JP2001237075A - Thin film el element and manufacturing method of the same - Google Patents

Thin film el element and manufacturing method of the same

Info

Publication number
JP2001237075A
JP2001237075A JP2000046903A JP2000046903A JP2001237075A JP 2001237075 A JP2001237075 A JP 2001237075A JP 2000046903 A JP2000046903 A JP 2000046903A JP 2000046903 A JP2000046903 A JP 2000046903A JP 2001237075 A JP2001237075 A JP 2001237075A
Authority
JP
Japan
Prior art keywords
light emitting
emitting layer
thermosetting resin
thin film
light
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2000046903A
Other languages
Japanese (ja)
Other versions
JP4406991B2 (en
Inventor
Mikiko Matsuo
三紀子 松尾
Hisanori Sugiura
久則 杉浦
Tetsuya Sato
徹哉 佐藤
Hitoshi Hisada
均 久田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP2000046903A priority Critical patent/JP4406991B2/en
Publication of JP2001237075A publication Critical patent/JP2001237075A/en
Application granted granted Critical
Publication of JP4406991B2 publication Critical patent/JP4406991B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Led Devices (AREA)
  • Electroluminescent Light Sources (AREA)

Abstract

PROBLEM TO BE SOLVED: To mask the polychromatic patterning of a thin film EL element easy and improve the heat resistance. SOLUTION: A painting type thin film EL element is made polychromatic with long life by using a thermosetting resin with high heat resistance for a light emitting layer.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、発光ディスプレイ
や液晶ディスプレイ用バックライト等として用いられる
表示素子に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a display element used as a light emitting display or a backlight for a liquid crystal display.

【0002】[0002]

【従来の技術】エレクトロルミネッセンス(EL)パネ
ルは視認性が高く、表示能力に優れ、高速応答も可能と
いう特徴を持っている。近年、有機化合物を構成材料と
する薄膜EL素子について報告がなされた(例えば、関
連論文 アプライド・フィジックス・レターズ、第51
巻913頁1987年(Applied Physics Letters,51,19
87,P.913.)、)。この報告では低分子の蒸着膜からなる
ホール輸送層と有機発光層の積層構造により、低電圧、
高輝度発光の薄膜EL素子を実現した。発光材料として
はトリス(8−キノリノラト)アルミニウム錯体(以下
Alq)を用いており、高い発光効率と、電子輸送を合
わせ持つ優れた発光物質である。
2. Description of the Related Art Electroluminescent (EL) panels have high visibility, excellent display capability, and high-speed response. In recent years, there have been reports on thin-film EL devices using organic compounds as constituent materials (for example, see the related paper Applied Physics Letters, No. 51).
Volume 913, 1987 (Applied Physics Letters, 51, 19)
87, P.913.))). In this report, a low-voltage, low-voltage,
A high-luminance thin-film EL device has been realized. As a light-emitting material, a tris (8-quinolinolato) aluminum complex (hereinafter, Alq) is used, which is an excellent light-emitting substance having both high luminous efficiency and electron transport.

【0003】また、ジャーナル・オブ・アプライド・フ
ィジックス、第65巻3610頁1989年(Journal o
f Applied Physics,65,1989,p.3610.)には有機発光層を
形成するAlqにクマリン誘導体やDCM1等の蛍光色
素をドープした素子を作成し、色素の適切な選択により
発光色が変わることを見いだした。さらに、発光効率も
非ドープに比べ上昇することを明らかにした。
Further, Journal of Applied Physics, Vol. 65, p. 3610, 1989 (Journal
f Applied Physics, 65, 1989, p. 3610.) created a device in which Alq forming an organic light emitting layer was doped with a fluorescent dye such as a coumarin derivative or DCM1, and the emission color could be changed by appropriate selection of the dye. Was found. Furthermore, it was clarified that the luminous efficiency was increased as compared with the undoped one.

【0004】一方、有機高分子からなる薄膜EL素子に
ついても、その製造方法において、塗布、印刷などコス
トの低下や大型化につながる可能性を内在していること
から注目されている。高分子系の薄膜EL素子は、高分
子の主鎖あるいは側鎖に発光基を有する発光性高分子か
らなるものと、高分子中に発光材料を分散した分散系の
ものの概ね2種類に分けられる。
On the other hand, a thin film EL element made of an organic polymer has also been receiving attention because of the inherent possibility that the manufacturing method for the thin film EL element may lead to a reduction in cost such as coating and printing and an increase in size. Polymer thin-film EL elements are roughly divided into two types: those composed of a luminescent polymer having a luminescent group in the main chain or side chain of the polymer, and those in which a luminescent material is dispersed in the polymer. .

【0005】ディスプレイ等への適用を試みた場合、カ
ラー化は必須で、各色を分割して並べる必要がある。低
分子系においては、蒸着時に所望のパターンに切り抜い
たマスクを用いて第一の発光色材料を蒸着し、第一の発
光色材料と重ならないようにマスクあるいは基板を移動
させて第二の発光色材料を蒸着し、第一、第二の発光色
材料と重ならないように第三の発光色材料を蒸着という
ように、複数の発光色材料を同一平面に並べていくこと
ができる。
When an application to a display or the like is attempted, colorization is indispensable, and it is necessary to divide and arrange each color. In a low-molecular-weight system, a first emission color material is deposited using a mask cut into a desired pattern at the time of evaporation, and a mask or a substrate is moved so as not to overlap with the first emission color material, so that the second emission color is removed. A plurality of luminescent color materials can be arranged on the same plane such that a color material is deposited and a third luminescent color material is deposited so as not to overlap the first and second luminescent color materials.

【0006】高分子系においては塗布形成されるため、
カラー化の手段としては、一つの発光層に各色の色素を
混合した白色発光デバイスにカラーフィルターをはり付
ける方法がある。ただし、白色発光デバイスは、カラー
フィルターに光を吸収されるため、デバイスの効率を低
下させてしまうという欠点を有する。そこで、特開平3
−105894号公報では、発光層に感光性化合物を用
いてフォトプロセスによりパターニングする方法が採ら
れている。
[0006] In the polymer system, since it is formed by coating,
As a means of colorization, there is a method of attaching a color filter to a white light emitting device in which a dye of each color is mixed in one light emitting layer. However, the white light emitting device has a disadvantage that the efficiency of the device is reduced because light is absorbed by the color filter. Therefore, Japanese Patent Application Laid-Open
In JP-A-105894, a method is employed in which a photosensitive compound is used for a light emitting layer to perform patterning by a photo process.

