JP2001219169A - Electrolytic apparatus - Google Patents

Electrolytic apparatus

Info

Publication number
JP2001219169A
JP2001219169A JP2000032897A JP2000032897A JP2001219169A JP 2001219169 A JP2001219169 A JP 2001219169A JP 2000032897 A JP2000032897 A JP 2000032897A JP 2000032897 A JP2000032897 A JP 2000032897A JP 2001219169 A JP2001219169 A JP 2001219169A
Authority
JP
Japan
Prior art keywords
water
concentration
electrolytic
electrolysis
electrolyzed
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2000032897A
Other languages
Japanese (ja)
Other versions
JP4415444B2 (en
Inventor
Keijiro Kunimoto
啓次郎 国本
Takemi Oketa
岳見 桶田
Tomohide Matsumoto
朋秀 松本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP2000032897A priority Critical patent/JP4415444B2/en
Publication of JP2001219169A publication Critical patent/JP2001219169A/en
Application granted granted Critical
Publication of JP4415444B2 publication Critical patent/JP4415444B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Treatment Of Water By Oxidation Or Reduction (AREA)
  • Water Treatment By Electricity Or Magnetism (AREA)
  • Electrolytic Production Of Non-Metals, Compounds, Apparatuses Therefor (AREA)

Abstract

PROBLEM TO BE SOLVED: To take in electrolytic water with accurate desired concentration from low concentration to high concentration in a diaphragm-free electrolytic apparatus. SOLUTION: Water is electrolyzed in a state stagnated in an electrolytic cell 20 and a mixing means 29 is controlled correspondingly to the concentration of formed electrolytic water to supply electrolytic water with arbitrary concentration.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、塩化ナトリウム水
溶液を無隔膜電解槽に供給し電気分解(以下電解とす
る)することにより電解水を殺菌水として供給可能にし
た電解装置に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an electrolysis apparatus in which an aqueous solution of sodium chloride is supplied to a non-diaphragm electrolytic cell and electrolyzed (hereinafter referred to as electrolysis) so that electrolyzed water can be supplied as sterilized water.

【0002】[0002]

【従来の技術】従来より塩化ナトリウム水溶液を無隔膜
電解槽に供給し電解することにより電解水を殺菌水とし
て供給可能にした電解装置はあった(例えば、特開平4
−94785号公報)。
2. Description of the Related Art Conventionally, there has been an electrolysis apparatus which can supply electrolyzed water as sterilized water by supplying an aqueous sodium chloride solution to a non-diaphragm electrolyzer and electrolyzing it (for example, see Japanese Patent Application Laid-Open No. Hei 4
-94785).

【0003】この電解装置は図5に示すように1は無隔
膜方式の電解槽であり、一対の陰極2と陽極3を内部に
形成されている。この電解槽1の給水側には給水管4を
接続するとともに電解槽1の出口側に、出水管5が接続
され、連続式電解水生成装置が構成されている。
As shown in FIG. 5, this electrolyzer 1 is a non-diaphragm type electrolysis tank, in which a pair of a cathode 2 and an anode 3 are formed. A water supply pipe 4 is connected to a water supply side of the electrolytic cell 1 and a water discharge pipe 5 is connected to an outlet side of the electrolytic cell 1 to constitute a continuous electrolytic water generating apparatus.

【0004】また、給水管4には水に塩化ナトリウム
(NaCl)水溶液6を添加する塩化ナトリウム添加装
置7と、塩酸(HCl)水溶液8を添加する塩酸添加装
置9が薬液供給管12、13を介して接続されている。
A sodium chloride addition device 7 for adding an aqueous solution of sodium chloride (NaCl) 6 to water and a hydrochloric acid addition device 9 for adding an aqueous solution of hydrochloric acid (HCl) 8 to the water supply pipe 4 connect the chemical supply pipes 12 and 13 to each other. Connected through.

【0005】さらに、給水管4の薬液供給管12、13
の接続部上流側に原水分岐部14で分岐したバイパス管
15が、混合部16で出水管5の流れと合流するよう接
続されている。
Further, chemical supply pipes 12, 13 of the water supply pipe 4 are provided.
A bypass pipe 15 branched at the raw water branching section 14 is connected to the upstream of the connecting section so as to join the flow of the water discharge pipe 5 at the mixing section 16.

【0006】また、17は電解水の流量を調整する弁
で、給水管4に設けられ、18は原水のバイパス管15
の流量を調整する弁でバイパス管15に設けている。
Reference numeral 17 denotes a valve for adjusting the flow rate of the electrolyzed water, which is provided in the water supply pipe 4, and reference numeral 18 denotes a bypass pipe 15 for the raw water.
A valve for adjusting the flow rate is provided in the bypass pipe 15.

【0007】19は陰極2と陽極3に電気を供給する直
流電源である。
Reference numeral 19 denotes a DC power supply for supplying electricity to the cathode 2 and the anode 3.

【0008】以上の構成において、給水管4より原水を
供給し、塩化ナトリウム添加装置7と塩酸添加装置9を
駆動した状態で通水電解すると、電解槽1内で次亜塩素
酸水を多く含む電解水となって出水管5より排出され
る。一方バイパス管15からの原水は、混合部16で電
解水と合流し、希釈混合され取水される。この混合割合
は弁17、18の開度を調整することでなされる。
In the above configuration, when the raw water is supplied from the water supply pipe 4 and the flowing water is electrolyzed while the sodium chloride adding device 7 and the hydrochloric acid adding device 9 are driven, a large amount of hypochlorous acid water is contained in the electrolytic cell 1. The water is discharged from the water discharge pipe 5 as electrolyzed water. On the other hand, the raw water from the bypass pipe 15 is combined with the electrolyzed water in the mixing section 16, diluted, mixed, and taken in. This mixing ratio is determined by adjusting the opening degrees of the valves 17 and 18.

【0009】[0009]

【発明が解決しようとする課題】上記した従来の電解装
置では、以下のような課題を有している。
The above-described conventional electrolysis apparatus has the following problems.

【0010】(1)キッチンでは手指の殺菌だけでな
く、ふきんなどの漂白や排水口のぬめりの防止など高濃
度の殺菌水が必要であるが、従来例では連続式電解水生
成装置であり、流水しながら電解動作を行うため、電解
する際の単位水量当たりの電解エネルギーが少なくなる
ので、高濃度の次亜塩素酸が生成できない。これを実現
するためには電極面積を大きく取る必要があるとともに
電解に要する電気量も増大し、電解装置の大型化、高価
格化およびランニングコストの増加につながる。
(1) In a kitchen, high-concentration sterilizing water is required not only for sterilization of fingers but also for bleaching of a towel and prevention of slimming of a drain port. In a conventional example, a continuous electrolytic water generating apparatus is used. Since the electrolysis operation is performed while flowing water, the electrolysis energy per unit water amount at the time of electrolysis is reduced, so that a high concentration of hypochlorous acid cannot be generated. In order to achieve this, it is necessary to increase the electrode area and also increase the amount of electricity required for electrolysis, which leads to an increase in the size and cost of the electrolytic device and an increase in running costs.

【0011】(2)電解水の次亜塩素酸濃度は、希釈混
合の割合を変更すれば濃度変更は可能であるが、その濃
度がどの程度かを知る術がないため、危険な高濃度にな
ったり、また殺菌効果のない低濃度になる可能性があ
る。
(2) The concentration of hypochlorous acid in electrolyzed water can be changed by changing the ratio of dilution and mixing. However, there is no way to know how much the concentration is. Or low concentrations without bactericidal effects.

【0012】[0012]

【課題を解決するための手段】本発明は上記課題を解決
するためになされたものであり、給水手段と、少なくと
も一対の電極を有し、前記給水手段から供給された水を
内部に滞留し、電気分解して電解水を生成する電解槽
と、前記電解槽に接続し、前記電解槽に塩素イオンを供
給可能な塩素イオン供給手段と、前記電解槽の上流側に
接続され、電解水と給水手段から供給された水を混合可
能な混合手段と、前記混合手段で混合される混合水を取
水可能な電解水供給路と、前記混合水の電解水濃度を設
定する設定手段と、給水手段、電解槽、塩素イオン供給
手段、混合手段の少なくともひとつの動作を制御する制
御手段を有し、前記制御手段は前記設定手段の設定値と
電解槽の電解水濃度とに応じて混合手段を制御するもの
である。
SUMMARY OF THE INVENTION The present invention has been made to solve the above-mentioned problems, and has a water supply means and at least a pair of electrodes, wherein water supplied from the water supply means stays inside. An electrolytic cell that generates electrolyzed water by electrolysis, and a chlorine ion supply means connected to the electrolytic cell and capable of supplying chlorine ions to the electrolytic cell, and connected to the upstream side of the electrolytic cell, Mixing means capable of mixing the water supplied from the water supply means, an electrolytic water supply path capable of taking in the mixed water mixed by the mixing means, setting means for setting the concentration of the electrolytic water in the mixed water, and water supply means And control means for controlling at least one operation of the electrolytic cell, the chlorine ion supply means, and the mixing means, wherein the control means controls the mixing means in accordance with the set value of the setting means and the electrolytic water concentration of the electrolytic cell. Is what you do.

