JPH06283589A - Temperature measuring method of substrate surface, semiconductor film forming method using the same and its equipment - Google Patents

Temperature measuring method of substrate surface, semiconductor film forming method using the same and its equipment

Info

Publication number
JPH06283589A
JPH06283589A JP5071405A JP7140593A JPH06283589A JP H06283589 A JPH06283589 A JP H06283589A JP 5071405 A JP5071405 A JP 5071405A JP 7140593 A JP7140593 A JP 7140593A JP H06283589 A JPH06283589 A JP H06283589A
Authority
JP
Japan
Prior art keywords
silicon substrate
temperature
light
reflected light
substrate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP5071405A
Other languages
Japanese (ja)
Other versions
JPH0770580B2 (en
Inventor
Yoshio Oshita
祥雄 大下
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NEC Corp
Original Assignee
NEC Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NEC Corp filed Critical NEC Corp
Priority to JP5071405A priority Critical patent/JPH0770580B2/en
Publication of JPH06283589A publication Critical patent/JPH06283589A/en
Publication of JPH0770580B2 publication Critical patent/JPH0770580B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Abstract

PURPOSE:To form a high quality silicon semiconductor thin film of uniform thickness, with superior reproducibility in a substrate surface, by precisely measuring the silicon substrate temperature and the temperature distribution in the substrate surface. CONSTITUTION:The following are installed; an irradiation part la casting a parallel polarized light having a wavelength capable of being absorbed in a light absorber, on the light absorber caused by dangling bonds on a silicon substrate 20 surface, a light receiving part 2a supplying reaction gas containing atoms to be chemically adsorbed by the silicon substrate 20, stopping the gas supply, and measuring the intensity of light reflected from the substrate surface, and a temperature reducing part 3a obtaining the change of the reflected light intensity with time, operating the attenuation time constant of the reflected light intensity, comparing the time constant with the known data of temperature dependency of the desertion speed of atoms, and calculating the substrate surface temperature. While the temperature of the silicon substrate 20 is measured and controlled, a film is formed.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、半導体基板、特にシリ
コン基板に結晶成長させ薄膜を形成する際に、適用され
る基板表面温度を測定する基板表面の測定方法およびそ
れを利用した半導体成膜方法とその装置に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a substrate surface measuring method for measuring a substrate surface temperature applied when a thin film is formed by crystal growth on a semiconductor substrate, particularly a silicon substrate, and a semiconductor film formation using the same. A method and its apparatus.

【0002】[0002]

【従来の技術】通常、半導体基板であるシリコン基板に
半導体薄膜を形成するには、加熱されたシリコン基板上
にシラン系ガスを供給し、このシラン系ガスの熱分解お
よび表面での化学反応を利用して行なわれていた。ま
た、この基板に成膜する際には、基板温度で化学反応の
進行速度が決定されるので、面内に均一な膜厚の良質な
膜を得るために温度制御の正確さが必要不可欠の条件で
あった。特に、最近のLSIの微細化に伴なう堆積膜の
薄膜化および低廉価を図るための基板の大口径化によ
り、益々精密な温度制御が要求されてきている。
2. Description of the Related Art Generally, in order to form a semiconductor thin film on a silicon substrate, which is a semiconductor substrate, a silane-based gas is supplied onto a heated silicon substrate, and the silane-based gas undergoes thermal decomposition and chemical reaction on the surface. It was done using it. Further, when forming a film on this substrate, since the progress rate of the chemical reaction is determined by the substrate temperature, accurate temperature control is indispensable in order to obtain a good quality film having a uniform film thickness within the plane. It was a condition. In particular, with the recent miniaturization of LSIs, the deposition film has become thinner and the diameter of the substrate has been increased in order to reduce the cost.

【0003】従来、この種の半導体成膜装置は、減圧さ
れた反応管内に載置されたシリコン基板を反応管外より
赤外線ランプで加熱し、反応管内に反応ガスであるSi
2Cl2 (以下ジクロルシランと呼ぶ)及び水素を導
入し反応させ、シリコン基板にシリコン半導体薄膜を形
成していた。また、成膜中に加熱されたシリコン基板の
温度測定には、熱電対による測定方法が採用されてい
た。
Conventionally, in this type of semiconductor film forming apparatus, a silicon substrate placed in a depressurized reaction tube is heated by an infrared lamp from outside the reaction tube, and Si, which is a reaction gas in the reaction tube, is heated.
H 2 Cl 2 (hereinafter referred to as dichlorosilane) and hydrogen were introduced and reacted to form a silicon semiconductor thin film on a silicon substrate. In addition, a thermocouple measurement method has been used for measuring the temperature of the silicon substrate heated during film formation.

【0004】図6は従来のシリコン基板表面の温度測定
方法の一例を説明するための成膜装置の基板載置部を示
す側面図である。このシリコン基板の表面の温度測定方
法は、例えば、図6に示すように、シリコン基板20を
載置するシリコンカーバイトで表面が塗布されたグラフ
ァイト製のサセプタ10の小孔25に挿入された熱電対
24によってシリコン基板20の温度を検知し、この熱
電対24で検知された温度は、電圧として出力され反応
管外部の電圧計に入力し温度として読み取る方法が採ら
れていた。
FIG. 6 is a side view showing a substrate mounting portion of a film forming apparatus for explaining an example of a conventional method for measuring the temperature of a silicon substrate surface. As shown in FIG. 6, for example, as shown in FIG. 6, the temperature of the surface of the silicon substrate is measured by inserting a thermoelectric material into a small hole 25 of a graphite susceptor 10 whose surface is coated with silicon carbide. The temperature of the silicon substrate 20 is detected by the pair 24, and the temperature detected by the thermocouple 24 is output as a voltage, input to a voltmeter outside the reaction tube, and read as the temperature.