【0007】[0007]

【発明が解決しようとする課題】しかしながら、感光性
化合物は耐熱性が弱く、動作時に発生するジュール熱に
よって劣化しやすい。また、高分子系における効率向上
や長寿命化等の特性の改善には、精製が鍵を握っている
と言われている。従って発光層に感光性化合物を含む工
程は、反応開始剤あるいは反応物質としてのイオンを含
むため、不純物として作用し、長期駆動時における特性
の劣化を引き起こすので好ましくない。さらに、発光層
に露光した場合、発光基として作用する部分に紫外線が
直接照射されるため劣化を生じ、特にネガレジストを用
いた場合では、発光層として残しておく部分に紫外線を
照射するため、発光基が分解や異性化等により変質して
しまうという課題があった。
However, the photosensitive compound has low heat resistance and is easily deteriorated by Joule heat generated during operation. In addition, purification is said to be the key to the improvement of properties such as efficiency and long life in polymer systems. Therefore, the step of including a photosensitive compound in the light-emitting layer is not preferable because it contains ions as a reaction initiator or a reactant, and acts as an impurity, causing deterioration of characteristics during long-term operation. Furthermore, when the light-emitting layer is exposed to light, ultraviolet rays are directly irradiated to a portion acting as a light-emitting group, thereby causing deterioration. Particularly, when a negative resist is used, a portion to be left as a light-emitting layer is irradiated with ultraviolet light. There has been a problem that the luminescent group is deteriorated due to decomposition, isomerization and the like.

【0008】[0008]

【課題を解決するための手段】そこで我々は、発光層に
耐熱性に優れた熱硬化性樹脂を用いることにより、薄膜
EL素子の長寿命化を実現することができ、前記課題を
解決するに至った。
Accordingly, we have been able to achieve a longer life of a thin film EL device by using a thermosetting resin having excellent heat resistance for the light emitting layer. Reached.

【0009】具体的には、本願の請求項1の発明によれ
ば、陽極および陰極間に、少なくとも発光層を有する薄
膜EL素子において、前記発光層が熱硬化性樹脂を含む
複数の発光材料からなる薄膜EL素子であって、第一の
発光材料を塗布し、パターニングした後、加熱硬化する
ことを交互に繰り返し、多色化されたことを特徴とする
薄膜EL素子が提供される。
Specifically, according to the first aspect of the present invention, in a thin film EL device having at least a light emitting layer between an anode and a cathode, the light emitting layer is made of a plurality of light emitting materials containing a thermosetting resin. A thin-film EL device comprising a first light-emitting material applied, patterned, and then heat-cured alternately to obtain a multicolored thin-film EL device.

【0010】本願の請求項2は、請求項1記載の熱硬化
性樹脂の主鎖あるいは側鎖に発光基が含まれるとしたも
のである。
According to a second aspect of the present invention, a light-emitting group is contained in the main chain or the side chain of the thermosetting resin according to the first aspect.

【0011】本願の請求項3は、請求項1記載の熱硬化
性樹脂をポリイミドとしたものである。
According to a third aspect of the present invention, the thermosetting resin according to the first aspect is made of polyimide.

【0012】本願の請求項4の発明によれば、陽極およ
び陰極間に、少なくともホール輸送層と発光層を有する
薄膜EL素子において、前記ホール輸送層が熱硬化性樹
脂及びホール輸送材料からなり、かつ、前記発光層が熱
硬化性樹脂を含む複数の発光材料からなる薄膜EL素子
であって、前記ホール輸送層を塗布し、加熱硬化した
後、第一の発光材料を塗布、パターニング、加熱硬化す
ることを交互に繰り返し、多色化されたことを特徴とす
る薄膜EL素子が提供される。
According to the invention of claim 4 of the present application, in a thin film EL device having at least a hole transport layer and a light emitting layer between an anode and a cathode, the hole transport layer comprises a thermosetting resin and a hole transport material; In addition, the light emitting layer is a thin film EL element made of a plurality of light emitting materials including a thermosetting resin, and the first light emitting material is applied, patterned, and heat cured after the hole transport layer is applied and cured by heating. Is alternately repeated to provide a multi-colored thin film EL device.

【0013】本願の請求項5は、請求項4記載のホール
輸送層に含まれる熱硬化性樹脂をポリイミドとしたもの
である。
According to a fifth aspect of the present invention, the thermosetting resin contained in the hole transport layer according to the fourth aspect is made of polyimide.

【0014】本願の請求項6は、請求項4記載の発光層
に含まれる熱硬化性樹脂の主鎖あるいは側鎖に発光基が
含まれるとしたものである。
According to a sixth aspect of the present invention, a light-emitting group is contained in a main chain or a side chain of the thermosetting resin contained in the light-emitting layer according to the fourth aspect.

【0015】本願の請求項7は、発請求項4記載の光層
に含まれる熱硬化性樹脂をポリイミドとしたものであ
る。
According to a seventh aspect of the present invention, the thermosetting resin contained in the optical layer according to the fourth aspect is made of polyimide.

【0016】本願の請求項8の発明によれば、陽極およ
び陰極間に、少なくとも発光層を有する薄膜EL素子の
製造方法において、前記発光層が熱硬化性樹脂を含む複
数の発光材料から形成される工程を含む製造方法であっ
て、第一の発光材料を塗布した後、パターニングする工
程と、加熱硬化する工程を少なくとも2回交互に繰り返
すことを特徴とする薄膜EL素子の製造方法が提供され
る。
According to the invention of claim 8 of the present application, in the method of manufacturing a thin film EL device having at least a light emitting layer between an anode and a cathode, the light emitting layer is formed of a plurality of light emitting materials including a thermosetting resin. A method of applying a first light-emitting material, and then alternately repeating a patterning step and a heat-curing step at least two times. You.

【0017】本願の請求項9は、請求項8記載の熱硬化
性樹脂の主鎖あるいは側鎖に発光基が含まれるとしたも
のである。
According to a ninth aspect of the present invention, a luminescent group is contained in the main chain or the side chain of the thermosetting resin according to the eighth aspect.

【0018】本願の請求項10は、請求項8記載の熱硬
化性樹脂をポリイミドとしたものである。
According to a tenth aspect of the present invention, the thermosetting resin according to the eighth aspect is made of polyimide.

【0019】本願の請求項11は、請求項8記載のパタ
ーニングの工程において、ドライエッチング法を適用し
たものである。
According to a eleventh aspect of the present invention, in the patterning step of the eighth aspect, a dry etching method is applied.

【0020】本願の請求項12は、請求項8記載の発光
層をホール輸送層形成後に形成するとしたものである。
According to a twelfth aspect of the present invention, the light emitting layer according to the eighth aspect is formed after forming the hole transport layer.

【0021】本願の請求項13は、請求項8記載の発光
層を形成した後、さらに電子輸送層を形成するとしたも
のである。
According to a thirteenth aspect of the present invention, an electron transport layer is further formed after forming the light emitting layer according to the eighth aspect.

【0022】[0022]

【発明の実施の形態】以下本発明の実施の形態について
説明する。
Embodiments of the present invention will be described below.