【0013】本発明の要点は、電解槽内に水を滞留し、
バッチ状態で電気分解を行い生成した電解水を混合手段
により任意の濃度で供給する点にあり、制御手段により
給水手段から電解槽内に水を供給し、その後、塩素イオ
ン供給手段で電解槽内に塩素イオンを供給し、電極に通
電を行い、電解槽内に電解水を生成した後、再び給水手
段で水を送り込み電解槽内の電解水を排出する。排出さ
れた電解水は、混合手段により所定の比率で給水手段か
らの水が混ぜられ、所定濃度に希釈された水を取水する
ことができる。従って、混合手段により高濃度から低濃
度の電解水を含む水ができるので、手指の殺菌(次亜塩
素酸濃度50ppm以下)から布巾などの漂白(次亜塩素
酸濃度1000ppm以上)など多様な用途にあった濃度
の電解水を得ることができる。
The gist of the present invention is that water is retained in an electrolytic cell,
Electrolysis water produced by electrolysis in a batch state is supplied at an arbitrary concentration by mixing means, water is supplied from the water supply means to the electrolytic tank by the control means, and then the electrolytic water is supplied to the electrolytic tank by the chlorine ion supply means. After supplying chlorine ions to the electrodes and supplying electricity to the electrodes to generate electrolyzed water in the electrolytic cell, water is supplied again by the water supply means and the electrolytic water in the electrolytic cell is discharged. The discharged electrolyzed water is mixed with water from the water supply means at a predetermined ratio by the mixing means, so that water diluted to a predetermined concentration can be collected. Therefore, water containing high to low concentration of electrolyzed water can be produced by the mixing means, so that it can be used for various purposes such as sterilization of fingers (hypochlorous acid concentration of 50 ppm or less) to bleaching of cloth width (hypochlorous acid concentration of 1000 ppm or more). The concentration of electrolyzed water can be obtained.

【0014】[0014]

【発明の実施の形態】本発明の請求項1にかかる電解装
置は、給水手段と、少なくとも一対の電極を有し、前記
給水手段から供給された水を内部に滞留し、電気分解し
て電解水を生成する電解槽と、前記電解槽に接続し、前
記電解槽に塩素イオンを供給可能な塩素イオン供給手段
と、前記電解槽の上流側に接続され、電解水と給水手段
から供給された水を混合可能な混合手段と、前記混合手
段で混合される混合水を取水可能な電解水供給路と、前
記混合水の電解水濃度を設定する設定手段と、給水手
段、電解槽、塩素イオン供給手段、混合手段の少なくと
もひとつの動作を制御する制御手段を有し、前記制御手
段は前記設定手段の設定値と電解槽の電解水濃度を予測
する、もしくは検出することで混合手段を制御するよう
にしている。
An electrolyzing apparatus according to a first aspect of the present invention has a water supply means and at least a pair of electrodes. Water supplied from the water supply means stays inside, and is electrolyzed by electrolysis. An electrolytic cell for generating water, a chlorine ion supply means connected to the electrolytic cell and capable of supplying chlorine ions to the electrolytic cell, and an upstream side of the electrolytic cell connected to the electrolytic cell and supplied from the water supply means. Mixing means capable of mixing water, an electrolytic water supply path capable of taking mixed water mixed by the mixing means, setting means for setting an electrolytic water concentration of the mixed water, a water supply means, an electrolytic cell, and chlorine ion Supply means and control means for controlling at least one operation of the mixing means, wherein the control means controls the mixing means by predicting or detecting the set value of the setting means and the concentration of electrolytic water in the electrolytic cell. Like that.

【0015】そして、制御手段により給水手段から電解
槽内に水を供給し、その後、塩素イオン供給手段で電解
槽内に塩素イオンを供給し、電極に通電を行い、電解槽
内に電解水を生成した後、再び給水手段で水を送り込み
電解槽内の電解水を排出する。排出された電解水は、電
解水濃度に応じて混合手段により所定の比率で給水手段
からの水が混ぜられ、所定濃度に希釈された水を取水す
ることができる。
Then, water is supplied from the water supply means into the electrolytic cell by the control means, and then chlorine ions are supplied into the electrolytic cell by the chlorine ion supply means, and electricity is supplied to the electrodes, so that the electrolytic water is supplied into the electrolytic cell. After generation, water is supplied again by the water supply means, and the electrolytic water in the electrolytic cell is discharged. The discharged electrolyzed water is mixed with water from the water supply means at a predetermined ratio by the mixing means according to the concentration of the electrolyzed water, so that water diluted to a predetermined concentration can be collected.

【0016】また、本発明の請求項2にかかる電解装置
の制御手段は、電解槽の電解水濃度の変化を予測し、設
定手段の設定値を目標に、前記予測濃度から混合手段の
混合割合を求め、この混合割合に応じて混合手段を制御
するようにしている。
Further, the control means of the electrolysis apparatus according to claim 2 of the present invention predicts a change in the concentration of electrolytic water in the electrolytic cell, and sets the mixing ratio of the mixing means from the predicted concentration based on the set value of the setting means. And the mixing means is controlled according to the mixing ratio.

【0017】そして、常に変化する電解槽の電解水濃度
を予測して、この予測値に基づいて混合割合を決めるの
で、正確に所定濃度に希釈された水を取水することがで
きる。
Since the concentration of electrolytic water in the electrolytic cell, which constantly changes, is predicted and the mixing ratio is determined based on the predicted value, water diluted to a predetermined concentration can be taken accurately.

【0018】また、本発明の請求項3にかかる電解装置
は、電解槽内に電解水センサーを設け、制御手段とし
て、給水中に前記電解水センサーと設定手段の設定値と
の偏差に応じて混合手段を制御するようにしている。
In the electrolyzing apparatus according to a third aspect of the present invention, an electrolyzed water sensor is provided in the electrolyzer, and as control means, during supply of water, according to a deviation between the electrolyzed water sensor and a set value of the setting means. The mixing means is controlled.

【0019】そして、常に変化する電解槽の電解水濃度
を電解水センサーにより検知して、この値に基づいて混
合手段を制御するので、正確に所定濃度に希釈された水
を取水することができる。
Since the concentration of the electrolyzed water in the electrolytic cell, which constantly changes, is detected by the electrolyzed water sensor, and the mixing means is controlled based on this value, the water diluted to the predetermined concentration can be taken out accurately. .

【0020】また、本発明の請求項4にかかる電解装置
は、電解水供給路に電解水センサーを設け、制御手段と
して、給水中に前記電解水センサーと設定手段の設定値
との偏差に応じて混合手段を制御するようにしている。
In the electrolyzing apparatus according to a fourth aspect of the present invention, an electrolyzed water sensor is provided in the electrolyzed water supply path, and the control means controls a difference between the electrolyzed water sensor and a set value of the setting means during water supply. To control the mixing means.

【0021】そして、電解水センサーにより検知した電
解水濃度が設定値になるよう混合手段をフィードバック
制御するので、電解水濃度の変化や希釈する水の性質に
係りなく正確に所定濃度に希釈された水を取水すること
ができる。
Then, the mixing means is feedback-controlled so that the concentration of the electrolyzed water detected by the electrolyzed water sensor becomes a set value. Can take water.

【0022】また、本発明の請求項5にかかる電解装置
は、制御手段として、電解槽の電解水残量が所定値以下
に減少した場合は、電気分解を開始し、電解水の供給を
禁止するようにしている。
Further, in the electrolysis apparatus according to claim 5 of the present invention, when the remaining amount of the electrolyzed water in the electrolyzer decreases to a predetermined value or less, the electrolysis is started and the supply of the electrolyzed water is prohibited. I am trying to do it.

【0023】そして、電解槽内の電解水が所定値以下に
ならないように電解し、電解中は電解水の供給を停止す
るので、電解水が不足しても電解水濃度が所定値以下に
ならないので、電解水は所定以上の殺菌効果を保つこと
ができる。
Then, electrolysis is performed so that the electrolyzed water in the electrolyzer does not become lower than a predetermined value, and the supply of the electrolyzed water is stopped during electrolysis. Therefore, even if the electrolyzed water is insufficient, the electrolyzed water concentration does not become lower than the predetermined value. Therefore, the electrolyzed water can maintain a predetermined or higher sterilizing effect.

【0024】また、本発明の請求項6にかかる電解装置
は、請求項2における濃度予測を、電解水生成濃度と経
過時間と電解槽への給水量より定まる電解水濃度減衰特
性を予め記憶させ、前記電解水濃度減衰特性から電解水
濃度を予測するようにしている。
In the electrolyzing apparatus according to a sixth aspect of the present invention, the concentration prediction according to the second aspect is preliminarily stored with an electrolytic water concentration decay characteristic determined from an electrolytic water generation concentration, an elapsed time, and a water supply amount to the electrolytic cell. The concentration of the electrolyzed water is predicted from the electrolyzed water concentration attenuation characteristics.

【0025】そして、電解水の濃度減衰の主要因である
経過時間と給水による減衰特性から、電解直後の電解水
生成濃度を基準にして、現実の経過時間と給水量に基づ
き電解水濃度を予測するので、正確な濃度変化が求めら
れる。
From the elapsed time and the attenuation characteristics due to water supply, which are the main factors of the concentration attenuation of the electrolyzed water, the concentration of the electrolyzed water is predicted based on the actual elapsed time and the amount of water supply, based on the electrolyzed water generation concentration immediately after electrolysis. Therefore, an accurate density change is required.

