being fixed by a screw and other fixing means, respectively. Although not shown, a known heat insulating material such as glass wool is laid on the outer peripheral surface of the wet steam pipe 30 excluding the vicinity of the incident opening A1 and the injection opening A2, and in the region of the wet steam pipe 30 where the heat insulating material is laid, The heat loss to the outside is controlled slightly. With these sight glass structures, light is incident from the outside of the tempered glass 33 forming the end face of the incident side tube 31 while the inside of the pipe 30 is kept airtight, and is transmitted through the wet steam SA flowing through the pipe 30. It is possible to inject outward from the tempered glass 34 forming the end face of the injection side tube 32.
 なお、配管30や入射側筒31、射出側筒32等は、耐久性のある金属、例えば炭素鋼、ステンレス鋼、その他特殊材質で構成される。このようなサイトグラスは、フローサイトとも呼ばれており、配管路の途中に設置し、配管内を通る流体の流通、停止及び流速・流量の概況を直接監視することが器具として市場に出回っている市販品を利用可能である。 The pipe 30, the incident side tube 31, the emission side tube 32, etc. are made of a durable metal such as carbon steel, stainless steel, or other special materials. Such a sight glass is also called a flow sight. It is installed in the middle of a pipeline, and it is marketed as an instrument to directly monitor the flow, stop, and flow rate / flow rate of fluid passing through the pipeline. Commercial products are available.
 次に、実施形態1に係る乾き度測定装置1aの構成を説明する。図1に示すように、乾き度測定装置1aは、光入射部11、受光部12、乾き度特定部13、および熱損失補償装置(20、21、22)を備えている。 Next, the configuration of the dryness measuring apparatus 1a according to the first embodiment will be described. As shown in FIG. 1, the dryness measuring apparatus 1 a includes a light incident part 11, a light receiving part 12, a dryness specifying part 13, and a heat loss compensator (20, 21, 22).
 光入射部11は、入射開口A1、すなわち強化ガラス31の外側から入射側筒31内へ所定の波長の光を入射させる手段であり、自ら光を発生させる自発光手段であっても、離間地の発光手段から発せられた光を導入する導光手段であってもよい。自発光手段としては、例えば、発光ダイオード、スーパールミネッセントダイオード、半導体レーザ、レーザ発振器、蛍光放電管、低圧水銀灯、キセノンランプ、ハロゲンランプ、メタルハライドランプ、紫外線光源、赤外線光源、及び電球等が使用可能であるが、安定した波長および強度を有する光を発生可能な手段であれば、上記に限定されない。導光手段としては、ポリメタクリル酸メチル樹脂(PMMA:Poly(methyl methacrylate))からなるプラスチック光ファイバ、及び石英ガラスからなるガラス光ファイバ等が使用可能であるが、上記に例示したような自発光手段が発した光を伝播させる機能があれば、これに限定されない。 The light incident part 11 is a means for entering light of a predetermined wavelength into the incident side tube 31 from the entrance opening A1, that is, from the outside of the tempered glass 31, and even if it is a self-light emitting means for generating light itself, It may be a light guiding means for introducing light emitted from the light emitting means. For example, a light emitting diode, a super luminescent diode, a semiconductor laser, a laser oscillator, a fluorescent discharge tube, a low pressure mercury lamp, a xenon lamp, a halogen lamp, a metal halide lamp, an ultraviolet light source, an infrared light source, and a light bulb are used as the self-light emitting means. Although it is possible, it is not limited to the above as long as it can generate light having a stable wavelength and intensity. As the light guiding means, a plastic optical fiber made of polymethyl methacrylate resin (PMMA: Poly (methymethacrylate)), a glass optical fiber made of quartz glass, or the like can be used. The present invention is not limited to this as long as it has a function of propagating light emitted from the means.
 受光部12は、湿り蒸気SAを透過し、射出開口A2、すなわち射出側筒32から強化ガラス32を経て射出された光を受けて検出信号Sdを出力する光感知手段である。受光部12としては、例えば、フォトダイオード、フォトトランジスタ等の光電変換素子を使用可能であるが、湿り蒸気を透過した光の強度等に応じた受光信号Sdを出力可能であれば、これに限定されない。 The light receiving unit 12 is a light sensing unit that transmits the wet steam SA, receives the light emitted from the emission opening A2, that is, the emission side tube 32 through the tempered glass 32, and outputs a detection signal Sd. As the light receiving unit 12, for example, a photoelectric conversion element such as a photodiode or a phototransistor can be used. However, the light receiving unit 12 is limited to this as long as it can output a light reception signal Sd according to the intensity of light transmitted through the wet steam. Not.
 乾き度特定部13は、検出信号Sdを参照して湿り蒸気SAの乾き度χを任意の演算方法により特定する演算手段である。乾き度特定部13は、コンピュータ装置が乾き度特定用の所定のソフトウェアプログラムを実行することにより機能的に実現される。コンピュータ装置としては、例えば、入力装置、出力装置、プログラム記憶装置、一時記憶装置、および記憶装置を備える汎用コンピュータであり、その構成に限定はない。 The dryness specifying unit 13 is a calculation means for specifying the dryness χ of the wet steam SA by an arbitrary calculation method with reference to the detection signal Sd. The dryness specifying unit 13 is functionally realized by the computer device executing a predetermined software program for specifying the dryness. The computer device is, for example, a general-purpose computer including an input device, an output device, a program storage device, a temporary storage device, and a storage device, and the configuration thereof is not limited.
 乾き度特定部13で実行する湿り蒸気の乾き度の演算方法は、公知の方法を種々に適用可能であり、その演算方法に限定はない。例えば、乾き度特定部13は、受光信号Sdを参照して湿り蒸気SAを透過した光の強度または光の強度に関連する物理量を演算し、次いで、記憶装置に予め格納された、光の強度または光の強度に関連する物理量と乾き度χとの関係テーブルを参照する。そして受光信号Sdの示す光の強度または光の強度に関連する物理量に対応した乾き度χを読み取り、乾き度χの測定値として出力する。関係テーブルの代わりに、光の強度または光の強度に関連する物理量と乾き度χとの関係を示す関係式に基づいて乾き度χを算出してもよい。また乾き度特定部13は、複数の波長の光についてそれぞれ得られた光の強度または光の強度に関連する物理量を相互に参照しながら、乾き度χを算出するようにしてもよい。 The calculation method of the dryness of the wet steam executed by the dryness specifying unit 13 can apply various known methods, and the calculation method is not limited. For example, the dryness specifying unit 13 refers to the light reception signal Sd, calculates the intensity of light transmitted through the wet steam SA, or a physical quantity related to the intensity of the light, and then stores the light intensity stored in advance in the storage device. Alternatively, a relationship table between physical quantities related to light intensity and dryness χ is referred to. Then, the dryness χ corresponding to the light intensity indicated by the light reception signal Sd or the physical quantity related to the light intensity is read and output as a measured value of the dryness χ. Instead of the relationship table, the dryness χ may be calculated based on a relational expression indicating the relationship between the light intensity or a physical quantity related to the light intensity and the dryness χ. In addition, the dryness specifying unit 13 may calculate the dryness χ while mutually referring to the light intensity obtained for each of the plurality of wavelengths of light or the physical quantity related to the light intensity.
 熱損失補償装置は、入射開口A1および射出開口A2において発生する熱損失を補償する手段である。本実施形態1において、熱損失補償装置は、発熱部(21、22)と電力供給部20とを有し、発熱部は、具体的に、ラバーヒーター21および22である。 The heat loss compensator is a means for compensating for heat loss that occurs in the entrance aperture A1 and the exit aperture A2. In the first embodiment, the heat loss compensator includes heat generating units (21, 22) and a power supply unit 20, and the heat generating units are specifically rubber heaters 21 and 22.
 ラバーヒーター21は、入射側筒31の外壁に設けられ、入射側筒31を加熱して入射開口A1側で生じる熱損失を補償する。ラバーヒーター22は、射出側筒32の外壁に設けられ、射出側筒32を加熱して射出開口A2側で生じる熱損失を補償する。以下、入射開口A1側のラバーヒーター21の構造を説明するが、射出開口A2側のラバーヒーター22についても同様である。 The rubber heater 21 is provided on the outer wall of the incident side tube 31 and heats the incident side tube 31 to compensate for heat loss generated on the incident opening A1 side. The rubber heater 22 is provided on the outer wall of the injection side tube 32 and heats the injection side tube 32 to compensate for heat loss generated on the injection opening A2 side. Hereinafter, the structure of the rubber heater 21 on the incident opening A1 side will be described, but the same applies to the rubber heater 22 on the injection opening A2 side.
