JP2001232569A - Electrodeposition tool - Google Patents

Electrodeposition tool

Info

Publication number
JP2001232569A
JP2001232569A JP2000095865A JP2000095865A JP2001232569A JP 2001232569 A JP2001232569 A JP 2001232569A JP 2000095865 A JP2000095865 A JP 2000095865A JP 2000095865 A JP2000095865 A JP 2000095865A JP 2001232569 A JP2001232569 A JP 2001232569A
Authority
JP
Japan
Prior art keywords
abrasive grains
tool
electrodeposited
electroless plating
shaft
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2000095865A
Other languages
Japanese (ja)
Inventor
Hidenori Hayashida
英徳 林田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
WORLD METAL KK
Original Assignee
WORLD METAL KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by WORLD METAL KK filed Critical WORLD METAL KK
Priority to JP2000095865A priority Critical patent/JP2001232569A/en
Publication of JP2001232569A publication Critical patent/JP2001232569A/en
Pending legal-status Critical Current

Links

Landscapes

  • Polishing Bodies And Polishing Tools (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a holding and fixing structure for abrasive of an electrodeposition tool preventing the drop of abrasive and having excellent durability. SOLUTION: In this electrodeposition tool composed of a structure in which abrasives adhere on a surface of a tool shaft member and are held and fixed by an electrodeposited metal, electroless plating is applied to exposed faces of the abrasives and the surface of the shaft member integrally after attaching the abrasives to the surface of the shaft member by the electrodeposited metal temporarily to electrodeposit and fix the abrasives on the shaft member through an electroless-plated film.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、電着工具に係り、
更に詳しくは、砥粒が脱落し難く、耐久性に優れた電着
工具の砥粒の保持固定構造に係るものである。
TECHNICAL FIELD The present invention relates to an electrodeposition tool,
More specifically, the present invention relates to a structure for holding and fixing abrasive grains of an electroplated tool, which is hard to fall off and has excellent durability.

【0002】[0002]

【従来の技術】電着工具とは、軸材の周りに付着させた
砥粒を電着金属で軸材の周りに埋めて固定したものであ
る。砥粒粒子の50%以上は電着金属に埋没されてお
り、先端部を露出させて使用する。電着工具の砥粒は電
着金属に埋めこまれて物理的に保持固定されているだけ
であるので、砥粒が脱落しやすい欠点がある。砥粒の保
持力を大きくするためには、砥粒と電着金属の界面の接
触面積をいかに大きくするかがポイントになる。現状の
電着工具では、電着金属と砥粒の界面の状況は図2のよ
うになっており、矢印で示す部分に隙間ができている。
この隙間の発生が砥粒脱落の大きな原因となっている。
脱落を防止するためには矢印部分の隙間をなくして図1
に示すような構造にする必要があるが、現在まで解決す
る方法は見出されていない。
2. Description of the Related Art An electrodeposition tool is a tool in which abrasive grains adhered around a shaft are buried and fixed around the shaft with an electrodeposited metal. At least 50% of the abrasive particles are buried in the electrodeposited metal, and the tip is exposed and used. Since the abrasive grains of the electrodeposition tool are merely embedded and physically held and fixed in the electrodeposited metal, there is a disadvantage that the abrasive grains are easily dropped. The key to increasing the holding power of the abrasive grains is how to increase the contact area at the interface between the abrasive grains and the electrodeposited metal. In the current electrodeposition tool, the state of the interface between the electrodeposited metal and the abrasive grains is as shown in FIG. 2, and a gap is formed in a portion indicated by an arrow.
The formation of this gap is a major cause of the abrasive grains falling off.
In order to prevent dropping, the gap between the arrow parts is eliminated and FIG.
However, no solution has been found to date.

【0003】[0003]

【発明が解決しようとする課題】本発明はかかる問題に
鑑みてなされたもので、電着メッキ時、上記した隙間の
発生を防止し、砥粒に電着金属を隙間なく密着させるこ
とができる新規な構造の電着工具を提供せんとするもの
である。
SUMMARY OF THE INVENTION The present invention has been made in view of such a problem, and can prevent the above-mentioned gap from occurring during electrodeposition plating, and can make the electrodeposited metal adhere to the abrasive grains without any gap. It is intended to provide an electrodeposition tool having a new structure.