【0005】[0005]

【発明が解決しようとする課題】上述した従来の成膜に
おける基板表面の温度測定方法では、基板に損傷しない
ように基板に直接熱電対を接触することが無いものの、
熱電対が測定しているのは基板そのものの温度でなくサ
セプタ内部の温度である。このため、膜の堆積に際して
キャリアガス等の流れにより基板表面温度が低下したに
もかかわらず、サセプタ内部に配置された熱電対は高温
のままであったり、正確な基板表面温度が測定すること
ができない。ましては、基板の温度分布を測定すること
は殆度不可能に近い。さらに、このように検知される温
度が不正確なもので基板温度を制御することは難しく正
確に制御することが出来なかった。このことは、基板温
度の変化に対して指数関数的に変化する膜厚を制御する
ことが困難にし薄膜の形成における再現性が悪くなるば
かりでなく面内に均一な良質な半導体薄膜が得られない
という問題がある。
In the above-mentioned conventional method for measuring the temperature of the substrate surface in the film formation, although the thermocouple is not directly contacted with the substrate so as not to damage the substrate,
What the thermocouple is measuring is not the temperature of the substrate itself, but the temperature inside the susceptor. For this reason, even if the substrate surface temperature is lowered due to the flow of carrier gas during the deposition of the film, the thermocouple placed inside the susceptor may remain at a high temperature or the substrate surface temperature may be accurately measured. Can not. Furthermore, it is almost impossible to measure the temperature distribution of the substrate. Further, since the temperature thus detected is inaccurate, it is difficult to control the substrate temperature, and it is impossible to control it accurately. This means that it is difficult to control the film thickness that changes exponentially with respect to the change in the substrate temperature, the reproducibility in thin film formation deteriorates, and a uniform semiconductor thin film with good quality can be obtained. There is a problem that there is no.

【0006】従って、本発明の目的は、基板温度および
面内の温度分布を精度良く測定できるようにし、これに
より、基板面内に均一な膜厚で良質なシリコン半導体薄
膜を再現性良く形成できる半導体成膜方法およびその装
置を提供することである。
Therefore, an object of the present invention is to enable the substrate temperature and the in-plane temperature distribution to be measured with high accuracy, whereby a high-quality silicon semiconductor thin film with a uniform film thickness can be formed in the substrate plane with good reproducibility. A semiconductor film forming method and an apparatus thereof are provided.

【0007】[0007]

【課題を解決するための手段】本発明の第1の特徴は、
シリコン基板表面のダングリングボンドに起因する光吸
収体に対し該光吸収体に吸収され得る波長を有する平行
偏向された光を照射し、前記シリコン基板へ化学吸着さ
れる原子を含む反応ガスの供給および停止を行ない前記
シリコン基板表面からの反射光強度を測定し該反射光強
度の時間に対する変化を求め、求められた前記反射光強
度の減衰の時定数と前記原子の離脱速度の温度依存性の
既知のデータとを照合し前記シリコン基板表面の温度を
測定する基板表面の温度測定方法である。
The first feature of the present invention is to:
Supplying a reaction gas containing atoms that are chemically adsorbed to the silicon substrate by irradiating a light absorber caused by dangling bonds on the surface of the silicon substrate with parallel-polarized light having a wavelength that can be absorbed by the light absorber. And stop to measure the reflected light intensity from the surface of the silicon substrate to obtain a change with time of the reflected light intensity, the time constant of the attenuation of the obtained reflected light intensity and the temperature dependence of the detachment rate of the atoms. This is a method for measuring the temperature of the surface of the substrate by comparing the temperature of the surface of the silicon substrate with the known data.

【0008】本発明の第2の特徴は、上述したシリコン
基板表面の温度測定方法を用いて該シリコン基板表面の
温度を測定を行ないながらシリコンの結晶を成長させ薄
膜を形成する半導体成膜方法である。
The second feature of the present invention is a semiconductor film forming method for forming a thin film by growing a crystal of silicon while measuring the temperature of the surface of the silicon substrate by using the method for measuring the temperature of the surface of the silicon substrate described above. is there.

【0009】本発明の第3の特徴は、シリコン基板を載
置する機構部を収納し該シリコン基板を加熱する加熱手
段と前記シリコン基板に化学吸着される原子を含む反応
ガスの供給・停止を行なう手段と該反応ガスの圧力を所
定の圧力に維持する減圧ポンプを具備する反応室と、前
記シリコン基板表面のダングリングボンドに起因する光
吸収体に対し該光吸収体に吸収され得る波長を有する平
行偏向された光を前記シリコン基板表面に照射する照射
手段と、前記シリコン基板表面からの反射光を受光する
受光手段と、この受光手段により得られた反射光強度デ
ータにより該反射光強度の減衰の時定数を求め該時定数
と前記原子の離脱速度の温度依存性の既知のデータを照
合して前記シリコン基板表面の温度を算出する計算手段
を備える半導体成膜装置である。
A third feature of the present invention is that a mechanism for mounting a silicon substrate is housed, heating means for heating the silicon substrate, and supply / stop of a reaction gas containing atoms chemically adsorbed to the silicon substrate are provided. A reaction chamber having a means for performing and a decompression pump for maintaining the pressure of the reaction gas at a predetermined pressure, and a wavelength that can be absorbed by the light absorber with respect to the light absorber due to dangling bonds on the surface of the silicon substrate. The irradiation means for irradiating the surface of the silicon substrate with the parallel-polarized light, the light receiving means for receiving the reflected light from the surface of the silicon substrate, and the reflected light intensity data of the reflected light intensity obtained by the light receiving means. A semiconductor device provided with a calculating means for obtaining a time constant of decay and collating the time constant with known data of temperature dependence of the detachment rate of the atoms to calculate the temperature of the surface of the silicon substrate. It is a device.