 図2に、ラバーヒーター21の平面図を示す。図2に示すように、ラバーヒーター21は、帯状に長い矩形状を有しており、ラバーシート210の内部に発熱体213を敷設して構成されている。ラバーシート210の端部には、面ファスナー214および215が取り付けられている。 FIG. 2 shows a plan view of the rubber heater 21. As shown in FIG. 2, the rubber heater 21 has a long rectangular shape in a belt shape, and is configured by laying a heating element 213 inside the rubber sheet 210. Hook fasteners 214 and 215 are attached to the end of the rubber sheet 210.
 ラバーシート210は、柔軟性があり一定の熱伝導性を有する絶縁体であり、例えば、シリコンゴムで構成される。ラバーシート210の材料としては、柔軟性、熱伝導性、絶縁性、および耐久性を満たすものであれば、シリコンゴムに限らず種々の材料を適用可能である。ラバーヒーター21は、面状に加工した2枚のラバーシート210に発熱体213を挟み込んで使用温度に応じて選択される接着剤または接着フィルムで接着して構成される。 The rubber sheet 210 is an insulator having flexibility and constant thermal conductivity, and is made of, for example, silicon rubber. The material of the rubber sheet 210 is not limited to silicon rubber, and various materials can be applied as long as they satisfy flexibility, thermal conductivity, insulation, and durability. The rubber heater 21 is configured by sandwiching a heating element 213 between two rubber sheets 210 processed into a planar shape and bonding them with an adhesive or an adhesive film selected according to the operating temperature.
 発熱体213は、両端に引き出し線211および212が取り付けられており、引き出し線211および212から電力を供給することにより発熱する、線状または面状の発熱手段である。発熱体213としては、電流を熱量に変換可能な電熱材料一般を適用可能であり、例えば、カーボンやニッケル合金抵抗線を適用することができる。 The heating element 213 is a linear or planar heating means that has lead wires 211 and 212 attached to both ends and generates heat when power is supplied from the lead wires 211 and 212. As the heating element 213, a general electrothermal material capable of converting current into heat quantity can be applied, and for example, carbon or nickel alloy resistance wire can be applied.
 面ファスナー214および215は、互いの面を接触させることで接着力が発生する機能を有し、それぞれの面ファスナーを取り付けた部位を着脱自在に係止させることが可能である。面ファスナー214および215は、例えば、一方がフック状に起毛された面であり、他方がループ状に密集して起毛された面となっている。面ファスナー214は、ラバーシート210の表面の端部において起毛面を表面側に向けて取り付けられる。面ファスナー215は、ラバーシート210の裏面の端部において起毛面を裏面側に向けて取り付けられる。なお、面ファスナー214および215はオプショナルな構成であり、面ファスナーに代えて、紐状部材や帯状部材でラバーシート210を外側から締めつけたりラバーシート210の端部を接着剤等で接着したりして、ラバーヒーター21を入射側筒33に取り付けてもよい。 The hook-and- loop fasteners 214 and 215 have a function of generating an adhesive force when they are brought into contact with each other, and can be detachably locked at a portion to which each hook-and-loop fastener is attached. For example, one of the hook-and- loop fasteners 214 and 215 is a surface raised in a hook shape, and the other is a surface raised in a loop shape. The hook-and-loop fastener 214 is attached with the raised surface facing the surface side at the end of the surface of the rubber sheet 210. The hook-and-loop fastener 215 is attached at the end of the back surface of the rubber sheet 210 with the raised surface facing the back surface. The hook-and- loop fasteners 214 and 215 are optional configurations, and instead of the hook-and-loop fastener, the rubber sheet 210 is fastened from the outside with a string-like member or a band-like member, or the end of the rubber sheet 210 is bonded with an adhesive or the like. The rubber heater 21 may be attached to the incident side tube 33.
 ラバーヒーター21は、帯状の長手方向に幅d1、帯状の幅方向に幅d2を有するように加工されている。長手方向の幅d1は、ラバーシート210を入射側筒31の外周に巻き回した際に、緩み無くラバーシートの内面が入射側筒31の外周面に接触した状態で、面ファスナー214および215を互いに接触させることができるような長さに調整する。短尺方向の幅d2は、入射側筒31の外周の高さ、すなわち配管30外壁からフランジ31f裏面までの幅に対応するように調整する。入射側筒31と射出側筒32の形状が異なる場合には、ラバーヒーター22について、射出側筒32の形状に適合するように、ラバーヒーター22の幅d1および幅d2を調整する。 The rubber heater 21 is processed so as to have a width d1 in the longitudinal direction of the band and a width d2 in the width direction of the band. The width d1 in the longitudinal direction is such that when the rubber sheet 210 is wound around the outer periphery of the incident side tube 31, the hook-and- loop fasteners 214 and 215 are not loosened while the inner surface of the rubber sheet is in contact with the outer peripheral surface of the incident side tube 31. Adjust the length so that they can touch each other. The width d2 in the short direction is adjusted to correspond to the height of the outer periphery of the incident side tube 31, that is, the width from the outer wall of the pipe 30 to the rear surface of the flange 31f. When the shapes of the incident side cylinder 31 and the emission side cylinder 32 are different, the width d1 and the width d2 of the rubber heater 22 are adjusted so that the rubber heater 22 matches the shape of the emission side cylinder 32.
 図1に戻り、電力供給部20は、発熱部に熱損失を補償する熱を発生させうる電力を供給可能に構成されている。具体的には、電力供給部20は、ラバーヒーター21からの引き出し線211および212が接続され、両引き出し線の間に所定の電圧を加えることにより、加熱電力D1をラバーヒーター21の発熱体213に供給可能になっている。また電力供給部20は、ラバーヒーター22からの引き出し線211および212が接続され、両引き出し線の間に所定の電圧を加えることにより、加熱電力D2をラバーヒーター22の発熱体213に供給可能になっている。電力供給部20が供給する電力は、入射開口A1および射出開口A2付近で生じる熱損失を補償しうる熱量を、発熱部(ラバーヒーター21および22)に発生させる程度の電力とする。このような電力は、例えば、入射開口A1付近(具体的には、強化ガラス33および入射側筒31の内壁面)や射出開口A2付近(具体的には、強化ガラス34および射出側筒32の内壁面)に、湿り蒸気SAが凝縮したり液相が停滞したりしないような電力を実験的に特定することで得られる。 Referring back to FIG. 1, the power supply unit 20 is configured to be able to supply power that can generate heat that compensates for heat loss in the heat generating unit. Specifically, the power supply unit 20 is connected to the lead wires 211 and 212 from the rubber heater 21, and applies a predetermined voltage between the lead wires, whereby the heating power D <b> 1 is generated from the heating element 213 of the rubber heater 21. Can be supplied. The power supply unit 20 is connected to the lead wires 211 and 212 from the rubber heater 22, and can apply a predetermined voltage between the lead wires to supply the heating power D <b> 2 to the heating element 213 of the rubber heater 22. It has become. The power supplied by the power supply unit 20 is set to such an amount that the heat generation unit (rubber heaters 21 and 22) generates a heat quantity that can compensate for heat loss that occurs near the entrance opening A1 and the exit opening A2. Such electric power is, for example, near the entrance opening A1 (specifically, the inner wall surface of the tempered glass 33 and the entrance side tube 31) or near the exit opening A2 (specifically, the tempered glass 34 and the exit side tube 32). It can be obtained by experimentally specifying electric power that does not condense the wet steam SA on the inner wall surface or stagnate the liquid phase.
 (作用)
 次に本実施形態1の作用を説明する。
 湿り蒸気SAが湿り蒸気測定用配管30に供給される際、電力供給部20が発熱部であるラバーヒーター21および22に加熱電力D1、D2を供給する。ラバーヒーター21および22では、発熱体213が当該加熱電力を受けて発熱し、その熱が入射側筒31および射出側筒32に伝達される。入射開口A1付近および射出開口A2付近、特に強化ガラス33および強化ガラス34の外側には断熱材を設けることができないため、若干の熱損失を生じるが、その熱損失を補償するに足りる熱量がラバーヒーター21および22から供給される。この結果、湿り蒸気SAに凝集が生じたり液相が停滞したりする事象が抑制される。
(Function)
Next, the operation of the first embodiment will be described.
When the wet steam SA is supplied to the wet steam measurement pipe 30, the power supply unit 20 supplies the heating powers D1 and D2 to the rubber heaters 21 and 22 that are the heat generating parts. In the rubber heaters 21 and 22, the heating element 213 receives the heating power and generates heat, and the heat is transmitted to the incident side tube 31 and the emission side tube 32. A heat insulating material cannot be provided in the vicinity of the entrance opening A1 and the exit opening A2, in particular, outside the tempered glass 33 and the tempered glass 34. Therefore, a slight heat loss occurs, but the amount of heat sufficient to compensate for the heat loss is rubber. Supplied from heaters 21 and 22. As a result, the phenomenon that aggregation occurs in the wet steam SA or the liquid phase stagnates is suppressed.
