JP2001210382A - Cylindrical lithium secondary battery - Google Patents

Cylindrical lithium secondary battery

Info

Publication number
JP2001210382A
JP2001210382A JP2000015184A JP2000015184A JP2001210382A JP 2001210382 A JP2001210382 A JP 2001210382A JP 2000015184 A JP2000015184 A JP 2000015184A JP 2000015184 A JP2000015184 A JP 2000015184A JP 2001210382 A JP2001210382 A JP 2001210382A
Authority
JP
Japan
Prior art keywords
negative electrode
positive electrode
electrode
secondary battery
battery
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2000015184A
Other languages
Japanese (ja)
Inventor
Yoshimasa Koishikawa
佳正 小石川
Yuichi Takatsuka
祐一 高塚
Katsunori Suzuki
克典 鈴木
Kensuke Hironaka
健介 弘中
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Resonac Corp
Original Assignee
Shin Kobe Electric Machinery Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shin Kobe Electric Machinery Co Ltd filed Critical Shin Kobe Electric Machinery Co Ltd
Priority to JP2000015184A priority Critical patent/JP2001210382A/en
Publication of JP2001210382A publication Critical patent/JP2001210382A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Landscapes

  • Secondary Cells (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a cylindrical lithium secondary battery of a high power output density which is superior in input and output characteristics. SOLUTION: Winding group W that has an opposing length A of 3420 mm between a positive electrode and negative electrode is fabricated, and a cylindrical lithium secondary battery 20 is assembled. The diameter of the winding group is 38 mm (the value of opposing length A between electrodes/group diameter B of electrode groups W) is 90. If this value becomes smaller than 90, the current density per unit area is elevated, and because facing area of electrode becomes small, current density per area rises, and battery resistance increases, and if this value becomes greater than 110, the load charge one of the active substance becomes greater because the amount of active substance per unit area decreases, and this results in the reduction of output.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、円筒形リチウム二
次電池に係り、特に、正極集電体の両面に正極活物質を
含む正極合剤が塗着された正極と、負極集電体の両面に
充放電によりリチウムイオンが挿脱可能な負極活物質を
含む負極合剤が塗着された負極と、を前記リチウムイオ
ンが通過可能なセパレータを介して捲回した捲回群を備
える円筒形リチウム二次電池に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a cylindrical lithium secondary battery, and more particularly, to a positive electrode having a positive electrode mixture containing a positive electrode active material applied to both surfaces of a positive electrode current collector, and a negative electrode current collector. A cylindrical shape including a negative electrode coated with a negative electrode mixture containing a negative electrode active material into and out of which lithium ions can be inserted and removed by charging and discharging, and a winding group obtained by winding the negative electrode through a separator through which the lithium ions can pass. It relates to a lithium secondary battery.

【0002】[0002]

【従来の技術】現在、円筒形二次電池うち代表的な電池
として、民生用の小型リチウムイオン二次電池が広く普
及している。このリチウムイオン二次電池は、高エネル
ギー密度であるメリットを活かして、主にVTRカメラ
やノートパソコン、携帯電話等のポータブル機器の電源
に使用されている。
2. Description of the Related Art At present, small lithium ion secondary batteries for consumer use are widely used as typical batteries among cylindrical secondary batteries. This lithium ion secondary battery is mainly used as a power source for portable devices such as a VTR camera, a notebook computer, and a mobile phone, taking advantage of its high energy density.

【0003】一方、近年、環境問題が並々重要視される
ようになってきており、自動車産業界においては低公害
車の開発が進められ一部実用化に至っている。このよう
な低公害車には、動力源を完全に電池のみとした排出ガ
スのない電気自動車(EV)と、内燃機関エンジンと電
池との両方を併せ持ったハイブリッド電気自動車(HE
V)と、がある。
On the other hand, in recent years, environmental problems have become increasingly important, and the development of low-emission vehicles has been promoted in the automobile industry and some of them have been put into practical use. Such low-emission vehicles include an exhaust gas-free electric vehicle (EV) having a battery as a sole power source, and a hybrid electric vehicle (HE) having both an internal combustion engine and a battery.
V).

