JP2001227413A - Shell and tube egr gas cooling device - Google Patents

Shell and tube egr gas cooling device

Info

Publication number
JP2001227413A
JP2001227413A JP2000038897A JP2000038897A JP2001227413A JP 2001227413 A JP2001227413 A JP 2001227413A JP 2000038897 A JP2000038897 A JP 2000038897A JP 2000038897 A JP2000038897 A JP 2000038897A JP 2001227413 A JP2001227413 A JP 2001227413A
Authority
JP
Japan
Prior art keywords
tube
pipe
heat transfer
egr gas
fin
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2000038897A
Other languages
Japanese (ja)
Inventor
Kazuyoshi Takigawa
一儀 滝川
Motoharu Sugiyama
元治 杉山
Yuji Miyauchi
祐治 宮内
Tadahiro Goto
忠弘 後藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Usui Kokusai Sangyo Kaisha Ltd
Original Assignee
Usui Kokusai Sangyo Kaisha Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Usui Kokusai Sangyo Kaisha Ltd filed Critical Usui Kokusai Sangyo Kaisha Ltd
Priority to JP2000038897A priority Critical patent/JP2001227413A/en
Publication of JP2001227413A publication Critical patent/JP2001227413A/en
Pending legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F1/00Tubular elements; Assemblies of tubular elements
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D7/00Heat-exchange apparatus having stationary tubular conduit assemblies for both heat-exchange media, the media being in contact with different sides of a conduit wall
    • F28D7/16Heat-exchange apparatus having stationary tubular conduit assemblies for both heat-exchange media, the media being in contact with different sides of a conduit wall the conduits being arranged in parallel spaced relation
    • F28D7/1607Heat-exchange apparatus having stationary tubular conduit assemblies for both heat-exchange media, the media being in contact with different sides of a conduit wall the conduits being arranged in parallel spaced relation with particular pattern of flow of the heat exchange media, e.g. change of flow direction
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F1/00Tubular elements; Assemblies of tubular elements
    • F28F1/10Tubular elements and assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with projections, with recesses
    • F28F1/40Tubular elements and assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with projections, with recesses the means being only inside the tubular element
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D21/00Heat-exchange apparatus not covered by any of the groups F28D1/00 - F28D20/00
    • F28D21/0001Recuperative heat exchangers
    • F28D21/0003Recuperative heat exchangers the heat being recuperated from exhaust gases

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Geometry (AREA)
  • Exhaust-Gas Circulating Devices (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a shell and tube EGR gas cooling device attaining reduction of assembly man-hours and reduction of a cost also enhancing heat transfer performance of a pipe unit to obtain stable heat exchange effectiveness, by forming a fin provided in the inside of a heat transfer pipe into an integral structure with the pipe unit. SOLUTION: This shell and tube EGR gas cooling device, formed in a structure arranging a heat transfer pipe group secured in a tube sheet arranged in the inside of a drum pipe in addition securing an end part cap provided with an inflow/outflow port of EGR gas to both end parts of the above drum pipe to secure a tightening flange to the above end part cap, uses a heat transfer pipe protruded to an inner side in a pipe diametric direction integrally with a pipe wall part in the inside to have a fin part continued in a pipe axial direction.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、エンジンの冷却液
などを冷媒とするEGRガスの冷却装置に係り、より詳
しくは管内部にフィンを設けて伝熱性能を高めた伝熱管
を使用した多管式EGRガス冷却装置に関するものであ
る。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a cooling device for an EGR gas using an engine coolant or the like as a refrigerant, and more particularly, to a multi-unit using a heat transfer tube provided with fins inside the tube to improve heat transfer performance. The present invention relates to a tubular EGR gas cooling device.

【0002】[0002]

【従来の技術】排気ガスの一部を排気系から取出して、
再びエンジンの吸気系に戻し、混合気に加える方法は、
EGR(Exhaust Gas Recircula
tion:排気再循環)と称される。EGRはNOx
(窒素酸化物)の発生抑制、ポンプ損失の低減、燃焼ガ
スの温度低下に伴う冷却液への放熱損失の低減、作動ガ
ス量・組成の変化による比熱比の増大と、これに伴うサ
イクル効率の向上など、多くの効果が得られることか
ら、エンジンの排気ガス浄化や熱効率を改善するには有
効な方法とされている。
2. Description of the Related Art A part of exhaust gas is taken out of an exhaust system,
To return to the intake system of the engine and add it to the mixture,
EGR (Exhaust Gas Recircula)
Tion: exhaust gas recirculation). EGR is NOx
(Nitrogen oxides) generation, pump loss reduction, heat radiation loss to the cooling fluid due to lowering of combustion gas temperature, increase in specific heat ratio due to changes in working gas amount and composition, and reduction in cycle efficiency Since many effects such as improvement can be obtained, it is an effective method for improving exhaust gas purification and thermal efficiency of an engine.

【0003】しかるに、EGRガスの温度が高くなりか
つEGRガス量が増大すると、その熱作用によりEGR
バルブの耐久性が劣化し、早期破損を招く場合があった
り、その防止のために水冷構造とする必要があることや
吸気温度の上昇に伴い充填効率の低下による燃費の低下
などが認識されている。このような事態を避けるため、
エンジンの冷却液などによってEGRガスを冷却する装
置が用いられている。この装置としては、一般に多管式
の熱交換器が利用される。
[0003] However, when the temperature of the EGR gas increases and the amount of the EGR gas increases, the heat effect of the EGR gas causes the EGR gas to increase.
It has been recognized that the durability of the valve may deteriorate, leading to premature breakage, the need for a water-cooled structure to prevent this, and the reduction in fuel efficiency due to the decrease in charging efficiency due to the rise in intake air temperature. I have. To avoid this,
A device that cools the EGR gas with a coolant of the engine or the like is used. As this device, a multi-tube heat exchanger is generally used.