【0026】また、本発明の請求項7にかかる電解装置
は、請求項6における電解水生成濃度を、塩素イオン供
給量と電極への通電量より定まる電解水生成濃度特性を
予め記憶させ、前記電解水生成濃度特性から電解水生成
濃度を求めるいる。
In the electrolyzing apparatus according to a seventh aspect of the present invention, the electrolyzed water generation concentration according to the sixth aspect is stored in advance with an electrolyzed water generation concentration characteristic determined by a chlorine ion supply amount and an amount of electricity supplied to the electrode. The concentration of electrolyzed water generation is determined from the characteristics of electrolyzed water generation concentration.

【0027】そして、電解水生成濃度を、その主要因で
ある塩素イオン量と電極への電気量とに基づき求めるの
で、正確な電解水の生成濃度を知ることができる。
Since the concentration of the electrolyzed water is determined on the basis of the main factors, that is, the amount of chloride ions and the amount of electricity to the electrodes, the accurate concentration of the electrolyzed water can be known.

【0028】また、本発明の請求項8にかかる電解装置
は、制御手段として、電解水生成からの経過時間が所定
時間を超えた場合に電解槽の電解水を排出するようにし
ている。
Further, in the electrolysis apparatus according to claim 8 of the present invention, the control means is configured to discharge the electrolyzed water from the electrolyzer when the elapsed time from the generation of the electrolyzed water exceeds a predetermined time.

【0029】そして、電解水を生成してから長期間(所
定時間)放置された場合に、電解水を排出するようにし
ているので、電解水濃度減衰による濃度低下がリセット
され、新たに電解できるので正確で高濃度の電解水を保
持できる。
When the electrolyzed water is left for a long time (predetermined time) after the electrolyzed water is generated, the electrolyzed water is discharged, so that the concentration decrease due to the electrolyzed water concentration decay is reset and new electrolysis can be performed. Therefore, accurate and high-concentration electrolyzed water can be held.

【0030】また、本発明の請求項9にかかる電解装置
は、電解槽内に電解水センサーを設け、制御手段とし
て、電解中の電解水濃度の上昇速度に応じて電極への通
電量を制御するものである。
In the electrolyzing apparatus according to the ninth aspect of the present invention, an electrolyzed water sensor is provided in the electrolyzer, and as a control means, the amount of electricity supplied to the electrode is controlled according to the rate of increase in the electrolyzed water concentration during electrolysis. Is what you do.

【0031】そして、電解水濃度の上昇速度は塩素イオ
ンの供給量のバラツキにより変化する。したがって、こ
の上昇速度に応じて電解水濃度が目標濃度に必要な電極
への通電量を求め、電解することにより正確な電解水濃
度が得られる。
The rate of increase in the concentration of the electrolyzed water changes depending on the variation in the supply amount of chlorine ions. Therefore, an accurate amount of electrolyzed water can be obtained by determining the amount of electricity to the electrode required for the electrolyzed water concentration to be the target concentration according to the rising speed and performing electrolysis.

【0032】また、本発明の請求項10にかかる電解装
置は、電解槽内に電解水センサーを設け、制御手段は、
電解中の電解水濃度の上昇速度に応じて塩素イオン供給
手段による塩素イオン供給量を反比例的に制御するもの
である。
Further, in the electrolysis apparatus according to claim 10 of the present invention, an electrolysis water sensor is provided in the electrolysis tank, and the control means includes:
The amount of chlorine ions supplied by the chlorine ion supply means is controlled in inverse proportion to the rate of increase in the concentration of electrolyzed water during electrolysis.

【0033】そして、電解水濃度の上昇速度は塩素イオ
ンの供給量に比例関係にある。このことから電解開始直
後の電解水の上昇速度から塩素イオンの供給量を推定
し、上昇速度が小さければ塩素イオンを多く追加供給
し、上昇速度が大きくなれば少なく追加供給し、所定の
塩素イオン供給量に調整する。したがって、塩素イオン
の供給を正確に行うことができる。
The rate of increase in the concentration of the electrolyzed water is proportional to the supply amount of chlorine ions. From this, the supply amount of chlorine ions is estimated from the rising speed of the electrolyzed water immediately after the start of electrolysis, and if the rising speed is low, more chlorine ions are additionally supplied. Adjust to supply volume. Therefore, it is possible to supply chlorine ions accurately.

【0034】また、本発明の請求項11にかかる電解装
置は、設定手段として、複数の選択スイッチを有し、制
御手段は、前記選択スイッチに応じて複数の電解水濃度
と給水量の設定値の中から一組の設定値を呼び出し、選
定された給水量に応じて給水手段を制御し、選定された
電解水濃度に応じて混合手段を制御するようにしてい
る。
The electrolyzing apparatus according to the eleventh aspect of the present invention has a plurality of selection switches as setting means, and the control means controls a plurality of set values of the electrolytic water concentration and the water supply amount according to the selection switches. , A set of set values is called out, the water supply means is controlled according to the selected water supply amount, and the mixing means is controlled according to the selected electrolytic water concentration.

【0035】そして、選択スイッチの中から使用用途に
合ったスイッチを入れると、そのスイッチに関連付けら
れた電解水濃度と給水量が選定され、その選定値の濃度
と量の電解水が取水できる。したがって多用途の電解水
がスイッチひとつで選択できる。
When a switch suitable for the intended use is turned on from among the selection switches, the concentration of the electrolyzed water and the amount of water supply associated with the switch are selected, and the electrolyzed water having the selected concentration and amount can be taken. Therefore, versatile electrolyzed water can be selected with a single switch.

【0036】[0036]

【実施例】(実施例1)図1は本発明の実施例1を示す
電解装置の模式図である。図1において、20は陽極2
1と陰極22の一対の電極を対向して内設した電解槽
で、上部に出水口23、中央部に入水口24、下部に食
塩水入口25がそれぞれ設けてある。26は給水路27
に設けた給水手段であり、電解槽20の入水口24に連
通して設けられており、電解槽20内に給水供給可能に
構成されている。なおこの給水手段26は電動の開閉弁
である。
(Embodiment 1) FIG. 1 is a schematic diagram of an electrolytic apparatus showing Embodiment 1 of the present invention. In FIG. 1, reference numeral 20 denotes the anode 2
An electrolytic cell in which a pair of electrodes 1 and a cathode 22 are installed facing each other. A water outlet 23 is provided at an upper portion, a water inlet 24 is provided at a central portion, and a saline solution inlet 25 is provided at a lower portion. 26 is a water supply channel 27
The water supply means is provided in communication with the water inlet 24 of the electrolytic cell 20, and is configured to be able to supply water into the electrolytic cell 20. The water supply means 26 is an electric on-off valve.

【0037】28は出水路で、出水口23からの電解水
を混合手段29へ連通させるよう接続している。30は
バイパス路で、給水路27の給水手段26下流側の水を
混合手段29へ連通するよう接続している。混合手段2
9は、出水路28の電解水とバイパス路30の水を任意
の混合割合で混合させ、この混合水を電解水供給路31
に吐出するよう配管されている。なお混合手段29は電
動モータ(図示せず)により混合割合を可変する混合弁
より成っている。
Reference numeral 28 denotes a water discharge passage, which is connected so that the electrolytic water from the water discharge port 23 is communicated with the mixing means 29. Reference numeral 30 denotes a bypass passage, which connects the water on the downstream side of the water supply means 26 of the water supply path 27 to the mixing means 29. Mixing means 2
9 mixes the electrolyzed water in the water discharge passage 28 and the water in the bypass passage 30 at an arbitrary mixing ratio, and mixes the mixed water with the electrolyzed water supply passage 31.
It is piped to discharge to The mixing means 29 is composed of a mixing valve that changes the mixing ratio by an electric motor (not shown).

【0038】32は出水路28に設けた排水弁で、出水
路28の流れを混合手段29側と排水路33側とに切換
える。
Reference numeral 32 denotes a drain valve provided in the water discharge passage 28 for switching the flow of the water discharge passage 28 between the mixing means 29 side and the drain passage 33 side.

【0039】34は両電極21、22に電圧を印可して
水を電解するための直流電源である。35は電解槽20
に食塩水を供給する塩素イオン供給手段であり、固形の
状態で食塩36を充填した食塩タンク37と電解槽20
の上流から分岐した給水管38を介して食塩水を供給す
る給水ポンプ39および給塩路40を有しており、飽和
食塩水(食塩濃度26%)が電解槽20内で所定量供給
される。
Reference numeral 34 denotes a DC power supply for applying a voltage to both electrodes 21 and 22 to electrolyze water. 35 is an electrolytic cell 20
Is a chlorine ion supply means for supplying a salt solution to a salt tank 37 filled with salt 36 in a solid state and an electrolytic tank 20.
A water supply pump 39 for supplying a saline solution via a water supply pipe 38 branched from the upstream of the water supply line and a salt supply passage 40, and a predetermined amount of a saturated saline solution (a salt concentration of 26%) is supplied in the electrolytic cell 20.

【0040】41は電解水センサーで、電解水供給路3
1の電解水濃度を検出するするよう設けられている。な
おこの電解水は次亜塩素酸をいう。
Reference numeral 41 denotes an electrolyzed water sensor.
1 is provided to detect the concentration of electrolyzed water. This electrolyzed water refers to hypochlorous acid.