【0023】図1は、本発明の薄膜EL素子の発光層を
形成する手法の一例を示す断面図である。図1におい
て、aは発光層材料の塗布工程、bはレジストパターン
の形成、cはドライエッチング工程、dはレジスト除去
工程と発光層に含まれる樹脂の熱硬化の工程を示す。1
aから1dにおいて、第一の発光層パターンを形成し、
熱硬化によって不溶化した後、第二の発光層パターンを
塗布形成する。このa〜dの一連の操作をn回繰り返す
ことにより、n個の発光色が同一平面に並んだ発光層を
形成することができる。レジストパターンは数十μmま
で微細パターン可能なので、レジストパターンを形成す
る工程を含む一連の工程によって、精細な画素を有する
ディスプレイの作製が可能となる。
FIG. 1 is a sectional view showing an example of a technique for forming a light emitting layer of a thin film EL device of the present invention. In FIG. 1, a shows a light emitting layer material application step, b shows a resist pattern formation, c shows a dry etching step, and d shows a resist removal step and a thermosetting step of a resin contained in the light emitting layer. 1
a to 1d, forming a first light emitting layer pattern,
After being insolubilized by thermal curing, a second light emitting layer pattern is applied and formed. By repeating the series of operations a to d n times, it is possible to form a light emitting layer in which n light emitting colors are arranged on the same plane. Since the resist pattern can be finely patterned to several tens of μm, a series of steps including a step of forming the resist pattern enables a display having fine pixels to be manufactured.

【0024】図1の1bあるいは2bに示すbの工程
は、金属マスクの張り合わせ工程に置き換えることがで
きる。この場合、マスクパターンのピッチは100μm
オーダーとなるが、マスクを塗布した発光層面に張り合
わせるだけなので、簡便に操作を行うことができる。
The step b shown in FIG. 1B or 2B can be replaced with a metal mask bonding step. In this case, the pitch of the mask pattern is 100 μm
Although it is in an order, the operation can be easily performed because it is merely attached to the surface of the light emitting layer on which the mask is applied.

【0025】発光層に含まれる高分子としては、メラミ
ン樹脂、ウレタン樹脂、尿素樹脂等の熱硬化性樹脂、あ
るいはポリイミド、ポリアミド、ポリベンゾイミダゾー
ル等の耐熱性高分子が好ましい。特に吸湿性をほとんど
有しないポリイミドが好ましい。ポリイミドはカルボン
酸二無水物とジアミン化合物の交互共重合により生成し
たポリアミック酸を加熱によりイミド化して合成され
る。カルボン酸に無水物の例として、ビフェニルテトラ
カルボン酸二無水物、ベンゾフェノンテトラカルボン酸
二無水物、ビシクロ[2,2,2]オクター7−エン−
2,3,5,6−テトラカルボン酸二無水物等が挙げら
れる。ジアミン化合物の例としては、1,4−ビス(4
−アミノフェニルチオ)ベンゼン、1,4−ビス(4−
アミノフェニルチオ)ナフタレン、9,10−ビス(4
−アミノフェニルチオ)アントラセン、1,6−ビス
(4−アミノフェニルチオ)ピレン等の硫黄含有化合物
や、1,4−ビス(4−アミノフェノキシ)ベンゼンの
ように硫黄原子を酸素原子に置換したものも好ましい。
As the polymer contained in the light emitting layer, a thermosetting resin such as a melamine resin, a urethane resin, and a urea resin, or a heat-resistant polymer such as polyimide, polyamide, and polybenzimidazole is preferable. In particular, polyimide having almost no hygroscopicity is preferable. Polyimide is synthesized by heating a polyamic acid produced by alternate copolymerization of a carboxylic acid dianhydride and a diamine compound into an imidized compound. Examples of anhydrides of carboxylic acids include biphenyltetracarboxylic dianhydride, benzophenonetetracarboxylic dianhydride, bicyclo [2,2,2] oct-7-en-
2,3,5,6-tetracarboxylic dianhydride and the like. Examples of diamine compounds include 1,4-bis (4
-Aminophenylthio) benzene, 1,4-bis (4-
Aminophenylthio) naphthalene, 9,10-bis (4
Sulfur-containing compounds such as -aminophenylthio) anthracene and 1,6-bis (4-aminophenylthio) pyrene, and sulfur atoms substituted with oxygen atoms such as 1,4-bis (4-aminophenoxy) benzene Those are also preferred.

【0026】発光層に含まれる発光材料としては、クマ
リン6やDCM、フェノキサゾン9といったレーザー色
素のような量子効率が1に近い色素が好ましい。この他
にナフタレン、アントラセン、ピレン、ナフタセン等の
縮合環及びその誘導体も好ましく、例えばルブレンも量
子効率は1に近く有能な発光材料である。これらの発光
材料は上記高分子の主鎖あるいは側鎖に発光基として含
まれてよく、あるいは発光材料を高分子マトリックス中
に分散してもよい。例えば、上記ポリイミドの主鎖に発
光基を含む場合には、上記ジアミン化合物のベンゼン環
と置換されてよく、酸素原子や硫黄原子によって連結さ
れる形態が好ましい。特に好ましくは上記ナフタレン化
合物、アントラセン化合物のように、ジアミン化合物の
中央部に連結される形態が、濃度消光の恐れがなく好ま
しい。
As the light emitting material contained in the light emitting layer, a dye having a quantum efficiency close to 1 such as a laser dye such as coumarin 6, DCM, and phenoxazone 9 is preferable. In addition, condensed rings such as naphthalene, anthracene, pyrene, and naphthacene and derivatives thereof are also preferable. For example, rubrene is also a light emitting material having a quantum efficiency close to 1. These luminescent materials may be included as a luminescent group in the main chain or side chain of the polymer, or the luminescent material may be dispersed in a polymer matrix. For example, when the polyimide contains a light-emitting group in the main chain, the polyimide may be substituted with a benzene ring of the diamine compound, and is preferably connected by an oxygen atom or a sulfur atom. Particularly preferably, the form linked to the central part of the diamine compound, such as the above-mentioned naphthalene compound and anthracene compound, is preferable because there is no fear of concentration quenching.