【0004】[0004]

【課題を解決するための手段】本発明者は上記課題に関
して鋭意研究した結果次の知見を得た。すなわち、 電着工具において、砥粒を軸材の表面に電着金属で一
旦仮付した後、砥粒の露出面と軸材表面を一体的に無電
解メッキ膜で被覆し、この無電解メッキ膜を介して砥粒
を軸材に電着固定すると、砥粒と電着金属の間に隙間が
発生しないこと。 無電解メッキ膜としてはニッケル系無電解メッキが最
も好ましいこと。 無電解メッキ膜の厚さは0.001〜50μmが最も
好ましいこと。 以上の知見を得た。本発明は以上の知見を基になされた
ものである。
Means for Solving the Problems The present inventors have made intensive studies on the above problems and have obtained the following findings. That is, in the electrodeposition tool, after the abrasive grains are temporarily attached to the surface of the shaft material with an electrodeposited metal, the exposed surface of the abrasive grains and the surface of the shaft material are integrally coated with an electroless plating film. When the abrasive grains are electrodeposited on the shaft through the film, no gap is created between the abrasive grains and the electrodeposited metal. The most preferred electroless plating film is nickel-based electroless plating. Most preferably, the thickness of the electroless plating film is 0.001 to 50 μm. The above findings were obtained. The present invention has been made based on the above findings.

【0005】[0005]

【発明の実施の形態】本発明の電着工具の砥粒は図1に
示す様に、砥粒を軸材の表面に電着金属で一旦仮付され
た後、この仮付け部分を除く、砥粒の全露出面と軸材表
面は、無電解メッキ膜1で、隙間無く一体的に被覆さ
れ、この無電解メッキ膜が電着金属2と結合されている
のが特徴である。砥粒を電着固定するとき、電着金属は
無電解メッキ膜から均等に成長するために、砥粒と電着
金属の間に隙間が生成されること無く、砥粒は電着金属
で包まれるように固定されることとなる。、隙間が無く
なり接触面積が大きくなると共に、砥粒の凹凸面全面に
メッキ金属が入りこみ強力なアンカー効果が発現される
ことにより、砥粒の脱落がなくなり耐久性が大幅に向上
する。
BEST MODE FOR CARRYING OUT THE INVENTION As shown in FIG. 1, abrasive grains of an electrodeposition tool according to the present invention are prepared by temporarily attaching the abrasive grains to the surface of a shaft with an electrodeposited metal, and then removing the tacked portion. The entire exposed surface of the abrasive grains and the surface of the shaft member are integrally covered with an electroless plating film 1 without any gap, and this electroless plating film is bonded to the electrodeposited metal 2. When the abrasive grains are fixed by electrodeposition, since the electrodeposited metal grows evenly from the electroless plating film, no gap is created between the abrasive grains and the electrodeposited metal, and the abrasive grains are wrapped with the electrodeposited metal. Will be fixed so that In addition, the gaps are eliminated, the contact area is increased, and the plated metal enters the entire surface of the uneven surface of the abrasive grains, and a strong anchoring effect is exhibited, so that the abrasive grains do not fall off and the durability is greatly improved.

【0006】電着砥粒は、ダイヤモンド、BN,Si
C,WC,SiO2,グラファイト、SiN,SiC−
Cu,SiC−Al,その他全ての砥粒を粒度を問わず
使用できる。
Electrodeposited abrasive grains include diamond, BN, Si
C, WC, SiO2, graphite, SiN, SiC-
Cu, SiC-Al, and all other abrasive grains can be used regardless of particle size.

