JP2001212468A - Electric regeneration type desalting device - Google Patents

Electric regeneration type desalting device

Info

Publication number
JP2001212468A
JP2001212468A JP2000022674A JP2000022674A JP2001212468A JP 2001212468 A JP2001212468 A JP 2001212468A JP 2000022674 A JP2000022674 A JP 2000022674A JP 2000022674 A JP2000022674 A JP 2000022674A JP 2001212468 A JP2001212468 A JP 2001212468A
Authority
JP
Japan
Prior art keywords
chamber
water
room
pole
outlet
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2000022674A
Other languages
Japanese (ja)
Inventor
Osayuki Inoue
修行 井上
Atsushi Aoyama
淳 青山
Takayoshi Kawamoto
孝善 川本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ebara Corp
Original Assignee
Ebara Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ebara Corp filed Critical Ebara Corp
Priority to JP2000022674A priority Critical patent/JP2001212468A/en
Publication of JP2001212468A publication Critical patent/JP2001212468A/en
Pending legal-status Critical Current

Links

Landscapes

  • Separation Using Semi-Permeable Membranes (AREA)
  • Treatment Of Water By Ion Exchange (AREA)
  • Water Treatment By Electricity Or Magnetism (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide an electric regeneration type desalting device in which color change of an ion exchange membrane is prevented by imparting a function as a desalting room to electrode rooms and avoiding excessive concentration of ions, generation quantities of hydrogen and oxygen are suppressed, and also a recovery ratio of ultrapure water nearly equal to a conventional electric regeneration type desalting device is attained. SOLUTION: In this electric regeneration type desalting device in which the desalting rooms 5 and concentration rooms 6 are arranged between an anode room 2 and a cathode room 7, and ion exchange bodies are filled into each of the rooms, and a cation exchange membrane or an anion exchange membrane is alternately arranged between at least a portion of each of the rooms, the anode room 2 and the cathode room 7 have desalting constitution to remove ions, and concentrated water is introduced into the concentration rooms 6, the anode room 2 and the cathode room 7, and also a portion of mixed water of outlet water from the concentration room discharged from the concentration rooms 6 and outlet water from the electrode rooms discharged from the anode room 2 and the cathode room 7, is discharged and the balance is mixed with desalted raw water introduced as dilute water, and is introduced to the concentration room 6, the anode room 2 and the cathode room 7 as concentrated water.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、イオン交換膜間に
イオン交換体を充填した構成の電気再生式脱塩装置に関
し、特に極室の構成と極室水の循環に特徴を有する電気
再生式脱塩装置に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an electric regeneration type desalination apparatus having a structure in which an ion exchanger is filled between ion exchange membranes. The present invention relates to a desalination apparatus.

【0002】[0002]

【従来の技術】この種の電気再生式脱塩装置は、極室間
に陽イオン交換膜及び陰イオン交換膜を室枠を介して、
交互に配列して、脱塩室及び濃縮室を交互に設け、各室
にはイオン交換体を充填して構成されている。この電気
再生式脱塩装置は、電解質を含むRO処理水(逆浸透膜
を通して1マイクロメータ(μm)以上の微粒子を除去
した処理水)等を原水として超純水を得る装置として、
イオン交換樹脂方式に替わって広範に使用されている。
2. Description of the Related Art In this type of electric regeneration type desalination apparatus, a cation exchange membrane and an anion exchange membrane are interposed between pole chambers through a chamber frame.
Desalting chambers and concentrating chambers are provided alternately, and each chamber is filled with an ion exchanger. This electric regeneration type desalination apparatus is an apparatus for obtaining ultrapure water by using RO treated water containing electrolyte (treated water obtained by removing fine particles of 1 micrometer (μm) or more through a reverse osmosis membrane) or the like as raw water.
Widely used instead of ion exchange resin system.

【0003】電気再生式脱塩装置は、図1に示すよう
に、陽極1−陽極室2−陰イオン交換膜(アニオン交換
膜)3−{脱塩室5−陽イオン交換膜(カチオン交換
膜)4−濃縮室6−陰イオン交換膜3}−・・・・・・
−{脱塩室5−陽イオン交換膜4−濃縮室6−陰イオン
交換膜3}−脱塩室5−陽イオン交換膜4−陰極室7−
陰極8の順に配列して構成されている。陽極室2及び陰
極室7にはイオンが集まってくる濃縮室の機能をもたせ
ている。陽極室2、陰極室7の両極室及び濃縮室6には
濃縮水を導入し、極室の液は排出(あるいはRO処理水
を収容する原水タンクに戻す)、濃縮室6から出る濃縮
室出口水の一部或いは全部を濃縮水9として循環させて
いる。即ち、原水を希釈水として、濃縮室出口水と混合
し、濃縮水として極室(陽極室2及び陰極室7)及び濃
縮室6に供給し循環させている。脱塩室5からの脱塩水
を超純水10として得ている。なお、図1において、1
1、12はそれぞれセル抑え板である。
As shown in FIG. 1, an electric regeneration type desalination apparatus has an anode 1, an anode chamber 2, an anion exchange membrane (anion exchange membrane) 3-) a desalination chamber 5, a cation exchange membrane (cation exchange membrane). ) 4-concentration chamber 6-anion exchange membrane 3}-
-{Desalting room 5-cation exchange membrane 4-concentrating room 6-anion exchange membrane 3}-desalting room 5-cation exchange membrane 4-cathode room 7-
The cathodes 8 are arranged in this order. The anode chamber 2 and the cathode chamber 7 have a function of a concentration chamber in which ions are collected. Concentrated water is introduced into the anode chamber 2, the cathode chamber 7, and the condensing chamber 6, and the liquid in the pole chamber is discharged (or returned to the raw water tank containing RO treated water), and the condensing chamber exits from the concentrating chamber 6. Part or all of the water is circulated as concentrated water 9. That is, the raw water is mixed with the outlet water of the concentration chamber as dilution water, and is supplied to the pole chamber (the anode chamber 2 and the cathode chamber 7) and the concentration chamber 6 and circulated as the concentrated water. Demineralized water from the desalination chamber 5 is obtained as ultrapure water 10. In FIG. 1, 1
Reference numerals 1 and 12 denote cell holding plates, respectively.