【0041】42は制御手段であり、設定手段43で設
定された設定値に基づき上記の構成要素を制御する。設
定手段43には3種類の用途別の選択スイッチ44が設
けられている。
Reference numeral 42 denotes control means for controlling the above-mentioned components based on the set values set by the setting means 43. The setting means 43 is provided with three types of use-specific selection switches 44.

【0042】上記構成において次に本実施例の作用、動
作について図1および図2を用いて説明する。
Next, the operation and operation of this embodiment in the above configuration will be described with reference to FIGS.

【0043】図2において50で運転を開始すると、5
1の排水運転を行う。この排水運転は、まず排水弁32
を排水路33側に切換え、給水手段26を開成させる。
すると、給水路27より水は電解槽20内に流入すると
ともに、電解槽20内の残留した電解水が排水路33を
経て排出される。
In FIG. 2, when operation is started at 50, 5
Perform the drainage operation of 1. This drainage operation is performed first by the drain valve 32.
Is switched to the drain passage 33 side, and the water supply means 26 is opened.
Then, the water flows into the electrolytic cell 20 from the water supply channel 27, and the electrolytic water remaining in the electrolytic cell 20 is discharged through the drainage channel 33.

【0044】次に52の食塩供給運転に移る。ここでは
給水ポンプ39が動作して給水管40を経て食塩タンク
37内に水が供給され、内部の飽和食塩水が電解槽20
内に供給されて電解槽29底部に溜まる。
Next, the operation shifts to the salt supply operation of 52. Here, the water supply pump 39 is operated to supply water into the salt tank 37 via the water supply pipe 40, and the saturated saline solution inside the electrolytic tank 20 is supplied.
And stored at the bottom of the electrolytic cell 29.

【0045】次に53の電解運転では、直流電源34を
作動させ、電極21、22間に電圧が印加され、電気分
解が開始される。
Next, in the electrolytic operation of 53, the DC power supply 34 is operated, a voltage is applied between the electrodes 21 and 22, and electrolysis is started.

【0046】電気分解の開始直後は、電極21、22の
大部分が水と接触しているため、水の電気分解が優先的
に起こり、電極21、22間に水素と酸素ガスを発生す
る。これらのガスは水道水よりも軽いので、電解槽20
の上部分に浮上する。このガスの移動により、電極2
1、22間に上方向への水の流れが発生する。そして、
電解槽20底部に滞留している食塩水は、ガスの浮上に
より発生した水の流れにより電極21、22間に吸い上
げられ、電解槽20内の水に拡散する。一般に塩素イオ
ン濃度が高いほど次亜塩素酸などの塩素化合物(以下、
次亜塩素酸と呼ぶ)の生成効率は高くなると言われてお
り、(化1)の反応が起こりやすくなる。
Immediately after the start of electrolysis, most of the electrodes 21 and 22 are in contact with water, so that electrolysis of water occurs preferentially and hydrogen and oxygen gas are generated between the electrodes 21 and 22. Since these gases are lighter than tap water, the electrolytic cell 20
Ascends to the upper part of. The movement of this gas causes the electrode 2
An upward flow of water occurs between 1 and 22. And
The saline solution retained at the bottom of the electrolytic cell 20 is sucked up between the electrodes 21 and 22 by the flow of water generated by the floating of the gas, and diffuses into the water in the electrolytic cell 20. Generally, the higher the chloride ion concentration, the more chlorine compounds such as hypochlorous acid (hereinafter, referred to as
It is said that the production efficiency of (hypochlorous acid) is increased, and the reaction of (Chem. 1) is likely to occur.

【0047】[0047]

【化1】 Embedded image

【0048】また、電気分解で次亜塩素酸を生成する場
合、供給する食塩水の量が次亜塩素酸の生成効率に大き
く影響を与える。すなわち、電解槽20への食塩水の供
給量が多くなれば、生成効率は高まり、電解槽20での
次亜塩素酸の生成濃度は高くなり、食塩水の供給量が少
ないと、次亜塩素酸の生成濃度は低くなるので、飽和食
塩水を給水ポンプ39で定量送るようにしている。
When hypochlorous acid is produced by electrolysis, the amount of the supplied saline greatly affects the production efficiency of hypochlorous acid. That is, when the supply amount of the saline solution to the electrolytic cell 20 increases, the generation efficiency increases, the concentration of generated hypochlorous acid in the electrolytic cell 20 increases, and when the supply amount of the saline solution decreases, the hypochlorous acid decreases. Since the concentration of the generated acid is low, a fixed amount of saturated saline is sent by the water supply pump 39.

【0049】さらに、電極21、22間に直流電源34
から一定電流で一定時間の通電を行えば、毎回ほぼ同濃
度の次亜塩素酸が生成できる。すなわち、電解水である
次亜塩素酸の生成濃度は食塩の供給量と電極21、22
への通電量により決定される。なお電解運転が終了した
ら、排水弁32は混合手段29側に切換える。
Further, a DC power supply 34 is provided between the electrodes 21 and 22.
Therefore, if current is supplied for a predetermined time at a constant current, hypochlorous acid having substantially the same concentration can be generated each time. That is, the production concentration of hypochlorous acid, which is electrolyzed water, depends on the supply amount of salt and the electrodes 21 and 22.
Is determined by the amount of current supplied to the When the electrolysis operation is completed, the drain valve 32 is switched to the mixing means 29 side.

【0050】次に54の選択スイッチ判定に移る。これ
は選択スイッチ44が押された場合に、用途別に電解水
の設定値を切換えるもので、手洗いのスイッチが押され
た場合は55で電解水濃度設定Aを50ppmに設定し、
給水時間Bを30秒に設定する。殺菌のスイッチが押さ
れた場合は56で電解水濃度設定Aを200ppmに設定
し、給水時間Bを10秒に設定する。漂白のスイッチが
押された場合には57で電解水濃度設定Aを1000pp
mに設定し、給水時間Bを120秒に設定する。このよ
うに使用目的に適合した複数の電解水濃度設定値と給水
時間を記憶しておき、選択スイッチ44に応じて記憶手
段の中から一組の条件を呼び出すことができる。
Next, the process proceeds to the determination of the selection switch at 54. This is to switch the set value of electrolyzed water for each application when the selection switch 44 is pressed, and set the electrolyzed water concentration setting A to 50 ppm at 55 when the hand washing switch is pressed,
Set the water supply time B to 30 seconds. When the sterilization switch is pressed, the electrolytic water concentration setting A is set to 200 ppm at 56 and the water supply time B is set to 10 seconds. When the bleaching switch is pressed, the electrolytic water concentration setting A is set to 1000pp at 57.
Set to m and water supply time B to 120 seconds. In this way, a plurality of electrolytic water concentration set values and water supply times suitable for the intended use are stored, and a set of conditions can be called from the storage means in accordance with the selection switch 44.

【0051】58では運転判定を行う。ここでは、選択
スイッチ44が押されてないか、選択された給水時間B
を経過していた場合に、59で給水手段26を閉止し5
4の選択スイッチ判定に戻す。また、選択スイッチ44
が押され、経過時間が選択された給水時間Bの範囲内で
あれば、60で給水手段26を開成し、電解水の供給運
転を行う。さらに、前回の電解運転からの経過時間が例
えば24時間等の所定時間を超えた場合に、51の排水
運転に戻す。
At 58, the operation is judged. Here, the selection switch 44 is not pressed, or the selected water supply time B
Has elapsed, the water supply means 26 is closed at 59 and 5
The process returns to the selection switch determination of 4. Also, the selection switch 44
Is pressed, and if the elapsed time is within the range of the selected water supply time B, the water supply means 26 is opened at 60 and the supply operation of the electrolytic water is performed. Further, when the elapsed time from the previous electrolysis operation exceeds a predetermined time such as 24 hours, the operation is returned to the drainage operation of 51.

【0052】60で給水手段26が開成されると、電解
槽20に水が供給され、電解槽20内の高濃度(例えば
2000ppm)の電解水が出水路28より混合手段29
に吐出される。一方バイパス路30からは水が混合手段
29に供給され、ここで混合され希釈された電解水が電
解水供給路31から取水される。
When the water supply means 26 is opened at 60, water is supplied to the electrolytic cell 20, and high-concentration (for example, 2000 ppm) electrolytic water in the electrolytic cell 20 is supplied to the mixing means 29 through the water discharge passage 28.
Is discharged. On the other hand, water is supplied to the mixing means 29 from the bypass path 30, and the mixed and diluted electrolytic water is taken from the electrolytic water supply path 31.

【0053】61では、電解水供給路31に設けた電解
水センサー41で、混合希釈された電解水の次亜塩素酸
濃度を検出する。
At 61, the concentration of hypochlorous acid in the mixed and diluted electrolytic water is detected by the electrolytic water sensor 41 provided in the electrolytic water supply passage 31.

【0054】62で、電解水濃度設定Aと電解水センサ
ー41の検出濃度Cとの偏差(A−C)がゼロになるよ
うに混合手段29の混合割合をフィードバック制御す
る。すなわち偏差が正の場合は電解水の割合を増し、負
の場合は割合を減じる。
At 62, the mixing ratio of the mixing means 29 is feedback-controlled so that the deviation (AC) between the electrolytic water concentration setting A and the concentration C detected by the electrolytic water sensor 41 becomes zero. That is, when the deviation is positive, the ratio is increased, and when the deviation is negative, the ratio is decreased.