【0007】無電解メッキは、ニッケル系、銅系、コバ
ルト系のメッキが有効であり、特にニッケル系の無電解
メッキ、たとえば、Ni−B系、Ni−P系等が好まし
い。メッキ厚みは、0.001〜50μmが好ましい。
図1のような隙間のない構造にするためには、メッキ厚
さは0.001μm以上必要である。メッキ厚が上限を
越えると加工中にメッキ膜に亀裂が発生して砥粒が脱落
することがあり好ましくない。
As the electroless plating, nickel-based, copper-based, and cobalt-based plating are effective, and particularly, nickel-based electroless plating, for example, Ni-B-based or Ni-P-based plating is preferable. The plating thickness is preferably 0.001 to 50 μm.
In order to obtain a structure having no gap as shown in FIG. 1, the plating thickness needs to be 0.001 μm or more. If the plating thickness exceeds the upper limit, cracks may occur in the plating film during processing and abrasive grains may fall off, which is not preferable.

【0008】本発明では砥粒の仮付け部分を除く全露出
表面が、無電解メッキされているので、軸材に電着固定
した時、砥粒突出部が全面、電着金属で覆われる。した
がって使用時、必要に応じて突出部を覆う電着金属をド
レッシングして除去し、砥粒を露出させる。
In the present invention, since the entire exposed surface of the abrasive grain except the temporarily attached portion is electroless-plated, when the electrode is fixed to the shaft material, the entire abrasive grain projection is covered with the electrodeposited metal. Therefore, at the time of use, the electrodeposited metal covering the protruding portion is dressed and removed as necessary, exposing the abrasive grains.

【0009】仮付け及び固定用の電着金属は、ニッケ
ル、コバルト、鉄系金属等を適宜使用できるが、最も好
ましいのは、ニッケル系金属である。
As the electrodeposited metal for tacking and fixing, nickel, cobalt, iron-based metals and the like can be appropriately used, and most preferably, nickel-based metals are used.

【0010】砥粒は種付けメッキ法で基材(軸材)に一
旦仮付けした後、砥粒の周囲を電着金属で埋めて固定す
る。種付けメッキとしては、メッキ液に砥粒を懸濁、分
散させてメッキ液と共に共析させる方法、あるいは多孔
質容器の中に砥粒を収めて電気メッキ液に沈め、軸材を
砥粒の中に差込んで埋めて電気メッキして、電着金属で
砥粒を軸材に種付けする方法等、この種の用途に使用さ
れる方法は全て採用できる。
After the abrasive grains are temporarily attached to a base material (shaft material) by a seed plating method, the periphery of the abrasive grains is filled with an electrodeposited metal and fixed. As seed plating, abrasive grains are suspended and dispersed in a plating solution and co-deposited with the plating solution, or the abrasive grains are placed in a porous container, submerged in an electroplating solution, and the shaft material is placed in the abrasive grains. Any of the methods used for this type of application, such as a method of inserting and filling an electrode and electroplating and seeding the shaft with an electrodeposited metal, can be adopted.

【0011】[0011]