【0004】上記構成の電気再生式脱塩装置において、
陽極室2及び陰極室7の両極室のイオン濃度が上昇して
くると、陰イオン交換膜3及び陽イオン交換膜4が変色
する所謂膜焼けが発生し、イオン交換膜としての機能が
劣化するという問題があり、定期的にイオン交換膜を交
換する必要がある。また、水解により水素及び酸素の発
生が多い等の問題もあった。
[0004] In the electric regeneration type desalination apparatus having the above structure,
When the ion concentration in both the anode chamber 2 and the cathode chamber 7 increases, the anion exchange membrane 3 and the cation exchange membrane 4 undergo discoloration, so-called membrane burn, and the function as the ion exchange membrane deteriorates. Therefore, the ion exchange membrane needs to be periodically replaced. In addition, there were problems such as generation of hydrogen and oxygen due to hydrolysis.

【0005】[0005]

【発明が解決しようとする課題】本発明は上述の点に鑑
みてなされたもので、極室に脱塩室としての機能を持た
せイオンの過濃縮を避けイオン交換膜の膜焼けを防止す
ると共に、水素及び酸素の発生量を抑え、且つ従来の電
気再生式脱塩装置と略同等の超純水の回収率を達成でき
る電気再生式脱塩装置を提供することを目的とする。
SUMMARY OF THE INVENTION The present invention has been made in view of the above problems, and has an electrode chamber having a function as a desalting chamber to prevent overconcentration of ions and prevent burning of an ion exchange membrane. In addition, an object of the present invention is to provide an electric regeneration type desalination apparatus capable of suppressing the generation amounts of hydrogen and oxygen and achieving a recovery rate of ultrapure water substantially equal to that of a conventional electric regeneration type desalination apparatus.

【0006】[0006]

【課題を解決するための手段】上記課題を解決するため
請求項1に記載の発明は、極室間に脱塩室及び濃縮室を
配列し、各室にイオン交換体を充填し、少なくとも一部
の各室間に陽イオン交換膜或いは陰イオン交換膜を交互
に配置した電気再生式脱塩装置において、極室をイオン
が除去される脱塩構成とし、濃縮室及び該極室に濃縮水
を導入すると共に、該濃縮室から出る濃縮室出口水と該
極室から出る極室出口水の混合水の一部を排出し残部を
希釈水として導入する脱塩原水と混合し、濃縮水として
濃縮室及び極室に導入することを特徴とする。
According to the first aspect of the present invention, a desalting chamber and a concentrating chamber are arranged between pole chambers, and each chamber is filled with an ion exchanger. In a regenerative desalination apparatus in which cation exchange membranes or anion exchange membranes are alternately arranged between the chambers of the section, the pole chamber has a desalination configuration in which ions are removed, and the concentrating chamber and concentrated water are supplied to the pole chamber. And a part of the mixed water from the concentrating chamber exit water from the concentrating chamber and the mixed water from the pole chamber outlet water discharged from the pole chamber are discharged, and the remainder is mixed with demineralized raw water to be introduced as dilution water. It is characterized in that it is introduced into the concentration room and the pole room.

【0007】上記のように極室を脱塩構成とするので、
極室内でのイオンの過濃縮を避けることができ、イオン
交換膜の膜焼けを防止できると共に、水解による水素及
び酸素の発生量を抑えることができる。また、このよう
に極室を脱塩構成とすることにより、極室出口水のイオ
ン量は極室入口水より少なくなり、濃縮室出口水よりは
るかに良い水質になるから、極室出口水を排出してしま
うことは無駄であるばかりでなく、イオンのバランスか
らいって、より多くの濃縮室出口水を排出する必要がで
きてしまい、希釈水としての原水量を多量に必要とする
ことになる。従って、原水からどれだけの超純水が得ら
れるかを示す純水回収率が著しく悪化することになる。
そこで上記のように極室出口水の一部を濃縮水として濃
縮室及び極室に導入し、循環させることにより、従来の
電気再生式脱塩装置と略同じ純水回収率を維持できる。
[0007] As described above, since the polar chamber is desalted,
It is possible to avoid overconcentration of ions in the pole room, prevent burning of the ion exchange membrane, and suppress the generation of hydrogen and oxygen due to hydrolysis. In addition, since the polar chamber is desalinated in this manner, the ion amount of the polar chamber outlet water is smaller than that of the polar chamber inlet water, and the water quality is much better than the concentration chamber outlet water. Discharging is not only wasteful, but also because of the balance of ions, it is necessary to discharge more water from the outlet of the enrichment chamber, requiring a large amount of raw water as dilution water. Become. Therefore, the pure water recovery rate indicating how much ultrapure water can be obtained from the raw water is significantly deteriorated.
Therefore, as described above, a part of the outlet water of the pole chamber is introduced as concentrated water into the concentrating chamber and the pole chamber, and is circulated, so that substantially the same pure water recovery rate as that of the conventional electric regeneration type desalination apparatus can be maintained.

【0008】また、請求項2に記載の発明は、請求項1
に記載の電気再生式脱塩装置において、混合水を気液分
離器に導入し、該混合水中の気体を排出することを特徴
とする。
[0008] The invention described in claim 2 is the first invention.
Wherein the mixed water is introduced into the gas-liquid separator, and the gas in the mixed water is discharged.

【0009】水解により陽極室には酸素O2が発生し、
陰極室には水素H2が発生するから、濃縮室出口水及び
該極室出口水の混合水を気液分離器に導入することによ
り、この水素H2及び酸素O2等の気泡を除去できる。
Oxygen O 2 is generated in the anode chamber by the hydrolysis,
Since hydrogen H 2 is generated in the cathode chamber, bubbles such as hydrogen H 2 and oxygen O 2 can be removed by introducing the mixed water at the outlet of the enrichment chamber and the water at the outlet of the pole chamber to the gas-liquid separator. .