【0027】薄膜EL素子の形態において、発光層と陽
極の間、発光層と陰極の間にはそれぞれホール輸送層、
電子輸送層が形成されるのが好ましい。一般に透明電極
を形成した透明基板上に順次形成するため、ホール輸送
層は、発光層を塗布形成する際、溶解しない材料選択を
行う必要がある。従って、上記熱硬化性樹脂あるいは耐
熱性高分子中にホール輸送特性に優れたトリフェニルア
ミンを基本骨格として持つ誘導体を分散、塗布後硬化
し、不溶化もしくは耐溶剤性に優れたホール輸送層を形
成するとよい。トリフェニルアミン誘導体としては、例
えば特開平7−126615号公報記載のテトラフェニ
ルベンジジン化合物、トリフェニルアミン3量体、ベン
ジジン2量体、特開平8−48656号公報記載の種々
のトリフェニルジアミン誘導体、特開平7−65958
号公報記載のMTPD(通称TPD)、トリストリルア
ミン等が好ましい。あるいは、ホール注入材料である銅
フタロシアニン、チタニルフタロシアニン、無金属フタ
ロシアニン等のフタロシアニン化合物の蒸着膜は不溶性
膜であるので、これらよりホール輸送層を形成してもよ
い。電子輸送層の形成においては、発光層は不溶化して
いるので、高分子層を塗布形成してもよく、低分子を蒸
着してもよい。高分子系電子輸送材料としては、ポリフ
ルオレンや、オキザジアゾールを主鎖あるいは側鎖に有
するポリマーが挙げられ、低分子系材料としてはAl
q、トリス(4−メチル−8−キノリノラト)アルミニ
ウム等の金属錯体、4,4,8,8−テトラキス(1H
―ピラゾールー1−イル)ピラザボール等の電子不足化
合物、3−(2´−ベンゾチアゾリル)−7−ジエチル
アミノクマリン等が挙げられる。また、バソクプロイ
ン、トリアゾール誘導体等のホールブロック機能を有す
る材料、あるいは特願平11−214712号公報記載
のジリチウムフタロシアニン、ジソディウムフタロシア
ニン、マグネシウムポルフィン、4,4,8,8−テト
ラキス(1H―ピラゾールー1−イル)ピラザボール等
の電子注入材料も好ましい。
In the form of the thin-film EL device, a hole transport layer is provided between the light emitting layer and the anode, and between the light emitting layer and the cathode, respectively.
Preferably, an electron transport layer is formed. Generally, since the hole transport layer is sequentially formed on the transparent substrate on which the transparent electrode is formed, it is necessary to select a material that does not dissolve when the light emitting layer is formed by coating. Therefore, a derivative having triphenylamine having excellent hole transport properties as a basic skeleton is dispersed in the above-mentioned thermosetting resin or heat-resistant polymer, and cured after coating to form a hole transport layer having excellent insolubilization or solvent resistance. Good to do. Examples of the triphenylamine derivative include tetraphenylbenzidine compounds described in JP-A-7-126615, triphenylamine trimer and benzidine dimer, various triphenyldiamine derivatives described in JP-A-8-48656, JP-A-7-65958
MTPD (commonly known as TPD), tristriamine, and the like described in Japanese Patent Application Laid-Open No. H10-260, 1988 are preferable. Alternatively, since a vapor-deposited film of a phthalocyanine compound such as copper phthalocyanine, titanyl phthalocyanine, or metal-free phthalocyanine, which is a hole injecting material, is an insoluble film, a hole transport layer may be formed therefrom. In forming the electron transport layer, since the light emitting layer is insolubilized, a polymer layer may be applied and formed, or a low molecule may be deposited. Examples of the polymer electron transport material include polyfluorene and a polymer having oxadiazole in a main chain or a side chain.
q, metal complexes such as tris (4-methyl-8-quinolinolato) aluminum, and 4,4,8,8-tetrakis (1H
-Pyrazol-1-yl) pyrazabole and the like, 3- (2'-benzothiazolyl) -7-diethylaminocoumarin and the like. Also, materials having a hole blocking function such as bathocuproine and triazole derivatives, or dilithium phthalocyanine, disodium phthalocyanine, magnesium porphine, 4,4,8,8-tetrakis (1H-pyrazole) described in Japanese Patent Application No. 11-214712. An electron injection material such as 1-yl) pyraza ball is also preferable.

【0028】発光層の膜厚は、10〜1000nmとす
ることが好ましい。ホール輸送層及び電子輸送層はそれ
ぞれ1〜100nmであることが好ましい。
The light emitting layer preferably has a thickness of 10 to 1000 nm. The hole transport layer and the electron transport layer each preferably have a thickness of 1 to 100 nm.

【0029】次に、ドライエッチングの方法であるが、
酸素ガスを導入したリアクティブイオンエッチング(R
IE)等が挙げられる。バレル型、平行平板型等の汎用
的な型式で行ってよく、また有機層の状態によってはA
rガス等も同時に導入するなどしてよい。レジストパタ
ーンによりパターニングを行う際、硬化以前の軟らかい
状態でエッチングを行う必要がある。発光層に含まれる
熱硬化性樹脂、耐熱性高分子等は熱処理による硬化後
は、レジストよりもエッチング速度が遅くなる。従っ
て、発光層がエッチングされるよりも早くレジストがエ
ッチングされるため、パターンが得られない。金属マス
クを用いた場合においては、硬化後でもよいが、エッチ
ングのパワーを上げる必要があるため、発光層の特に発
光基の受けるダメージが大きく、効率の低下につながる
ので好ましくない。
Next, a dry etching method will be described.
Reactive ion etching (R
IE) and the like. A general-purpose type such as a barrel type or a parallel plate type may be used.
r gas or the like may be introduced at the same time. When performing patterning using a resist pattern, it is necessary to perform etching in a soft state before curing. After curing by heat treatment, the thermosetting resin, heat-resistant polymer, and the like contained in the light emitting layer have a lower etching rate than the resist. Therefore, since the resist is etched earlier than the light emitting layer is etched, a pattern cannot be obtained. When a metal mask is used, it may be cured, but it is not preferable because the power of etching needs to be increased, so that the light emitting layer is particularly damaged by the light emitting group and leads to a decrease in efficiency.

【0030】薄膜EL素子は、少なくとも一方の電極を
透明ないし半透明にすることにより、面発光を取り出す
ことが可能となる。通常、正孔注入電極としての陽極に
はITO(インジウム錫酸化物)膜を用いることが多
い。他に、酸化錫、Ni,Au,Pt,Pd等が挙げら
れる。ITO膜はその透明性を向上させ、あるいは抵抗
率を低下させる目的で、スパッタ、エレクトロンビーム
蒸着、イオンプレーティング等の成膜方法が採用されて
いる。また、膜厚は必要とされるシート抵抗値と可視光
透過率から決定されるが、薄膜EL素子では比較的駆動
電流密度が高いため、シート抵抗値を小さくするため1
00nm以上の厚さで用いられることが多い。
The thin-film EL element can emit surface light by making at least one electrode transparent or translucent. Usually, an ITO (indium tin oxide) film is often used for an anode serving as a hole injection electrode. Other examples include tin oxide, Ni, Au, Pt, and Pd. For the purpose of improving the transparency or reducing the resistivity of the ITO film, a film forming method such as sputtering, electron beam evaporation, or ion plating is employed. The film thickness is determined from the required sheet resistance value and the visible light transmittance. However, since the driving current density is relatively high in the thin-film EL element, the film thickness is reduced by 1 to reduce the sheet resistance value.
It is often used with a thickness of 00 nm or more.