 測定時、湿り蒸気用配管30の内部を流れている湿り蒸気SAに向けて、光入射部11から強化ガラス33を介して入射側筒31内に光を照射させる。入射側筒31の内部から湿り蒸気用配管30の中心を流れる湿り蒸気SAを透過した光は、配管30の反対側にある射出側筒32内に入り、強化ガラス34を介して射出される。射出された光は受光部12にて受光され、湿り蒸気SAを透過した光の強度または光の強度に関連した物理量に対応した受光信号Sdを出力する。 At the time of measurement, light is irradiated from the light incident part 11 into the incident side tube 31 through the tempered glass 33 toward the wet steam SA flowing inside the wet steam pipe 30. Light that has passed through the wet steam SA flowing through the center of the wet steam pipe 30 from the inside of the incident side pipe 31 enters the emission side pipe 32 on the opposite side of the pipe 30 and is emitted through the tempered glass 34. The emitted light is received by the light receiving unit 12 and outputs a light reception signal Sd corresponding to the intensity of the light transmitted through the wet steam SA or a physical quantity related to the intensity of the light.
 乾き度特定部13は、入力した受光信号Sdを参照して、所定の演算方法により乾き度χを特定する。特定された乾き度χは、乾き度特定部13に設けられた出力装置に出力される。この出力形態は、出力情報の表示であったり印刷であったりデータの送信であったりする。 The dryness specifying unit 13 refers to the received light reception signal Sd and specifies the dryness χ by a predetermined calculation method. The specified dryness χ is output to an output device provided in the dryness specifying unit 13. This output form may be output information display, printing, or data transmission.
 (効果)
 以上説明した実施形態1によれば、湿り蒸気用配管30がサイトグラスとしての測定構造を備えている場合に、電力供給部20が入射開口A1付近および射出開口A2付近で失われる熱量を補う加熱電力D1、D2を供給し、入射側筒31および射出側筒32の外周に設けられたラバーヒーター21および22が熱損失を補償する。よって、サイトグラス付近で湿り蒸気SAが凝縮したり液相が停滞したりすることを抑制でき、乾き度測定の精度劣化を防ぐことができる。
(effect)
According to the first embodiment described above, when the wet steam pipe 30 is provided with a measurement structure as a sight glass, the power supply unit 20 performs heating to compensate for the amount of heat lost near the entrance opening A1 and the exit opening A2. Electric power D1 and D2 are supplied, and rubber heaters 21 and 22 provided on the outer circumferences of the incident side cylinder 31 and the emission side cylinder 32 compensate for heat loss. Therefore, it can suppress that wet steam SA condenses near a sight glass, or a liquid phase stagnates, and can prevent the deterioration of the precision of dryness measurement.
 実施形態1によれば、ラバーヒーター21および22を発熱部として適用するので、入射側筒31や射出側筒32の形状に適合した形状に加工することが容易である。 According to the first embodiment, since the rubber heaters 21 and 22 are applied as the heat generating portions, it is easy to process into a shape suitable for the shapes of the incident side tube 31 and the emission side tube 32.
 (実施形態2)
 本発明の実施形態2は、光ファイバのような形態の光入射部に対して適用する発熱部に関する。
(Embodiment 2)
Embodiment 2 of the present invention relates to a heat generating portion applied to a light incident portion having a form like an optical fiber.
 (構成)
 図3に、本実施形態2における乾き度測定装置1bの構成を示す。図3に示すように、本実施形態2における湿り蒸気用配管30は、入射開口A1に、入射側筒の代わりに、光ファイバのヘッド部が挿入可能な構造を有しており、光入射部11bが光ファイバ構造である点で上記実施形態1と異なる。
(Constitution)
In FIG. 3, the structure of the dryness measuring apparatus 1b in this Embodiment 2 is shown. As shown in FIG. 3, the wet steam pipe 30 according to the second embodiment has a structure in which a head portion of an optical fiber can be inserted into the incident opening A1 instead of the incident side tube. 11b differs from the first embodiment in that it has an optical fiber structure.
 なお、射出開口A2については、上記実施形態1の射出開口A2側の受光構造とすることが可能である。射出開口A2に、光プローブのような受光手段を設ける場合には、入射開口A1側に類似した光ファイバに対応する構造としてもよい。 In addition, about the injection | emission opening A2, it is possible to set it as the light reception structure by the side of the injection | emission opening A2 of the said Embodiment 1. FIG. In the case where a light receiving means such as an optical probe is provided in the exit aperture A2, a structure corresponding to an optical fiber similar to the entrance aperture A1 side may be adopted.
 本実施形態2における乾き度測定装置1bは、光入射部11bの構造と当該光入射部11bに適用する発熱部の構成とが上記実施形態1と異なり、その他の構成は上記実施形態と同様である。図3では、光入射部11bを含む入射開口A1付近の模式断面を示し、射出開口A2側の構成は省略してある。 The dryness measuring apparatus 1b in the second embodiment is different from the first embodiment in the structure of the light incident part 11b and the structure of the heat generating part applied to the light incident part 11b, and the other structures are the same as in the above embodiment. is there. In FIG. 3, a schematic cross section near the entrance opening A1 including the light entrance portion 11b is shown, and the configuration on the exit opening A2 side is omitted.
 図3に示すように、光入射部11bは、入射開口A1から湿り蒸気用配管30内へ所定の波長の光を入射させる手段であり、光ファイバヘッド110、集光レンズ111、光ファイバケーブル112、発光部113、および発光電力供給部114を備えている。ラバーヒーター21bを備えている。 As shown in FIG. 3, the light incident portion 11 b is means for causing light of a predetermined wavelength to enter the wet steam pipe 30 from the incident opening A <b> 1, and includes an optical fiber head 110, a condensing lens 111, and an optical fiber cable 112. , A light emitting unit 113, and a light emitting power supply unit 114. A rubber heater 21b is provided.
 発光電力供給部114は、発光部113に所定の電力を供給して発光部113を湿り蒸気の乾き度を測定するに足りる程度の光量で発光させる駆動手段である。発光部113に供給する電力は、発光部113の仕様に応じた電力量とする。交流で電力供給する場合には、さらに発光部113の仕様に応じた周波数、電圧波形で電力を供給する。 The light emitting power supply unit 114 is a driving unit that supplies predetermined power to the light emitting unit 113 to cause the light emitting unit 113 to emit light with a light amount sufficient to measure the dryness of wet steam. The power supplied to the light emitting unit 113 is an amount of power corresponding to the specification of the light emitting unit 113. When power is supplied with alternating current, power is further supplied with a frequency and voltage waveform according to the specifications of the light emitting unit 113.
 発光部113は、自ら光を発生させる自発光手段であり、例えば、発光ダイオード、スーパールミネッセントダイオード、半導体レーザ、レーザ発振器、蛍光放電管、低圧水銀灯、キセノンランプ、ハロゲンランプ、メタルハライドランプ、紫外線光源、赤外線光源、及び電球等が使用可能であるが、安定した波長および強度を有する光を発生可能な手段であれば、上記に限定されない。 The light emitting unit 113 is a self-light emitting means for generating light itself. For example, a light emitting diode, a super luminescent diode, a semiconductor laser, a laser oscillator, a fluorescent discharge tube, a low pressure mercury lamp, a xenon lamp, a halogen lamp, a metal halide lamp, an ultraviolet ray A light source, an infrared light source, a light bulb, and the like can be used, but are not limited to the above as long as they can generate light having a stable wavelength and intensity.
 光ファイバケーブル112は、発光部113から出力された光を伝達する導光手段である。光ファイバケーブル112としては、例えば、ポリメタクリル酸メチル樹脂(PMMA:Poly(methyl methacrylate))からなるプラスチック光ファイバ、及び石英ガラスからなるガラス光ファイバ等が使用可能であるが、発光部113が発した光を伝播させる機能があれば、これに限定されない。 The optical fiber cable 112 is a light guiding unit that transmits light output from the light emitting unit 113. As the optical fiber cable 112, for example, a plastic optical fiber made of polymethyl methacrylate resin (PMMA: Poly (methyl methacrylate)), a glass optical fiber made of quartz glass, or the like can be used. However, the present invention is not limited to this as long as it has a function of propagating light.