【0004】この場合に利用される多管式の熱交換器
は、図13にその一例を示すごとく、両端部に冷却媒体
流入口P1および冷却媒体流出口P2を設けた胴管(シ
ェル)1内部において、直管で構成された伝熱管群2の
両端部が板金製のチューブシート3にろう付けにより固
定され、一方、チューブシート3はその外周端部を胴管
1の内壁にろう付けにより固着され、前記胴管1の一方
の端部にはEGRガスの流入口4−1が設けられた端部
キャップ(ボンネット)4が固着され、また他方の端部
にはEGRガスの流出口4−2が設けられた端部キャッ
プ4が固着された構成となし、かつ前記端部キャップ4
のガス流入口4−1およびガス流出口4−2の外側開口
端部に締結用フランジ5が外嵌固着された構造となって
いる。6は伝熱管群2を保持するバッフルプレートであ
る。
FIG. 13 shows an example of a multi-tube heat exchanger used in this case. A shell tube 1 having a cooling medium inlet P1 and a cooling medium outlet P2 provided at both ends. Inside, both ends of the heat transfer tube group 2 composed of straight tubes are fixed to the sheet metal tube sheet 3 by brazing, while the outer peripheral end of the tube sheet 3 is brazed to the inner wall of the body tube 1. An end cap (bonnet) 4 provided with an EGR gas inlet 4-1 is fixed at one end of the body tube 1, and an EGR gas outlet 4 is provided at the other end. -2 provided with an end cap 4 fixed thereto, and the end cap 4
A fastening flange 5 is externally fitted and fixed to the outer opening ends of the gas inlet 4-1 and the gas outlet 4-2. Reference numeral 6 denotes a baffle plate for holding the heat transfer tube group 2.

【0005】しかしながらこのような多管式熱交換器の
伝熱管にあっては、通常の熱交換器がそうであるように
伝熱管の長さ方向全長にわたり、その内周面が平滑で単
純な円形の管体を使用しているため、該管体内に流入す
るEGRガスはほとんど流過抵抗なしに円滑に流れる結
果、EGRガスは伝熱管内で撹拌されることなく、EG
Rガスから伝熱管への熱伝達が十分になされず、EGR
ガスの冷却効率が低くならざるを得なかった。
However, in such a heat exchanger tube of a multi-tube heat exchanger, the inner peripheral surface is smooth and simple over the entire length of the heat exchanger tube in the longitudinal direction as in a normal heat exchanger. Since a circular tube is used, the EGR gas flowing into the tube flows smoothly with almost no flow resistance. As a result, the EGR gas is not stirred in the heat transfer tube, and the EGR gas is not stirred.
Heat transfer from the R gas to the heat transfer tube is not sufficient, and EGR
The gas cooling efficiency had to be low.

【0006】かかる対策として、従来、伝熱管内に突起
物を設けてガス流の乱れを積極的に増大させることによ
って管体の伝熱性能を高める手段がある。この手段とし
ては、例えば伝熱管の内部にスパイラル状の凸条を形成
すると共に、当該伝熱管内に板状のフィンを挿入して前
記スパイラル状の凸条に接合し、スパイラル状の凸条と
板状フィンとによってガス流の乱れを増大させる方法
(特開平11−108578号公報など参照)などが知
られている。
As a countermeasure, conventionally, there is a means for improving the heat transfer performance of the tube by providing a protrusion in the heat transfer tube to positively increase the turbulence of the gas flow. As this means, for example, a spiral ridge is formed inside the heat transfer tube, and a plate-like fin is inserted into the heat transfer tube and joined to the spiral ridge, thereby forming a spiral ridge. There is known a method of increasing turbulence of a gas flow by using plate-like fins (see Japanese Patent Application Laid-Open No. H11-108578).

【0007】[0007]

【発明が解決しようとする課題】しかし、上記した従来
の管体の伝熱性能を高める手段には以下に記載する欠点
がある。すなわち、管内に板状の仕切板またはフィンを
設ける方法や、スパイラル状の凸条と板状フィンとを組
合わせて突起物を構成する方法は、いずれも管体と仕切
板または板状フィンを別々に製造し、組立てなければな
らない上、組立てはフィンを管内に挿入、ろう付けして
行われるため、管体の製造および管とフィンの組立てに
多大な工数がかかり、コストが高くつく。また、管体と
フィン間にろう付け部が必ず存在するため該ろう付け部
が熱障壁となってフィンからの熱が伝熱管の管壁に伝播
されにくく、さらに、前記ろう付け部にボイド(気泡)
が存在すると伝達熱量がさらに低下し、高い伝熱性能が
得られにくいという難点があった。
However, the above-described conventional means for improving the heat transfer performance of the tube has the following disadvantages. That is, a method of providing a plate-shaped partition plate or fins in a pipe, and a method of forming a projection by combining a spiral ridge and a plate-shaped fin, all employ a pipe body and a partition plate or a plate-shaped fin. Since the fins must be separately manufactured and assembled, and the fins are inserted into the pipe and brazed, the manufacture of the pipe body and the assembling of the pipe and the fin require a large number of man-hours and a high cost. In addition, since a brazing portion always exists between the tube and the fin, the brazing portion serves as a heat barrier, so that heat from the fin is not easily transmitted to the tube wall of the heat transfer tube. Bubbles)
The heat transfer amount is further reduced when there is, and it is difficult to obtain high heat transfer performance.

【0008】本発明は上記した従来の多管式熱交換器の
問題を解決するためになされたもので、伝熱管の内部に
設けるフィンを管体と一体化構造とすることによって、
組立て工数の削減とコスト低減をはかるとともに、管体
の伝熱性能を高め、安定した熱交換率が得られる多管式
EGRガス冷却装置を提供しようとするものである。
The present invention has been made in order to solve the above-mentioned problems of the conventional multi-tube heat exchanger, and has a structure in which fins provided inside the heat transfer tubes are integrated with the tube body.
It is an object of the present invention to provide a multi-pipe EGR gas cooling device that can reduce the number of assembling steps and cost, improve the heat transfer performance of a pipe, and obtain a stable heat exchange rate.