【0055】63は、電解槽内の次亜塩素酸の濃度を予
測して、濃度に余裕がある場合は、54の選択スイッチ
判定に戻して運転を続行し、濃度不足になると判定した
場合は、64で電解水供給を停止し、51の排水運転に
戻す。
Step 63 predicts the concentration of hypochlorous acid in the electrolytic cell. If there is enough concentration, the operation returns to the selection switch determination of 54 to continue the operation. , 64, the supply of the electrolyzed water is stopped, and the operation returns to the draining operation of 51.

【0056】電解槽内の次亜塩素酸の濃度予測は、電解
水濃度減衰特性を予め実験的に求めておき、その特性よ
り予測する。(式1)は特性例を示す。
In order to predict the concentration of hypochlorous acid in the electrolytic cell, the electrolytic water concentration decay characteristic is experimentally obtained in advance, and the concentration is predicted from the characteristic. (Equation 1) shows a characteristic example.

【0057】 X=D−E・t−F・Σw (1) ただし X:次亜塩素酸濃度予測値 D:電解直後の次亜塩素酸初期濃度 E:経過時間の係数 t:電解終了時からの経過時間 F:給水量の係数 Σw:電解終了時からの給水量の積算値 そして、この予測値が所定値(例えば1000ppm)以
下に減少した場合は、濃度不足と判定して給水を停止す
る。
X = D−E · t−F · Δw (1) where X: predicted value of hypochlorous acid concentration D: initial concentration of hypochlorous acid immediately after electrolysis E: coefficient of elapsed time t: from the end of electrolysis F: Coefficient of water supply amount Σw: Integrated value of water supply amount from the end of electrolysis And, when this predicted value decreases below a predetermined value (for example, 1000 ppm), it is determined that the concentration is insufficient and water supply is stopped. .

【0058】なお次亜塩素酸初期濃度Dである電解水生
成濃度は、前述したように食塩の供給量sと電極21、
22への通電量qにより決定される。したがって、(式
2)より求まる。
The concentration of electrolyzed water, which is the initial concentration D of hypochlorous acid, depends on the supply amount s of salt and the electrode 21, as described above.
22 is determined by the amount of current q. Therefore, it is obtained from (Equation 2).

【0059】 D=G・s・q (2) ただし G:食塩供給量と通電量の係数(非線型 食塩供給量s
の関数) 以上のように本実施例によれば、使用用途別の選択スイ
ッチ44を押すだけで所要の次亜塩素酸濃度の電解水が
適量取水できる。ここでは手洗いに50ppmの次亜塩素
酸濃度電解水を30秒でるようにしている。また包丁や
まな板等の殺菌に使用する殺菌水として殺菌スイッチを
押すと、濃度200ppmの電解水が10秒間取水でき
る。さらに、布巾や湯飲み等の漂白殺菌には、漂白スイ
ッチを押すと濃度1000ppmの高濃度の電解水が12
0秒取水できる。
D = G · s · q (2) where G: coefficient of the amount of supplied salt and the amount of supplied electricity (non-linear amount of supplied salt s
As described above, according to the present embodiment, an appropriate amount of electrolyzed water having a required hypochlorous acid concentration can be taken by simply pressing the selection switch 44 for each intended use. Here, 50 ppm of hypochlorous acid-concentrated electrolyzed water is used for hand washing for 30 seconds. When a sterilizing switch is pressed as sterilizing water used for sterilizing a kitchen knife, a cutting board, or the like, electrolytic water having a concentration of 200 ppm can be taken for 10 seconds. In addition, for bleaching sterilization of cloths, cups, etc., pressing the bleaching switch causes a high concentration of 1000 ppm of electrolyzed water to reach 12%.
Can take water for 0 seconds.

【0060】このときの電解水は電解水センサーにより
次亜塩素酸の濃度検知がされ、混合手段の混合割合をフ
ィードバック制御するので所要の濃度の電解水が精度よ
く得られる。
At this time, the concentration of hypochlorous acid in the electrolyzed water is detected by the electrolyzed water sensor, and the mixing ratio of the mixing means is feedback-controlled, so that the electrolyzed water of a required concentration can be obtained with high accuracy.

【0061】また、電解水を使用したり放置することに
より電解槽内の次亜塩素酸濃度が減衰するために濃度不
足に陥るのを、事前に判定して電解するようにしたの
で、電解水供給中に所要濃度が得られるなくなることが
ない。この次亜塩素酸濃度の減衰は食塩供給量・電極へ
の通電量・経過時間・給水量から推定するのでセンサー
等の必要がなくコストがかからない。
In addition, it is determined in advance that the concentration of hypochlorous acid in the electrolytic cell will be insufficient due to the decrease in the concentration of hypochlorous acid in the electrolytic cell caused by using or leaving the electrolytic water. The required concentration is not lost during feeding. Since the attenuation of the hypochlorous acid concentration is estimated from the amount of supplied salt, the amount of electricity supplied to the electrodes, the elapsed time, and the amount of water supply, there is no need for a sensor or the like, and no cost is required.

【0062】さらに、電解運転を開始する前に電解槽2
0内の残留した電解水を排水するので、電解槽内20の
次亜塩素酸の濃度が一旦水道水レベルにリセットされ、
食塩供給量と電極21、22への通電量により正確な濃
度の電解水が得られる。
Further, before starting the electrolytic operation, the electrolytic cell 2
Since the remaining electrolyzed water in the water within 0 is drained, the concentration of hypochlorous acid in the electrolyzer 20 is temporarily reset to the level of tap water,
Electrolyzed water having an accurate concentration can be obtained by the amount of supplied salt and the amount of electricity supplied to the electrodes 21 and 22.

【0063】また、電解運転から一定の所用時間(例え
ば24時間)が経過したら自動的に電解槽20の残留電
解水を排水して、再度電解運転を行うので、常に一定以
上の濃度の電解水を保ことができる。
Further, when a certain required time (for example, 24 hours) elapses from the electrolysis operation, the remaining electrolyzed water in the electrolysis tank 20 is automatically drained and the electrolysis operation is performed again. Can be kept.

【0064】(実施例2)次に、実施例2の発明を説明
する。
(Embodiment 2) Next, the invention of Embodiment 2 will be described.

【0065】実施例2と実施例1との違いは、図2の6
2における混合手段制御で、電解槽内の次亜塩素酸の濃
度を予測して、次亜塩素酸濃度予測値Xと給水される水
のが混合された場合に、混合した電解水濃度が電解水濃
度設定Aになるように混合手段29の混合割合を制御す
る点である。すなわち混合手段29の駆動量と混合割合
の関係を予め求め、所要混合割合になるよう混合しゅだ
ん29を駆動する点である。なお、実施例1の電解装置
と同一構造のものは同一符号を付与し、説明を省略す
る。
The difference between the second embodiment and the first embodiment is that
In the control of the mixing means in 2, the concentration of hypochlorous acid in the electrolytic cell is predicted, and when the predicted value of hypochlorous acid concentration X and the water to be supplied are mixed, the concentration of the mixed electrolytic water becomes The point is that the mixing ratio of the mixing means 29 is controlled so as to achieve the water concentration setting A. That is, the relationship between the drive amount of the mixing means 29 and the mixing ratio is determined in advance, and the mixing is driven to achieve the required mixing ratio. The components having the same structure as the electrolytic device of the first embodiment are denoted by the same reference numerals, and description thereof is omitted.

【0066】次亜塩素酸濃度予測Xは実施例1で説明ど
同一方法である。
The hypochlorous acid concentration prediction X is the same as described in the first embodiment.

【0067】混合手段29の電解水の混合割合Yは(式
3)により求められる。
The mixing ratio Y of the electrolytic water in the mixing means 29 is obtained by (Equation 3).

【0068】 Y=(A−G)/(X−G) (3) ただし G:水の次亜塩素酸濃度(Xが1000ppmレベルであ
ればGを無視して問題無い) この方法によれば、電解水センサーの検出遅れがないた
め、供給開始から所定濃度の次亜塩素酸が取水できる。
Y = (A−G) / (X−G) (3) where G: concentration of hypochlorous acid in water (If X is at a level of 1000 ppm, there is no problem ignoring G) Since there is no detection delay of the electrolytic water sensor, a predetermined concentration of hypochlorous acid can be taken from the start of supply.

【0069】また、電解水センサーが無くとも成り立つ
のでコストダウンにつながる。
Further, since the present invention can be realized even without the electrolytic water sensor, the cost can be reduced.

【0070】(実施例3)次に、実施例3の発明を図2
と図3を用いて説明する。
(Embodiment 3) Next, the invention of Embodiment 3 will be described with reference to FIG.
This will be described with reference to FIG.

【0071】図3は実施例3を示す電解装置の模式図で
ある。
FIG. 3 is a schematic view of an electrolyzer according to a third embodiment.