【0031】電子注入電極としての陰極には、Tang
らの提案したMgAg合金あるいはAlLi合金など、
仕事関数が低く電子注入障壁の低い金属と、比較的仕事
関数が大きく安定な金属との合金が用いられることが多
い。また、仕事関数の低い金属を有機層側に成膜し、こ
の低仕事関数金属を保護する目的で、仕事関数の大きな
金属を厚く積層してもよく、Li/Al、LiF/Al
のような積層電極を用いることができる。これら陰極の
形成には蒸着法やスパッタ法が好ましい。また、ジリチ
ウムフタロシアニン、ジソディウムフタロシアニン、マ
グネシウムポルフィン、4,4,8,8−テトラキス
(1H―ピラゾールー1−イル)ピラザボール等の電子
注入材料を用いた場合には、仕事関数が大きく安定な金
属のみで電極を構成できるので、酸化等の反応を受けに
くく、寿命特性を向上できる。
The cathode serving as an electron injection electrode has Tang.
The proposed MgAg alloy or AlLi alloy,
In many cases, an alloy of a metal having a low work function and a low electron injection barrier and a metal having a relatively large work function and being stable is used. Further, a metal having a low work function may be formed on the organic layer side, and a metal having a large work function may be thickly laminated for the purpose of protecting the metal having a low work function, such as Li / Al or LiF / Al.
Such a laminated electrode can be used. For forming these cathodes, a vapor deposition method or a sputtering method is preferable. When an electron injecting material such as dilithium phthalocyanine, disodium phthalocyanine, magnesium porphine, 4,4,8,8-tetrakis (1H-pyrazol-1-yl) pyrazaball is used, a metal having a large work function and a stable metal function is used. Since the electrode can be constituted only by the electrode, the electrode is hardly subjected to a reaction such as oxidation and the life characteristics can be improved.

【0032】基板は、上述した薄膜を積層した薄膜EL
素子を担持できるものであれば良く、また、有機層内で
生じた発光を取り出せるように透明ないし半透明の材料
であれば良く、コーニング1737等のガラス、あるい
はポリカーボネートその他の樹脂フィルム等を用いる。
ただし、発光層に用いる熱硬化性樹脂、耐熱性樹脂の硬
化温度よりも、軟化点が高い必要がある。
The substrate is a thin film EL obtained by laminating the above thin films.
Any material can be used as long as it can support the element, and a transparent or translucent material can be used so as to extract light emitted in the organic layer. Glass such as Corning 1737, a resin film of polycarbonate or the like is used.
However, the softening point needs to be higher than the curing temperature of the thermosetting resin and the heat-resistant resin used for the light emitting layer.

【0033】次に具体的な実施例に基づいてさらに詳細
に説明する。
Next, the present invention will be described in more detail based on specific embodiments.

【0034】(実施例1)(発光層及びホール輸送層に
用いるポリイミド前駆体ポリアミック酸の合成)ベンゾ
フェノンテトラカルボン酸二無水物と1,4−ビス(4
−アミノフェニルチオ)ベンゼンをN,N−ジメチルホ
ルムアミド中、室温で1時間撹拌し、ポリアミック酸
(PA1)を得た。同様にベンゾフェノンテトラカルボ
ン酸二無水物と9,10−ビス(4−アミノフェニルチ
オ)アントラセンから(PA2)を、ベンゾフェノンテ
トラカルボン酸二無水物と1,6−ビス(4−アミノフ
ェニルチオ)ピレンから(PA3)を得た。
(Example 1) (Synthesis of polyimide precursor polyamic acid used for light emitting layer and hole transport layer) Benzophenonetetracarboxylic dianhydride and 1,4-bis (4
-Aminophenylthio) benzene was stirred in N, N-dimethylformamide at room temperature for 1 hour to obtain a polyamic acid (PA1). Similarly, benzophenonetetracarboxylic dianhydride and 9,10-bis (4-aminophenylthio) anthracene are used to convert (PA2) from benzophenonetetracarboxylic dianhydride and 1,6-bis (4-aminophenylthio) pyrene. From (PA3).

【0035】(ホール輸送層の形成)ITO透明電極を
成膜したガラス基板上に、PA1とトリストリルアミン
を重量比6:4で混合した溶液をスピンコートした後、
200℃で加熱して、500Åのポリイミドからなるホ
ール輸送層を得た。
(Formation of Hole Transport Layer) A solution in which PA1 and tristriamine were mixed at a weight ratio of 6: 4 was spin-coated on a glass substrate on which an ITO transparent electrode was formed.
By heating at 200 ° C., a hole transport layer made of polyimide with a temperature of 500 ° was obtained.

【0036】(図1−1a:第一発光層の形成)第一発
光層として、ホール輸送層上にPA2をスピンコート
し、90℃で30分加熱乾燥を行った。
(FIG. 1-1a: Formation of First Light-Emitting Layer) As a first light-emitting layer, PA2 was spin-coated on the hole transport layer and dried by heating at 90 ° C. for 30 minutes.

【0037】(図1−1b:レジストパターン形成)第
一発光層上に、ポジレジスト(MP1400:シプレイ
・ファーイースト製)を2.5μmの厚さにスピナーで
塗布し、画素ピッチ40μm/100μmのマスクで3
0秒露光を行い、現像液(MF312:シプレイ・ファ
ーイースト製)で現像した後、90℃で15分間ポスト
ベークを行った。
(FIG. 1-1b: Formation of resist pattern) On the first light emitting layer, a positive resist (MP1400: manufactured by Shipley Far East) was applied to a thickness of 2.5 μm by a spinner, and the pixel pitch was 40 μm / 100 μm. 3 with mask
After exposure for 0 second and development with a developer (MF312: Shipley Far East), post-baking was performed at 90 ° C. for 15 minutes.

【0038】(図1−1c:ドライエッチング工程)酸
素プラズマアッシャーにより、高周波出力400W、設
定温度100℃、酸素導入時真空度1Torr、処理時
間10分で、ドライエッチングを行った。
(FIG. 1-1c: Dry Etching Step) Dry etching was performed with an oxygen plasma asher at a high frequency output of 400 W, a set temperature of 100 ° C., a vacuum of 1 Torr when oxygen was introduced, and a processing time of 10 minutes.

【0039】(図1−1d:レジスト除去+樹脂硬化工
程)レジストは、発煙硝酸(関東化学製)中に基板を2
分間浸漬して除去した後、30分間流水洗浄を行った。
引き続き200℃で1時間加熱してイミド化を行い、ポ
リイミドからなる500Åの第一発光層を得た。
(FIG. 1-1d: resist removal + resin curing step) The resist was prepared by immersing the substrate in fuming nitric acid (Kanto Chemical).
After immersion and removal for 30 minutes, washing with running water was performed for 30 minutes.
Subsequently, the mixture was heated at 200 ° C. for 1 hour to perform imidation, thereby obtaining a 500 ° first light-emitting layer made of polyimide.

【0040】(図1−2a:第二発光層の形成)パター
ン化された第一発光層上に、第二発光層としてPA2を
スピンコートし、90℃で30分加熱乾燥を行った。
(FIG. 1-2a: Formation of Second Light Emitting Layer) PA2 was spin-coated as a second light emitting layer on the patterned first light emitting layer, and dried by heating at 90 ° C. for 30 minutes.

【0041】(図1−2b:レジストパターン形成)露
光時のマスクを第一発光層の形成部分と重ならないよう
にアライメントした以外は、上記図1−1bの工程と同
様に行った。
(FIG. 1-2b: Formation of resist pattern) The process was performed in the same manner as in the above-described step of FIG. 1-1b, except that the mask at the time of exposure was aligned so as not to overlap the portion where the first light emitting layer was formed.