【0009】[0009]

【課題を解決するための手段】本発明は上記課題を解決
する手段として、主としてステンレス鋼製の電縫鋼管や
鍛接鋼管あるいはUO鋼管などの溶接鋼管の製造方法
や、各種の方法により製管された管体の外壁を中心に向
かって押圧する方法などを利用して、伝熱管の内部に設
けるフィンを管体と一体化構造としたもので、その要旨
は、端部付近に冷却媒体流入口および冷却媒体流出口が
設けられた胴管の両端部付近に固定されたチューブシー
トに伝熱管群が固着配列され、さらに前記胴管の両端部
付近にはEGRガスの流入口と流出口が設けられた端部
キャップが固着され、該端部キャップのガス流入口およ
び流出口の外側開口端部に直接、あるいはEGR配管部
を介して締結用フランジが外嵌固着された構造の多管式
EGRガス冷却装置において、前記伝熱管は内部に管壁
部と一体で管径方向で内側に突出しかつ管軸方向に連続
したフィン部を有してなることを特徴とするものであ
る。
According to the present invention, as a means for solving the above-mentioned problems, pipes are produced mainly by a method for producing a welded steel pipe such as an electric resistance welded steel pipe, a forged steel pipe or a UO steel pipe made of stainless steel, or by various methods. The fin provided inside the heat transfer tube is integrated with the tube using a method of pressing the outer wall of the tube toward the center, etc. The main point is that the cooling medium inlet near the end A heat transfer tube group is fixedly arranged on a tube sheet fixed near both ends of a body tube provided with a cooling medium outlet, and an inlet and an outlet for EGR gas are provided near both ends of the body tube. Multi-pipe type EGR having a structure in which a fixed end cap is fixed, and a fastening flange is externally fixed to an outer opening end of a gas inlet and an outlet of the end cap directly or through an EGR pipe portion. Gas cooling equipment Oite, the heat transfer tube is characterized in that comprising a fin portion continuous to the wall portion and projecting vital tube axis a tube radially inwardly integrally therein.

【0010】本発明では伝熱管の管壁部とフィン部とが
一体化されていることにより、フィン部から管壁への熱
伝達においてろう材やボイド(気泡)などの熱障壁が全
く存在しないため、管壁付近を流れるEGRガス流から
の熱のみならず、管軸中心付近を流れるEGRガス流か
らの熱も管壁部へ速やかにかつ確実に伝達してエンジン
冷却水に伝熱させることができる。
In the present invention, since the tube wall and the fin of the heat transfer tube are integrated, there is no heat barrier such as brazing material or voids in heat transfer from the fin to the tube wall. Therefore, not only the heat from the EGR gas flow flowing near the pipe wall but also the heat from the EGR gas flow flowing near the center of the pipe axis is quickly and reliably transmitted to the pipe wall to transfer the heat to the engine cooling water. Can be.

【0011】また、管壁部とフィン部とが一体構造の伝
熱管は、前記したごとく電縫鋼管や鍛接鋼管あるいはU
O鋼管などの溶接鋼管の製造方法、多重巻管製造法や、
各種の方法により製管された管体の外壁を中心に向かっ
て押圧する方法などを利用して製造するので、管とフィ
ンを別々に製造する必要がなく、フィンを管内に挿入し
てろう付けする作業も不要となるので組立て工数を大幅
に削減できる。さらに、フィン部は管壁部と一体である
ため振動、衝撃にも強い。
Further, as described above, the heat transfer tube having the tube wall portion and the fin portion integrated with each other may be an electric resistance welded steel tube, a forged steel tube or a U-welded steel tube.
Manufacturing method of welded steel pipe such as O steel pipe, multiple winding pipe manufacturing method,
Since it is manufactured using a method of pressing the outer wall of the pipe body manufactured by various methods toward the center, it is not necessary to manufacture the pipe and the fin separately, and the fin is inserted into the pipe and brazed. Work is not required, so that the number of assembly steps can be significantly reduced. Further, since the fin portion is integral with the tube wall portion, it is resistant to vibration and impact.

【0012】[0012]

【発明の実施の形態】図1は本発明に係る多管式EGR
ガス冷却装置における伝熱管の第1実施例を示す縦断面
図、図2は同じく伝熱管の第2実施例を示す縦断面図、
図3は同じく伝熱管の第3実施例を示す縦断面図、図4
は同じく伝熱管の第4実施例を示す縦断面図、図5は同
じく伝熱管の第5実施例を示す縦断面図、図6は同じく
伝熱管の第6実施例を示す縦断面図、図7は同じく伝熱
管の第7実施例を示す縦断面図、図8は同じく伝熱管の
第8実施例を示す縦断面図、図9は同じく伝熱管の第9
実施例を示す縦断面図、図10は同じく伝熱管の第10
実施例を示す縦断面図、図11は同じく伝熱管の第11
実施例を示す縦断面図、図12は同じく伝熱管の第12
実施例を示す縦断面図である。
FIG. 1 shows a multi-tube EGR according to the present invention.
FIG. 2 is a longitudinal sectional view showing a first embodiment of the heat transfer tube in the gas cooling device, FIG. 2 is a longitudinal sectional view showing a second embodiment of the heat transfer tube in the same manner,
FIG. 3 is a longitudinal sectional view showing a third embodiment of the heat transfer tube, and FIG.
Is a longitudinal sectional view showing a fourth embodiment of the heat transfer tube, FIG. 5 is a longitudinal sectional view showing a fifth embodiment of the heat transfer tube, and FIG. 6 is a longitudinal sectional view showing a sixth embodiment of the heat transfer tube. 7 is a longitudinal sectional view showing a seventh embodiment of the heat transfer tube, FIG. 8 is a longitudinal sectional view showing an eighth embodiment of the heat transfer tube, and FIG.
FIG. 10 is a longitudinal sectional view showing an embodiment, and FIG.
FIG. 11 is a longitudinal sectional view showing an embodiment, and FIG.
FIG. 12 is a longitudinal sectional view showing an embodiment, and FIG.
It is a longitudinal section showing an example.