【0010】[0010]

【作用】通常、平行偏向した光をシリコン基板面に照射
すると、その反射光強度は表面の状態に極めて敏感に変
化する。例えば、シリコン基板に異種原子が吸着されて
いない清浄な表面では、ダングリングボンドに起因する
光吸収帯が存在する。この吸収帯に吸収される波長をも
つ光を照射すると、光が吸収される結果反射光強度が低
下する。一方、塩化水素、ジクロルシランあるいはシラ
ン等を含むガスをシリコン基板に供給すると、ダングリ
ングボンドと結び易い塩素原子あるいは水素原子がシリ
コン基板表面と化学結合して吸着され、表面のダングリ
ングボンドの数が減少する。その結果、吸収帯で吸収さ
れる光量が減少し逆に反射光強度が増す。また、ガスの
供給を停止すると、シリコン基板表面に吸着された塩素
あるいは水素原子が熱の作用により離脱し、再び清浄な
表面が現れ反射光強度が減少する。
When the parallel-polarized light is applied to the surface of the silicon substrate, the intensity of the reflected light changes extremely sensitively to the surface condition. For example, on a clean surface where foreign atoms are not adsorbed on the silicon substrate, there is a light absorption band due to dangling bonds. When light having a wavelength that is absorbed in this absorption band is irradiated, the light is absorbed, and as a result, the reflected light intensity decreases. On the other hand, when a gas containing hydrogen chloride, dichlorosilane, silane, or the like is supplied to the silicon substrate, chlorine atoms or hydrogen atoms that are likely to bond with dangling bonds are chemically bonded and adsorbed to the silicon substrate surface, and the number of dangling bonds on the surface is reduced. Decrease. As a result, the amount of light absorbed in the absorption band decreases and conversely the intensity of reflected light increases. Further, when the supply of gas is stopped, chlorine or hydrogen atoms adsorbed on the surface of the silicon substrate are removed by the action of heat, and a clean surface appears again and the reflected light intensity decreases.

【0011】図5はガス供給停止後における時間の経過
による反射光強度の減少度を示すグラフである。上述し
たように吸着した原子の離脱によって、ダングリングボ
ンドの数が増加に伴ない、吸収帯に吸収される光量が増
加し、反射光強度は逆に減少する。例えば、使用するガ
スがジクロルシランであれば、図5に示すように、(1
00)面であるシリコン基板表面にジクロルシランを供
給を停止した後、反射率で示した反射光強度が指数関数
的に減少する。ここで、停止後の経過時間に対する反射
率の変化を式で示すと以下になる。
FIG. 5 is a graph showing the degree of decrease in reflected light intensity with the passage of time after the gas supply is stopped. As described above, the number of dangling bonds increases due to the detachment of the adsorbed atoms, so that the amount of light absorbed in the absorption band increases and the reflected light intensity decreases. For example, if the gas used is dichlorosilane, as shown in FIG.
After the supply of dichlorosilane to the surface of the silicon substrate, which is the (00) plane, is stopped, the reflected light intensity indicated by the reflectance decreases exponentially. Here, the change in reflectance with respect to the elapsed time after the stop is shown by an equation as follows.

【0012】R(t)=C1 exp(−t/τ) ここで、R(t)は、ガス供給を停止した後の時間tに
おける反射率、C1 は定数、τは離脱の時定数である。
また、離脱の時定数τと基板温度の関係は次の式で与え
られる。
R (t) = C 1 exp (−t / τ) where R (t) is the reflectance at time t after the gas supply is stopped, C 1 is a constant, and τ is a time constant of desorption. Is.
The relationship between the detachment time constant τ and the substrate temperature is given by the following equation.

【0013】τ(T)=C2 exp(E/kT) ここで、Tは基板の絶対温度、τ(T)は基板温度Tに
おける離脱の時定数、kはボルツマン定数である。Eは
離脱の活性化エネルギーであり、上記系の場合は21k
Cal/molである。
Τ (T) = C 2 exp (E / kT) where T is the absolute temperature of the substrate, τ (T) is the detachment time constant at the substrate temperature T, and k is the Boltzmann constant. E is the activation energy for withdrawal, and in the case of the above system, 21 k
Cal / mol.

【0014】そこで試みに、シリコン基板に平行偏向さ
れたアルゴンレーザを照射し、その反射光強度の時間経
過による変化を測定し離脱の時定数τを求めた。そし
て、予め既知であるこの時定数と温度の関係から測定温
度を求めた。その結果、実際に熱電対をシリコン基板表
面に接触させて測定した場合と比較してみたところ、±
5%以内の誤差範囲で一致した。
Therefore, in an attempt, the silicon substrate was irradiated with a parallel-polarized argon laser, the change in the reflected light intensity over time was measured, and the time constant .tau. Then, the measured temperature was obtained from the previously known relationship between the time constant and the temperature. As a result, when compared with the case where the thermocouple was actually contacted with the silicon substrate surface and measured,
The agreement was within the error range of 5%.