【0010】また、請求項3に記載の発明は、請求項1
又は2に記載の電気再生式脱塩装置において、濃縮室、
脱塩室及び極室の各室枠に設けた孔により構成される入
口ダクト及び出口ダクトの少なくとも一方のダクト内で
濃縮水と極室水が混合されて混合水となることを特徴と
する。
[0010] Further, the invention according to claim 3 is based on claim 1.
Or in the electric regeneration type desalination apparatus according to 2, wherein the concentration chamber,
The concentrated water and the polar chamber water are mixed to form a mixed water in at least one of an inlet duct and an outlet duct formed by holes provided in respective chamber frames of the desalination chamber and the pole chamber.

【0011】上記のように入口ダクト及び出口ダクトの
少なくとも一方のダクト内で濃縮水と極室水が混合され
るので、配管関係が簡易となる。
As described above, the concentrated water and the polar chamber water are mixed in at least one of the inlet duct and the outlet duct, so that the piping relationship is simplified.

【0012】また、請求項4に記載の発明は、極室間に
脱塩室及び濃縮室を配列し、各室にイオン交換体を充填
し、少なくとも一部の各室間に陽イオン交換膜或いは陰
イオン交換膜を交互に配置した電気再生式脱塩装置にお
いて、極室をイオンが除去される脱塩構成とし、濃縮室
及び該極室に濃縮水を導入すると共に、該濃縮室から出
る濃縮室出口水及び該極室から出る極室出口水を気液分
離器に導き該濃縮室出口水及び該極室出口水中の気体を
排出し、該濃縮室出口水を優先的に排出し、該極室出口
水を優先的に希釈水として導入する脱塩原水と混合し、
濃縮水として濃縮室及び極室に導入することを特徴とす
る。
According to a fourth aspect of the present invention, a desalting chamber and a concentrating chamber are arranged between the pole chambers, each chamber is filled with an ion exchanger, and a cation exchange membrane is provided between at least some of the chambers. Alternatively, in an electro-regenerative desalination apparatus in which anion exchange membranes are alternately arranged, the electrode chamber has a desalination configuration in which ions are removed, and the condensing chamber and the condensed water are introduced into the electrode chamber and the condensed water exits the concentrating chamber The condensing chamber outlet water and the polar chamber outlet water coming out of the pole chamber are led to a gas-liquid separator to discharge the gas in the concentrating chamber outlet water and the pole chamber outlet water, and to preferentially discharge the concentrating chamber outlet water, Mixing the pole chamber outlet water with desalted raw water preferentially introduced as dilution water,
It is characterized in that it is introduced into the concentration room and the pole room as concentrated water.

【0013】上記のように、濃縮室出口水を優先的に排
出し、該極室出口水を優先的に希釈水として導入する脱
塩原水と混合し、濃縮水として濃縮室及び極室に導入す
ることにより、イオン量は極室入口水より少なく、濃縮
室出口水より水質の良い極室出口水を無駄にすることな
く、希釈水としての原水量を多量に必要としないことか
ら純水回収率も従来の電気再生式脱塩装置と略同じ純水
回収率を維持できる。
As described above, the outlet water of the concentration chamber is discharged preferentially, the outlet water of the pole chamber is mixed with the desalted raw water which is preferentially introduced as dilution water, and introduced into the concentration chamber and the pole chamber as concentrated water. As a result, the amount of ions is smaller than the water at the inlet of the polar chamber, the waste water at the outlet of the polar chamber having a higher quality than the outlet water of the enrichment chamber is not wasted, and a large amount of raw water as dilution water is not required. As for the rate, the same pure water recovery rate as that of the conventional electric regeneration type desalination apparatus can be maintained.

【0014】また、請求項5に記載の発明は、極室間に
脱塩室及び濃縮室を配列し、各室にイオン交換体を充填
し、少なくとも一部の各室間に陽イオン交換膜或いは陰
イオン交換膜を交互に配置した電気再生式脱塩装置にお
いて、極室をイオンが除去される脱塩構成とし、濃縮室
及び該極室に濃縮水を導入し、該濃縮室から出る濃縮室
出口水の一部を排出すると共に、該極室である陽極室か
ら出る陽極室出口水及び陰極室から出る陰極室出口水を
それぞれ気液分離器に導き水中の気体を排出し、該陽極
室出口水及び陰極室出口水の一部を排出し残部をそれぞ
れ真空脱気膜装置に導入して脱気し、該脱気した陽極室
出口水及び陰極室出口水と濃縮室出口水の残部とを希釈
水として導入する脱塩原水と混合し、濃縮水として濃縮
室及び極室に導入することを特徴とする。
According to a fifth aspect of the present invention, a desalting chamber and a concentrating chamber are arranged between the pole chambers, each chamber is filled with an ion exchanger, and a cation exchange membrane is provided between at least some of the chambers. Alternatively, in an electric regeneration type desalination apparatus in which anion exchange membranes are alternately arranged, the electrode chamber has a desalination configuration in which ions are removed, and concentrated water is introduced into the concentration chamber and the electrode chamber, and the concentration exits from the concentration chamber. A part of the chamber outlet water is discharged, and the anode chamber outlet water coming out of the anode chamber, which is the pole chamber, and the cathode chamber outlet water coming out of the cathode chamber, are respectively led to a gas-liquid separator to discharge gas in the water. A part of the chamber outlet water and the cathode chamber outlet water are discharged, and the rest is introduced into a vacuum degassing membrane device, respectively, to be degassed, and the deaerated anode chamber outlet water, the cathode chamber outlet water, and the remaining part of the concentrating chamber outlet water. Is mixed with demineralized raw water to be introduced as dilution water, and introduced into the concentration room and pole room as concentrated water. And wherein the Rukoto.

【0015】上記のように、気液分離器で気体を除去し
た陽極室出口水及び陰極室出口水を脱気室に導き水中の
気泡を除去するので、濃縮室及び極室に導入される濃縮
水は気泡は殆ど含まないものとなる。
As described above, the outlet water of the anode chamber and the outlet water of the cathode chamber from which gas has been removed by the gas-liquid separator are introduced into the degassing chamber to remove bubbles in the water. The water contains almost no air bubbles.