【実施例】実施例1(ダイヤモンド電着ドリル) 砥粒:粒度 100メッシュのダイヤモンド砥粒 [種付けメッキ]ガラス繊維製の多孔質坩堝にダイヤモ
ンド砥粒を入れて、下記組成のNiメッキ液に沈め、砥
粒の中に直径10mmの鉄製軸材を差込んで電流密度
0.2A/dmで30分電気メッキした。 種付けメッキ液の組成 硫酸ニッケル240g/l,塩化ニッケル40g/l、
ホウ酸40g/l,PH4.2、浴温55℃ 次に、ダイヤモンド砥粒を種付けした軸材をメッキ液か
ら引き上げ、余分に付着した砥粒を刷毛で落とした後、
軸材と砥粒露出表面を一体的に無電解メッキした。 [無電解メッキ]公知の方法で脱脂、センシタイジング
処理、アクチベーター処理を行ってから、下記組成の無
電解メッキ液を使って軸材と砥粒の表面にNi−Bを概
ね0.2μm無電解メッキした。 無電解Ni−Bメッキ液の組成 硫酸ニッケル30g/l,ホウ酸30g/l、塩化アン
モニウム30g/l、ロッセル塩30g/l、ジメチル
アミンボラン3g/l、PH5.5、浴温60℃ [肉盛用電気メッキ]次に無電解メッキ膜の上に、下記
組成のNiメッキ液を使用して電流密度0.5A/dm
で2時間メッキして砥粒の周りにNiを肉盛して、砥
粒を軸材に固定した。 肉盛用電気メッキ液の組成 硫酸ニッケル240g/l,塩化ニッケル45g/l、
ホウ酸40g/l,応力減少剤(ワールドメタル社製:
ゼロオール)20ml/l、PH4.2、浴温55℃ 砥粒の周囲は隙間なくNiで肉盛され、砥粒の突出部に
もNiが被覆されていた。 評価テスト 砥粒の突出部に被覆されたNiをドレッシングして除去
した後、アルミナセラミックの研磨に使用して性能を評
価した。延べ800時間、砥粒が脱落することなく使用
できた。一方従来の工具では延べ70時間で砥粒が脱落
して使用不可になった。本発明構造は砥粒の脱落防止と
耐久性の向上に顕著な効果があることを確認できた。
Example 1 (Electrodeposited diamond drill) Abrasive grains: Diamond abrasive grains with a particle size of 100 mesh [Seeding plating] Diamond abrasive grains are put in a porous crucible made of glass fiber and immersed in a Ni plating solution having the following composition. Then, an iron shaft having a diameter of 10 mm was inserted into the abrasive grains and electroplated at a current density of 0.2 A / dm 2 for 30 minutes. Composition of seed plating solution Nickel sulfate 240 g / l, nickel chloride 40 g / l,
Boric acid 40 g / l, PH 4.2, bath temperature 55 ° C. Next, the shaft material seeded with diamond abrasive grains is pulled up from the plating solution, and excess abrasive grains are dropped with a brush.
The shaft and the exposed surface of the abrasive grains were integrally electrolessly plated. [Electroless plating] After performing degreasing, sensitizing treatment and activator treatment by a known method, Ni-B is applied to the surface of the shaft member and the abrasive grains with a concentration of approximately 0.2 μm using an electroless plating solution having the following composition. Electroless plating was performed. Composition of electroless Ni-B plating solution Nickel sulfate 30 g / l, boric acid 30 g / l, ammonium chloride 30 g / l, Rossel salt 30 g / l, dimethylamine borane 3 g / l, PH 5.5, bath temperature 60 ° C [meat Electroplating for filling] Next, a current density of 0.5 A / dm was applied on the electroless plating film using a Ni plating solution having the following composition.
2 for 2 hours, Ni was built up around the abrasive grains, and the abrasive grains were fixed to the shaft. Composition of overlaying electroplating solution Nickel sulfate 240g / l, nickel chloride 45g / l,
Boric acid 40 g / l, stress reducing agent (manufactured by World Metal Corporation:
(Zeroall) 20 ml / l, PH 4.2, bath temperature 55 ° C. The surroundings of the abrasive grains were overlaid with Ni without gaps, and the protrusions of the abrasive grains were also coated with Ni. Evaluation Test After the Ni coated on the protruding portions of the abrasive grains was removed by dressing, the performance was evaluated by polishing alumina ceramics. A total of 800 hours could be used without the abrasive particles falling off. On the other hand, in the case of the conventional tool, the abrasive grains fell off in a total of 70 hours, and became unusable. It was confirmed that the structure of the present invention has a remarkable effect in preventing the abrasive grains from falling off and improving the durability.