【0013】本発明に係る多管式EGRガス冷却装置
は、前記図13に示すごとく、両端部に冷却媒体流入口
P1および冷却媒体流出口P2を設けた胴管(シェル)
1内部において、直管で構成された伝熱管群2の両端部
が板金製のチューブシート3にろう付けにより固定さ
れ、一方、チューブシート3はその外周端部を胴管1の
内壁にろう付けにより固着され、前記胴管1の一方の端
部にはEGRガスの流入口4−1が設けられた端部キャ
ップ(ボンネット)4が固着され、また他方の端部には
EGRガスの流出口4−2が設けられた端部キャップ4
が固着された構成となし、かつ前記端部キャップ4のガ
ス流入口4−1およびガス流出口4−2の外側開口端部
に締結用フランジ5が外嵌固着された構造と同様のもの
である。
As shown in FIG. 13, the multi-tube type EGR gas cooling apparatus according to the present invention has a cooling medium inlet port P1 and a cooling medium outlet port P2 at both ends.
Inside 1, both ends of a heat transfer tube group 2 composed of straight tubes are fixed to a sheet metal tube sheet 3 by brazing, while the outer peripheral end of the tube sheet 3 is brazed to the inner wall of the body tube 1. An end cap (bonnet) 4 provided with an EGR gas inlet 4-1 is fixed at one end of the body tube 1, and an EGR gas outlet is provided at the other end. End cap 4 provided with 4-2
And a structure similar to the structure in which the fastening flange 5 is externally fitted and fixed to the outer opening ends of the gas inlet 4-1 and the gas outlet 4-2 of the end cap 4. is there.

【0014】ここで、上記多管式EGRガス冷却装置に
使用する伝熱管を図1〜図12を参照して説明する。図
1に示す伝熱管2aは内部に管壁部2a−1と一体で管
径方向で内側に管内径より若干短い長さ突出しかつ管軸
方向に連続した、管内径より若干短い長さのフィン部2
a−2を有するもので、その製造方法はフープ材(SU
S316Lなど)をロール成形によって円筒状に成形す
る際、該フープ材の一端側を内側径方向へ所定の長さ折
曲げてフィン部2a−2を形成し、該フィン部2a−2
の付根部にフープ材の他端を例えばTIG溶接法などを
用いて接合することにより製造される。2a−3は溶接
ビードである。
Here, a heat transfer tube used in the multi-tube type EGR gas cooling device will be described with reference to FIGS. The heat transfer tube 2a shown in FIG. 1 has a fin having a length slightly shorter than the inner diameter of the tube, which is integrally formed with the tube wall 2a-1 and projects inward in the radial direction of the tube and has a length slightly shorter than the inner diameter of the tube. Part 2
a-2, and its manufacturing method is hoop material (SU
When S316L or the like is formed into a cylindrical shape by roll forming, one end side of the hoop material is bent in the inner radial direction by a predetermined length to form a fin portion 2a-2, and the fin portion 2a-2 is formed.
The hoop is manufactured by joining the other end of the hoop material to the base of the hoop using, for example, a TIG welding method. 2a-3 is a weld bead.

【0015】図2に示す伝熱管2bは内部に管壁部2b
−1と一体で管径方向で内側に管内径より若干長い長さ
を有して突出しその先端部が管内壁に添って曲げられて
管内を2室に区分するようにろう付けされ、かつ管軸方
向に連続したフィン部2b−2を有するもので、その製
造方法は少なくとも一端側にろう材めっき付きのフープ
材をロール成形によって円筒状に成形する際、該フープ
材の一端側を内側へ所定の長さ折曲げてフィン部2b−
2を形成し、該フィン部2b−2の付根部にフープ材の
他端を例えばTIG溶接法などを用いて接合した後、フ
ィン部2b−2の先端屈曲部2b−3を管内壁部にろう
付けすることにより製造される。2a−4は溶接ビー
ド、2b−5はろう付け部である。
The heat transfer tube 2b shown in FIG.
-1 is projected inward in the radial direction of the pipe in a direction slightly longer than the inner diameter of the pipe, and its tip is bent along the inner wall of the pipe so as to divide the pipe into two chambers. It has a fin portion 2b-2 which is continuous in the axial direction, and its manufacturing method is such that when a hoop material with brazing material plating is formed at least at one end side into a cylindrical shape by roll forming, one end side of the hoop material is directed inward. Bend a predetermined length and fin 2b-
2, and the other end of the hoop material is joined to the base of the fin portion 2b-2 by using, for example, a TIG welding method, and then the distal bent portion 2b-3 of the fin portion 2b-2 is attached to the inner wall of the pipe. Manufactured by brazing. 2a-4 is a weld bead and 2b-5 is a brazing part.

【0016】図3に示す伝熱管2cは図1に示すものと
同様、内部に管壁部2c−1と一体で管径方向で内側に
管内径より若干短い長さ突出しかつ管軸方向に連続し
た、管内径より若干短い長さのフィン部2c−2を有す
るとともに、接合部にラップ部を設けたもので、その製
造方法はフープ材をロール成形によって円筒状に成形す
る際、該フープ材の一端側を内側へ所定の長さ折曲げて
フィン部2c−2を形成し、該フィン部2c−2の付根
部にフープ材の他端を重ねてラップ部2c−3をつく
り、このラップ部をTIG溶接法などを用いて接合した
後、ダイス空引を行ってラップ部の段差をなくして管外
周面を平滑にすることにより製造される。2c−4は溶
接ビードである。なおろう材をめっきしたフープ材を使
用し、ラップ部2c−3をろう付けするとさらによい。
The heat transfer tube 2c shown in FIG. 3 is integrally formed with the tube wall portion 2c-1 and projects a little shorter than the inside diameter of the tube inward in the tube radial direction and is continuous with the tube axial direction in the same manner as the tube shown in FIG. A fin portion 2c-2 having a length slightly shorter than the inner diameter of the pipe, and a lap portion provided at the joint portion. The method for producing the hoop material is as follows. Is bent inward by a predetermined length to form a fin portion 2c-2, and the other end of the hoop material is overlapped on the base of the fin portion 2c-2 to form a wrap portion 2c-3. It is manufactured by joining the parts using a TIG welding method or the like and then performing a die drawing to eliminate the step of the lap part and to smooth the outer peripheral surface of the pipe. 2c-4 is a weld bead. It is more preferable to use a hoop material plated with a brazing material and braze the wrap portion 2c-3.