【0042】(図1−2c:ドライエッチング工程)上
記図1−1cの工程と同様に行った。
(FIG. 1-2c: Dry Etching Step) The etching was performed in the same manner as in the step of FIG. 1-1c.

【0043】(図1−2d:レジスト除去+樹脂硬化工
程)上記図1−1dの工程と同様に行い、ポリイミドか
らなる第二発光層を得た。
(FIG. 1-2d: resist removal + resin curing step) The same procedure as in FIG. 1-1d was performed to obtain a second light emitting layer made of polyimide.

【0044】(電子輸送層の形成)真空蒸着法により、
4,4,8,8−テトラキス(1H―ピラゾールー1−
イル)ピラザボールからなる電子輸送層を100Å形成
した。
(Formation of Electron Transport Layer)
4,4,8,8-tetrakis (1H-pyrazole-1-
(I) An electron transport layer made of pyraza balls was formed at a thickness of 100 °.

【0045】(電極の形成)引き続き、真空蒸着法によ
り、Liからなる電子注入電極を10Å形成し、保護陰
極として、Alを1000Å蒸着した。
(Formation of Electrode) Subsequently, an electron injection electrode made of Li was formed at 10 ° by a vacuum evaporation method, and Al was deposited at 1000 ° as a protective cathode.

【0046】以上の工程より、画素サイズ40μm、画
素ピッチ50μmの発光層を有する薄膜EL素子を得
た。電圧印可により、全面点灯では白色発光が得られ、
マトリクス駆動により単色表示した場合、PA2を前駆
体としたポリイミドからの青緑発光とPA3を前駆体と
したポリイミドからの橙発光が観察された。さらに15
0℃の高温環境下において連続駆動したところ、輝度低
下もなく安定に光り続けた。
Through the above steps, a thin film EL device having a light emitting layer with a pixel size of 40 μm and a pixel pitch of 50 μm was obtained. By applying the voltage, white light emission is obtained in the entire lighting,
When a single color display was performed by matrix driving, blue-green light emission from polyimide using PA2 as a precursor and orange light emission from polyimide using PA3 as a precursor were observed. Further 15
When the device was continuously driven in a high temperature environment of 0 ° C., it continued to emit light stably without a decrease in luminance.

【0047】本発明は、種々実施形態を採りうる。The present invention can take various embodiments.

【0048】本発明の実施の一形態である薄膜EL素子
は、陽極と陰極との間に少なくとも発光層を有し、発光
層が熱硬化性樹脂を含む複数の発光材料からなり、第一
の発光材料を塗布し、パターニングした後、加熱硬化す
ることを交互に繰り返し、多色化されたことを特徴とす
る。なお、熱硬化性樹脂の主鎖あるいは側鎖に発光基が
含まれていることが好ましい。また、熱硬化性樹脂がポ
リイミドであることが好ましい。
A thin-film EL device according to one embodiment of the present invention has at least a light-emitting layer between an anode and a cathode, and the light-emitting layer is made of a plurality of light-emitting materials containing a thermosetting resin. The method is characterized in that a light-emitting material is applied, patterned, and then heat-cured alternately and alternately, resulting in multicoloring. It is preferable that the main chain or the side chain of the thermosetting resin contains a light emitting group. Preferably, the thermosetting resin is polyimide.

【0049】別の形態の薄膜EL素子は、陽極および陰
極間に、少なくともホール輸送層と発光層を有し、ホー
ル輸送層が熱硬化性樹脂及びホール輸送材料からなり、
発光層が熱硬化性樹脂を含む複数の発光材料からなって
おり、ホール輸送層を塗布し、加熱硬化した後、第一の
発光材料を塗布、パターニング、加熱硬化することを交
互に繰り返し、多色化されたことを特徴とする。なお、
ホール輸送層に含まれる熱硬化性樹脂がポリイミドであ
ることが好ましい。また、発光層に含まれる熱硬化性樹
脂の主鎖あるいは側鎖に発光基が含まれていることが好
ましく、発光層に含まれる熱硬化性樹脂がポリイミドで
あることが好ましい。
A thin film EL device of another embodiment has at least a hole transport layer and a light emitting layer between an anode and a cathode, wherein the hole transport layer is made of a thermosetting resin and a hole transport material,
The light-emitting layer is composed of a plurality of light-emitting materials including a thermosetting resin, and after applying a hole transport layer and heat-curing, the first light-emitting material is alternately applied, patterned, and heat-cured alternately. It is characterized by being colored. In addition,
The thermosetting resin contained in the hole transport layer is preferably polyimide. Further, it is preferable that the main chain or the side chain of the thermosetting resin contained in the light emitting layer contains a light emitting group, and the thermosetting resin contained in the light emitting layer is preferably polyimide.

【0050】本発明の実施の一形態である薄膜EL素子
の製造方法は、陽極および陰極間に、少なくとも発光層
を有する薄膜EL素子を製造する方法であって、発光層
が熱硬化性樹脂を含む複数の発光材料から形成される工
程を有し、さらに、第一の発光材料を塗布した後、パタ
ーニングする工程、加熱硬化する工程を少なくとも2回
交互に繰り返すことを特徴とする。なお、パターニング
の工程において、ドライエッチング法を適用することが
好ましい。
The method of manufacturing a thin film EL device according to one embodiment of the present invention is a method of manufacturing a thin film EL device having at least a light emitting layer between an anode and a cathode, wherein the light emitting layer is made of a thermosetting resin. And a step of patterning and a step of heating and curing after applying the first luminescent material at least twice alternately. Note that it is preferable to apply a dry etching method in the patterning step.

【0051】[0051]

【発明の効果】以上のように本発明は、発光層に耐熱性
に優れた熱硬化性樹脂を用いることにより、塗布系の薄
膜EL素子において、多色化と長寿命化を両立すること
ができる。
As described above, according to the present invention, by using a thermosetting resin having excellent heat resistance for the light emitting layer, it is possible to achieve both multicolor and long life in a coating type thin film EL device. it can.

【図面の簡単な説明】[Brief description of the drawings]

【図1】発光層形成の断面図FIG. 1 is a cross-sectional view of forming a light emitting layer.