【0004】EV及びHEV用の電源となる電池には、
高エネルギー密度、高出力特性が要求されるが、特にH
EV用途の電源では、短時間での高い入出力の繰り返し
特性が良好であるという今までにない電池特性がニーズ
となってきている。これらEV及びHEV用途に適した
電池として、リチウムイオン電池が注目されている。
[0004] Batteries serving as power supplies for EVs and HEVs include:
High energy density and high output characteristics are required.
In a power supply for EV use, there has been a need for an unprecedented battery characteristic that the high input / output repetition characteristic in a short time is good. As a battery suitable for these EV and HEV applications, a lithium ion battery has attracted attention.

【0005】[0005]

【発明が解決しようとする課題】しかしながら、従来の
民生用小型電池のサイズを大きくしただけでは、HEV
の要求する入出力特性を満足することができなかった。
また、大きな電流によるパルスサイクル時に、電流の流
れやすいひとつの活物質粒子への電流集中が生じ、それ
が繰り返されることで、活物質自体の構造破壊による不
活性化が起こり、入出力特性の低下を引き起こしてい
た。
However, simply increasing the size of a conventional small-sized battery for consumer use requires only HEV.
Cannot satisfy the input / output characteristics required by
In addition, during a pulse cycle due to a large current, current concentration occurs on one active material particle where the current easily flows, and this is repeated, thereby inactivating the active material itself due to structural destruction and deteriorating input / output characteristics. Was causing.

【0006】本発明は上記問題に鑑み、入出力特性に優
れる高出力密度の円筒形リチウム二次電池を提供するこ
とを課題とする。
In view of the above problems, an object of the present invention is to provide a cylindrical lithium secondary battery having a high output density and excellent input / output characteristics.

【0007】[0007]

【課題を解決するための手段】上記課題を解決するため
に、本発明は、正極集電体の両面に正極活物質を含む正
極合剤が塗着された正極と、負極集電体の両面に充放電
によりリチウムイオンが挿脱可能な負極活物質を含む負
極合剤が塗着された負極と、を前記リチウムイオンが通
過可能なセパレータを介して捲回した捲回群を備える円
筒形リチウム二次電池において、前記捲回群の群径に対
する正極及び負極の対向長さの比が90以上110以下
であることを特徴とする。
Means for Solving the Problems To solve the above problems, the present invention relates to a positive electrode in which a positive electrode mixture containing a positive electrode active material is coated on both surfaces of a positive electrode current collector, and a negative electrode current collector. A cylindrical lithium including a negative electrode coated with a negative electrode mixture containing a negative electrode active material into which lithium ions can be inserted and removed by charge and discharge, and a winding group obtained by winding the negative electrode through a separator through which the lithium ions can pass. In the secondary battery, a ratio of a facing length of the cathode and the anode to a group diameter of the wound group is 90 or more and 110 or less.

【0008】高い入出力特性を得るためには、一定体積
の捲回群の群径に対する電極長さの比を大きくすること
により、正極と負極の対向している面積は大きくなるの
で、電流密度が小さくなり電池抵抗を低減させることが
できる。このとき、電極面積を大きくするためには、単
位面積当たりの活物質塗布量を少なくする必要がある。
しかしながら、電極面積を過剰に大きくすると、活物質
の塗布量が少なくなるので、単位面積当たりの電流密度
が同じでも、活物質一つひとつに掛かる電流負荷は大き
くなり、電極の反応抵抗が大きくなる。そこで、本発明
では、捲回群の群径に対する正極及び負極の対向長さの
比を90以上110以下とすることにより、電極群の群
径に対する電極長さを適正化して、高入出力の円筒形リ
チウム二次電池とした。このような電池は、出力密度
3.2kW/dm以上を確保することができ、高出力
密度とすることができる。
In order to obtain high input / output characteristics, by increasing the ratio of the electrode length to the group diameter of the wound group having a fixed volume, the area where the positive electrode and the negative electrode face each other is increased. And the battery resistance can be reduced. At this time, in order to increase the electrode area, it is necessary to reduce the active material application amount per unit area.
However, when the electrode area is excessively increased, the amount of the active material applied is reduced. Therefore, even if the current density per unit area is the same, the current load applied to each active material is increased, and the reaction resistance of the electrode is increased. Therefore, in the present invention, the ratio of the facing length of the positive electrode and the negative electrode to the group diameter of the wound group is set to 90 or more and 110 or less to optimize the electrode length with respect to the group diameter of the electrode group, thereby achieving high input / output. This was a cylindrical lithium secondary battery. Such a battery can ensure a power density of 3.2 kW / dm 3 or more, and can have a high power density.