【0017】図4に示す伝熱管2dは内部に管壁部2d
−1と一体で管径方向で内側に突出しかつ管軸方向に連
続した、管径方向に長いフィン部2d−2と短いフィン
部2d−3を有するもので、その製造方法はフープ材
(SUS316Lなど)をロール成形によって円筒状に
成形する際、該フープ材の両端をそれぞれ一方は長く、
他方は短く内側へ折曲げてフィン部2d−2と2d−3
を形成し、その継目部をTIG溶接法などを用いて接合
することにより製造される。2d−4は溶接ビードであ
る。なお短いフィン部2d−3は二点鎖線の如く長いフ
ィン部2d−2と同じ長さにしてもよく、またろう材を
めっきしたフープ材を使用し、短いフィン部2d−3を
ろう付けするとさらに好ましい。
A heat transfer tube 2d shown in FIG.
-1 which has a long fin portion 2d-2 and a short fin portion 2d-3 which protrude inward in the pipe diameter direction and are continuous in the pipe axis direction, and which are continuous with the pipe axis direction. When the hoop material is formed into a cylindrical shape by roll forming, both ends of the hoop material are long,
The other is bent inward shortly and fins 2d-2 and 2d-3
And the joints are joined by using a TIG welding method or the like. 2d-4 is a weld bead. The short fin portion 2d-3 may have the same length as the long fin portion 2d-2 as shown by a two-dot chain line. Also, if a hoop material plated with a brazing material is used and the short fin portion 2d-3 is brazed, More preferred.

【0018】図5に示す伝熱管2eは内部に管壁部2e
−1と一体で管径方向で内側に突出するとともに先端部
が二股状に形成されかつ管軸方向に連続した、管径方向
に長い屈曲フィン部2e−2、2e−3を有するもの
で、その製造方法はフープ材をロール成形によって円筒
状に成形する際、該フープ材の両端をそれぞれ内側へ折
曲げるともにその先端部をさらに二股状に屈曲させてフ
ィン部2e−2、2e−3を形成し、その継目部をTI
G溶接法などを用いて接合することにより製造される。
2e−4は溶接ビードである。なおろう材をめっきした
フープ材を使用し、両フィン部2e−2、2e−3をろ
う付けするとさらに好ましい。
The heat transfer tube 2e shown in FIG.
-1 which has a bent fin portion 2e-2, 2e-3 which projects inward in the pipe diameter direction and is formed in a forked shape and is continuous in the pipe axis direction, and is long in the pipe diameter direction. When the hoop material is formed into a cylindrical shape by roll forming, both ends of the hoop material are each bent inward, and the tip portion is further bent in a fork shape to form the fin portions 2e-2 and 2e-3. Formed and its seam is TI
It is manufactured by joining using a G welding method or the like.
2e-4 is a weld bead. It is more preferable to use a hoop material plated with a brazing material and braze both fin portions 2e-2 and 2e-3.

【0019】図6に示す伝熱管2fは内部に管壁部2f
−1と一体で管径方向で内側に突出しかつ管軸方向に連
続した、管径方向に長い二股状のフィン部2f−2、2
f−3を有するもので、その製造方法はフープ材をロー
ル成形によって円筒状に成形する際、該フープ材の両端
をそれぞれ内側へ二股状に折曲げてフィン部2f−2、
2f−3を形成し、その継目部をTIG溶接法などを用
いて接合することにより製造される。2f−4は溶接ビ
ードである。
The heat transfer tube 2f shown in FIG.
-1 and a bifurcated fin portion 2f-2, 2 protruding inward in the pipe diameter direction and continuous in the pipe axis direction, and long in the pipe diameter direction.
When the hoop material is formed into a cylindrical shape by roll forming, both ends of the hoop material are each bent inward into a forked shape to form a fin portion 2f-2,
It is manufactured by forming 2f-3 and joining the joint thereof using a TIG welding method or the like. 2f-4 is a weld bead.

【0020】図7に示す伝熱管2gは内部に管壁部2g
−1と一体で管径方向で内側に突出しかつ管軸方向に連
続した、断面S字形のフィン部2g−2を有するととも
に、接合部にラップ部を設けたもので、その製造方法は
好ましくはろう材をめっきしたフープ材をロール成形に
よって円筒状に成形する際、該フープ材の一端側を内側
へ断面S字形に折曲げてフィン部2g−2を形成し、該
フィン部2g−2の付根部にフープ材の他端を重ねてラ
ップ部2g−3をつくり、このラップ部をTIG溶接法
などを用いて接合した後、フィン部2g−2の先端部を
管内壁部にろう付けし、その後ダイス空引を行ってラッ
プ部の段差をなくして管外周面を平滑にすることにより
製造される。2g−4は溶接ビード、2g−5はろう付
け部である。
The heat transfer tube 2g shown in FIG.
-1 having a fin portion 2g-2 having an S-shaped cross section, which protrudes inward in the pipe diameter direction and is continuous with the pipe axis direction and is provided with a lap portion at a joint portion. When the hoop material plated with the brazing material is formed into a cylindrical shape by roll forming, one end side of the hoop material is bent inward into an S-shaped cross section to form a fin portion 2g-2, and the fin portion 2g-2 is formed. The other end of the hoop material is overlapped on the base to form a wrap portion 2g-3, and the wrap portion is joined using a TIG welding method or the like, and then the tip of the fin portion 2g-2 is brazed to the inner wall of the pipe. Thereafter, a die is drawn to eliminate the step of the lap portion and to smooth the outer peripheral surface of the tube. 2g-4 is a weld bead and 2g-5 is a brazing part.

【0021】上記図1〜図7に示す伝熱管2a〜2g
は、管体をロール成形する際にフィン部を形成し、その
継目部をTIG溶接法などを用いて接合して製造する方
式を例示したものであるが、図8〜図10に示す伝熱管
2h〜2jは、予め所定の径に製管した管体の外壁を中
心に向かって押圧する方法などを利用してフィン部を形
成する方法を採用したものである。すなわち、図8に示
す伝熱管2hは内部に管壁部2h−1と一体で管径方向
で内側に突出しかつ管軸方向に連続した、管径方向に長
い二重構造のフィン部2h−2を有するもので、その製
造方法は予め所定の径に製管した管体の管壁部2h−1
の1か所を中心に向かって押圧することにより、管内径
より若干短い長さを有する二重構造の2h−2を形成し
て製造される。なお管壁部2h−1の外面側に予めろう
材をめっきするなどして、フィン部2h−2を相互にろ
う付けするとさらに好ましい。
The heat transfer tubes 2a to 2g shown in FIGS.
Is an example of a method in which a fin portion is formed when a pipe is roll-formed and a joint portion thereof is joined by using a TIG welding method or the like to manufacture the heat transfer tube. In 2h to 2j, a method of forming a fin portion by using a method of pressing the outer wall of a pipe body having a predetermined diameter in advance toward the center is used. That is, the heat transfer tube 2h shown in FIG. 8 is integrally formed with the tube wall portion 2h-1 and protrudes inward in the tube diameter direction, and is continuous in the tube axis direction, and has a double fin portion 2h-2 long in the tube diameter direction. The manufacturing method is based on the tube wall 2h-1 of a tube previously formed to a predetermined diameter.
Is pressed toward the center to form 2h-2 of a double structure having a length slightly shorter than the inner diameter of the tube. It is more preferable to braze the fin portions 2h-2 to each other by plating a brazing material on the outer surface side of the tube wall 2h-1 in advance.