 光ファイバヘッド110は、光ファイバケーブル112の先端部を所定長さ収容する収容体であり、その先端に集光レンズ111を備えている。光ファイバヘッド110は、外部の光を遮断し、内部の光ファイバケーブル112と集光レンズ111とを光学的に損失無く連結するとともに、光ファイバケーブル112および集光レンズ111を物理的・化学的に保護する。このため、光ファイバヘッド110は、金属または樹脂等の機械的強度があり化学的に安定な素材とすることが好ましい。 The optical fiber head 110 is a container that houses the tip of the optical fiber cable 112 for a predetermined length, and includes a condenser lens 111 at the tip. The optical fiber head 110 blocks external light, connects the internal optical fiber cable 112 and the condenser lens 111 optically without loss, and connects the optical fiber cable 112 and the condenser lens 111 physically and chemically. To protect. For this reason, the optical fiber head 110 is preferably made of a chemically stable material having mechanical strength such as metal or resin.
 図3に示すように、本実施形態2において、湿り蒸気用配管30の入射開口A1は、光ファイバヘッド110の先端口径に適合した径となっており、光ファイバヘッド110の先端が入射開口A1から配管30内へ挿入された状態で固定されている。光ファイバヘッド110は、湿り蒸気SAの流れに影響を与えない範囲で、入射開口A1から配管30の奥へ突出させてもよい。 As shown in FIG. 3, in the second embodiment, the entrance opening A1 of the wet steam pipe 30 has a diameter that matches the tip diameter of the optical fiber head 110, and the tip of the optical fiber head 110 is the entrance opening A1. It is being fixed in the state inserted in the piping 30. The optical fiber head 110 may protrude from the entrance opening A1 to the back of the pipe 30 within a range that does not affect the flow of the wet steam SA.
 本実施形態2において、入射開口A1において発生する熱損失を補償する熱損失補填装置として、ラバーヒーター21bおよび電力供給部20(図示省略)を備える。電力供給部20については、上記実施形態1における電力供給部20と同様であるため、説明を省略する。 In the second embodiment, a rubber heater 21b and a power supply unit 20 (not shown) are provided as a heat loss compensation device that compensates for heat loss generated in the incident aperture A1. The power supply unit 20 is the same as the power supply unit 20 in the first embodiment, and a description thereof will be omitted.
 ラバーヒーター21bは、光ファイバヘッド110の先端付近の外周を覆うように設けられている発熱部であり、全体寸法を除いて詳細な構造は、上記実施形態1において図2を参照して説明したラバーヒーター21と同様である。すなわち、上記実施形態1で説明したように、ラバーヒーター21bは、帯状に長い矩形状を有するラバーシートの内部に発熱体213が設けられた構造を有しており、発熱体213に電力を供給する引き出し線211および212が設けられており、引き出し線211および212は、上記電力供給部に接続されている。ラバーヒーター21bの端部には、面ファスナー214および215が取り付けられており、光ファイバヘッド110の先端外周に巻き回して面ファスナー214および215を互いに接着することにより、ラバーヒーター21bを光ファイバヘッド110の外周に密着固定することが可能になっている。なお、図3では、発熱体213、面ファスナー214および215の図示を省略してある。 The rubber heater 21b is a heat generating portion provided so as to cover the outer periphery in the vicinity of the tip of the optical fiber head 110, and the detailed structure except for the overall dimensions has been described with reference to FIG. The same as the rubber heater 21. That is, as described in the first embodiment, the rubber heater 21b has a structure in which the heating element 213 is provided inside a rubber sheet having a long rectangular band shape, and supplies power to the heating element 213. Lead wires 211 and 212 are provided, and the lead wires 211 and 212 are connected to the power supply unit. Surface fasteners 214 and 215 are attached to the end of the rubber heater 21b. The rubber fastener 21b is attached to the optical fiber head 110 by winding the surface fasteners 214 and 215 around the outer periphery of the optical fiber head 110. The outer periphery of 110 can be tightly fixed. In FIG. 3, the heating element 213 and the hook-and- loop fasteners 214 and 215 are not shown.
 ラバーヒーター21bの長手方向の幅d1は、ラバーヒーター21bを光ファイバヘッド110の外周に巻き回した際に、緩み無くラバーシートの内面が光ファイバヘッド110の外周面に接触した状態で、面ファスナー214および215を互いに接触させることができるような長さに調整されている。ラバーヒーター21bの短尺方向の幅は、光ファイバヘッド110に十分な熱量を伝達可能な面積を供給可能に調整されている。 The width d1 in the longitudinal direction of the rubber heater 21b is such that when the rubber heater 21b is wound around the outer periphery of the optical fiber head 110, the inner surface of the rubber sheet is in contact with the outer peripheral surface of the optical fiber head 110 without looseness. The length is adjusted such that 214 and 215 can be brought into contact with each other. The width in the short direction of the rubber heater 21b is adjusted so that an area capable of transmitting a sufficient amount of heat to the optical fiber head 110 can be supplied.
 (作用)
 次に本実施形態2の作用を説明する。
 湿り蒸気SAが湿り蒸気測定用配管30に供給される際、電力供給部20が発熱部であるラバーヒーター21bに加熱電力D1を供給する。ラバーヒーター21bでは発熱体213が当該加熱電力を受けて発熱し、その熱が光ファイバヘッド110に伝達される。このため、入射開口A1付近には断熱材を設けることができないため若干の熱損失を生じるが、その熱損失を補償するに足りる熱量がラバーヒーター21bから供給される。よって、光ファイバヘッド110の先端付近で湿り蒸気SAが凝縮したり液相が停滞したりすることを抑制でき、乾き度測定の精度劣化を防ぐことができる。
(Function)
Next, the operation of the second embodiment will be described.
When the wet steam SA is supplied to the wet steam measurement pipe 30, the power supply unit 20 supplies the heating power D1 to the rubber heater 21b, which is a heat generating part. In the rubber heater 21b, the heating element 213 receives the heating power and generates heat, and the heat is transmitted to the optical fiber head 110. For this reason, although a heat insulating material cannot be provided in the vicinity of the incident aperture A1, a slight heat loss occurs. However, an amount of heat sufficient to compensate for the heat loss is supplied from the rubber heater 21b. Therefore, it is possible to prevent the wet steam SA from condensing near the tip of the optical fiber head 110 and the liquid phase from stagnation, and it is possible to prevent deterioration in accuracy of dryness measurement.
 (効果)
 以上説明した実施形態2によれば、光入射部が光ファイバ構造である場合に、電力供給部20が入射開口A1付近で失われる熱量を補う加熱電力D1を供給し、光ファイバヘッド110外周に設けられたラバーヒーター21bが熱損失を補償するので、入射開口A1付近で湿り蒸気SAが凝縮したり液相が停滞したりすることを抑制でき、乾き度測定の精度劣化を防ぐことができる。
(effect)
According to the second embodiment described above, when the light incident portion has an optical fiber structure, the power supply portion 20 supplies the heating power D1 that compensates for the amount of heat lost near the entrance opening A1, and the outer periphery of the optical fiber head 110 is supplied. Since the provided rubber heater 21b compensates for heat loss, it is possible to prevent the wet steam SA from condensing in the vicinity of the incident aperture A1 and the liquid phase from stagnation, and it is possible to prevent deterioration in accuracy of dryness measurement.
 (実施形態3)
 本発明の実施形態3は、入射開口に透明導電膜を設けた発熱部の変形例に関する。
(Embodiment 3)
Embodiment 3 of the present invention relates to a modified example of the heat generating portion in which a transparent conductive film is provided in an incident opening.
 (構成)
 図4に、本発明の実施形態3に係る乾き度測定装置の構成を説明する模式断面図を示す。図4に示すように、本実施形態3において適用する湿り蒸気用配管30は、上記実施形態1と同様のサイトグラス構造を有している。説明を簡単にするため、図4には、入射開口A1側の構造のみを示し、射出開口A2側の構造を省略してある。射出開口A2側については、入射開口A1側と同様の構造を設けてもよい。
(Constitution)
In FIG. 4, the schematic cross section explaining the structure of the dryness measuring apparatus which concerns on Embodiment 3 of this invention is shown. As shown in FIG. 4, the wet steam pipe 30 applied in the third embodiment has the same sight glass structure as in the first embodiment. For the sake of simplicity, FIG. 4 shows only the structure on the incident aperture A1 side, and omits the structure on the exit aperture A2 side. On the exit aperture A2 side, a structure similar to that on the entrance aperture A1 side may be provided.
 図4に示すように、本実施形態3に係る乾き度測定装置1cは、入射開口A1において発生する熱損失を補償する熱損失補償装置として、透明フィルムヒーター21cおよび電力供給部20(図示省略)を備える。電力供給部20については、上記実施形態1における電力供給部20と同様であるため、説明を省略する。 As shown in FIG. 4, the dryness measuring apparatus 1 c according to the third embodiment is a transparent film heater 21 c and a power supply unit 20 (not shown) as a heat loss compensator that compensates for heat loss generated in the incident aperture A <b> 1. Is provided. The power supply unit 20 is the same as the power supply unit 20 in the first embodiment, and a description thereof will be omitted.