【0072】実施例3と実施例1との違いは、図3の電
解槽20に内部の次亜塩素酸濃度を検知する電解水セン
サー45を設けた点と、図2の61での電解水濃度検知
が、電解水センサー45により電解槽20内の次亜塩素
酸濃度を検出するようにした点、図2の62においてこ
の検出値に基づいて混合手段29を制御する点、そし
て、図2の63においてこの検出値に基づいて濃度不足
を判定するようにした点である。なお、実施例1および
実施例2の電解装置と同一構造のものは同一符号を付与
し、詳細な説明を省略する。
The difference between the third embodiment and the first embodiment is that an electrolytic water sensor 45 for detecting the concentration of hypochlorous acid in the electrolytic bath 20 of FIG. 3 is provided, and the electrolytic water sensor 61 shown in FIG. In the concentration detection, the concentration of hypochlorous acid in the electrolytic cell 20 is detected by the electrolytic water sensor 45, the mixing means 29 is controlled based on the detected value at 62 in FIG. The point 63 is that the insufficient density is determined based on the detected value. The components having the same structures as those of the electrolysis devices of Example 1 and Example 2 are denoted by the same reference numerals, and detailed description is omitted.

【0073】62の混合手段29の制御は、実施例2に
おける次亜塩素酸濃度予測値Xが電解水センサー45の
検出値Zに置き換わる構成となっている。すなわち混合
手段29の電解水の混合割合Yは(式4)により求め
る。
The control of the mixing means 29 at 62 is such that the hypochlorous acid concentration predicted value X in the second embodiment is replaced by the detected value Z of the electrolyzed water sensor 45. That is, the mixing ratio Y of the electrolytic water in the mixing means 29 is obtained by (Equation 4).

【0074】 Y=(A−G)/(Z−G) (4) この方法によれば、電解水センサー45により直接次亜
塩素酸濃度を検出するので、より高精度の混合制御がで
きる。
Y = (AG) / (Z−G) (4) According to this method, the concentration of hypochlorous acid is directly detected by the electrolyzed water sensor 45, so that more accurate mixing control can be performed.

【0075】63の濃度不足を判定も実施例1の次亜塩
素酸濃度予測値Xを電解水センサー45の検出値Zに置
き換える構成としているため、精度よく判定ができる。
The determination of whether the concentration is insufficient is also made by replacing the predicted value of hypochlorous acid concentration X of the first embodiment with the detection value Z of the electrolyzed water sensor 45.

【0076】(実施例4)次に、実施例4の発明を説明
する。
Embodiment 4 Next, the invention of Embodiment 4 will be described.

【0077】図4は実施例4における食塩供給と電解運
転制御のフローチャートである。
FIG. 4 is a flowchart of the salt supply and electrolysis operation control in the fourth embodiment.

【0078】実施例4の実施例1及び実施例3との違い
は、図2の52と53の食塩供給と電解運転の制御を図
4に示すようにした点にある。なお、実施例1及び実施
例3の電解装置と同一構造のものは同一符号を付与し、
詳細な説明を省略する。
The fourth embodiment differs from the first and third embodiments in that the supply of salt and the control of the electrolytic operation of 52 and 53 in FIG. 2 are controlled as shown in FIG. In addition, the same code | symbol is attached | subjected to the thing of the same structure as the electrolysis apparatus of Example 1 and Example 3,
Detailed description is omitted.

【0079】図4において、71では給水ポンプ39が
動作して食塩タンク内部の飽和食塩水が電解槽20内に
供給されて電解槽29底部に溜まる。ここでは、目標量
と思われる供給量より少なめに食塩水を供給する。そし
て、72で電極21、22間に電圧を印加して電解を開
始し、73で電解水センサー45により電解槽20内の
次亜塩素酸濃度を検知する。74はこの検知した濃度の
上昇速度を演算して求める。75ではこの上昇速度が所
定値に達してなければ71の食塩供給に戻る。
In FIG. 4, at 71, the water supply pump 39 operates to supply the saturated saline solution in the salt tank into the electrolytic tank 20 and accumulate at the bottom of the electrolytic tank 29. Here, the saline solution is supplied to be smaller than the supply amount considered to be the target amount. Then, at 72, a voltage is applied between the electrodes 21 and 22 to start electrolysis, and at 73, the concentration of hypochlorous acid in the electrolytic cell 20 is detected by the electrolytic water sensor 45. Numeral 74 is obtained by calculating the rate of rise of the detected density. At 75, if the rising speed does not reach the predetermined value, the flow returns to the salt supply at 71.

【0080】上昇速度が所定値を超えれば76の電解運
転にすすむ。ここでの次亜塩素酸濃度の上昇速度は、7
1で供給される食塩水の供給量と密接な関係にあり、次
亜塩素酸の生成量は塩素イオンの量に正の相関がある。
したがって、電極への通電量が一定であれば、この次亜
塩素酸の生成速度から塩素イオンの供給量が導きだされ
る。すなわち食塩の供給量が分かり、精度よい食塩の供
給が行える。75において上昇速度が所定値に達してな
いということは食塩の供給量が不足しているということ
であり、上昇速度が所定値を超えるというのは食塩の供
給量が所定値に達した事を意味する。
If the rising speed exceeds a predetermined value, the operation proceeds to the electrolysis operation of 76. Here, the rate of increase in the concentration of hypochlorous acid is 7
The amount of hypochlorous acid is closely related to the amount of chloride ion, which is closely related to the amount of saline solution supplied in step 1.
Therefore, if the amount of current supplied to the electrodes is constant, the supply rate of chlorine ions is derived from the rate of generation of hypochlorous acid. That is, the supply amount of the salt can be known, and the salt can be supplied with high accuracy. The fact that the rising speed has not reached the predetermined value in 75 means that the supply amount of salt is insufficient, and that the rising speed exceeds the predetermined value means that the supply amount of salt has reached the predetermined value. means.

【0081】76で通常の電解運転を行う。そして77
で、次亜塩素酸濃度の上昇速度から所定濃度に達する時
間が経過下かを判定し、この時間を経過するまで76の
電解運転を繰り返す。所定濃度の次亜塩素酸を生成する
のに次亜塩素酸濃度の上昇速度から求めることにより、
電解水センサー45の絶対値のバラツキが大きくても相
対値の精度さえあれば目標とする濃度の次亜塩素酸が得
られる。
At 76, a normal electrolysis operation is performed. And 77
Then, it is determined whether the time required to reach the predetermined concentration from the rate of increase in the concentration of hypochlorous acid has elapsed, and the electrolysis operation of 76 is repeated until the time has elapsed. By generating the predetermined concentration of hypochlorous acid from the rate of increase in hypochlorous acid concentration,
Even if the variation in the absolute value of the electrolyzed water sensor 45 is large, the target concentration of hypochlorous acid can be obtained as long as the relative value is accurate.

【0082】[0082]

【発明の効果】以上の説明から明らかなように、本発明
の請求項1に係る電解装置によれば、制御手段により給
水手段から電解槽内に水を供給し、その後、塩素イオン
供給手段で電解槽内に塩素イオンを供給し、電極に通電
を行い、電解槽内に電解水を生成した後、再び給水手段
で水を送り込み電解槽内の電解水を排出する。排出され
た電解水は、電解水濃度に応じて混合手段により所定の
比率で給水手段からの水が混ぜられるため、任意の所定
濃度に希釈された水を取水することができる。
As is apparent from the above description, according to the electrolysis apparatus according to the first aspect of the present invention, water is supplied from the water supply means into the electrolytic cell by the control means, and then the water is supplied by the chlorine ion supply means. After supplying chlorine ions into the electrolytic cell and energizing the electrodes to generate electrolytic water in the electrolytic cell, water is supplied again by the water supply means and the electrolytic water in the electrolytic cell is discharged. The discharged electrolyzed water is mixed with water from the water supply means at a predetermined ratio by the mixing means according to the concentration of the electrolyzed water, so that water diluted to an arbitrary predetermined concentration can be taken.

【0083】本発明の請求項2に係る電解装置によれ
ば、電解槽の電解水濃度の変化を予測し、設定手段の設
定値を目標に、この予測濃度から混合手段の混合割合を
求め、この混合割合に応じて混合手段を制御するように
しているので、電解槽の電解水濃度が変化してもその変
化が予測でき、正確に所定濃度に希釈された水を取水す
ることができる。
According to the electrolyzing apparatus of the second aspect of the present invention, the change in the concentration of the electrolyzed water in the electrolytic cell is predicted, and the mixing ratio of the mixing means is determined from the predicted concentration with the set value of the setting means as a target. Since the mixing means is controlled in accordance with the mixing ratio, even if the concentration of the electrolyzed water in the electrolytic cell changes, the change can be predicted, and the water diluted to a predetermined concentration can be taken out accurately.

【0084】本発明の請求項3に係る電解装置によれ
ば、給水手段から送り込まれた水と電解水を均一化槽に
送り込むことで、電解水と給水手段から送り込まれた水
が攪拌されるので、比重差が大きい場合でも電解水供給
路から取水する際には一定の濃度に保つことができる。
According to the electrolysis apparatus of the third aspect of the present invention, the water fed from the water supply means and the electrolyzed water are sent to the equalizing tank, whereby the electrolyzed water and the water sent from the water supply means are stirred. Therefore, even when the specific gravity difference is large, a constant concentration can be maintained when water is taken from the electrolytic water supply passage.