【0022】図9に示す伝熱管2iは内部に管壁部2i
−1と一体で管径方向で内側に突出しかつ管軸方向に連
続した、直径線上で相対向する一対の管径方向に長い二
重構造のフィン部2i−2を有するもので、その製造方
法は予め所定の径に製管した管体の管壁部2i−1の直
径線上の相対向する2か所を管中心に向かって押圧する
ことにより、管半径とほぼ同じ長さの直径線上で相対向
する一対の二重構造のフィン部2i−2を形成して製造
される。なおろう材をめっきしたフープ材を使用し、フ
ィン部2i−2をろう付けするとさらによい。
The heat transfer tube 2i shown in FIG. 9 has a tube wall 2i inside.
And a pair of fins 2i-2 having a pair of diametrically long tubes extending inward in the pipe diameter direction and continuous in the pipe axis direction and opposed to each other on the diameter line. By pressing two opposing locations on the diameter line of the pipe wall 2i-1 of the pipe body previously formed to a predetermined diameter toward the center of the pipe, the pipe wall 2i-1 is pressed on the diameter line having the same length as the pipe radius. It is manufactured by forming a pair of double fin portions 2i-2 opposed to each other. It is more preferable to use a hoop material plated with a brazing material and braze the fin portions 2i-2.

【0023】図10に示す伝熱管2jは内部に管壁部2
j−1と一体で管径方向に120度間隔で突出しかつ管
軸方向に連続した、3個の管径方向に長い二重構造のフ
ィン部2j−2を有するもので、その製造方法は予め所
定の径に製管した管体の管壁部2j−1を120度の間
隔を置いてその外周面の3か所を管中心に向かって押圧
することにより、管半径とほぼ同じ長さの二重構造のフ
ィン部2j−2を3個形成して製造される。なおろう材
をめっきしたフープ材を使用し、フィン部2j−2をろ
う付けするとさらによい。
The heat transfer tube 2j shown in FIG.
It has three fin portions 2j-2, which are integrally formed with j-1 and protrude at an interval of 120 degrees in the pipe diameter direction and are continuous in the pipe axis direction and have a long structure in the pipe diameter direction which is long in the pipe diameter direction. By pressing three places on the outer peripheral surface of the pipe body 2j-1 of the pipe body having a predetermined diameter at intervals of 120 degrees toward the center of the pipe, the pipe wall 2j-1 has a length substantially equal to the pipe radius. It is manufactured by forming three fin portions 2j-2 having a double structure. It is more preferable to use a hoop material plated with a brazing material and braze the fin portions 2j-2.

【0024】図11、図12に示す伝熱管2k、2lは
二重巻製管法により製造するもので、図11に示す伝熱
管2kは内部に二重巻管体の管壁部2k−1と一体で管
径方向に管内径より若干短い長さ突出しかつ管軸方向に
連続した、管内径より若干短い長さのフィン部2k−2
を有するもので、その製造方法は表面にろう材が施され
たフープ材を管体に塑性変形する際、その二重巻管体の
内側端部を内側径方向へ所定の長さ折曲げてフィン部2
k−2を形成し、その状態で該二重巻管体の壁間にある
ろう材を加熱して溶融した後、その溶融したろう材を冷
却凝固して製造される。
The heat transfer tubes 2k and 2l shown in FIGS. 11 and 12 are manufactured by the double winding method. The heat transfer tube 2k shown in FIG. 11 has a tube wall 2k-1 of a double winding tube inside. A fin portion 2k-2 projecting a little shorter than the inner diameter of the pipe in the radial direction of the pipe and being continuous in the axial direction of the pipe and having a length slightly shorter than the inner diameter of the pipe
In the manufacturing method, when plastically deforming a hoop material having a brazing material on its surface into a tubular body, the inner end portion of the double-wound tubular body is bent by a predetermined length in an inner radial direction. Fin part 2
k-2 is formed, and in this state, the brazing material between the walls of the double wound tube is heated and melted, and then the molten brazing material is cooled and solidified.

【0025】図12に示す伝熱管2lは内部に二重巻管
体の管壁部2l−1と一体で管径方向に突出しその先端
部が管内壁に添って曲げられて管内を2室に区分するよ
うにろう付けされ、かつ管軸方向に連続したフィン部2
l−2を有するもので、その製造方法は表面にろう材が
施されたフープ材を管体に塑性変形する際、その二重巻
管体の内側端部を内側径方向へ所定の長さ折曲げるとと
もにその先端部を内壁に重合してフィン部2l−2を形
成し、その状態で該二重巻管体の壁間にあるろう材を加
熱して溶融した後、その溶融したろう材を冷却凝固して
製造される。なお、ろう付けは伝熱管を製造する時に実
施してもよいが、EGRガス冷却装置の組立て時に一括
してろう付けすることが好ましい。
The heat transfer tube 2l shown in FIG. 12 is integrally formed with the tube wall 21-1 of the double-wound tube and protrudes in the radial direction of the tube, and its tip is bent along the inner wall of the tube to make the inside of the tube into two chambers. Fins 2 which are brazed so as to be separated and which are continuous in the pipe axis direction
When the hoop material whose surface is brazed is plastically deformed into a tubular body, the inside end of the double-wound tubular body has a predetermined length in the inner radial direction. The fin portion 21-2 is formed by bending and overlapping the tip portion with the inner wall, and in this state, the brazing material between the walls of the double wound tube is heated and melted, and then the molten brazing material is melted. Is produced by cooling and solidifying. The brazing may be performed when the heat transfer tube is manufactured, but it is preferable to perform the brazing at a time when the EGR gas cooling device is assembled.