【符号の説明】[Explanation of symbols]

1 基板 11 第一発光層 12 第二発光層 20 レジスト DESCRIPTION OF SYMBOLS 1 Substrate 11 First light emitting layer 12 Second light emitting layer 20 Resist

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.7 識別記号 FI テーマコート゛(参考) H05B 33/12 H05B 33/12 B (72)発明者 佐藤 徹哉 大阪府門真市大字門真1006番地 松下電器 産業株式会社内 (72)発明者 久田 均 大阪府門真市大字門真1006番地 松下電器 産業株式会社内 Fターム(参考) 3K007 AB04 AB14 AB15 AB18 CA01 CB01 DA01 DB03 EB00 FA01 5F041 AA12 AA44 CA45 CA67 CA74 FF01 ──────────────────────────────────────────────────の Continued on the front page (51) Int.Cl. 7 Identification code FI Theme coat ゛ (Reference) H05B 33/12 H05B 33/12 B (72) Inventor Tetsuya Sato 1006 Kazuma, Kazuma, Kazuma, Osaka Matsushita Electric Industrial Co., Ltd. (72) Inventor Hitoshi Hisada 1006 Kazuma Kadoma, Osaka Prefecture Matsushita Electric Industrial Co., Ltd.F-term (reference)

Claims (13)

【特許請求の範囲】[Claims] 【請求項1】陽極および陰極間に、少なくとも発光層を
有する薄膜EL素子において、前記発光層が熱硬化性樹
脂を含む複数の発光材料からなる薄膜EL素子であっ
て、第一の発光材料を塗布し、パターニングした後、加
熱硬化することを交互に繰り返し、多色化されたことを
特徴とする薄膜EL素子。
1. A thin film EL device having at least a light emitting layer between an anode and a cathode, wherein the light emitting layer is made of a plurality of light emitting materials containing a thermosetting resin, wherein the first light emitting material is A thin-film EL device characterized by multi-coloring by alternately repeating coating, patterning, and heat curing.
【請求項2】前記熱硬化性樹脂の主鎖あるいは側鎖に発
光基が含まれていることを特徴とする請求項1記載の薄
膜EL素子。
2. The thin-film EL device according to claim 1, wherein a light-emitting group is contained in a main chain or a side chain of the thermosetting resin.
【請求項3】前記熱硬化性樹脂がポリイミドであること
を特徴とする請求項1記載の薄膜EL素子。
3. The thin film EL device according to claim 1, wherein said thermosetting resin is polyimide.
【請求項4】陽極および陰極間に、少なくともホール輸
送層と発光層を有する薄膜EL素子において、前記ホー
ル輸送層が熱硬化性樹脂及びホール輸送材料からなり、
かつ、前記発光層が熱硬化性樹脂を含む複数の発光材料
からなる薄膜EL素子であって、前記ホール輸送層を塗
布し、加熱硬化した後、第一の発光材料を塗布、パター
ニング、加熱硬化することを交互に繰り返し、多色化さ
れたことを特徴とする薄膜EL素子。
4. A thin film EL device having at least a hole transport layer and a light emitting layer between an anode and a cathode, wherein the hole transport layer is made of a thermosetting resin and a hole transport material,
In addition, the light emitting layer is a thin film EL element made of a plurality of light emitting materials including a thermosetting resin, and the first light emitting material is applied, patterned, and heat cured after the hole transport layer is applied and cured by heating. The thin film EL device is characterized in that the process is alternately repeated to obtain a multicolor.
【請求項5】前記ホール輸送層に含まれる熱硬化性樹脂
がポリイミドであることを特徴とする請求項4記載の薄
膜EL素子。
5. The thin film EL device according to claim 4, wherein the thermosetting resin contained in the hole transport layer is polyimide.
【請求項6】前記発光層に含まれる熱硬化性樹脂の主鎖
あるいは側鎖に発光基が含まれていることを特徴とする
請求項4記載の薄膜EL素子。
6. The thin-film EL device according to claim 4, wherein a light-emitting group is contained in a main chain or a side chain of the thermosetting resin contained in the light-emitting layer.
【請求項7】前記発光層に含まれる熱硬化性樹脂がポリ
イミドであることを特徴とする請求項4記載の薄膜EL
素子。
7. The thin film EL according to claim 4, wherein the thermosetting resin contained in the light emitting layer is polyimide.
element.
【請求項8】陽極および陰極間に、少なくとも発光層を
有する薄膜EL素子の製造方法において、前記発光層が
熱硬化性樹脂を含む複数の発光材料から形成される工程
を含む製造方法であって、第一の発光材料を塗布した
後、パターニングする工程と、加熱硬化する工程を少な
くとも2回交互に繰り返すことを特徴とする薄膜EL素
子の製造方法。
8. A method of manufacturing a thin film EL device having at least a light emitting layer between an anode and a cathode, the method comprising a step of forming the light emitting layer from a plurality of light emitting materials including a thermosetting resin. A method of manufacturing a thin film EL device, comprising: repeating a step of patterning and a step of heating and curing after applying a first luminescent material at least twice alternately.
【請求項9】前記熱硬化性樹脂の主鎖あるいは側鎖に発
光基が含まれていることを特徴とする請求項8記載の薄
膜EL素子の製造方法。
9. The method according to claim 8, wherein a light-emitting group is contained in a main chain or a side chain of the thermosetting resin.
【請求項10】前記熱硬化性樹脂がポリイミドであるこ
とを特徴とする請求項8記載の薄膜EL素子の製造方
法。
10. The method according to claim 8, wherein said thermosetting resin is polyimide.
【請求項11】前記パターニングの工程において、ドラ
イエッチング法を適用することを特徴とする請求項8記
載の薄膜EL素子の製造方法。
11. The method according to claim 8, wherein a dry etching method is applied in the patterning step.
【請求項12】前記発光層をホール輸送層形成後に形成
することを特徴とする請求項8記載の薄膜EL素子の製
造方法。
12. The method according to claim 8, wherein the light emitting layer is formed after forming the hole transport layer.
【請求項13】前記発光層を形成した後、さらに電子輸
送層を形成することを特徴とする請求項8記載の薄膜E
L素子の製造方法。
13. The thin film E according to claim 8, wherein an electron transport layer is further formed after forming said light emitting layer.
Manufacturing method of L element.
JP2000046903A 2000-02-24 2000-02-24 Thin film EL device and manufacturing method thereof Expired - Lifetime JP4406991B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2000046903A JP4406991B2 (en) 2000-02-24 2000-02-24 Thin film EL device and manufacturing method thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000046903A JP4406991B2 (en) 2000-02-24 2000-02-24 Thin film EL device and manufacturing method thereof

Publications (2)

Publication Number Publication Date
JP2001237075A true JP2001237075A (en) 2001-08-31
JP4406991B2 JP4406991B2 (en) 2010-02-03

Family

ID=18569238

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000046903A Expired - Lifetime JP4406991B2 (en) 2000-02-24 2000-02-24 Thin film EL device and manufacturing method thereof

Country Status (1)

Country Link
JP (1) JP4406991B2 (en)