【0015】[0015]

【実施例】次に、本発明について図面を参照して説明す
る。
DESCRIPTION OF THE PREFERRED EMBODIMENTS Next, the present invention will be described with reference to the drawings.

【0016】図1は本発明の第1の実施例を説明するた
めの半導体成膜装置を示す模式図である。この半導体成
膜装置は、図1に示すように、シリコン基板20を載置
するサセプタ10を収納する反応管4と、この反応管4
の外部に配置されシリコン基板20を加熱する赤外線ラ
ンプ5と、反応管4のガス導入口7から反応ガスを供給
・停止を仕さどる図示していないマスフローメータ及び
バルブと、導入された前記反応ガスの圧力を一定に維持
する真空ポンプ6とを備えている一種の減圧型CVD装
置である。
FIG. 1 is a schematic view showing a semiconductor film forming apparatus for explaining a first embodiment of the present invention. As shown in FIG. 1, this semiconductor film forming apparatus includes a reaction tube 4 for accommodating a susceptor 10 on which a silicon substrate 20 is placed, and a reaction tube 4 for this reaction tube 4.
An infrared lamp 5 arranged outside the chamber for heating the silicon substrate 20, a mass flow meter and a valve (not shown) for controlling the supply / stop of the reaction gas from the gas inlet 7 of the reaction tube 4, and the introduced reaction. This is a kind of decompression type CVD apparatus provided with a vacuum pump 6 for keeping the gas pressure constant.

【0017】また、この装置には、反応管4の窓8を通
して平行偏向された光をシリコン基板20に投光する照
射部1aと、シリコン基板20からの反射光を窓9を介
して受光する受光部2aと、この受光部2aより得られ
た反射光の減衰の時定数と予め記憶されたシリコン基板
20に吸着する原子の離脱速度の温度依存性の既知のデ
ータとを照合して基板表面の温度を算出する温度換算部
3が設けられている。
Further, in this apparatus, an irradiation section 1a for projecting parallel-polarized light onto the silicon substrate 20 through the window 8 of the reaction tube 4 and reflected light from the silicon substrate 20 through the window 9 are received. The light receiving portion 2a is collated with the time constant of the attenuation of the reflected light obtained from the light receiving portion 2a and the previously stored data of the temperature dependence of the desorption rate of the atoms adsorbed on the silicon substrate 20, and the substrate surface is checked. The temperature conversion unit 3 for calculating the temperature is provided.

【0018】照射部1aは、レーザ光を発生するアルゴ
ンガスのレーザ発振器15と、レーザ光を基板表面に対
して平行偏向する偏向子14と、レーザ光をパルス光に
するチョッパー13と、パルス状のレーザ光を反射させ
窓8を介して反応管4内に入光させるミラー11とで構
成されている。また、受光部2aはシリコン基板20か
らの反射光を窓9を通して入光し一方向に反射するミラ
ー12と、ミラー12からの反射光を受光する光検出器
16とを有している。さらに、温度換算部3は、光検出
器16からの反射光強度信号を増幅するロックインアン
プ17と、増幅された反射光強度信号値で反射光の減衰
の時定数を算出しこの時定数と予め記憶されたシリコン
基板20に吸着する原子の離脱速度の温度依存性の既知
のデータとを照合して基板表面の温度を算出するコンピ
ュータ19と、算出された温度を表示する表示部19を
備えている。
The irradiation unit 1a includes a laser oscillator 15 of argon gas for generating laser light, a deflector 14 for deflecting the laser light in parallel with the substrate surface, a chopper 13 for converting the laser light into pulsed light, and a pulsed light. And a mirror 11 for reflecting the laser light of the above and entering the reaction tube 4 through the window 8. Further, the light receiving section 2a has a mirror 12 that receives reflected light from the silicon substrate 20 through the window 9 and reflects it in one direction, and a photodetector 16 that receives the reflected light from the mirror 12. Further, the temperature conversion unit 3 calculates the time constant of the attenuation of the reflected light by the lock-in amplifier 17 that amplifies the reflected light intensity signal from the photodetector 16 and the amplified reflected light intensity signal value, and A computer 19 for calculating the temperature of the substrate surface by collating with previously stored data of the temperature dependence of the desorption rate of atoms adsorbed on the silicon substrate 20, and a display unit 19 for displaying the calculated temperature are provided. ing.

【0019】次に、この装置による基板表面温度の測定
方法およびそれを利用した成膜方法について装置の動作
の説明を交えて説明する。まず、希釈されたフッ酸洗浄
あるいは反応管内で900度以上の熱処理によって自然
酸化膜が除去されたシリコン基板を準備し、サセプタ1
0に載置する。次に、反応管4を真空ポンプで減圧し、
レーザ発振器15よりレーザ光を発生させ、発生したレ
ーザ光を偏向子14で平行偏向し、S/N比を向上する
ためにチョッパー13でレーザ光をパルス光にする。そ
して、ミラー11でレーザ光を反射させ窓8を通してシ
リコン基板20の表面に投光する。なお、シリコン基板
20への入射角は反射光強度が最大になるように設定し
ておくことである。
Next, a method of measuring the substrate surface temperature by this apparatus and a film forming method using the same will be described together with an explanation of the operation of the apparatus. First, prepare a silicon substrate from which a natural oxide film has been removed by washing with diluted hydrofluoric acid or heat treatment in a reaction tube at 900 ° C. or higher.
Place at 0. Next, depressurize the reaction tube 4 with a vacuum pump,
Laser light is generated from the laser oscillator 15, the generated laser light is parallel-deflected by the deflector 14, and the chopper 13 turns the laser light into pulsed light in order to improve the S / N ratio. Then, the laser light is reflected by the mirror 11 and projected onto the surface of the silicon substrate 20 through the window 8. The angle of incidence on the silicon substrate 20 should be set so that the intensity of reflected light is maximized.