【0026】[0026]

【発明の効果】本発明に係る多管式EGRガス冷却装置
は上記のごとく、管壁部とフィン部とが一体化された伝
熱管を使用したので、フィン部から管壁への熱伝達にお
いてろう材やボイド(気泡)などの熱障壁が全く存在し
ないため、管壁付近を流れるEGRガス流からの熱のみ
ならず、管軸中心付近を流れるEGRガス流からの熱も
管壁部へ速やかにかつ確実に伝達してエンジン冷却水に
伝熱させることができるので、伝熱性能が高められる。
また、管壁部とフィン部とが一体構造の伝熱管は、電縫
鋼管や鍛接鋼管あるいはUO鋼管などの溶接鋼管の製造
方法、多重巻製管法や、各種の方法により製管された管
体の外壁を中心に向かって押圧する方法などを利用して
製造するので、管とフィンを別々に製造する必要がな
く、フィンを管内に挿入してろう付けする作業も不要と
なるので組立て工数を大幅に削減でき、製造コストを低
減できる。さらに、フィン部は管壁部と一体であると共
にフィンのリブとしても機能するため耐振性も優れるな
どの効果を奏する。
As described above, the multi-tube EGR gas cooling device according to the present invention uses the heat transfer tube in which the tube wall and the fin are integrated, so that the heat transfer from the fin to the tube wall can be achieved. Since there is no thermal barrier such as brazing material or voids (bubbles), not only the heat from the EGR gas flow flowing near the pipe wall, but also the heat from the EGR gas flow flowing near the center of the pipe axis quickly to the pipe wall. As a result, the heat can be transferred to the engine cooling water and the heat transfer performance can be improved.
In addition, the heat transfer tube having an integral structure of the tube wall and the fin portion is manufactured by a method of manufacturing a welded steel pipe such as an electric resistance welded steel pipe, a forged steel pipe, a UO steel pipe, a multiple winding pipe manufacturing method, or a pipe manufactured by various methods. Manufacture using the method of pressing the outer wall of the body toward the center, etc., so there is no need to manufacture the tube and fin separately, and the work of inserting the fin into the tube and brazing is unnecessary, so the assembly man-hour Can be greatly reduced, and the manufacturing cost can be reduced. Further, since the fin portion is integral with the tube wall portion and also functions as a rib of the fin, it has effects such as excellent vibration resistance.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明に係る多管式EGRガス冷却装置におけ
る伝熱管の第1実施例を示す縦断面図である。
FIG. 1 is a longitudinal sectional view showing a first embodiment of a heat transfer tube in a multi-tube EGR gas cooling device according to the present invention.

【図2】同じく伝熱管の第2実施例を示す縦断面図であ
る。
FIG. 2 is a longitudinal sectional view showing a second embodiment of the heat transfer tube.

【図3】同じく伝熱管の第3実施例を示す縦断面図であ
る。
FIG. 3 is a longitudinal sectional view showing a third embodiment of the heat transfer tube.

【図4】同じく伝熱管の第4実施例を示す縦断面図であ
る。
FIG. 4 is a longitudinal sectional view showing a fourth embodiment of the heat transfer tube.

【図5】同じく伝熱管の第5実施例を示す縦断面図であ
る。
FIG. 5 is a longitudinal sectional view showing a fifth embodiment of the heat transfer tube.

【図6】同じく伝熱管の第6実施例を示す縦断面図であ
る。
FIG. 6 is a longitudinal sectional view showing a sixth embodiment of the heat transfer tube.

【図7】同じく伝熱管の第7実施例を示す縦断面図であ
る。
FIG. 7 is a longitudinal sectional view showing a seventh embodiment of the heat transfer tube.

【図8】同じく伝熱管の第8実施例を示す縦断面図であ
る。
FIG. 8 is a longitudinal sectional view showing an eighth embodiment of the heat transfer tube.

【図9】同じく伝熱管の第9実施例を示す縦断面図であ
る。
FIG. 9 is a longitudinal sectional view showing a ninth embodiment of the heat transfer tube.

【図10】同じく伝熱管の第10実施例を示す縦断面図
である。
FIG. 10 is a vertical sectional view showing a tenth embodiment of the heat transfer tube.

【図11】同じく伝熱管の第11実施例を示す縦断面図
である。
FIG. 11 is a longitudinal sectional view showing an eleventh embodiment of the heat transfer tube.

【図12】同じく伝熱管の第12実施例を示す縦断面図
である。
FIG. 12 is a longitudinal sectional view showing a twelfth embodiment of the heat transfer tube.

【図13】本発明の対象とする従来の多管式のEGRガ
ス冷却装置の一例を中央部を省略して示す横断平面図で
ある。
FIG. 13 is a cross-sectional plan view showing an example of a conventional multi-tube EGR gas cooling device to which the present invention is applied, omitting a central portion.

【符号の説明】[Explanation of symbols]

1 胴管(シェル) 2 伝熱管群 2a〜2l 伝熱管 3 チューブシート 4 端部キャップ(ボンネット) 4−1 EGRガス流入口 4−2 EGRガス流出口 5 締結用フランジ 6 バッフルプレート P1 冷却媒体流入口 P2 冷却媒体流出口 DESCRIPTION OF SYMBOLS 1 Body tube (shell) 2 Heat transfer tube group 2a-2l Heat transfer tube 3 Tube sheet 4 End cap (bonnet) 4-1 EGR gas inlet 4-2 EGR gas outlet 5 Fastening flange 6 Baffle plate P1 Coolant flow Inlet P2 Cooling medium outlet

─────────────────────────────────────────────────────
────────────────────────────────────────────────── ───

【手続補正書】[Procedure amendment]

【提出日】平成12年3月10日(2000.3.1
0)
[Submission date] March 10, 2000 (200.3.1.1)
0)

【手続補正1】[Procedure amendment 1]

【補正対象書類名】図面[Document name to be amended] Drawing

【補正対象項目名】全図[Correction target item name] All figures

【補正方法】変更[Correction method] Change

【補正内容】[Correction contents]

【図1】 FIG.

【図2】 FIG. 2

【図3】 FIG. 3

【図4】 FIG. 4

【図5】 FIG. 5

【図6】 FIG. 6

【図7】 FIG. 7

【図8】 FIG. 8

【図9】 FIG. 9

【図10】 FIG. 10

【図11】 FIG. 11

【図12】 FIG.