Cited By (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002170673A (en) * 2000-09-25 2002-06-14 Dainippon Printing Co Ltd Manufacturing method of electroluminescent element
WO2003086024A1 (en) * 2002-04-10 2003-10-16 Dai Nippon Printing Co., Ltd. Method for manufacturing electroluminescent device
WO2003096754A1 (en) * 2002-05-09 2003-11-20 Dai Nippon Printing Co., Ltd. Production method for electroluminescent element
JP2003332073A (en) * 2002-03-07 2003-11-21 Semiconductor Energy Lab Co Ltd Light emitting device and its manufacturing method
JP2004006231A (en) * 2002-04-10 2004-01-08 Dainippon Printing Co Ltd Method of manufacturing electroluminescent element
JP2004273438A (en) * 2003-02-17 2004-09-30 Pioneer Electronic Corp Etching mask
JP2005032735A (en) * 2000-09-25 2005-02-03 Dainippon Printing Co Ltd Electroluminescent element
JP2005197155A (en) * 2004-01-09 2005-07-21 Dainippon Printing Co Ltd Light emitting element and its manufacturing method
JP2005302351A (en) * 2004-04-07 2005-10-27 Dainippon Printing Co Ltd Light-emitting device and manufacturing method thereof
KR100528256B1 (en) * 2002-08-02 2005-11-15 삼성에스디아이 주식회사 Substrate and organic electroluminescence device using the substrate
JP2005332633A (en) * 2004-05-18 2005-12-02 Sharp Corp Organic electroluminescence display device
JP2006164993A (en) * 2002-04-10 2006-06-22 Dainippon Printing Co Ltd Manufacturing method of electroluminescent element
US7615388B2 (en) 2000-09-25 2009-11-10 Dai Nippon Printing Co., Ltd. Electroluminescent element
US7736921B2 (en) 2003-01-24 2010-06-15 Dai Nippon Printing Co., Ltd. Method for manufacturing electroluminescent element
KR101011346B1 (en) * 2002-03-07 2011-01-28 가부시키가이샤 한도오따이 에네루기 켄큐쇼 Light emitting apparatus and method of fabricating the same
CN111883633A (en) * 2020-07-03 2020-11-03 深圳市思坦科技有限公司 Manufacturing method of display module and display screen

Cited By (25)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005032735A (en) * 2000-09-25 2005-02-03 Dainippon Printing Co Ltd Electroluminescent element
JP2002170673A (en) * 2000-09-25 2002-06-14 Dainippon Printing Co Ltd Manufacturing method of electroluminescent element
US7615388B2 (en) 2000-09-25 2009-11-10 Dai Nippon Printing Co., Ltd. Electroluminescent element
KR101011346B1 (en) * 2002-03-07 2011-01-28 가부시키가이샤 한도오따이 에네루기 켄큐쇼 Light emitting apparatus and method of fabricating the same
US11005062B2 (en) 2002-03-07 2021-05-11 Semiconductor Energy Laboratory Co., Ltd. Light emitting apparatus and method of fabricating the same
JP2003332073A (en) * 2002-03-07 2003-11-21 Semiconductor Energy Lab Co Ltd Light emitting device and its manufacturing method
US10170724B2 (en) 2002-03-07 2019-01-01 Semiconductor Energy Laboratory Co., Ltd. Light emitting apparatus and method of fabricating the same
US8968822B2 (en) 2002-03-07 2015-03-03 Semiconductor Energy Laboratory Co., Ltd. Light emitting apparatus and method of fabricating the same
JP4651916B2 (en) * 2002-03-07 2011-03-16 株式会社半導体エネルギー研究所 Method for manufacturing light emitting device
JP2004006231A (en) * 2002-04-10 2004-01-08 Dainippon Printing Co Ltd Method of manufacturing electroluminescent element
WO2003086024A1 (en) * 2002-04-10 2003-10-16 Dai Nippon Printing Co., Ltd. Method for manufacturing electroluminescent device
JP2006164993A (en) * 2002-04-10 2006-06-22 Dainippon Printing Co Ltd Manufacturing method of electroluminescent element
US7147992B2 (en) 2002-04-10 2006-12-12 Dai Nippon Printing Co., Ltd. Method for manufacturing electroluminescent device
JP4589245B2 (en) * 2002-04-10 2010-12-01 大日本印刷株式会社 Method for manufacturing electroluminescent device
US7534557B2 (en) 2002-05-09 2009-05-19 Dai Nippon Printing Co., Ltd. Production method for electroluminescent element
WO2003096754A1 (en) * 2002-05-09 2003-11-20 Dai Nippon Printing Co., Ltd. Production method for electroluminescent element
KR100528256B1 (en) * 2002-08-02 2005-11-15 삼성에스디아이 주식회사 Substrate and organic electroluminescence device using the substrate
US7736921B2 (en) 2003-01-24 2010-06-15 Dai Nippon Printing Co., Ltd. Method for manufacturing electroluminescent element
JP2004273438A (en) * 2003-02-17 2004-09-30 Pioneer Electronic Corp Etching mask
JP2005197155A (en) * 2004-01-09 2005-07-21 Dainippon Printing Co Ltd Light emitting element and its manufacturing method
US7294452B2 (en) * 2004-04-07 2007-11-13 Dai Nippon Printing Co., Ltd. Light emitting element and process for producing the same
JP2005302351A (en) * 2004-04-07 2005-10-27 Dainippon Printing Co Ltd Light-emitting device and manufacturing method thereof
JP2005332633A (en) * 2004-05-18 2005-12-02 Sharp Corp Organic electroluminescence display device
CN111883633A (en) * 2020-07-03 2020-11-03 深圳市思坦科技有限公司 Manufacturing method of display module and display screen
CN111883633B (en) * 2020-07-03 2021-10-01 深圳市思坦科技有限公司 Manufacturing method of display module and display screen

Also Published As

Publication number Publication date
JP4406991B2 (en) 2010-02-03

Similar Documents

Publication Publication Date Title
JP4406991B2 (en) Thin film EL device and manufacturing method thereof
JP2991183B2 (en) Organic electroluminescence device
KR100435203B1 (en) White light-emitting organic electroluminescent device for back light and liquid crystal display device using itself
JP2004134359A (en) Serially connected oled structure and fabrication method
JP2000012220A (en) Manufacture of organic el display panel
JP2006318837A (en) Organic electroluminescent element and organic electroluminescent device
JP2002352961A (en) Organic electroluminescent device
JPH09190883A (en) Resonating organic membrane el element
JPH03269995A (en) Manufacture of electric field luminescence element
JPH11214163A (en) Organic electromulinescence element and manufacture of the same
JP2001118683A (en) Luminescent element
JP2006233285A (en) Vapor deposition mask and method for producing organic el element using the vapor deposition mask
JPH08321380A (en) Organic electroluminescent element
JPH11273870A (en) Organic el element
JP2000150147A (en) Manufacture of organic electroluminescence element
JP2000150152A (en) Organic electroluminescence display device
JP2000048964A (en) Organic el display
JP3456423B2 (en) Manufacturing method of organic electroluminescent device
JP2002299062A (en) Organic electroluminescent device
KR20020076171A (en) Organic light-emitting device capable of high-quality display
JPH09118880A (en) Light emission element
WO2003092333A1 (en) Method for fabricating organic el element
JP5155085B2 (en) Organic electroluminescence device and method for manufacturing the same
JP2002083679A (en) Manufacturing method of organic electroluminescent device
JPH11191491A (en) Organic electroluminescent device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060120

RD01 Notification of change of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7421

Effective date: 20060214

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20081111

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20081125

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090114

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090512

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090702

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20091020

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20091102

R151 Written notification of patent or utility model registration

Ref document number: 4406991

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121120

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121120

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131120

Year of fee payment: 4

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term