【0085】本発明の請求項4に係る電解装置によれ
ば、電解水供給路に設けた電解水センサーにより検知し
た電解水濃度が設定値になるよう混合手段をフィードバ
ック制御するので、電解水濃度の変化や希釈する水の性
質に係りなく常に安定で正確に所定濃度に希釈された水
を取水することができる。
According to the electrolysis apparatus of the fourth aspect of the present invention, the mixing means is feedback-controlled so that the concentration of the electrolyzed water detected by the electrolyzed water sensor provided in the electrolyzed water supply passage becomes a set value. Irrespective of the change of water and the nature of the water to be diluted, it is possible to always and stably and accurately take out water diluted to a predetermined concentration.

【0086】本発明の請求項5に係る電解装置によれ
ば、電解槽の電解水残量が所定値以下に減少した場合
は、電気分解を開始し、電解水の供給を禁止するので、
電解水が不足しても電解水濃度が所定値以下にならな
い。したがって、電解水は所定以上の殺菌効果を保つこ
とができる。
According to the electrolysis apparatus of the fifth aspect of the present invention, when the remaining amount of the electrolyzed water in the electrolyzer decreases to a predetermined value or less, electrolysis is started and the supply of the electrolyzed water is prohibited.
Even if the amount of electrolyzed water is insufficient, the concentration of electrolyzed water does not fall below a predetermined value. Therefore, the electrolyzed water can maintain a predetermined or higher sterilizing effect.

【0087】本発明の請求項6に係る電解装置によれ
ば、電解水の濃度減衰の主要因である経過時間と給水に
よる減衰特性から、電解直後の電解水生成濃度を基準に
して、現実の経過時間と給水量に基づき電解水濃度を予
測するので、正確な濃度変化が求められる。
According to the electrolysis apparatus of the sixth aspect of the present invention, based on the elapsed time and the attenuation characteristics due to water supply, which are the main factors of the concentration attenuation of the electrolyzed water, the actual concentration of the electrolyzed water generated immediately after electrolysis is used as a reference. Since the concentration of the electrolyzed water is predicted based on the elapsed time and the amount of supplied water, an accurate change in the concentration is required.

【0088】本発明の請求項7に係る電解装置によれ
ば、電解水生成濃度を、その主要因である塩素イオン量
と電極への電気量とに基づき求めるので、正確な電解水
の生成濃度を知ることができる。
According to the electrolysis apparatus according to the seventh aspect of the present invention, since the concentration of electrolyzed water is determined based on the main factors, that is, the amount of chloride ions and the amount of electricity to the electrodes, the concentration of electrolyzed water generated is accurately determined. You can know.

【0089】本発明の請求項8に係る電解装置によれ
ば、電解水を生成してから長期間(所定時間)放置され
た場合に、電解水を排出するようにしているので、電解
水濃度減衰による濃度低下がリセットされ、新たに電解
できるので正確で高濃度の電解水を保持できる。
According to the electrolysis apparatus of the present invention, if the electrolyzed water is left for a long time (predetermined time) after the electrolyzed water is generated, the electrolyzed water is discharged. Since the concentration decrease due to the attenuation is reset and new electrolysis can be performed, accurate and high-concentration electrolyzed water can be held.

【0090】本発明の請求項9に係る電解装置によれ
ば、電解水濃度の上昇速度は塩素イオンの供給量のバラ
ツキにより変化する。したがって、この上昇速度に応じ
て電解水濃度が目標濃度に必要な電極への通電量を求
め、電解することにより正確な電解水濃度が得られる。
According to the electrolysis apparatus of the ninth aspect of the present invention, the rate of increase in the concentration of the electrolyzed water changes depending on the variation in the supply amount of chlorine ions. Therefore, an accurate amount of electrolyzed water can be obtained by obtaining the amount of electricity to the electrode required for the electrolyzed water concentration to be the target concentration according to the rising speed and performing electrolysis.

【0091】本発明の請求項10に係る電解装置によれ
ば、電解水濃度の上昇速度は塩素イオンの供給量に比例
関係にある。このことから電解開始直後の電解水の上昇
速度から塩素イオンの供給量を推定し、上昇速度が小さ
ければ塩素イオンを多く追加供給し、上昇速度が大きく
なれば少なく追加供給し、所定の塩素イオン供給量に調
整する。したがって、塩素イオンの供給を正確に行うこ
とができる。
According to the electrolyzing apparatus of the tenth aspect of the present invention, the rate of increase in the concentration of the electrolyzed water is proportional to the supply amount of chlorine ions. From this, the supply amount of chlorine ions is estimated from the rising speed of the electrolyzed water immediately after the start of electrolysis, and if the rising speed is low, more chlorine ions are additionally supplied. Adjust to supply volume. Therefore, it is possible to supply chlorine ions accurately.

【0092】本発明の請求項11に係る電解装置によれ
ば、選択スイッチの中から使用用途に合ったスイッチを
入れると、そのスイッチに関連付けられた電解水濃度と
給水量が選定され、その選定値の濃度と量の電解水が取
水できる。したがって多用途の電解水がスイッチひとつ
で選択できる。
According to the electrolysis apparatus according to the eleventh aspect of the present invention, when a switch suitable for the intended use is turned on from among the selection switches, the electrolytic water concentration and the water supply amount associated with the switch are selected, and the selection is made. Electrolyzed water of the concentration and amount of value can be taken. Therefore, versatile electrolyzed water can be selected with a single switch.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の実施例1を示す電解装置の模式図FIG. 1 is a schematic view of an electrolyzer according to a first embodiment of the present invention.

【図2】同電解装置のフローチャートFIG. 2 is a flowchart of the electrolysis apparatus.

【図3】本発明の実施例3、4を示す電解装置の模式図FIG. 3 is a schematic view of an electrolysis apparatus showing Examples 3 and 4 of the present invention.

【図4】本発明の実施例4を示す電解装置のフローチャ
ート
FIG. 4 is a flowchart of an electrolysis apparatus showing a fourth embodiment of the present invention.

【図5】従来例を示す電解装置の模式図FIG. 5 is a schematic view of an electrolysis apparatus showing a conventional example.

【符号の説明】[Explanation of symbols]

20 電解槽 21、22 電極 26 給水手段 29 混合手段 31 電解水供給路 35 塩素イオン供給手段 41 電解水センサー 42 制御手段 43 設定手段 44 選択スイッチ Reference Signs List 20 electrolytic bath 21, 22 electrode 26 water supply means 29 mixing means 31 electrolytic water supply path 35 chloride ion supply means 41 electrolytic water sensor 42 control means 43 setting means 44 selection switch

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.7 識別記号 FI テーマコート゛(参考) C02F 1/50 560 C02F 1/50 560F 1/76 1/76 A C25B 1/00 C25B 1/00 Z 9/00 9/00 D (72)発明者 松本 朋秀 大阪府門真市大字門真1006番地 松下電器 産業株式会社内 Fターム(参考) 4D050 AA04 BB04 BD04 BD08 4D061 DA03 DB01 DB10 EA02 EB02 EB04 EB14 EB19 EB20 EB37 EB39 ED12 ED13 FA20 GA20 GC04 GC06 GC12 4K021 AA03 BA03 BA05 BB01 BC03 CA08 CA10 DA01 DA10 DC11──────────────────────────────────────────────────続 き Continued on the front page (51) Int.Cl. 7 Identification symbol FI Theme coat ゛ (Reference) C02F 1/50 560 C02F 1/50 560F 1/76 1/76 A C25B 1/00 C25B 1/00 Z 9 / 00 9/00 D (72) Inventor Tomohide Matsumoto 1006 Kazuma Kadoma, Kazuma, Osaka Prefecture F-term (reference) 4D050 AA04 BB04 BD04 BD08 4D061 DA03 DB01 DB10 EA02 EB02 EB04 EB14 EB19 EB20 EB37 EB39 ED12 ED13 FA20 GA20 GC04 GC06 GC12 4K021 AA03 BA03 BA05 BB01 BC03 CA08 CA10 DA01 DA10 DC11

Claims (11)