【0009】[0009]

【発明の実施の形態】以下、図面を参照して本発明を適
用した円筒形リチウム二次電池の実施の形態について説
明する。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS Hereinafter, an embodiment of a cylindrical lithium secondary battery to which the present invention is applied will be described with reference to the drawings.

【0010】<極板の作製>図1に示すように、本実施
形態の円筒形リチウムイオン電池20は、正極集電体W
1の両面に正極合剤W2が塗着された帯状の正極と、負
極集電体W3の両面に負極合剤W4が塗着された帯状の
負極と、を帯状のセパレータW5を介して断面渦巻状に
捲回した捲回群Wを備えている。
<Preparation of Electrode Plate> As shown in FIG. 1, a cylindrical lithium ion battery 20 of the present embodiment comprises a positive electrode current collector W
1, a strip-shaped positive electrode having both surfaces coated with a positive electrode mixture W2, and a strip-shaped negative electrode having both surfaces of a negative electrode current collector W3 coated with a negative electrode mixture W4, with a cross-section spiral interposed therebetween through a band-shaped separator W5. A winding group W is provided.

【0011】正極集電体W1は、厚さ20μmのアルミ
ニウム箔である。正極合剤W2は、平均粒径約15μm
の正極活物質としてのマンガン酸リチウム(LiMn
)と、導電材としての炭素材であるグラファイト
(平均粒径約3μm)及び無定形炭素(平均粒径約50
nm)と、バインダのポリフッ化ビニリデン(PVD
F)と、を構成物質としている。
The positive electrode current collector W1 is an aluminum foil having a thickness of 20 μm. The positive electrode mixture W2 has an average particle size of about 15 μm.
Lithium manganate (LiMn 2
O 4 ), graphite (average particle size of about 3 μm) and amorphous carbon (average particle size of about 50
nm) and the binder polyvinylidene fluoride (PVD)
F) as a constituent material.

【0012】正極合剤W2を作製するには、マンガン酸
リチウムと炭素材(グラファイト及び無定形炭素)とP
VDFとを、所定配合比で混合し、そこへ分散溶媒とな
るN−メチル−2−ピロリドン(NMP)を適量加え、
十分に混練、分散させ、スラリ状にする。この混練物を
ロールからロールへの転写(ロール・ツー・ロール転
写)により正極集電体W1の両面に実質的に均一かつ同
じ厚さとなるように塗着し、乾燥させた後、プレスによ
り合剤密度が約2.5g/cmとなるまで圧縮して正
極合剤W2の合剤層を得る。正極合剤W2の塗着量をコ
ントロールすることで合剤層の厚さを制御し、所定長さ
とした。
To prepare the positive electrode mixture W2, lithium manganate, a carbon material (graphite and amorphous carbon) and P
VDF and VDF are mixed at a predetermined mixing ratio, and an appropriate amount of N-methyl-2-pyrrolidone (NMP) serving as a dispersion solvent is added thereto.
Knead and disperse thoroughly to form a slurry. The kneaded material is applied to both surfaces of the positive electrode current collector W1 by a roll-to-roll transfer (roll-to-roll transfer) so as to have a substantially uniform and uniform thickness, dried, and then pressed. The mixture is compressed until the agent density becomes about 2.5 g / cm 3 to obtain a mixture layer of the positive electrode mixture W2. By controlling the coating amount of the positive electrode mixture W2, the thickness of the mixture layer was controlled to a predetermined length.