 透明フィルムヒーター21cは、引き出し線211および212を介して所定の電圧が印加されると、一定の温度にまで上昇してその温度を維持する透明導電膜フィルムであり、所定のシート抵抗を有する発熱部である。シート抵抗の範囲は、印加電圧との関係で発熱に適する抵抗値であればよく、限定はないが、例えば、数千Ω/□~数十Ω/□の範囲である。透明導電膜は、基材に透明導電性材料層を形成し、その上に保護層を形成した層構造を有している。基材は、光透過性があって強化ガラス33に接着可能な樹脂膜(例えばPET、PPS、PIフィルム等)である。透明導電性材料層は、光透過性があり一定のシート抵抗を有する導電性材料を適用可能である。例えば、カーボンナノチューブ(CNT)やITO、ナノサイズの金属(Ag等)からなる自己組織化膜、ITOに抵抗を調整する金属(例えばAg等)を散在させた膜等を適用可能である。また透明フィルムヒーター21cは、基材上に微細な幅の抵抗線を多数パターニングした膜であってもよい。透明フィルムヒーター21cは、接着剤または接着フィルムにより強化ガラス33に貼り合わせられている。透明フィルムヒーター21cは、強化ガラス33の大きさに適合させた大きさに整形されている。 The transparent film heater 21c is a transparent conductive film that rises to a predetermined temperature and maintains the temperature when a predetermined voltage is applied through the lead wires 211 and 212, and generates heat having a predetermined sheet resistance. Part. The sheet resistance range may be any resistance value suitable for heat generation in relation to the applied voltage, and is not limited, but is, for example, in the range of several thousand Ω / □ to several tens of Ω / □. The transparent conductive film has a layer structure in which a transparent conductive material layer is formed on a substrate and a protective layer is formed thereon. The base material is a resin film (for example, PET, PPS, PI film, etc.) that has optical transparency and can be bonded to the tempered glass 33. As the transparent conductive material layer, a conductive material that is light transmissive and has a certain sheet resistance can be applied. For example, a self-assembled film made of carbon nanotubes (CNT), ITO, or nano-sized metal (Ag, etc.), a film in which a metal (for example, Ag, etc.) that adjusts resistance is scattered on ITO, etc. can be applied. Further, the transparent film heater 21c may be a film obtained by patterning a large number of resistance lines having a fine width on a substrate. The transparent film heater 21c is bonded to the tempered glass 33 with an adhesive or an adhesive film. The transparent film heater 21 c is shaped to a size adapted to the size of the tempered glass 33.
 (作用)
 次に本実施形態3の作用を説明する。
 湿り蒸気SAが湿り蒸気測定用配管30に供給される際、電力供給部20が発熱部である透明フィルムヒーター21cに引き出し線211および212経由で加熱電力D1を供給する。透明フィルムヒーター21cは、当該加熱電力D1の供給を受けて発熱することにより配管30内部の湿り蒸気SAの温度と同じか若干高めの温度、例えば170℃に強化ガラス33の表面を加熱する。これにより、入射開口A1側で生じる熱損失を補償するに足りる熱量を発生させる。よって、強化ガラスの裏面付近で湿り蒸気SAが凝縮したり液相が停滞したりすることを抑制でき、乾き度測定の精度劣化を防ぐことができる。
(Function)
Next, the operation of the third embodiment will be described.
When the wet steam SA is supplied to the wet steam measurement pipe 30, the power supply unit 20 supplies the heating power D <b> 1 via the lead lines 211 and 212 to the transparent film heater 21 c that is a heat generating part. The transparent film heater 21c generates heat by receiving the supply of the heating power D1, thereby heating the surface of the tempered glass 33 to a temperature that is the same as or slightly higher than the temperature of the wet steam SA in the pipe 30, for example, 170 ° C. As a result, an amount of heat sufficient to compensate for the heat loss generated on the incident aperture A1 side is generated. Therefore, it is possible to prevent the wet steam SA from condensing near the back surface of the tempered glass or the liquid phase from stagnation, and it is possible to prevent deterioration in accuracy of dryness measurement.
 (効果)
 以上説明した実施形態3によれば、電力供給部20が入射開口A1付近で失われる熱量を補う電力を供給し、強化ガラス33の表面に設けられた透明フィルムヒーター21cが熱損失を補償するので、強化ガラス33の裏面付近で湿り蒸気SAが凝縮したり液相が停滞したりすることを抑制でき、乾き度測定の精度劣化を防ぐことができる。
(effect)
According to the third embodiment described above, the power supply unit 20 supplies power to compensate for the amount of heat lost near the entrance opening A1, and the transparent film heater 21c provided on the surface of the tempered glass 33 compensates for heat loss. In addition, it is possible to prevent the wet steam SA from condensing near the back surface of the tempered glass 33 and the liquid phase from stagnation, and it is possible to prevent deterioration in accuracy of dryness measurement.
 特に本実施形態3によれば、透明フィルムヒーター21cが熱損失の生じやすい強化ガラスの表面を覆って発熱するので、開口面における熱損失を効率的に補償可能である。 Particularly, according to the third embodiment, since the transparent film heater 21c generates heat by covering the surface of the tempered glass where heat loss is likely to occur, heat loss at the opening surface can be compensated efficiently.
 (実施形態4)
 本発明の実施形態4は、入射開口の開口面に温度センサを設けた乾き度測定装置に関する。
(Embodiment 4)
Embodiment 4 of the present invention relates to a dryness measuring apparatus in which a temperature sensor is provided on an opening surface of an incident opening.
 (構成)
 図5に、本実施形態4における乾き度測定装置1dの構成を示す。図5に示すように、本実施形態4に係る乾き度測定装置1dは、本実施形態4に係る乾き度測定装置1dは、入射開口A1側の強化ガラス33の表面に温度センサ23を備え、射出開口A2側の強化ガラス34の表面に温度センサ24をそれぞれ備えている点で、上記実施形態1と異なる。その他の構成については、上記実施形態1と同様であるため、説明を省略する。
(Constitution)
In FIG. 5, the structure of the dryness measuring apparatus 1d in this Embodiment 4 is shown. As shown in FIG. 5, the dryness measuring apparatus 1d according to the fourth embodiment includes the temperature sensor 23 on the surface of the tempered glass 33 on the incident opening A1 side. This is different from the first embodiment in that the temperature sensor 24 is provided on the surface of the tempered glass 34 on the injection opening A2 side. Since other configurations are the same as those in the first embodiment, description thereof is omitted.
 温度センサ23は、強化ガラス33の表面温度を計測し、計測された温度を示す検出信号S1を電力供給部20に出力する検出手段である。温度センサ24は、強化ガラス34の表面温度を計測し、計測された温度を示す検出信号S2を電力供給部20に出力する検出手段である。温度センサ23および24としては、強化ガラス表面の温度を計測可能であれば、その形態に限定はない。ガラス表面の温度を計測し電気信号である検出信号を出力するため、温度センサ23および24としては、接触式であって電気式の温度検出手段、例えば測温抵抗体(RTD)、リニア抵抗器、サーミスタ、熱電対、IC温度センサ等を適用可能である。強化ガラスの表面に設けた際に光を遮断しないように、温度センサ23および24は、小型のものであることが好ましい。 The temperature sensor 23 is a detection unit that measures the surface temperature of the tempered glass 33 and outputs a detection signal S1 indicating the measured temperature to the power supply unit 20. The temperature sensor 24 is a detection unit that measures the surface temperature of the tempered glass 34 and outputs a detection signal S2 indicating the measured temperature to the power supply unit 20. The temperature sensors 23 and 24 are not limited in form as long as the temperature of the tempered glass surface can be measured. In order to measure the temperature of the glass surface and output a detection signal which is an electric signal, the temperature sensors 23 and 24 are contact type and electric type temperature detection means such as a resistance temperature detector (RTD), a linear resistor. A thermistor, a thermocouple, an IC temperature sensor, etc. can be applied. The temperature sensors 23 and 24 are preferably small so as not to block light when provided on the surface of the tempered glass.
 本実施形態4において、電力供給部20は、温度センサ23からの検出信号S1を入力し、強化ガラス33の表面温度が湿り蒸気SAの温度付近に維持されるように、ラバーヒーター21に供給する加熱電力D1を制御する。また電力供給部20は、温度センサ24からの検出信号S2を入力し、強化ガラス34の表面温度が湿り蒸気SAの温度付近に維持されるように、ラバーヒーター22に供給する加熱電力D2を制御するように構成されている。 In the fourth embodiment, the power supply unit 20 receives the detection signal S1 from the temperature sensor 23 and supplies the detection signal S1 to the rubber heater 21 so that the surface temperature of the tempered glass 33 is maintained near the temperature of the wet steam SA. The heating power D1 is controlled. Further, the power supply unit 20 receives the detection signal S2 from the temperature sensor 24, and controls the heating power D2 supplied to the rubber heater 22 so that the surface temperature of the tempered glass 34 is maintained near the temperature of the wet steam SA. Is configured to do.
 (作用)
 次に本実施形態4の作用を説明する。
 湿り蒸気SAが湿り蒸気測定用配管30に供給される際、電力供給部20は、温度センサ23からの検出信号S1に基づいて、ラバーヒーター21に供給する加熱電力D1を制御する。また電力供給部20は、温度センサ24からの検出信号S2に基づいて、ラバーヒーター22に供給する電力D2を加熱制御する。
(Function)
Next, the operation of the fourth embodiment will be described.