【0012】実施例2(BN電着ドリル) 砥粒:粒度80メッシュのCBN砥粒 [種付けメッキ]BN砥粒を5wt%懸濁、分散させた
下記組成のNiメッキ液の中に直径10mmのステンレ
ス鋼製の軸材をいれて、電流密度0.2A/dmで3
0分メッキした。 種付けメッキ液の組成 スルファミン酸ニッケル400g/l,塩化ニッケル1
0g/l,ホウ酸40g/l,PH4.0,温度60℃ 次に軸材を種付けメッキ液から引上げ、余分に付着した
砥粒を洗浄して落した後、軸材と砥粒露出表面に無電解
メッキした。 [無電解メッキ] 砥粒を種付けした軸材に、実施例1と同様に脱脂、セン
シタイザー、アクチベーター処理した後、下記組成の無
電解Ni−Pメッキ液を使用してNi−Pを0.05μ
m無電解メッキした。 無電解Ni−Pメッキ液の組成 硫酸ニッケル20g/l,クエン酸ナトリウム30g/
l,次亜リン酸ナトリウム15g/l,PH8.9,浴
温40℃ [肉盛用電気メッキ]次に無電解メッキ膜の上に、下記
組成のNiメッキ液を使用して電流密度0.5A/dm
で2時間メッキして砥粒の周りにNiを肉盛して、砥
粒を軸材に固定した。 肉盛用電気メッキ液の組成 スルファミン酸ニッケル400g/l,塩化ニッケル2
0g/l、ホウ酸40g/l,応力減少剤(ワールドメ
タル社製:ゼロオール)20ml/l、PH4.0、浴
温60℃ 砥粒の周囲は隙間なくNiで肉盛され、砥粒の突出部に
もNiが厚覆されていた。砥粒の突出部に被覆されたN
iをドレッシングして除去した後、 超硬合金の研磨に
使用して性能を評価した。延べ700時間、砥粒が脱落
することなく使用できた。一方、従来の工具では延べ2
0時間で砥粒が脱落して使用不可になった。本発明構造
は砥粒の脱落防止と耐久性の向上に顕著な効果があるこ
とを確認できた。
Example 2 (BN electrodeposition drill) Abrasive grains: CBN abrasive grains having a particle size of 80 mesh [Seeding plating] A 10 mm diameter Ni plating solution having the following composition in which 5 wt% of BN abrasive grains were suspended and dispersed was used. A stainless steel shaft was used, and a current density of 0.2 A / dm 2
Plated for 0 minutes. Composition of seed plating solution Nickel sulfamate 400g / l, Nickel chloride 1
0 g / l, boric acid 40 g / l, PH 4.0, temperature 60 ° C. Next, the shaft was seeded, pulled up from the plating solution, and the extra-adhered abrasive grains were washed and dropped. Electroless plating was performed. [Electroless Plating] A shaft material seeded with abrasive grains is subjected to degreasing, a sensitizer, and an activator treatment in the same manner as in Example 1, and then Ni-P is reduced to 0 using an electroless Ni-P plating solution having the following composition. .05μ
m electroless plating. Composition of electroless Ni-P plating solution Nickel sulfate 20 g / l, sodium citrate 30 g /
1, sodium hypophosphite 15 g / l, PH 8.9, bath temperature 40 ° C. [Electroplating for cladding] Next, on the electroless plating film, a Ni plating solution having the following composition was used to obtain a current density of 0.1. 5A / dm
2 for 2 hours, Ni was built up around the abrasive grains, and the abrasive grains were fixed to the shaft. Composition of overlaying electroplating solution Nickel sulfamate 400g / l, nickel chloride 2
0 g / l, boric acid 40 g / l, stress reducing agent (World Metal Co., Ltd .: Zerool) 20 ml / l, PH 4.0, bath temperature 60 ° C. The portion was also overlaid with Ni. N coated on protruding part of abrasive grains
After dressing and removing i, it was used for polishing a cemented carbide to evaluate its performance. A total of 700 hours could be used without abrasive particles falling off. On the other hand, a total of 2
At 0 hours, the abrasive grains fell off and became unusable. It was confirmed that the structure of the present invention has a remarkable effect in preventing the abrasive grains from falling off and improving the durability.

【0013】[0013]

【発明の効果】以上詳記したように、本発明は電着工具
の砥粒の脱落防止に顕著な効果を有し工具の耐久性と品
質の向上に多大の貢献をなすものである。
As described in detail above, the present invention has a remarkable effect in preventing the abrasive grains from dropping out of the electrodeposited tool, and makes a great contribution to the improvement of the durability and quality of the tool.

【図面の簡単な説明】[Brief description of the drawings]

【図1】図1は本発明工具の電着構造を説明した図であ
る。
FIG. 1 is a diagram illustrating an electrodeposition structure of a tool according to the present invention.

【図2】図2は従来工具の電着構造を説明した図であ
る。
FIG. 2 is a diagram illustrating an electrodeposition structure of a conventional tool.