【0016】[0016]

【発明の実施の形態】以下、本発明の実施の形態例を図
面に基づいて説明する。図2は本発明に係る電気再生式
脱塩装置の概略構成を示す分解斜視図である。図示する
ように、本電気再生式脱塩装置は、陽極1−陽極室2−
陽イオン交換膜4−{濃縮室6−陰イオン交換膜3−脱
塩室5−陽イオン交換膜4}・・・・・・{濃縮室6−
陰イオン交換膜3−脱塩室5−陽イオン交換膜4}−濃
縮室6−陰イオン交換膜3−陰極室7−陰極8の順に配
列構成されている。即ち、陽極室2と陰極室7とにイオ
ンを除去する脱塩機能をもたせている(脱塩構成)。な
お、図において、Hは各室の室枠及び陽陰イオン交換膜
4、3の4隅に設けた入口ダクト及び出口ダクトとなる
孔である。
Embodiments of the present invention will be described below with reference to the drawings. FIG. 2 is an exploded perspective view showing a schematic configuration of the electric regeneration type desalination apparatus according to the present invention. As shown in the figure, the electric regeneration type desalination apparatus has an anode 1-an anode chamber 2-
Cation exchange membrane 4- {concentration chamber 6- anion exchange membrane 3- desalination chamber 5- cation exchange membrane 4}
An anion exchange membrane 3-a desalination chamber 5-a cation exchange membrane 4}-a concentration chamber 6-an anion exchange membrane 3-a cathode chamber 7-a cathode 8 are arranged in this order. That is, the anode chamber 2 and the cathode chamber 7 have a desalting function of removing ions (desalting configuration). In the drawings, H is a hole serving as an inlet duct and an outlet duct provided at each of the chamber frames of the respective chambers and the four corners of the cation-anion exchange membranes 4, 3.

【0017】図3は本発明に係る電気再生式脱塩装置の
システム構成例を示す図である。脱塩室5には原水(R
O処理水等)が配管19を通って供給され、濃縮室6、
陽極室2及び陰極室7には配管21を通して濃縮水が供
給される。濃縮室6から出る濃縮室出口水は配管13を
通って、陰極室7から出る陰極室出口水は配管14を通
って、陽極室2から出る陽極室出口水は配管15を通っ
てそれぞれ気液分離器16に導入される。
FIG. 3 is a diagram showing an example of a system configuration of an electric regeneration type desalination apparatus according to the present invention. Raw water (R
O treated water, etc.) is supplied through a pipe 19 and the enrichment chamber 6,
Concentrated water is supplied to the anode chamber 2 and the cathode chamber 7 through a pipe 21. The outlet water of the concentrating chamber from the concentrating chamber 6 passes through the pipe 13, the outlet water of the cathode chamber from the cathode chamber 7 passes through the pipe 14, and the outlet water of the anode chamber from the anode chamber 2 passes through the pipe 15. It is introduced into the separator 16.

【0018】ここで水解等により発生した気体(O2
2など)を優先的に排出すると共に、濃縮室出口水及
び陰極室出口水の混合液の一部は配管17を通して排出
する(あるいはRO原水タンクに戻す)。
The gas (O 2 ,
H 2 ) is preferentially discharged, and a part of the mixture of the concentrated chamber outlet water and the cathode chamber outlet water is discharged through the pipe 17 (or returned to the RO raw water tank).

【0019】前記混合水の残部は、配管18を通り、配
管19を通って希釈水として導入する原水と混合し濃縮
水としてポンプ20を介して濃縮室6、陽極室2及び陰
極室7に導入される。また、脱塩室5から出る脱塩水は
超純水10として配管22を通して回収される。
The remaining portion of the mixed water passes through a pipe 18 and mixes with raw water introduced as dilution water through a pipe 19, and is introduced as concentrated water into a concentration chamber 6, an anode chamber 2 and a cathode chamber 7 via a pump 20. Is done. Further, the desalinated water discharged from the desalination chamber 5 is collected as ultrapure water 10 through a pipe 22.

【0020】陽極室出口水及び陰極室出口水は気液分離
器16の下部に導入し、濃縮室出口水はその上部に導入
し、循環させる濃縮水を気液分離器16の更に下方から
取り出すように構成している。この構成で、気体は浮力
により気液分離器16の上部に集まり分離される。ま
た、陽極室出口水及び陰極室出口水の極室出口水と濃縮
室出口水の入口位置関係から、極室出口水が優先的に濃
縮液として陽極室2、陰極室7及び濃縮室6に導入され
循環し、濃縮室出口水が優先的に排出されることにな
る。
The outlet water of the anode chamber and the outlet water of the cathode chamber are introduced into the lower part of the gas-liquid separator 16, and the outlet water of the concentration chamber is introduced into the upper part thereof, and the concentrated water to be circulated is taken out from below the gas-liquid separator 16. It is configured as follows. With this configuration, gas is collected and separated at the upper part of the gas-liquid separator 16 by buoyancy. Also, from the inlet positional relationship between the anode chamber outlet water and the cathode chamber outlet water, the pole chamber outlet water and the concentrating chamber outlet water, the pole chamber outlet water is preferentially used as a concentrate in the anode chamber 2, the cathode chamber 7, and the concentrating chamber 6. It is introduced and circulated, and the outlet water of the concentration chamber is discharged preferentially.

【0021】上記のように陽極室2及び陰極室7を脱塩
構成とすることにより、極室内でのイオンの過濃縮を避
けることができる。従って、イオン交換膜の膜焼けを防
止できると共に、水解による水素及び酸素の発生量を抑
えることができる。また、このように極室を脱塩構成と
することにより、極室出口水のイオン量は極室入口水の
イオン量より少なくなり、濃縮室出口水よりはるかに良
い水質になる。従って、極室出口水を排出してしまうこ
とは上記のように無駄であるばかりでなく、イオンのバ
ランスからいって、より多くの濃縮室出口水を排出する
必要があるから、希釈水としての原水量を多量に必要と
する。
By making the anode chamber 2 and the cathode chamber 7 desalted as described above, overconcentration of ions in the pole chamber can be avoided. Therefore, burning of the ion exchange membrane can be prevented, and the amount of hydrogen and oxygen generated by the hydrolysis can be suppressed. In addition, by making the polar chamber desalination in this way, the amount of ions at the outlet of the polar chamber is smaller than the amount of ions at the inlet of the pole chamber, and the water quality is much better than the outlet water of the concentrating chamber. Therefore, it is not only wasteful to discharge the outlet water from the pole chamber as described above, but also from the balance of ions, it is necessary to discharge more outlet water from the enrichment chamber. Requires a large amount of raw water.