【0020】図2はシリコン基板の表面(100)にジ
クロシランを供給・停止した場合の反射光強度を示すグ
ラフである。次に、反応管4のガス導入口7より、例え
ば、ジクロルシランを導入し、清浄なシリコン基板20
の表面(100)に供給し真空ポンプ6で排気し約20
Torrの圧力に維持する。このことにより表面が塩素
で被覆され、図2に示すように、平行偏向されたレーザ
光の反射光強度が増加し所定の時間経過後飽和する。次
に、ジクロルシランの供給を停止すると、反射光強度が
減少する。この反射光強度を光検出器16で信号値の大
きさで出力し、ロックインアンプ17に入力して増幅す
る。そして、温度によって反射光強度が減少する仕方が
異なる信号値をコンピュータ18に順次入力させ、演算
処理して減衰の時定数を求める。引続き、記憶された減
衰の時定数における温度依存性の既知のデータと照合
し、シリコン基板20の表面温度を求める。
FIG. 2 is a graph showing the reflected light intensity when dichlorosilane is supplied to the surface (100) of the silicon substrate and stopped. Next, for example, dichlorosilane is introduced through the gas introduction port 7 of the reaction tube 4 to clean the silicon substrate 20.
On the surface (100) of the
Maintain pressure at Torr. As a result, the surface is covered with chlorine, and as shown in FIG. 2, the reflected light intensity of the parallel-polarized laser light increases and becomes saturated after a lapse of a predetermined time. Next, when the supply of dichlorosilane is stopped, the intensity of reflected light decreases. The reflected light intensity is output by the photodetector 16 in the magnitude of the signal value, and is input to the lock-in amplifier 17 to be amplified. Then, the signal values in which the reflected light intensity decreases depending on the temperature are sequentially input to the computer 18, and arithmetic processing is performed to obtain the attenuation time constant. Then, the surface temperature of the silicon substrate 20 is obtained by collating with the known data of the temperature dependence of the stored time constant of the attenuation.

【0021】さらに、ジクロルシランおよび水素ガスで
エピタキシアル成長中に、ある一定時間の間隔において
原料ガスの供給を停止し、反射光の現象から温度を測定
し、その後、再び原料ガスを供給する。このような動作
を成膜中に繰返して行ない、基板温度を精密に測定し、
赤外線ランプ5の出力を制御し温度制御を行なう。
Further, during the epitaxial growth with dichlorosilane and hydrogen gas, the supply of the raw material gas is stopped at certain time intervals, the temperature is measured from the phenomenon of reflected light, and then the raw material gas is supplied again. These operations are repeated during film formation to measure the substrate temperature precisely,
The output of the infrared lamp 5 is controlled to control the temperature.

【0022】以上本実施例では、ジクロルシランをシリ
コン基板に供給して、基板表面を塩素で終端したが、S
iH2 Cl2 等ハロゲン原子とシリコン原子からなる他
の分子あるいはHCl、Cl2 等ハロゲンおよび水素、
ハロゲンのみからなる分子によっても同様にシリコン基
板表面がハロゲン原子により終端され同様な効果が得ら
れる。さらに、SiH4 等シリコンと水素からなる分子
を供給しても、表面に存在するダングリングボンドが水
素により終端され反射率が増加する。すなわち、この水
素の離脱に対応する反射率の減衰を測定することにより
基板表面の温度を測定することが出来る。
As described above, in this embodiment, dichlorosilane was supplied to the silicon substrate to terminate the surface of the substrate with chlorine.
iH 2 Cl 2 or another molecule consisting of a halogen atom and a silicon atom, or HCl, Cl 2 or another halogen and hydrogen,
Even with a molecule composed of only halogen, the surface of the silicon substrate is similarly terminated by a halogen atom, and the same effect is obtained. Further, even if a molecule such as SiH 4 containing silicon and hydrogen is supplied, dangling bonds existing on the surface are terminated by hydrogen and the reflectance increases. That is, the temperature of the substrate surface can be measured by measuring the attenuation of the reflectance corresponding to the release of hydrogen.

【0023】図3は本発明の第2の実施例を説明するた
めの半導体成膜装置を示す模式図である。この半導体成
膜装置は、基板表面の温度測定用の光照射部において、
平行波と垂直波とを含む光をシリコン基板表面に照射し
たことである。すなわち、図3に示すように、レーザ発
振器15から発生するレーザ光はチョッパー13でパル
ス化し、偏向子14aで基板表面に対して45度に偏向
され、ミラー11で反射されシリコン基板20に投射さ
れる。シリコン基板20からの反射光は、ミラー12よ
り反射されポーラライズトスプリッター21により垂直
波と平行波に分離される。分離された反射光は、それぞ
れの光検出器16a,16bに入光する。入光した反射
光は光検出器16aおよび16bで電流信号に変換さ
れ、それぞれのロックインアンプ17a,17bで増幅
されコンピュータ18に入力され前述の実施例と同様に
演算され、基板表面の温度が算出される。
FIG. 3 is a schematic view showing a semiconductor film forming apparatus for explaining the second embodiment of the present invention. This semiconductor film forming apparatus, in the light irradiation unit for measuring the temperature of the substrate surface,
That is, the surface of the silicon substrate is irradiated with light including parallel waves and vertical waves. That is, as shown in FIG. 3, the laser light generated from the laser oscillator 15 is pulsed by the chopper 13, deflected by the deflector 14a at 45 degrees with respect to the substrate surface, reflected by the mirror 11 and projected onto the silicon substrate 20. It The reflected light from the silicon substrate 20 is reflected by the mirror 12 and separated by the polarized splitter 21 into a vertical wave and a parallel wave. The reflected light thus separated enters the respective photodetectors 16a and 16b. The reflected light that has entered is converted into current signals by the photodetectors 16a and 16b, amplified by the respective lock-in amplifiers 17a and 17b, input to the computer 18, and calculated in the same manner as in the above-mentioned embodiment to determine the temperature of the substrate surface. It is calculated.