When the wet steam SA is supplied to the wet steam measurement pipe 30, the power supply unit 20 controls the heating power D <b> 1 supplied to the rubber heater 21 based on the detection signal S <b> 1 from the temperature sensor 23. The power supply unit 20 controls the heating of the power D2 supplied to the rubber heater 22 based on the detection signal S2 from the temperature sensor 24.
 例えば、電力供給部20は、強化ガラスの表面温度が湿り蒸気SAの温度より低い場合、ラバーヒーター21(22)の引き出し線211および212間に予め定めた電圧を印加して電力を供給し、強化ガラスの表面温度が湿り蒸気SAの温度に達した時に、上記電力の供給を停止する。 For example, when the surface temperature of the tempered glass is lower than the temperature of the wet steam SA, the power supply unit 20 supplies power by applying a predetermined voltage between the lead wires 211 and 212 of the rubber heater 21 (22), When the surface temperature of the tempered glass reaches the temperature of the wet steam SA, the power supply is stopped.
 変形例として、電力供給部20は、ラバーヒーター21(22)に供給する加熱電力を段階的に、または、漸次的に変化させてもよい。例えば、電力供給部20は、強化ガラスの表面温度と湿り蒸気SAの温度との乖離の大きさに応じて、ラバーヒーター21(22)の引き出し線211および212間に印加する電圧を段階的に、または、漸次的に小さくしていき、供給する加熱電力を段階的に、または、漸次的に減少させるように制御してもよい。このように発熱部に供給する電力を段階的に、または、漸次的に減少させていくことで、強化ガラスを加熱し過ぎて、乾き度の測定値が不正確になることを防止可能である。 As a modification, the power supply unit 20 may change the heating power supplied to the rubber heater 21 (22) stepwise or gradually. For example, the power supply unit 20 gradually applies a voltage to be applied between the lead wires 211 and 212 of the rubber heater 21 (22) in accordance with the magnitude of the difference between the surface temperature of the tempered glass and the temperature of the wet steam SA. Alternatively, the heating power to be supplied may be controlled to gradually decrease and gradually decrease or gradually decrease. In this way, by gradually or gradually reducing the power supplied to the heat generating part, it is possible to prevent the measured value of the dryness from becoming inaccurate due to overheating of the tempered glass. .
 (効果)
 以上説明した実施形態4によれば、電力供給部20が温度センサ23(24)の検出信号S1(S2)に基づいてラバーヒーター21(22)に供給する電力を制御するので、入射開口A1付近で失われる熱量を補うために必要十分な電力を供給させることが可能である。
(effect)
According to the fourth embodiment described above, the power supply unit 20 controls the power supplied to the rubber heater 21 (22) based on the detection signal S1 (S2) of the temperature sensor 23 (24). It is possible to supply the necessary and sufficient power to make up for the amount of heat lost.
 特に本実施形態4によれば、加熱温度が湿り蒸気SAの温度より高くなることを抑制するので、過熱の影響で乾き度の測定値が不正確になることを防止可能である。 Particularly, according to the fourth embodiment, since the heating temperature is suppressed from becoming higher than the temperature of the wet steam SA, it is possible to prevent the measurement value of the dryness from being inaccurate due to the influence of overheating.
 (その他の変形例)
 本発明は、上記実施形態に限定されることなく、種々に変形して適用することが可能である。
(Other variations)
The present invention is not limited to the above-described embodiment, and can be variously modified and applied.
 (1)例えば、上記実施形態1および実施形態4では、入射開口A1側の入射側筒31と射出開口A2側の射出側筒32の双方に発熱部としてラバーヒーター21(22)を設けたが、どちらかの開口における熱損失が少ない構造の場合には、熱損失の少ない開口側における発熱部を省略してもよい。 (1) For example, in Embodiment 1 and Embodiment 4 described above, the rubber heater 21 (22) is provided as a heat generating part in both the incident side cylinder 31 on the incident opening A1 side and the emission side cylinder 32 on the emission opening A2 side. In the case of a structure with little heat loss in one of the openings, the heat generating portion on the opening side with little heat loss may be omitted.
 (2)上記実施形態2および上記実施形態3では、入射開口A1側の発熱部の構造のみを記載したが、射出開口A2側からの熱損失が大きい場合には発熱部を設けることができ、熱損失が小さい場合には発熱部を省略してもよい。 (2) In Embodiment 2 and Embodiment 3 described above, only the structure of the heat generating portion on the incident opening A1 side is described, but when the heat loss from the exit opening A2 side is large, the heat generating portion can be provided, If the heat loss is small, the heat generating part may be omitted.
 (3)上記実施形態では、乾き度測定装置の具体的な乾き度測定方法の一例を示したが、上記に限定されず、種々の乾き度測定方法を適用可能である。乾き度の測定時に、配管30内部の圧力または/および温度を測定し、湿り蒸気SAを透過した光の強度等のみならず、湿り蒸気の圧力や温度の関数として演算して特定することも可能である。 (3) In the above embodiment, an example of a specific dryness measurement method of the dryness measurement device has been described. However, the present invention is not limited to the above, and various dryness measurement methods can be applied. When measuring the dryness, it is possible to measure the pressure or / and temperature inside the pipe 30 and calculate and specify not only the intensity of light transmitted through the wet steam SA but also as a function of the pressure and temperature of the wet steam. It is.
 (4)上記実施形態では、湿り蒸気SAを透過する光の強度または光の強度に関連する物理量に基づいて乾き度を演算していたが、湿り蒸気SAにより反射される光の強度または光の強度に関連する物理量に基づいて乾き度を演算するように構成してもよい。湿り蒸気を透過する光の強度等は湿り蒸気により反射される光の強度等と相関関係があるため、所定の換算演算により、本願発明を湿り蒸気により反射される光の強度等に基づく乾き度特性に適用することが可能である。湿り蒸気で反射される光に基づいて乾き度を演算する構成とする場合、光入射部と受光部とを同じ開口に設け、配管からの熱損失自体を少なくしたり、本願発明の発熱部を共有の開口付近に一ヵ所だけ設けてコストを低減したりすることが可能である。 (4) In the above embodiment, the dryness is calculated based on the intensity of light that passes through the wet steam SA or a physical quantity related to the intensity of light, but the intensity of light reflected by the wet steam SA or the light intensity You may comprise so that a dryness may be calculated based on the physical quantity relevant to intensity | strength. Since the intensity of light transmitted through the wet steam correlates with the intensity of light reflected by the wet steam, the dryness degree based on the intensity of light reflected by the wet steam is determined by a predetermined conversion calculation. It can be applied to properties. When the dryness is calculated based on the light reflected by the wet steam, the light incident part and the light receiving part are provided in the same opening to reduce heat loss from the pipe itself, It is possible to reduce the cost by providing only one location near the shared opening.
産業上の利用分野Industrial application fields
 本発明の乾き度測定装置は、重厚長大産業分野に適用することが可能である。この分野においては、蒸気タービン出口の湿り蒸気の乾き度が発電効率に左右されることから、タービン出口の乾き度を正確に測定することで、負荷に応じたタービン入口の流量制御が可能であり、熱量ロスを軽減することができる。 The dryness measuring device of the present invention can be applied to heavy and large industrial fields. In this field, since the dryness of the wet steam at the steam turbine outlet depends on the power generation efficiency, the flow rate at the turbine inlet can be controlled according to the load by accurately measuring the dryness at the turbine outlet. Heat loss can be reduced.
1a、1b、1c、1d      湿り蒸気測定装置
11、11b  光入射部
12   受光部
13   乾き度特定部
20   電力供給部
21、22、21b   ラバーヒーター
21c 透明フィルムヒーター
23、24    温度センサ
30   湿り蒸気用配管(パイプ)
31   入射側筒
32   射出側筒
31f、32f       フランジ
33、34    強化ガラス
110 光ファイバヘッド
111 集光レンズ
112 光ファイバケーブル
113 発光部
114 発光電力供給部
210 ラバーシート
211、212       引き出し線
213 発熱体
214、215       面ファスナー
A1   入射開口
A2   射出開口
SA   湿り蒸気
D1、D2    供給電力
S1、S2、Sd     検出信号
1a, 1b, 1c, 1d Wet steam measuring device 11, 11b Light incident unit 12 Light receiving unit 13 Dryness specifying unit 20 Power supply unit 21, 22, 21b Rubber heater 21c Transparent film heater 23, 24 Temperature sensor 30 Wet steam piping (pipe)
31 Incident side tube 32 Ejection side tube 31f, 32f Flange 33, 34 Tempered glass 110 Optical fiber head 111 Condensing lens 112 Optical fiber cable 113 Light emitting unit 114 Light emission power supply unit 210 Rubber sheet 211, 212 Lead wire 213 Heating element 214, 215 hook-and-loop fastener A1 entrance opening A2 exit opening SA wet steam D1, D2 supply power S1, S2, Sd detection signal