【0022】そこでここでは、極室出口水の一部を優先
的に濃縮水として濃縮室6及び極室(陽極室2及び陰極
室7)に導入し、循環させることにより、従来の電気再
生式脱塩装置と略同じ純水回収率を維持できるようにし
ている。
Therefore, here, a part of the outlet water of the pole chamber is preferentially introduced as concentrated water into the concentrating chamber 6 and the pole chamber (the anode chamber 2 and the cathode chamber 7) and circulated, whereby a conventional electric regeneration system is used. It is possible to maintain almost the same pure water recovery rate as that of the desalination unit.

【0023】上記構成の電気再生式脱塩装置によれば、
水解により陽極室2には酸素O2が発生し、陰極室7に
は水素H2が発生する。濃縮室出口水及び該極室出口水
を気液分離器16に導入したことにより、これらの酸素
2及び水素H2は同伴され、気液分離器16に入る。水
素H2及び酸素O2の気体は上記のように浮力で上部に集
まり分離される。従って、循環する濃縮液から酸素O2
及び水素H2は除去される。
According to the electric regeneration type desalination apparatus having the above structure,
Due to the hydrolysis, oxygen O 2 is generated in the anode chamber 2, and hydrogen H 2 is generated in the cathode chamber 7. By introducing the outlet water of the concentration chamber and the outlet water of the pole chamber into the gas-liquid separator 16, these oxygen O 2 and hydrogen H 2 are entrained and enter the gas-liquid separator 16. Gases of hydrogen H 2 and oxygen O 2 gather at the upper portion by buoyancy as described above and are separated. Therefore, the oxygen O 2
And hydrogen H 2 is removed.

【0024】図4は本発明に係る電気再生式脱塩装置の
システム構成例を示す図である。本電気再生式脱塩装置
は、陽陰極室出口水及び濃縮室出口水の混合を各室のセ
ル内のダクト(図2の孔H)内で行い、ダクト出口部か
ら配管23を介して気液分離器16に導入し、脱塩室5
のダクト出口部から配管22を通して超純水10として
取り出している。該気液分離器16に導入される陽陰極
室出口水及び濃縮室出口水の混合水に伴って水素H2
び酸素O2等の気体も気液分離器16内に導入され、該
気液分離器16の上部に集まって分離され、排出され
る。
FIG. 4 is a diagram showing an example of a system configuration of an electric regeneration type desalination apparatus according to the present invention. This electric regeneration type desalination apparatus mixes the cathode water outlet water and the concentration chamber outlet water in ducts (holes H in FIG. 2) in the cells of the respective chambers. It is introduced into the liquid separator 16 and the desalination chamber 5
And taken out as ultrapure water 10 from a duct outlet through a pipe 22. Gases such as hydrogen H 2 and oxygen O 2 are also introduced into the gas-liquid separator 16 with the mixed water of the cathode cathode outlet water and the concentration chamber outlet water introduced into the gas-liquid separator 16, They are collected at the upper part of the separator 16 and separated and discharged.

【0025】上記のように陽陰極室出口水及び濃縮室出
口水の混合を各室のセル内のダクト内で行うことによ
り、配管18を通って循環する濃縮水のイオン濃度は若
干上昇するが、配管関係が簡易になるという利点があ
る。
As described above, by mixing the outlet water of the cathode chamber and the outlet water of the concentration chamber in the duct in the cell of each chamber, the ion concentration of the concentrated water circulating through the pipe 18 is slightly increased. In addition, there is an advantage that the piping relationship is simplified.

【0026】図5は本発明に係る電気再生式脱塩装置の
システム構成例を示す図である。本電気再生式脱塩装置
は、陽極室出口水と陰極室出口水を配管23、24を介
してそれぞれ別の気液分離器25、26に導入してそれ
ぞれ水中に含まれる気体を分離し、該陽極室出口水、陰
極室出口水のそれぞれの一部を配管17を通して排出
し、残りをポンプ28、29を介して真空脱気膜装置3
0、31に送り、脱気した後の陽極室出口水、陰極室出
口水を濃縮液としてポンプ20により配管21を通して
陽陰極室2、7及び濃縮室6に導入している。
FIG. 5 is a diagram showing an example of a system configuration of an electric regeneration type desalination apparatus according to the present invention. This electric regeneration type desalination apparatus introduces anode chamber outlet water and cathode chamber outlet water into separate gas-liquid separators 25 and 26 through pipes 23 and 24, respectively, to separate gas contained in the water, A part of each of the anode chamber outlet water and the cathode chamber outlet water is discharged through a pipe 17, and the rest is pumped through pumps 28 and 29.
The dewatered anode chamber outlet water and cathode chamber outlet water are introduced into the positive and negative electrode chambers 2 and 7 and the concentration chamber 6 through the pipe 21 by the pump 20 as the concentrated liquid.

【0027】濃縮室6からの濃縮室出口水は配管27を
通して一部は配管17を通して排出され、残りは濃縮水
として配管19を通して希釈水として導入される原水及
び上記真空脱気膜装置30、31からの陽陰極室出口水
と混合される。
Part of the outlet water from the concentrating chamber 6 is discharged through the pipe 17 through the pipe 27, and the rest is the raw water introduced as dilution water through the pipe 19 as concentrated water and the vacuum degassing membrane devices 30, 31 described above. Mixed with water from the cathode chamber outlet.

【0028】上記のように陽極室出口水と陰極室出口水
をそれぞれ別々の気液分離器25、26に導入すること
により、上記のように水解により陽極室出口水中には酸
素O 2が、陰極室出口水中には水素H2が含まれるが、気
液分離器25、26で気泡は分離され、さらに陽極室出
口水、陰極室出口水はそれぞれ真空ポンプ30a、31
aを具備する真空脱気膜装置30、31で脱気されるか
ら水中の溶存気体は殆ど存在しない状態で濃縮水として
循環することになる。
As described above, the anode chamber outlet water and the cathode chamber outlet water
Into the separate gas-liquid separators 25 and 26, respectively.
As a result, the acid in the anode chamber outlet water
Element O TwoHowever, hydrogen H is contained in the cathode chamber outlet water.TwoIs included
Bubbles are separated by the liquid separators 25 and 26, and are further discharged from the anode chamber.
Mouth water and cathode chamber outlet water are supplied by vacuum pumps 30a, 31 respectively.
Degassed by vacuum degassing membrane devices 30 and 31 equipped with a
Water as a concentrated water with almost no dissolved gas in the water
Will circulate.