【0013】一方、負極集電体W3は、厚さ10μmの
銅箔である。負極合剤W4は、リチウムイオンを電極反
応種とし充電・放電に伴いリチウムイオンを挿脱可能な
負極活物質としての非晶質炭素と、バインダのPVDF
と、を構成物質としている。
On the other hand, the negative electrode current collector W3 is a copper foil having a thickness of 10 μm. The negative electrode mixture W4 is composed of amorphous carbon as a negative electrode active material capable of inserting and removing lithium ions with lithium ions as an electrode reactive species, and PVDF as a binder.
And is a constituent material.

【0014】負極合剤W4を作製するには、非晶質炭素
とPVDFとを重量比でそれぞれ90:10となるよう
に混合し、そこへ分散溶媒となるNMPを適量加え、十
分に混練、分散させ、スラリ状にする。この混練物をロ
ール・ツー・ロール転写により負極集電体W3の両面に
実質的に均一かつ同じ厚さとなるように塗着し、乾燥さ
せた後、プレスにより合剤密度が約1.0g/cm
なるまで圧縮し、負極合剤W4の合剤層を得る。負極合
剤W4の塗着量をコントロールすることで合剤層の厚さ
を制御し、所定長さの負極を得た。なお、本実施形態で
は、非晶質炭素として呉羽化学工業株式会社製の商品名
カーボトロンP(平均粒径10μm)を用いた。
To prepare the negative electrode mixture W4, amorphous carbon and PVDF are mixed at a weight ratio of 90:10, and an appropriate amount of NMP serving as a dispersion solvent is added thereto, and the mixture is thoroughly kneaded. Disperse and slurry. This kneaded material is applied to both surfaces of the negative electrode current collector W3 by roll-to-roll transfer so as to have a substantially uniform and the same thickness, dried, and then pressed to have a mixture density of about 1.0 g / g. It compresses until it becomes cm < 3 >, and obtains the mixture layer of negative electrode mixture W4. The thickness of the mixture layer was controlled by controlling the coating amount of the negative electrode mixture W4, and a negative electrode having a predetermined length was obtained. In this embodiment, Carbotron P (average particle size: 10 μm) manufactured by Kureha Chemical Industry Co., Ltd. was used as the amorphous carbon.

【0015】<電池の作製>巻き芯17の周囲に、正極
及び負極の間に厚さ40μmのリチウムイオンが通過可
能な微多孔性のポリエチレンフィルムからなるセパレー
タW5が配置されるように捲回して捲回群Wを作製し
た。この捲回群Wの正極及び負極の対向長さを、342
0mm〜4180mmとし、捲回群Wの群径は直径38
mmとした。従って、電極(正極及び負極)対向長さを
A、電極群Wの群径をBとすると、本実施形態では、
(電極の対向長さA)/(電極群Wの群径B)の値(後
述するX値)は、90〜110となる。
<Preparation of Battery> The battery was wound so that a separator W5 made of a microporous polyethylene film having a thickness of 40 μm and capable of passing lithium ions was disposed between the positive electrode and the negative electrode around the winding core 17. A winding group W was prepared. The facing length of the positive electrode and the negative electrode of the winding group W is 342
0 mm to 4180 mm, and the group diameter of the wound group W is 38
mm. Therefore, assuming that the electrode (positive electrode and negative electrode) facing length is A and the group diameter of the electrode group W is B, in the present embodiment,
The value of (electrode opposing length A) / (group diameter B of electrode group W) (X value to be described later) is 90 to 110.