Claims (8)

  1.  測定対象の湿り蒸気が流れる配管に設けられた入射開口から光を入射させる光入射部と、
     前記配管に設けられた射出開口から前記湿り蒸気を透過または反射した光を受けて検出信号を出力する受光部と、
     前記検出信号を参照して前記湿り蒸気の乾き度を特定する乾き度特定部と、
     前記入射開口および前記射出開口の少なくとも一方の熱損失を補償する熱損失補償装置と、を備える、
    乾き度測定装置。
    A light incident part for allowing light to enter from an incident opening provided in a pipe through which wet steam to be measured flows;
    A light receiving unit that receives light transmitted through or reflected from the wet steam from an injection opening provided in the pipe and outputs a detection signal;
    A dryness specifying unit that specifies the dryness of the wet steam with reference to the detection signal;
    A heat loss compensator that compensates for heat loss of at least one of the entrance aperture and the exit aperture, and
    Dryness measuring device.
  2.  前記熱損失補償装置は、発熱部と電力供給部とを有し、
     前記電力供給部は、前記発熱部に前記熱損失を補償する熱を発生させうる電力を供給する、
    請求項1に記載の乾き度測定装置。
    The heat loss compensator has a heat generating part and a power supply part,
    The power supply unit supplies power that can generate heat to compensate the heat loss to the heat generating unit.
    The dryness measuring apparatus according to claim 1.
  3.  前記発熱部は、電熱線が敷設されたラバーヒーターである、
    請求項2に記載の乾き度測定装置。
    The heating unit is a rubber heater in which a heating wire is laid.
    The dryness measuring apparatus according to claim 2.
  4.  前記ラバーヒーターは、前記入射開口および前記射出開口の少なくとも一方の周囲に設けられる、
    請求項3に記載の乾き度測定装置。
    The rubber heater is provided around at least one of the entrance opening and the exit opening.
    The dryness measuring apparatus according to claim 3.
  5.  前記ラバーヒーターは、前記光入射部および前記受光部の少なくとも一方の周囲に設けられる、
    請求項3に記載の乾き度測定装置。
    The rubber heater is provided around at least one of the light incident part and the light receiving part.
    The dryness measuring apparatus according to claim 3.
  6.  前記発熱部は、透明導電膜であり、
     前記入射開口および前記射出開口の少なくとも一方の開口面に設けられる、
    請求項2に記載の乾き度測定装置。
    The heat generating part is a transparent conductive film,
    Provided on at least one opening surface of the entrance opening and the exit opening,
    The dryness measuring apparatus according to claim 2.
  7.  前記入射開口および前記射出開口の少なくとも一方の開口面に温度センサを備え、
     前記電力供給部は、前記温度センサの検出信号に基づいて前記開口面の温度が前記湿り蒸気の温度以上となるように前記発熱部に電力を供給する、
    請求項2~6のいずれか1項に記載の乾き度測定装置。
    A temperature sensor is provided on at least one of the entrance opening and the exit opening;
    The power supply unit supplies power to the heating unit such that the temperature of the opening surface is equal to or higher than the temperature of the wet steam based on a detection signal of the temperature sensor.
    The dryness measuring apparatus according to any one of claims 2 to 6.
  8.  測定対象の湿り蒸気が流れる配管であって、
     光を入射させる入射窓と、
     前記湿り蒸気を透過または反射した光を射出させる射出窓と、
     前記検出信号を参照して前記湿り蒸気の乾き度を特定する乾き度特定部と、
     前記入射窓および前記射出窓の少なくとも一方において生ずる熱損失を補償する熱損失補償装置と、を備える、
    湿り蒸気用配管。
    A pipe through which wet steam to be measured flows,
    An incident window through which light is incident;
    An exit window for emitting light transmitted or reflected from the wet steam;
    A dryness specifying unit that specifies the dryness of the wet steam with reference to the detection signal;
    A heat loss compensator that compensates for heat loss that occurs in at least one of the entrance window and the exit window,
    Wet steam piping.
PCT/JP2014/062524 2013-05-24 2014-05-09 Dryness measurement device and piping for wet steam WO2014188891A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2013-110366 2013-05-24
JP2013110366A JP6091331B2 (en) 2013-05-24 2013-05-24 Dryness measuring device and piping for wet steam