【0029】なお、本発明に係る電気再生式脱塩装置
は、脱塩室5と濃縮室6の間に配置されるイオン交換膜
が全体に渡って陽イオン交換膜(カチオン交換膜)4と
陰イオン交換膜(アニオン交換膜)3が交互に配置され
た構成に限定されるものではなく、少なくとも一部の脱
塩室5と濃縮室6の間に陽イオン交換膜4或いは陰イオ
ン交換膜3が交互に配置されている構成であれば、他の
部分の室間では陽イオン交換膜4或いは陰イオン交換膜
3が連続して配置されていてもよい。
In the electric regeneration type desalination apparatus according to the present invention, the ion exchange membrane disposed between the desalting chamber 5 and the concentrating chamber 6 is provided with a cation exchange membrane (cation exchange membrane) 4 throughout. The configuration is not limited to the configuration in which the anion exchange membranes (anion exchange membranes) 3 are alternately arranged, and the cation exchange membrane 4 or the anion exchange membrane is provided between at least a part of the desalination chamber 5 and the concentration chamber 6. As long as the three are alternately arranged, the cation exchange membrane 4 or the anion exchange membrane 3 may be arranged continuously between the chambers in other parts.

【0030】[0030]

【発明の効果】以上説明したように、各請求項に記載の
発明によれば下記のような優れた効果が得られる。
As described above, according to the present invention, the following excellent effects can be obtained.

【0031】請求項1に記載の発明によれば、極室を脱
塩構成とするので、極室内でのイオンの過濃縮を避ける
ことができ、イオン交換膜の膜焼けを防止できると共
に、水解による水素及び酸素の発生量を抑えることがで
きる。また、極室出口水の一部を濃縮水として濃縮室及
び極室に導入し、循環させることにより、従来の電気再
生式脱塩装置と略同じ純水回収率を維持できる。
According to the first aspect of the present invention, since the electrode room is desalted, overconcentration of ions in the electrode room can be avoided, and the ion exchange membrane can be prevented from burning and the water can be dissolved. And the amount of generated hydrogen and oxygen can be suppressed. Further, by introducing a part of the outlet water of the pole room as concentrated water into the concentration room and the pole room and circulating the same, it is possible to maintain substantially the same pure water recovery rate as in the conventional electric regeneration type desalination apparatus.

【0032】請求項2に記載の発明によれば、請求項1
に記載の発明の効果に加え、濃縮室出口水及び極室出口
水の混合水を気液分離器に導入することにより、水解に
より陽極室には酸素O2が発生し、陰極室には水素H2
発生し、これらの気体が該気液分離器で分離され、除去
されるから、循環する濃縮水は酸素や水素等の気体が含
まれないものとなる。
According to the invention described in claim 2, according to claim 1
In addition to the effects of the invention described in the above, by introducing mixed water of the outlet water of the concentration chamber and the outlet water of the pole chamber to the gas-liquid separator, oxygen O 2 is generated in the anode chamber by hydrolysis, and hydrogen is generated in the cathode chamber. Since H 2 is generated and these gases are separated and removed by the gas-liquid separator, the circulating concentrated water does not contain gases such as oxygen and hydrogen.

【0033】請求項3に記載の発明によれば、請求項1
及び2に記載の発明の効果に加え、循環する濃縮水のイ
オン濃度は若干高くなるが、入口ダクト及び出口ダクト
の少なくとも一方のダクト内で濃縮水と極室水が混合さ
れるので、配管関係が簡易となる。
According to the invention described in claim 3, according to claim 1
In addition to the effects of the inventions described in (2) and (3), the ion concentration of the circulating concentrated water is slightly increased, but the concentrated water and the polar chamber water are mixed in at least one of the inlet duct and the outlet duct, so that the piping-related Is simplified.

【0034】請求項4に記載の発明によれば、請求項1
に記載の発明の効果に加え、濃縮室出口水を優先的に排
出し、該極室出口水を優先的に希釈水として導入する脱
塩原水と混合し、濃縮水として濃縮室及び極室に導入す
ることにより、イオン量は極室入口水より少なく、濃縮
室出口水より水質の良い極室出口水を無駄にすることが
ない。また、希釈水としての原水量を多量に必要としな
いことから純水回収率も従来の電気再生式脱塩装置と略
同じ純水回収率を維持できる。
According to the invention described in claim 4, claim 1 is
In addition to the effects of the invention described in the above, the outlet water of the concentration chamber is preferentially discharged, and the outlet water of the pole chamber is mixed with demineralized raw water preferentially introduced as dilution water, and the concentrated water is supplied to the concentration chamber and the pole chamber as concentrated water. By introducing, the amount of ions is smaller than the water at the inlet of the pole chamber, and the water at the pole chamber outlet having a higher quality than the outlet water of the concentration chamber is not wasted. Further, since a large amount of raw water as the dilution water is not required, the pure water recovery rate can be maintained at substantially the same pure water recovery rate as that of the conventional electric regeneration type desalination apparatus.

【0035】請求項5に記載の発明によれば、請求項1
に記載の発明の効果に加え、陽極室出口水及び陰極室出
口水をそれぞれ気液分離器に導き水中の気体を排出する
ので、陽極室で発生する酸素O2と陰極室で発生する水
素H2が一緒にならないから、爆発等の危険はない。ま
た、気液分離器で規定を除去した陽極室出口水及び陰極
室出口水を脱気室に導き水中の気体を更に除去するの
で、濃縮室及び極室に導入される濃縮水は気体を含まな
いものとなる。
According to the fifth aspect of the present invention, the first aspect is provided.
In addition to the effects of the invention described in the above, the outlet water of the anode chamber and the outlet water of the cathode chamber are respectively guided to the gas-liquid separator to discharge gas in the water, so that oxygen O 2 generated in the anode chamber and hydrogen H generated in the cathode chamber are discharged. There is no danger of explosion, etc., because the two do not come together. In addition, since the outlet water of the anode chamber and the outlet water of the cathode chamber, which have been removed by the gas-liquid separator, are guided to the deaeration chamber to further remove gas in the water, the concentrated water introduced into the concentration chamber and the pole chamber contains gas. Will not be.