【0024】このように投射する光に垂直波を含ませた
ことは、情報をもつ平行波の信号強度を本来情報をもた
ない垂直波の信号強度で規格化するためである。すなわ
ち、平行波と垂直波の反射光を照射してそれぞれの反射
光を測定することにより、垂直波による反射光の信号成
分を取除き、レーザ光強度の変動等のノイズ成分を除去
することである。従って、この実施例による光照射系に
よれば、前述の実施例と比較してS/N比の高い信号強
度が得られ、基板表面温度をより高精度で測定できると
いう利点がある。
The inclusion of the vertical wave in the projected light is to standardize the signal strength of the parallel wave having information by the signal strength of the vertical wave having no information. That is, by irradiating the reflected light of the parallel wave and the vertical wave and measuring each reflected light, the signal component of the reflected light of the vertical wave is removed, and the noise component such as the fluctuation of the laser light intensity is removed. is there. Therefore, the light irradiation system according to this embodiment has an advantage that a signal intensity having a high S / N ratio can be obtained and the substrate surface temperature can be measured with higher accuracy as compared with the above-described embodiments.

【0025】ちなみに、ジクロルシランをシリコン基板
20に供給および停止の動作を行ない温度測定を試みて
みた。その結果、前述の実施例と同様に反射率の減衰の
時定数から決定された温度と、熱電対を基板表面に接触
させ測定した温度とを比較したところ、500°C〜1
000°Cの温度範囲で両者の相違は最大で5°Cであ
った。
By the way, an attempt was made to measure the temperature by supplying and stopping dichlorosilane to the silicon substrate 20. As a result, when the temperature determined from the time constant of the attenuation of the reflectance was compared with the temperature measured by bringing the thermocouple into contact with the substrate surface as in the above-mentioned Examples, it was 500 ° C to 1
The maximum difference between the two was 5 ° C in the temperature range of 000 ° C.

【0026】なお、この実施例では、光源としてアルゴ
ンガスレーザ発振器のレーザ光を用いたが、このレーザ
光に限定されるものではない。要はシリコン基板表面に
存在するダングリングボンドによる光吸収帯で吸収され
る波長をもつ光であれば良い。例えば、この波長をもつ
ランプでも良いし、白色光をバンドパスフィルターでこ
の波長よもつ光を抽出しても良い。
Although the laser light of the argon gas laser oscillator is used as the light source in this embodiment, the light source is not limited to this laser light. The point is that the light has a wavelength that is absorbed in the light absorption band due to the dangling bond existing on the surface of the silicon substrate. For example, a lamp having this wavelength may be used, or white light may be extracted using a bandpass filter to obtain light having this wavelength.

【0027】図4は本発明の第3の実施例を説明するた
めの温度測定用の光源光路を示す図である。この半導体
成膜装置は、温度測定用の光源光路における照射側に回
転ミラー22aを配置し、この回転ミラー22aの回転
角を変えることにより光をシリコン基板20の任意の位
置に照射できる。また、受光部側には反射光の方向を変
える回転ミラー22bと回転して反射光の方向を揃える
反転ミラー23が設けるれている。このことによりシリ
コン基板20の総べての位置からの反射光は同一の光検
出器16cに入光される。
FIG. 4 is a diagram showing a light source optical path for temperature measurement for explaining a third embodiment of the present invention. In this semiconductor film forming apparatus, a rotating mirror 22a is arranged on the irradiation side in the light source optical path for temperature measurement, and light can be irradiated to an arbitrary position on the silicon substrate 20 by changing the rotation angle of the rotating mirror 22a. Further, a rotating mirror 22b for changing the direction of reflected light and a reversing mirror 23 for rotating and aligning the direction of reflected light are provided on the light receiving portion side. As a result, reflected light from all positions of the silicon substrate 20 enters the same photodetector 16c.

【0028】このように、基板表面の任意の場所の温度
を測定することが可能となり、基板表面における温度分
布は、シリコン基板表面に投射される光スポットの直径
程度の分解能で測定出来る。
As described above, it is possible to measure the temperature at any place on the surface of the substrate, and the temperature distribution on the surface of the substrate can be measured with a resolution about the diameter of the light spot projected on the surface of the silicon substrate.