【0016】捲回群Wの両端に正極集電リング10、負
極集電リング11を配置して、集電リング周縁には、各
集電体を溶接した。正極集電リング10、負極集電リン
グ11はそれぞれ正極集電リング支え8、負極集電リン
グ支え9を介して巻き芯17の端部に固定してある。こ
の集電リング付き捲回群Wに、例えば、ポリイミド等の
絶縁被覆15を施して、負極集電リング11側が缶底側
になるように電池缶16に挿入し、そして負極集電リン
グ11に予め溶接させておいた負極リード板14を電池
缶16に溶接する。その際、負極集電リング11と電池
缶16との間に、捲回群Wを固定するための負極集電リ
ングスペーサ7を配置する。また、正極集電リング10
上面には、正極リード板B13を予め溶接しておく。
A positive current collecting ring 10 and a negative current collecting ring 11 were arranged at both ends of the wound group W, and each current collector was welded to the periphery of the current collecting ring. The positive current collecting ring 10 and the negative current collecting ring 11 are fixed to the end of the core 17 via the positive current collecting ring support 8 and the negative current collecting ring support 9, respectively. The winding group W with a current collecting ring is coated with an insulating coating 15 of, for example, polyimide or the like, and inserted into the battery can 16 so that the negative electrode current collecting ring 11 side is the can bottom side. The previously welded negative electrode lead plate 14 is welded to the battery can 16. At this time, the negative electrode current collecting ring spacer 7 for fixing the winding group W is disposed between the negative electrode current collecting ring 11 and the battery can 16. In addition, the positive electrode current collecting ring 10
A positive electrode lead plate B13 is previously welded to the upper surface.

【0017】一方、上蓋キャップ1、上蓋ケース2、安
全弁3、弁押さえ4、で構成された上蓋を別途作製し、
上蓋ケース2には、正極リード板A12を溶接によって
取り付けておく。
On the other hand, an upper lid composed of an upper lid cap 1, an upper lid case 2, a safety valve 3, and a valve retainer 4 is separately manufactured.
The positive electrode lead plate A12 is attached to the upper lid case 2 by welding.

【0018】正極集電リング10の周縁上部に捲回群W
を固定するための正極集電リングスペーサ6を配置す
る。正極リード板A12及び正極リード板B13の自由
端同士を溶接し、上蓋と集電リング付き捲回群Wとを接
続する。この状態で電解液として、エチレンカーボネー
ト(EC)40体積%、ジメチルカーボネート60体積
%の混合溶液中に溶質として6フッ化リン酸リチウム
(LiPF)を0.8モル/リットル溶解させたもの
を用い、約50mlを電池缶16内に注入する。その
後、絶縁性のガスケット5を介して上蓋を電池缶16上
部に配置、かしめることによって、円筒形リチウム二次
電池20が組み立てられる。
A winding group W is provided on the upper edge of the positive electrode current collection ring 10.
The positive electrode current collecting ring spacer 6 for fixing is disposed. The free ends of the positive electrode lead plate A12 and the positive electrode lead plate B13 are welded to each other to connect the upper lid and the winding group W with the current collecting ring. In this state, an electrolytic solution obtained by dissolving 0.8 mol / liter of lithium hexafluorophosphate (LiPF 6 ) as a solute in a mixed solution of 40% by volume of ethylene carbonate (EC) and 60% by volume of dimethyl carbonate was used as an electrolyte. About 50 ml is poured into the battery can 16. After that, the upper lid is placed above the battery can 16 via the insulating gasket 5 and caulked, whereby the cylindrical lithium secondary battery 20 is assembled.

【0019】(実施例)次に、本実施形態に従って、捲
回群Wの群径Bを38mmの一定とし、電極(正極及び
負極)の対向長さAを種々変更して作製した実施例の電
池について詳述する。なお、実施例の電池と比較するた
めに作製した比較例の電池についても併記する。
(Example) Next, according to the present embodiment, the group diameter B of the wound group W is fixed at 38 mm and the facing length A of the electrodes (positive electrode and negative electrode) is variously changed. The battery will be described in detail. Note that a battery of a comparative example manufactured for comparison with the battery of the example is also described.