【図面の簡単な説明】[Brief description of the drawings]

【図1】従来の電気再生式脱塩装置の概略構成を示す分
解斜視図である。
FIG. 1 is an exploded perspective view showing a schematic configuration of a conventional electric regeneration type desalination apparatus.

【図2】本発明に係る電気再生式脱塩装置の概略構成を
示す分解斜視図である。
FIG. 2 is an exploded perspective view showing a schematic configuration of an electric regeneration type desalination apparatus according to the present invention.

【図3】本発明に係る電気再生式脱塩装置のシステム構
成例を示す図である。
FIG. 3 is a diagram showing a system configuration example of an electric regeneration type desalination apparatus according to the present invention.

【図4】本発明に係る電気再生式脱塩装置のシステム構
成例を示す図である。
FIG. 4 is a diagram showing an example of a system configuration of an electric regeneration type desalination apparatus according to the present invention.

【図5】本発明に係る電気再生式脱塩装置のシステム構
成例を示す図である。
FIG. 5 is a diagram showing an example of a system configuration of an electric regeneration type desalination apparatus according to the present invention.

【符号の説明】[Explanation of symbols]

1 陽極 2 陽極室 3 陰イオン交換膜(アニオン交換膜) 4 陽イオン交換膜(カチオン交換膜) 5 脱塩室 6 濃縮室 7 陰極室 8 陰極 9 濃縮水 10 脱塩水(超純水) 11 セル抑え板 12 セル抑え板 16 気液分離器 20 ポンプ 25 気液分離器 26 気液分離器 28 ポンプ 29 ポンプ 30 真空脱気膜装置 31 真空脱気膜装置 DESCRIPTION OF SYMBOLS 1 Anode 2 Anode chamber 3 Anion exchange membrane (anion exchange membrane) 4 Cation exchange membrane (cation exchange membrane) 5 Demineralization chamber 6 Concentration chamber 7 Cathode chamber 8 Cathode 9 Concentrated water 10 Demineralized water (ultra pure water) 11 cells Holding plate 12 Cell holding plate 16 Gas-liquid separator 20 Pump 25 Gas-liquid separator 26 Gas-liquid separator 28 Pump 29 Pump 30 Vacuum degassing device 31 Vacuum degassing device

フロントページの続き (72)発明者 川本 孝善 東京都大田区羽田旭町11番1号 株式会社 荏原製作所内 Fターム(参考) 4D006 GA17 HA47 JA30A JA43A JA44A JA51A KA31 KB17 4D025 BA08 BA13 BB03 DA01 DA05 DA06 4D061 DB13 EA09 EB13 EB19 FA03 FA08 FA09 Continuation of the front page (72) Inventor Takayoshi Kawamoto 11-1 Haneda Asahimachi, Ota-ku, Tokyo F-term in Ebara Corporation (reference) 4D006 GA17 HA47 JA30A JA43A JA44A JA51A KA31 KB17 4D025 BA08 BA13 BB03 DA01 DA05 DA06 4D061 DB13 EA09 EB13 EB19 FA03 FA08 FA09

Claims (5)