【特許請求の範囲】[Claims] 【請求項1】給水手段と、少なくとも一対の電極を有
し、前記給水手段から供給された水を内部に滞留し、電
気分解して電解水を生成する電解槽と、前記電解槽に接
続し、前記電解槽に塩素イオンを供給可能な塩素イオン
供給手段と、前記電解槽の上流側に接続され、電解水と
給水手段から供給された水を混合可能な混合手段と、前
記混合手段で混合される混合水を取水可能な電解水供給
路と、前記混合水の電解水濃度を設定する設定手段と、
給水手段、電解槽、塩素イオン供給手段、混合手段の少
なくともひとつの動作を制御する制御手段を有し、前記
制御手段は前記設定手段の設定値と電解槽の電解水濃度
を予測する、もしくは検出することで混合手段を制御す
る電解装置。
An electrolytic cell having a water supply means and at least one pair of electrodes, wherein the water supplied from the water supply means stays inside, and is electrolyzed to generate electrolyzed water. A chlorine ion supply means capable of supplying chlorine ions to the electrolytic cell, a mixing means connected to the upstream side of the electrolytic cell and capable of mixing electrolytic water and water supplied from a water supply means, and mixing by the mixing means. Electrolytic water supply path capable of taking the mixed water to be taken, and setting means for setting the concentration of the electrolytic water of the mixed water,
Water supply means, an electrolytic cell, a chlorine ion supply means, and control means for controlling at least one operation of the mixing means, wherein the control means predicts or detects the set value of the setting means and the concentration of electrolytic water in the electrolytic cell. Electrolyzer that controls the mixing means by doing.
【請求項2】制御手段は、電解槽の電解水濃度の変化を
予測し、設定手段の設定値を目標に、前記予測濃度から
混合手段の混合割合を求め、この混合割合に応じて混合
手段を制御する請求項1記載の電解装置。
2. The control means predicts a change in the concentration of electrolyzed water in the electrolytic cell, calculates a mixing ratio of the mixing means from the predicted concentration with a target value set by the setting means as a target, and determines the mixing means in accordance with the mixing ratio. The electrolyzer according to claim 1, which controls the following.
【請求項3】電解槽内に電解水センサーを設け、制御手
段は、設定手段の設定値を目標に、前記電解水センサー
の検知濃度から混合手段の混合割合を求め、この混合割
合に応じて混合手段を制御する請求項1記載の電解装
置。
3. An electrolytic water sensor is provided in the electrolytic cell, and the control means calculates a mixing ratio of the mixing means from the detected concentration of the electrolytic water sensor with a target value set by the setting means as a target. The electrolytic device according to claim 1, wherein the mixing device is controlled.
【請求項4】電解水供給路に電解水センサーを設け、制
御手段は、給水中に前記電解水センサーと設定手段の設
定値との偏差に応じて混合手段を制御する請求項1記載
の電解装置。
4. The electrolysis apparatus according to claim 1, wherein an electrolyzed water sensor is provided in the electrolyzed water supply path, and the control means controls the mixing means during water supply according to a deviation between the electrolyzed water sensor and a set value of the setting means. apparatus.
【請求項5】制御手段は、電解槽の電解水残量が所定値
以下に減少した場合は、電気分解を開始し、電解水の供
給を禁止する請求項1ないし4のいずれか1項記載の電
解装置。
5. The method according to claim 1, wherein the controller starts electrolysis and inhibits the supply of the electrolyzed water when the remaining amount of the electrolyzed water in the electrolyzer falls below a predetermined value. Electrolysis equipment.
【請求項6】濃度予測手段は、電解水生成濃度と経過時
間と電解槽への給水量より定まる電解水濃度減衰特性を
予め記憶させ、前記電解水濃度減衰特性から電解水濃度
を予測する請求項2記載の電解装置。
6. A concentration predicting means for storing in advance an electrolytic water concentration attenuation characteristic determined from an electrolytic water generation concentration, an elapsed time, and a water supply amount to an electrolytic cell, and predicting the electrolytic water concentration from the electrolytic water concentration attenuation characteristic. Item 3. The electrolytic device according to Item 2.
【請求項7】電解水生成濃度は、塩素イオン供給量と電
極への通電量より定まる電解水生成濃度特性を予め記憶
させ、前記電解水生成濃度特性から電解水生成濃度を求
める請求項6記載の電解装置。
7. An electrolyzed water generation concentration, wherein an electrolyzed water generation concentration determined by a supply amount of chlorine ions and an amount of electricity supplied to an electrode is stored in advance, and the electrolyzed water generation concentration is determined from the electrolyzed water generation concentration characteristics. Electrolysis equipment.
【請求項8】制御手段は、電解水生成からの経過時間が
所定時間を超えた場合に電解槽の電解水を排出する請求
項1ないし7のいずれか1項記載の電解装置。
8. The electrolysis apparatus according to claim 1, wherein the control means discharges the electrolyzed water from the electrolyzer when the elapsed time from the generation of the electrolyzed water exceeds a predetermined time.
【請求項9】電解槽内に電解水センサーを設け、制御手
段は、電解中の電解水濃度の上昇速度に応じて電極への
通電量を制御する請求項1ないし8のいずれか1項記載
の電解装置。
9. The electrolysis water sensor according to claim 1, wherein an electrolysis water sensor is provided in the electrolysis tank, and the control means controls the amount of electricity supplied to the electrode in accordance with the rate of increase in the electrolysis water concentration during electrolysis. Electrolysis equipment.
【請求項10】電解槽内に電解水センサーを設け、制御
手段は、電解中の電解水濃度の上昇速度に応じて塩素イ
オン供給手段による塩素イオン供給量を反比例的に制御
する請求項1ないし9のいずれか1項記載の電解装置。
10. An electrolytic water sensor provided in an electrolytic cell, wherein the control means controls the chlorine ion supply amount by the chlorine ion supply means in inverse proportion to the rate of increase of the electrolytic water concentration during electrolysis. The electrolytic device according to any one of claims 9 to 13.
【請求項11】設定手段は、複数の選択スイッチを有
し、制御手段は、前記選択スイッチに応じて複数の電解
水濃度と給水量の設定値の中から一組の設定値を呼び出
し、選定された給水量に応じて給水手段を制御し、選定
された電解水濃度に応じて混合手段を制御する請求項1
ないし10のいずれか1項記載の電解装置。
11. The setting means has a plurality of selection switches, and the control means calls a set of set values from among a plurality of set values of the concentration of electrolytic water and the amount of supplied water in accordance with the selection switches. The water supply means is controlled according to the supplied water supply amount, and the mixing means is controlled according to the selected electrolytic water concentration.
11. The electrolytic device according to any one of claims 10 to 10.
JP2000032897A 2000-02-10 2000-02-10 Electrolyzer Expired - Fee Related JP4415444B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2000032897A JP4415444B2 (en) 2000-02-10 2000-02-10 Electrolyzer

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000032897A JP4415444B2 (en) 2000-02-10 2000-02-10 Electrolyzer

Publications (2)

Publication Number Publication Date
JP2001219169A true JP2001219169A (en) 2001-08-14
JP4415444B2 JP4415444B2 (en) 2010-02-17

Family

ID=18557449

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000032897A Expired - Fee Related JP4415444B2 (en) 2000-02-10 2000-02-10 Electrolyzer

Country Status (1)

Country Link
JP (1) JP4415444B2 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006205073A (en) * 2005-01-28 2006-08-10 Noritsu Koki Co Ltd Electrolytic device and its operation method
JP2007151750A (en) * 2005-12-02 2007-06-21 Sanyo Electric Co Ltd Air disinfecting apparatus
JP2015123416A (en) * 2013-12-26 2015-07-06 Toto株式会社 Sterilization water discharge device
JP2015123413A (en) * 2013-12-26 2015-07-06 Toto株式会社 Sterilization water discharge device
CN107261877A (en) * 2017-07-12 2017-10-20 深圳市瑞恩医疗器械有限公司 Hypochlorite disinfectant's machine

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006205073A (en) * 2005-01-28 2006-08-10 Noritsu Koki Co Ltd Electrolytic device and its operation method
JP4731172B2 (en) * 2005-01-28 2011-07-20 Nkワークス株式会社 Electrolyzer
JP2007151750A (en) * 2005-12-02 2007-06-21 Sanyo Electric Co Ltd Air disinfecting apparatus
JP2015123416A (en) * 2013-12-26 2015-07-06 Toto株式会社 Sterilization water discharge device
JP2015123413A (en) * 2013-12-26 2015-07-06 Toto株式会社 Sterilization water discharge device
CN107261877A (en) * 2017-07-12 2017-10-20 深圳市瑞恩医疗器械有限公司 Hypochlorite disinfectant's machine

Also Published As

Publication number Publication date
JP4415444B2 (en) 2010-02-17

Similar Documents

Publication Publication Date Title
KR100462639B1 (en) Water treatment apparatus
JPH07299458A (en) Electrolyzed water producing device
JP2010156117A (en) Hand finger washing device
WO2008032946A1 (en) Apparatus for producing sodium hypochlorite
JP6620321B2 (en) Electrolyzed water generator
JP4415444B2 (en) Electrolyzer
JP2000218271A (en) Electrolytic device
WO2008032947A1 (en) Apparatus for replenishing water in salt water tank included in apparatus for producing sodium hypochlorite
JP6098919B2 (en) Sterilization water generator
RU2110483C1 (en) Electrochemical water treatment apparatus
JP5244038B2 (en) Electrolyzed water mixing device
CN212505090U (en) Disinfectant generating device and humidifier
KR20070078823A (en) Apparatus for producing electrolyzed water
JP2002316158A (en) Electrolytic apparatus
JP2014015646A (en) Electrolytic treatment water generator and method for generating electrolytic treatment water
JP2002192158A (en) Electrolytic apparatus
JP2006247554A (en) Electrolytic water generator and sink equipped with it
JP2010207668A (en) Electrolytic water generator
JP3984436B2 (en) Method and apparatus for producing alkaline cleaning water
JP2005319427A (en) Alkaline water generator
JP2007090178A (en) Electrolytic water generator and sink equipped with the same
JP5700736B1 (en) Water treatment apparatus and control method for water treatment apparatus
JP3786863B2 (en) Washing water production equipment
JP3804519B2 (en) Electrolyzed water generator
JP2002316159A (en) Electrolytic apparatus

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20061226

RD01 Notification of change of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7421

Effective date: 20070112

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20091029

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20091104

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20091117

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121204

Year of fee payment: 3

LAPS Cancellation because of no payment of annual fees