【図13】 FIG. 13

───────────────────────────────────────────────────── フロントページの続き (72)発明者 後藤 忠弘 静岡県富士市原田1200 Fターム(参考) 3G062 ED08 GA08 GA10  ────────────────────────────────────────────────── ─── Continued on front page (72) Inventor Tadahiro Goto 1200 Harada, Fuji-shi, Shizuoka F-term (reference) 3G062 ED08 GA08 GA10

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 端部付近に冷却媒体流入口および冷却媒
体流出口が設けられた胴管の両端部付近に固定されたチ
ューブシートに伝熱管群が固着配列され、さらに前記胴
管の両端部付近にはEGRガスの流入口と流出口が設け
られた端部キャップが固着され、該端部キャップのガス
流入口および流出口の外側開口端部に締結用フランジが
外嵌固着された構造の多管式EGRガス冷却装置におい
て、前記伝熱管は内部に管壁部と一体で管径方向で内側
に突出しかつ管軸方向に連続したフィン部を有してなる
ことを特徴とする多管式EGRガス冷却装置。
1. A heat transfer tube group is fixedly arranged on a tube sheet fixed near both ends of a body tube provided with a cooling medium inlet and a cooling medium outlet near an end, and furthermore, both ends of the body tube An end cap provided with an inlet and an outlet for the EGR gas is fixed in the vicinity, and a fastening flange is externally fixed to the outer opening end of the gas inlet and the outlet of the end cap. In the multi-tube EGR gas cooling apparatus, the heat transfer tube has a fin portion integrally formed with a tube wall portion and protruding inward in the tube radial direction and continuous in the tube axis direction. EGR gas cooling device.
JP2000038897A 2000-02-16 2000-02-16 Shell and tube egr gas cooling device Pending JP2001227413A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2000038897A JP2001227413A (en) 2000-02-16 2000-02-16 Shell and tube egr gas cooling device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000038897A JP2001227413A (en) 2000-02-16 2000-02-16 Shell and tube egr gas cooling device

Publications (1)

Publication Number Publication Date
JP2001227413A true JP2001227413A (en) 2001-08-24

Family

ID=18562550

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000038897A Pending JP2001227413A (en) 2000-02-16 2000-02-16 Shell and tube egr gas cooling device

Country Status (1)

Country Link
JP (1) JP2001227413A (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2003095923A1 (en) * 2002-05-10 2003-11-20 Usui Kokusai Sangyo Kaisha, Ltd. Heat transfer pipe and heat exchange incorporating such heat transfer pipe
CN106415185A (en) * 2014-07-03 2017-02-15 沙特基础工业全球技术有限公司 System and method for repairing a seam of a heat exchange system
KR101876547B1 (en) * 2017-01-13 2018-07-09 정이영 A refrigeration pipe with defrost function
GB2571637A (en) * 2017-01-30 2019-09-04 Senior Uk Ltd Finned coaxial cooler
US10995998B2 (en) 2015-07-30 2021-05-04 Senior Uk Limited Finned coaxial cooler
US11029095B2 (en) 2015-07-30 2021-06-08 Senior Uk Limited Finned coaxial cooler

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2003095923A1 (en) * 2002-05-10 2003-11-20 Usui Kokusai Sangyo Kaisha, Ltd. Heat transfer pipe and heat exchange incorporating such heat transfer pipe
US7044210B2 (en) 2002-05-10 2006-05-16 Usui Kokusai Sangyo Kaisha, Ltd. Heat transfer pipe and heat exchange incorporating such heat transfer pipe
CN100339675C (en) * 2002-05-10 2007-09-26 臼井国际产业株式会社 Heat transfer pipe and heat exchange incorporating such heat transfer pipe
CN106415185A (en) * 2014-07-03 2017-02-15 沙特基础工业全球技术有限公司 System and method for repairing a seam of a heat exchange system
US10995998B2 (en) 2015-07-30 2021-05-04 Senior Uk Limited Finned coaxial cooler
US11029095B2 (en) 2015-07-30 2021-06-08 Senior Uk Limited Finned coaxial cooler
KR101876547B1 (en) * 2017-01-13 2018-07-09 정이영 A refrigeration pipe with defrost function
GB2571637A (en) * 2017-01-30 2019-09-04 Senior Uk Ltd Finned coaxial cooler
GB2571637B (en) * 2017-01-30 2021-01-13 Senior Uk Ltd Finned heat exchangers

Similar Documents

Publication Publication Date Title
US8020610B2 (en) Exhaust gas heat exchanger and method of operating the same
JP4931390B2 (en) EGR gas cooling device
US20070000652A1 (en) Heat exchanger with dimpled tube surfaces
JP2007212084A (en) Heat exchanger
JP4009000B2 (en) EGR gas cooler for internal combustion engine
JPH0989491A (en) Egr gas cooling device
US7322403B2 (en) Heat exchanger with modified tube surface feature
JP3558131B2 (en) Double tube heat exchanger
JPWO2017013918A1 (en) Heat exchanger
JP2001227413A (en) Shell and tube egr gas cooling device
EP1695017B1 (en) Nested attachment junction for heat exchanger
JPH11241891A (en) Egr gas cooler for internal combustion engine
EP1388720B1 (en) Triple-tube type heat exchanger and method of producing same
JP2001116489A (en) Method for forming sacrificial corrosion layer
JP2590250Y2 (en) Heat exchanger
JP2000054916A (en) Egr gas cooling device
JP4009157B2 (en) Element tube for heat exchanger and heat exchanger using the same
JP2000158070A (en) Tube for heat exchanger
JP2007064515A (en) Flat heat transfer tube for heat exchanger, and its manufacturing method
JP2001027495A (en) Joint between tank for heat-exchanger and outlet pipe
JP4121187B2 (en) EGR gas cooling device
JP2002350071A (en) Double pipe heat exchanger
JP2005321122A (en) Tubular type heat exchanger
JP2004100598A (en) Exhaust emission control device of engine and joint pipe for controlling emissions having the same
JP6731266B2 (en) Heat exchanger

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070216

RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20080527

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080530

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20090826

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090828

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20091023

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20091204

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100201

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20100422