【特許請求の範囲】[Claims] 【請求項1】 極室間に脱塩室及び濃縮室を配列し、各
室にイオン交換体を充填し、少なくとも一部の各室間に
陽イオン交換膜或いは陰イオン交換膜を交互に配置した
電気再生式脱塩装置において、 前記極室をイオンが除去される脱塩構成とし、前記濃縮
室及び該極室に濃縮水を導入すると共に、該濃縮室から
出る濃縮室出口水と該極室から出る極室出口水の混合水
の一部を排出し残部を希釈水として導入する脱塩原水と
混合し、前記濃縮水として前記濃縮室及び極室に導入す
ることを特徴とする電気再生式脱塩装置。
1. A desalting chamber and a concentrating chamber are arranged between pole chambers, each chamber is filled with an ion exchanger, and cation exchange membranes or anion exchange membranes are alternately arranged between at least some of the chambers. In the electric regeneration type desalination apparatus, the electrode chamber is desalted to remove ions, concentrated water is introduced into the concentrating chamber and the electrode chamber, and the condensing chamber outlet water discharged from the concentrating chamber and the electrode A part of the mixed water discharged from the outlet of the electrode room discharged from the chamber is mixed with demineralized raw water to be introduced as dilution water, and the remainder is introduced into the concentrating chamber and the electrode room as the concentrated water. Type desalination equipment.
【請求項2】 請求項1に記載の電気再生式脱塩装置に
おいて、 前記混合水を気液分離器に導入し、該混合水中の気体を
排出することを特徴とする電気再生式脱塩装置。
2. The electric regeneration type desalination apparatus according to claim 1, wherein the mixed water is introduced into a gas-liquid separator, and gas in the mixed water is discharged. .
【請求項3】 請求項1又は2に記載の電気再生式脱塩
装置において、 前記濃縮室、脱塩室及び極室の各室枠に設けた孔により
構成される入口ダクト及び出口ダクトの少なくとも一方
のダクト内で濃縮水と極室水が混合されて前記混合水と
なることを特徴とする電気再生式脱塩装置。
3. The desalination apparatus according to claim 1, wherein at least one of an inlet duct and an outlet duct formed by holes provided in each of the enrichment chamber, the desalination chamber, and the pole chamber. An electric regeneration type desalination apparatus characterized in that concentrated water and polar chamber water are mixed in one duct to become the mixed water.
【請求項4】 極室間に脱塩室及び濃縮室を配列し、各
室にイオン交換体を充填し、少なくとも一部の各室間に
陽イオン交換膜或いは陰イオン交換膜を交互に配置した
電気再生式脱塩装置において、 前記極室をイオンが除去される脱塩構成とし、前記濃縮
室及び該極室に濃縮水を導入すると共に、該濃縮室から
出る濃縮室出口水及び該極室から出る極室出口水を気液
分離器に導き該濃縮室出口水及び該極室出口水中の気体
を排出し、該濃縮出口水を優先的に排出し、該極室出口
水を優先的に希釈水として導入する脱塩原水と混合し、
前記濃縮水として前記濃縮室及び極室に導入することを
特徴とする電気再生式脱塩装置。
4. A desalting chamber and a concentrating chamber are arranged between the pole chambers, each chamber is filled with an ion exchanger, and a cation exchange membrane or an anion exchange membrane is alternately arranged between at least some of the chambers. In the electric regeneration type desalination apparatus, the pole chamber is desalted to remove ions, and concentrated water is introduced into the concentrating chamber and the pole chamber. The polar chamber outlet water exiting the chamber is guided to a gas-liquid separator to discharge the condensing chamber outlet water and the gas in the polar chamber outlet water, discharge the concentrated outlet water preferentially, and prioritize the polar chamber outlet water. Mixed with demineralized raw water to be introduced as dilution water into
An electric regeneration type desalination apparatus, wherein the concentrated water is introduced into the concentration chamber and the pole chamber.
【請求項5】 極室間に脱塩室及び濃縮室を配列し、各
室にイオン交換体を充填し、少なくとも一部の各室間に
陽イオン交換膜或いは陰イオン交換膜を交互に配置した
電気再生式脱塩装置において、 前記極室をイオンが除去される脱塩構成とし、前記濃縮
室及び該極室に濃縮水を導入し、該濃縮室から出る濃縮
室出口水の一部を排出すると共に、該極室である陽極室
から出る陽極室出口水及び陰極室から出る陰極室出口水
をそれぞれ気液分離器に導き水中の気体を排出し、該陽
極室出口水及び陰極室出口水の一部を排出し残部をそれ
ぞれ真空脱気膜装置に導入して脱気し、該脱気した陽極
室出口水及び陰極室出口水と前記濃縮室出口水の残部と
を希釈水として導入する脱塩原水と混合し、前記濃縮水
として前記濃縮室及び極室に導入することを特徴とする
電気再生式脱塩装置。
5. A desalting chamber and a concentrating chamber are arranged between the pole chambers, each chamber is filled with an ion exchanger, and a cation exchange membrane or an anion exchange membrane is alternately arranged between at least some of the chambers. In the electric regeneration type desalination apparatus, the electrode compartment is desalted to remove ions, concentrated water is introduced into the concentrating chamber and the pole chamber, and a part of the condensing chamber outlet water exiting the concentrating chamber is removed. At the same time as discharging, the anode chamber outlet water coming out of the anode chamber, which is the pole chamber, and the cathode chamber outlet water coming out of the cathode chamber, are guided to a gas-liquid separator, respectively, to discharge gas in the water. A part of the water is discharged and the remainder is introduced into a vacuum degassing membrane device, respectively, and degassed. The deaerated anode chamber outlet water and cathode chamber outlet water and the remaining part of the condensing chamber outlet water are introduced as dilution water. Mixed with demineralized raw water to be introduced into the concentrating room and the pole room as the concentrated water. Electrodeionization desalination apparatus characterized.
JP2000022674A 2000-01-31 2000-01-31 Electric regeneration type desalting device Pending JP2001212468A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2000022674A JP2001212468A (en) 2000-01-31 2000-01-31 Electric regeneration type desalting device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000022674A JP2001212468A (en) 2000-01-31 2000-01-31 Electric regeneration type desalting device

Publications (1)

Publication Number Publication Date
JP2001212468A true JP2001212468A (en) 2001-08-07

Family

ID=18548948

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000022674A Pending JP2001212468A (en) 2000-01-31 2000-01-31 Electric regeneration type desalting device

Country Status (1)

Country Link
JP (1) JP2001212468A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101564921B1 (en) * 2014-02-12 2015-11-02 (주)동양화학 Electrodialysis device for desalination containing metal fibers
JP2020124672A (en) * 2019-02-04 2020-08-20 栗田工業株式会社 Water treatment method and water treatment system

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101564921B1 (en) * 2014-02-12 2015-11-02 (주)동양화학 Electrodialysis device for desalination containing metal fibers
JP2020124672A (en) * 2019-02-04 2020-08-20 栗田工業株式会社 Water treatment method and water treatment system
JP7205263B2 (en) 2019-02-04 2023-01-17 栗田工業株式会社 Water treatment method and water treatment system

Similar Documents

Publication Publication Date Title
TWI241986B (en) Electrodeionization apparatus
JP3794268B2 (en) Electrodeionization apparatus and operation method thereof
JP3518112B2 (en) Fuel cell water treatment equipment
US20060027457A1 (en) Apparatus for electrodeionization and method for operating the same
JP2013520315A (en) Water treatment apparatus and method
CA2699174A1 (en) Method and system for desalinating saltwater using concentration difference energy
JP5145305B2 (en) Electric deionized water production equipment
JP2004261643A (en) Electrodeionization apparatus, and operating method therefor
CN212669467U (en) Catalytic cracking wet flue gas desulfurization waste water cyclic utilization system
JP2004057935A (en) Ultrapure-water making system
JP5379025B2 (en) Electric deionized water production equipment
JP2001212468A (en) Electric regeneration type desalting device
JP3773178B2 (en) Electric deionized water production apparatus and production method
JP2009142724A (en) Electrical deionizer and deionized water producing method
JP2004335312A (en) Power generation method and power generation device utilizing concentrated sea water generated at sea water desalting device
CN116216995A (en) Desulfurization wastewater treatment system
JP3901107B2 (en) Electrodeionization apparatus and operation method thereof
JP2000263059A (en) Electric desalting apparatus
JP3188511B2 (en) Electrodialysis machine
JPH07171353A (en) Electric dialysis
JPH06296966A (en) Decarbonating device and pure water producer assembled with the device
JP2001327971A (en) Electro-deionizing apparatus
JP2001212567A (en) Electric regeneration type desalting apparatus
JP2019135054A (en) Water treatment device and water treatment method
JP4497387B2 (en) Secondary pure water production equipment