Publications (1)

Publication Number Publication Date
WO2014188891A1 true WO2014188891A1 (en) 2014-11-27

Family

ID=51933454

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2014/062524 WO2014188891A1 (en) 2013-05-24 2014-05-09 Dryness measurement device and piping for wet steam

Country Status (2)

Country Link
JP (1) JP6091331B2 (en)
WO (1) WO2014188891A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113884470A (en) * 2020-07-02 2022-01-04 横河电机株式会社 Optical measuring device
US20220003599A1 (en) * 2021-07-02 2022-01-06 Yokogawa Electric Corporation Optical measuring device

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63121729A (en) * 1986-11-11 1988-05-25 Kowa Co Measuring instrument for fine grains in liquid
JPH0249145A (en) * 1988-08-10 1990-02-19 Nippon Denso Co Ltd Smoke sensor
EP0762107A1 (en) * 1995-09-11 1997-03-12 FISHER &amp; PAYKEL LIMITED An infrared gas analyser and humidity sensor
JPH11183366A (en) * 1997-12-25 1999-07-09 Nippon Sanso Kk Measurement cell for spectral analysis
JP2000035486A (en) * 1998-07-17 2000-02-02 Toyota Motor Corp Object detecting device
JP2002520588A (en) * 1998-07-13 2002-07-09 レール・リキード−ソシエテ・アノニム・ア・ディレクトワール・エ・コンセイユ・ドゥ・スールベイランス・プール・レテュード・エ・レクスプロワタシオン・デ・プロセデ・ジョルジュ・クロード In-line cell for absorption spectroscopy
JP2013092457A (en) * 2011-10-26 2013-05-16 Azbil Corp Dryness measurement device and dryness measurement method

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63121729A (en) * 1986-11-11 1988-05-25 Kowa Co Measuring instrument for fine grains in liquid
JPH0249145A (en) * 1988-08-10 1990-02-19 Nippon Denso Co Ltd Smoke sensor
EP0762107A1 (en) * 1995-09-11 1997-03-12 FISHER &amp; PAYKEL LIMITED An infrared gas analyser and humidity sensor
JPH11183366A (en) * 1997-12-25 1999-07-09 Nippon Sanso Kk Measurement cell for spectral analysis
JP2002520588A (en) * 1998-07-13 2002-07-09 レール・リキード−ソシエテ・アノニム・ア・ディレクトワール・エ・コンセイユ・ドゥ・スールベイランス・プール・レテュード・エ・レクスプロワタシオン・デ・プロセデ・ジョルジュ・クロード In-line cell for absorption spectroscopy
JP2000035486A (en) * 1998-07-17 2000-02-02 Toyota Motor Corp Object detecting device
JP2013092457A (en) * 2011-10-26 2013-05-16 Azbil Corp Dryness measurement device and dryness measurement method

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113884470A (en) * 2020-07-02 2022-01-04 横河电机株式会社 Optical measuring device
EP3933382A1 (en) * 2020-07-02 2022-01-05 Yokogawa Electric Corporation Optical measuring device
US20220003599A1 (en) * 2021-07-02 2022-01-06 Yokogawa Electric Corporation Optical measuring device

Also Published As

Publication number Publication date
JP2014228493A (en) 2014-12-08
JP6091331B2 (en) 2017-03-08

Similar Documents

Publication Publication Date Title
Dong et al. Compact anemometer using silver-coated fiber Bragg grating
Cheng et al. Experimental and simulation study on thermal gas flowmeter based on fiber Bragg grating coated with silver film
KR20120012426A (en) Fiber optic carbon dioxide purity sensor package and system
Limodehi et al. Fiber optic humidity sensor using water vapor condensation
US20150362426A1 (en) Dryness fraction distribution measuring device and dryness fraction distribution measuring method
JP6091331B2 (en) Dryness measuring device and piping for wet steam
JP6545765B2 (en) Thermal diffusivity measurement device
JP2015108546A (en) Thermal diffusivity measuring apparatus
JP2011214994A (en) Anemometer and wind direction and speed device
JP2019052950A (en) Thermal type flowmeter
CN106940205A (en) A kind of scaling method for the humidity sensor being used under high humidity environment
CN105157769B (en) The gas flow metering method of thermal flow rate sensor based on fiber grating
CN103759776B (en) All-optical gas mass flow rate monitoring device and method
Wei et al. Volume absorption laser energy meter for high energy laser by water absorption
JP2016151572A (en) Dryness measurement device
JP6307390B2 (en) Dryness measuring device and dryness measuring method
US9625384B2 (en) Dryness fraction distribution measuring device and dryness fraction distribution measuring method
CN204514399U (en) Based on the thermal flow rate sensor of fiber grating
WO2017183433A1 (en) Dryness measurement device and wet steam inspection device
Liu et al. Non-contact T-type Raman method for measurement of thermophysical properties of micro-/nanowires
WO2017183434A1 (en) Dryness measurement device and wet steam inspection device
Silva et al. All-fiber sensor based on a metallic coated hybrid LPG-FBG structure for thermal characterization of materials
JP6531476B2 (en) Wetness measurement system and method
JP6533097B2 (en) Gas heater and flow rate measuring method for gas heater
Wang et al. A fiber-optic Bragg grating sensor for simultaneous static and dynamic temperature measurement on a heated cylinder in cross-flow

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14801414

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 14801414

Country of ref document: EP

Kind code of ref document: A1