【0020】<実施例1>下表1に示すように、実施例
1では、電極の対向長さAを3420mmの捲回群Wを
作製し、円筒形リチウム二次電池20(以下、実施例1
の電池という。)を組み立てた。上述した(電極の対向
長さA)/(電極群Wの群径B)の値を、便宜上今、X
値とすると、本実施例のX値は90となる。
<Example 1> As shown in Table 1 below, in Example 1, a winding group W having an electrode opposing length A of 3420 mm was prepared, and a cylindrical lithium secondary battery 20 (hereinafter referred to as Example 1). 1
Battery. ) Assembled. For the sake of convenience, the value of (electrode facing length A) / (electrode group W diameter B) is now expressed as X
In this case, the X value in this embodiment is 90.

【0021】[0021]

【表1】 [Table 1]

【0022】<実施例2〜4>表1に示すように、実施
例2では電極の対向長さAを3800mm、実施例3で
は電極の対向長さAを3990mm、実施例4では電極
の対向長さAを4180mmとした捲回群Wをそれぞれ
作製し、円筒形リチウム二次電池20(以下、実施例2
〜4の電池という。)を組み立てた。実施例2〜4の電
池のX値は、それぞれ、100、105、110とな
る。
<Examples 2 to 4> As shown in Table 1, in Example 2, the opposing length A of the electrode was 3,800 mm, in Example 3, the opposing length A of the electrode was 3,990 mm, and in Example 4, the opposing length of the electrode was 3,990 mm. Winding groups W each having a length A of 4180 mm were prepared, and the cylindrical lithium secondary batteries 20 (hereinafter referred to as Example 2) were prepared.
4 batteries. ) Assembled. The X values of the batteries of Examples 2 to 4 are 100, 105, and 110, respectively.

【0023】<比較例1、2>表1に示すように、比較
例1では電極の対向長さAを3230mm、比較例2で
は電極の対向長さAを4560mmとした捲回群Wをそ
れぞれ作製し、円筒形リチウム二次電池(以下、比較例
1、2の電池という。)を組み立てた。比較例1、2の
電池のX値は、それぞれ85、115となる。
<Comparative Examples 1 and 2> As shown in Table 1, in Comparative Example 1, the winding group W having the electrode facing length A of 3230 mm, and in Comparative Example 2 having the electrode facing length A of 4560 mm, respectively. Then, a cylindrical lithium secondary battery (hereinafter, referred to as batteries of Comparative Examples 1 and 2) was assembled. The X values of the batteries of Comparative Examples 1 and 2 are 85 and 115, respectively.

【0024】(試験)次に、作製した実施例及び比較例
の各電池について、次の出力密度測定試験を実施した。
(Test) Next, the following output density measurement test was carried out for each of the batteries of the example and the comparative example.

【0025】<出力密度測定試験の内容>各電池を約1
時間で放電することができる電流値(1C)で4.2V
定電圧制御し、3時間充電し、満充電状態とした。その
満充電状態の電池を、10A、30A、90Aの電流値
でそれぞれ5秒間放電し、5秒目の電池電圧を測定し
た。その電圧を電流値に対してプロットした直線が2.
7Vに到達の電流値(Ia)から、出力((W)=Ia
×2.7)を求めた。測定は25±2°Cの雰囲気で行
った。出力密度は、求めた出力を電池重量で除した値で
ある。
<Contents of power density measurement test>
4.2V at the current value (1C) that can be discharged in time
Under constant voltage control, the battery was charged for 3 hours, and the battery was fully charged. The fully charged battery was discharged at current values of 10 A, 30 A, and 90 A for 5 seconds, respectively, and the battery voltage at 5 seconds was measured. A straight line plotting the voltage against the current value is 2.
From the current value (Ia) reaching 7 V, the output ((W) = Ia)
× 2.7). The measurement was performed in an atmosphere of 25 ± 2 ° C. The output density is a value obtained by dividing the obtained output by the weight of the battery.