【0029】[0029]

【発明の効果】以上説明したように本発明は、シリコン
基板表面のダングリングボンドに起因する光吸収体に対
し該光吸収体に吸収され得る波長を有する平行偏向され
た光を照射する光照射部と、前記シリコン基板に化学吸
着される原子を含む反応ガスの供給および停止を行ない
前記シリコン基板表面からの反射光強度を測定する受光
部と、該反射光強度の時間に対する変化を求めて前記反
射光強度の減衰の時定数を演算しこの時定数と前記原子
の離脱速度の温度依存性の既知のデータとを照合し前記
シリコン基板表面の温度を算出する計算手段とを設ける
ことによって、シリコン基板を損傷することなく精度よ
く基板温度を測定することが出来、これによってシリコ
ン基板温度を正確に制御することが可能となり、面内に
均一な良質のシリコン薄膜を再現性良く成長できるとい
う効果がある。
INDUSTRIAL APPLICABILITY As described above, the present invention irradiates a light absorber due to dangling bonds on the surface of a silicon substrate with parallel-polarized light having a wavelength that can be absorbed by the light absorber. Section, a light receiving section for measuring the intensity of reflected light from the surface of the silicon substrate by supplying and stopping a reaction gas containing atoms that are chemically adsorbed on the silicon substrate, and obtaining a change with time of the reflected light intensity By calculating a time constant for the attenuation of the reflected light intensity and comparing the time constant with the known data of the temperature dependence of the detachment rate of the atoms to calculate the temperature of the silicon substrate surface, the silicon is provided. The substrate temperature can be measured accurately without damaging the substrate, which allows the silicon substrate temperature to be accurately controlled, and provides a uniform high quality There is an effect that the emissions thin film with good reproducibility can grow.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の第1の実施例を説明するための半導体
成膜装置を示す模式図である。
FIG. 1 is a schematic view showing a semiconductor film forming apparatus for explaining a first embodiment of the present invention.

【図2】シリコン基板の表面(100)にジクロシラン
を供給・停止した場合の反射光強度を示すグラフであ
る。
FIG. 2 is a graph showing the intensity of reflected light when dichlorosilane is supplied / stopped on the surface (100) of a silicon substrate.

【図3】本発明の第2の実施例を説明するための半導体
成膜装置を示す模式図である。
FIG. 3 is a schematic view showing a semiconductor film forming apparatus for explaining a second embodiment of the present invention.

【図4】本発明の第3の実施例を説明するための温度測
定用の光源光路を示す図である。
FIG. 4 is a diagram showing a light source optical path for temperature measurement for explaining a third embodiment of the present invention.

【図5】ガス供給停止後における時間の経過による反射
光強度の減少度を示すグラフである。
FIG. 5 is a graph showing the degree of decrease in reflected light intensity over time after the gas supply is stopped.

【図6】従来のシリコン基板表面の温度測定方法の一例
を説明するための成膜装置の基板載置部を示す側面図で
ある。
FIG. 6 is a side view showing a substrate mounting portion of a film forming apparatus for explaining an example of a conventional method of measuring a temperature of a surface of a silicon substrate.

【符号の説明】[Explanation of symbols]

1a,1b 照射部 2a,2b 受光部 3a,3b 温度換算部 4 反応管 5 赤外線ランプ 6 真空ポンプ 7 ガス導入口 8,9 窓 10 サセプタ 11,12 ミラー 13 チョッパー 14,14a 偏光子 15 レーザ発振器 16,16a,16b 光検出器 17,17a,17b ロックインアンプ 18 コンピュータ 19 表示部 20 シリコン基板 21 ポーラライズドスプリッター 22a,22b 回転ミラー 23 反転ミラー 24 熱電対 25 小孔 1a, 1b Irradiation part 2a, 2b Light receiving part 3a, 3b Temperature conversion part 4 Reaction tube 5 Infrared lamp 6 Vacuum pump 7 Gas introduction port 8, 9 Window 10 Susceptor 11, 12 Mirror 13 Chopper 14, 14a Polarizer 15 Laser oscillator 16 , 16a, 16b Photodetector 17, 17a, 17b Lock-in amplifier 18 Computer 19 Display 20 Silicon substrate 21 Polarized splitter 22a, 22b Rotating mirror 23 Inversion mirror 24 Thermocouple 25 Small hole