【符号の説明】[Explanation of symbols]

1…軸材 2…砥粒 3…電着金属 4…無電解メッキ層 DESCRIPTION OF SYMBOLS 1 ... Shaft material 2 ... Abrasive grain 3 ... Electrodeposited metal 4 ... Electroless plating layer

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】工具軸材の表面に砥粒を付着させ、電着金
属で保持固定した構造からなる電着工具において、該砥
粒を該軸材表面に電着金属で一旦仮付した後、該砥粒の
露出面と軸材表面を一体的に無電解メッキし、該無電解
メッキ膜を介して該砥粒を該軸材に電着固定してなるこ
とを特徴とする電着工具。
1. An electrodeposited tool having a structure in which abrasive grains are adhered to the surface of a tool shaft and held and fixed with an electrodeposited metal, after the abrasive grains are temporarily attached to the surface of the shaft with an electrodeposited metal. An electrodeposited tool, wherein an exposed surface of the abrasive grains and a shaft material surface are integrally electrolessly plated, and the abrasive grains are electrodeposited and fixed to the shaft material via the electroless plating film. .
【請求項2】上記無電解メッキがニッケル系無電解メッ
キである請求項1に記載の電着工具。
2. The electrodeposition tool according to claim 1, wherein said electroless plating is nickel-based electroless plating.
【請求項3】上記無電解メッキ膜の厚さが0.001〜
50μmである請求項1あるいは2に記載の電着工具。
3. The method according to claim 1, wherein said electroless plating film has a thickness of 0.001 to 0.001.
3. The electrodeposited tool according to claim 1, which has a thickness of 50 μm.
JP2000095865A 2000-02-23 2000-02-23 Electrodeposition tool Pending JP2001232569A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2000095865A JP2001232569A (en) 2000-02-23 2000-02-23 Electrodeposition tool

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000095865A JP2001232569A (en) 2000-02-23 2000-02-23 Electrodeposition tool

Publications (1)

Publication Number Publication Date
JP2001232569A true JP2001232569A (en) 2001-08-28

Family

ID=18610710

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000095865A Pending JP2001232569A (en) 2000-02-23 2000-02-23 Electrodeposition tool

Country Status (1)

Country Link
JP (1) JP2001232569A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007109767A (en) * 2005-10-12 2007-04-26 Mitsubishi Materials Corp Cmp conditioner and its manufacturing method

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007109767A (en) * 2005-10-12 2007-04-26 Mitsubishi Materials Corp Cmp conditioner and its manufacturing method

Similar Documents

Publication Publication Date Title
JPH06114739A (en) Electrodeposition grinding wheel
US2020117A (en) Cutting, grinding, and burnishing tool and the production thereof
JP4139810B2 (en) Electrodeposition wire tool
JPS622946B2 (en)
JP3895840B2 (en) Conditioner for CMP and method for manufacturing the same
JP5630389B2 (en) Cemented carbide base plate outer peripheral cutting blade and manufacturing method thereof
TW200800504A (en) Electroplated abrasive tools, methods, and molds
JP2007152485A (en) Manufacturing method of saw wire
JP5975138B2 (en) Cemented carbide base plate outer cutting blade manufacturing method
JP5853946B2 (en) Manufacturing method of outer peripheral cutting blade
JP2001107260A (en) Electrodepositing tool
JP2001232569A (en) Electrodeposition tool
JPS5811518B2 (en) Metal-diamond composite plating method
EP0004449B1 (en) Bonding process for grinding tools
JPS6333988B2 (en)
JP2001232570A (en) Electrodeposition tool and manufacturing method thereof
JP2009078321A (en) Electroplated tool and method of manufacturing the same
JP5880652B2 (en) Cemented carbide base plate outer peripheral cutting blade and manufacturing method thereof
JP3039115B2 (en) Electroplated whetstone
JPH01271117A (en) Wire for wire saw
JP6559544B2 (en) Super abrasive tool manufacturing method
JP7169495B2 (en) Cutting tool coated with electrodeposited abrasive grain layer and method for recycling said cutting tool
JPH05285845A (en) Electrodeposition grinding wheel and manufacture thereof
JPS5959352A (en) Method for producing grinding wheel for cutting off
JPS59110560A (en) Manufacturing method of electrodeposition grindstone for cutting