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】 シリコン基板表面のダングリングボンド
に起因する光吸収体に対し該光吸収体に吸収され得る波
長を有する平行偏向された光を照射し、前記シリコン基
板へ化学吸着される原子を含む反応ガスの供給および停
止を行ない前記シリコン基板表面からの反射光強度を測
定し該反射光強度の時間に対する変化を求め、求められ
た前記反射光強度の減衰の時定数と前記原子の離脱速度
の温度依存性の既知のデータとを照合し前記シリコン基
板表面の温度を測定することを特徴とする基板表面の温
度測定方法。
1. A light absorber caused by dangling bonds on the surface of a silicon substrate is irradiated with parallel-polarized light having a wavelength that can be absorbed by the light absorber, and atoms chemically adsorbed to the silicon substrate are detected. The reaction gas containing the gas is stopped and supplied, and the intensity of reflected light from the surface of the silicon substrate is measured to determine the change in the intensity of the reflected light with respect to time. The method for measuring the temperature of the surface of the substrate is characterized by comparing the temperature of the surface of the silicon substrate with the known data of the temperature dependency.
【請求項2】 請求項1記載のシリコン基板表面の温度
測定方法を用いて該シリコン基板表面の温度を測定を行
ないながらシリコンの結晶を成長させ薄膜を形成するこ
とを特徴とする半導体成膜方法。
2. A method for forming a semiconductor film, comprising forming a thin film by growing a crystal of silicon while measuring the temperature of the surface of a silicon substrate according to the method of measuring the temperature of the surface of a silicon substrate according to claim 1. .
【請求項3】 シリコン基板を載置する機構部を収納し
該シリコン基板を加熱する加熱手段と前記シリコン基板
に化学吸着される原子を含む反応ガスの供給・停止を行
なう手段と該反応ガスの圧力を所定の圧力に維持する減
圧ポンプを具備する反応室と、前記シリコン基板表面の
ダングリングボンドに起因する光吸収体に対し該光吸収
体に吸収され得る波長を有する平行偏向された光を前記
シリコン基板表面に照射する照射手段と、前記シリコン
基板表面からの反射光を受光する受光手段と、この受光
手段により得られた反射光強度データにより該反射光強
度の減衰の時定数を求め該時定数と前記原子の離脱速度
の温度依存性の既知のデータを照合して前記シリコン基
板表面の温度を算出する計算手段を備えることを特徴と
する半導体成膜装置。
3. A heating means for accommodating a mechanism for mounting a silicon substrate and heating the silicon substrate, a means for supplying / stopping a reaction gas containing atoms chemically adsorbed by the silicon substrate, and a reaction gas for the reaction gas. A reaction chamber equipped with a decompression pump for maintaining the pressure at a predetermined pressure, and a parallel-polarized light having a wavelength that can be absorbed by the light absorber due to a dangling bond on the surface of the silicon substrate. An irradiation unit that irradiates the surface of the silicon substrate, a light receiving unit that receives the reflected light from the surface of the silicon substrate, and a reflected light intensity data obtained by the light receiving unit to obtain a time constant of attenuation of the reflected light intensity. A semiconductor film forming apparatus comprising a calculation means for calculating a temperature of the surface of the silicon substrate by collating a time constant with known data of temperature dependence of the detachment rate of the atoms. .
【請求項4】前記照射手段からの前記光を前記シリコン
基板に走査する手段を備えることを特徴とする請求項3
記載の半導体成膜装置。
4. A means for scanning the silicon substrate with the light from the irradiation means.
The semiconductor film forming apparatus described.
JP5071405A 1993-03-30 1993-03-30 Substrate surface temperature measuring method and semiconductor film forming method and apparatus using the same Expired - Lifetime JPH0770580B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP5071405A JPH0770580B2 (en) 1993-03-30 1993-03-30 Substrate surface temperature measuring method and semiconductor film forming method and apparatus using the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP5071405A JPH0770580B2 (en) 1993-03-30 1993-03-30 Substrate surface temperature measuring method and semiconductor film forming method and apparatus using the same

Publications (2)

Publication Number Publication Date
JPH06283589A true JPH06283589A (en) 1994-10-07
JPH0770580B2 JPH0770580B2 (en) 1995-07-31

Family

ID=13459577

Family Applications (1)

Application Number Title Priority Date Filing Date
JP5071405A Expired - Lifetime JPH0770580B2 (en) 1993-03-30 1993-03-30 Substrate surface temperature measuring method and semiconductor film forming method and apparatus using the same

Country Status (1)

Country Link
JP (1) JPH0770580B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2000005754A1 (en) * 1998-07-22 2000-02-03 Kaneka Corporation Semiconductor thin film and thin film device

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2000005754A1 (en) * 1998-07-22 2000-02-03 Kaneka Corporation Semiconductor thin film and thin film device
AU750452B2 (en) * 1998-07-22 2002-07-18 Kaneka Corporation Semiconductor thin film and thin film device
US6617010B2 (en) 1998-07-22 2003-09-09 Kaneka Corporation Semiconductor thin film and thin film device

Also Published As

Publication number Publication date
JPH0770580B2 (en) 1995-07-31

Similar Documents

Publication Publication Date Title
US5131752A (en) Method for film thickness endpoint control
US5313044A (en) Method and apparatus for real-time wafer temperature and thin film growth measurement and control in a lamp-heated rapid thermal processor
US5166080A (en) Techniques for measuring the thickness of a film formed on a substrate
US5665214A (en) Automatic film deposition control method and system
JP2004507070A (en) Method and apparatus for in-situ monitoring of plasma etching and deposition processes using a pulsed broadband light source
WO2003081216A2 (en) Process monitoring using infrared optical diagnostics
Benson et al. Sensor systems for real‐time feedback control of reactive ion etching
JP2001194320A (en) Device and method for measuring surface condition
JPH0915140A (en) Elliptic polarization measuring method, elliptic polarimeterand device for controlling formation of layer using method and device thereof
JPH03216526A (en) Method of measuring temperature of semiconductor material by light transmission factor
JPH06283589A (en) Temperature measuring method of substrate surface, semiconductor film forming method using the same and its equipment
Kumagai et al. In situ ellipsometric diagnostics for controlled growth of metal oxides with surface chemical reactions
EP0545302A1 (en) Method and apparatus for monitoring oxide superconducting film
JP2000356554A (en) Method for processing silicon work piece using composite type optical temperature measurement system
JPH04130746A (en) Radiation thermometer and method for wafer temperature measurement
JP2001228026A (en) Method for measuring radiation temperature
US7129168B2 (en) Method of estimating substrate temperature
JP3495965B2 (en) Moisture monitoring device and semiconductor manufacturing device having the same
JPH01114727A (en) Radiation temperature measuring instrument
JP2002194553A (en) Method for real time control of manufacturing of thin film structure through ellipsometric measurement
JP3482441B2 (en) Infrared attenuated total reflection thin film measuring device
JPS59192904A (en) Device for measuring film thickness
JPH0424939A (en) Evaluating method for silicon crystal
JPH0456145A (en) Measuring device for substrate temperature in plasma
JP6979007B2 (en) Ultra-low oxygen concentration measurement method for silicon wafers

Legal Events

Date Code Title Description
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 19960130