【0026】(試験結果及び評価)下表2に、X値を種
々変更したときの、各電池の出力密度(kW/dm
の算出結果を示す。
(Test Results and Evaluation) Table 2 below shows the output density (kW / dm 3 ) of each battery when the X value was variously changed.
The calculation results of are shown below.

【0027】[0027]

【表2】 [Table 2]

【0028】表2に示すように、X値を90〜110と
した実施例1〜実施例4の電池では、3.2kW/dm
以上の出力密度を得ることができた。これに対し、X
値が90〜110の範囲を外れた比較例1、比較例2の
電池では、大きな出力密度を得ることができない。従っ
て、入出力特性に優れる高出力密度の円筒形リチウム二
次電池を得るには、X値、すなわち、(電極の対向長さ
A)/(電極群Wの群径B)の値が90〜110の範囲
にある必要があることが判明する。
As shown in Table 2, the batteries of Examples 1 to 4 in which the X value was 90 to 110 were 3.2 kW / dm.
A power density of 3 or more could be obtained. In contrast, X
With the batteries of Comparative Examples 1 and 2 having values outside the range of 90 to 110, a large output density cannot be obtained. Therefore, in order to obtain a cylindrical lithium secondary battery having a high output density with excellent input / output characteristics, the X value, that is, the value of (electrode facing length A) / (electrode group W group diameter B) should be 90 to 90%. It turns out that it needs to be in the range of 110.

【0029】このように比較例1、2の電池の出力密度
が小さい原因は、X値が90より小さくなると、電極の
対向面積が小さくなるので、面積当たりの電流密度が上
昇して電池抵抗が増加し、逆にX値が110より大きく
なると、単位面積当たりの電流密度は小さくなるが、単
位面積当たりの活物質量が少なくなるので、活物質一つ
ひとつに掛かる負担が大きくなり、出力の低下を招くこ
とによる。
The reason why the output density of the batteries of Comparative Examples 1 and 2 is small is that when the X value is smaller than 90, the facing area of the electrodes is reduced, so that the current density per area is increased and the battery resistance is reduced. When the value X increases to more than 110, the current density per unit area decreases, but the amount of active material per unit area decreases. Therefore, the load on each active material increases, and the output decreases. By inviting.

【0030】本実施形態では、群径を38mmとした捲
回群Wを例示したが、群径は38mmに限らず、また、
電極の対向長さも例示した長さに限らず、上述したX値
が90〜110の範囲にあればよい。
In this embodiment, the wound group W having a group diameter of 38 mm has been exemplified. However, the group diameter is not limited to 38 mm.
The facing length of the electrodes is not limited to the illustrated length, and the X value described above may be in the range of 90 to 110.

【0031】また、本実施形態では、正極活物質として
マンガン酸リチウムを例示したが、リチウムイオンを挿
入、脱離可能なCo、Ni、Mo、V、Fe、Nbなど
の遷移金属酸化物であればよく、また、Mnも含めた複
合酸化物でもよい。更にに、結晶中のリチウムや金属イ
オンの位置にMg、Cr、Feなどの元素と置換あるい
はド−プした材料でもよい。
In this embodiment, lithium manganate is exemplified as the positive electrode active material. However, any transition metal oxide such as Co, Ni, Mo, V, Fe, Nb, into which lithium ions can be inserted and desorbed, can be used. It may be a composite oxide containing Mn. Further, a material in which the position of lithium or metal ion in the crystal is replaced or doped with an element such as Mg, Cr, or Fe may be used.

【0032】更に、本実施形態では、バインダとしてP
VDFを例示したが、例示した以外のバインダとして、
テフロン、ポリエチレン、ポリスチレン、ポリブタジエ
ン、ブチルゴム、ニトリルゴム、スチレン/ブタジエン
ゴム、多硫化ゴム、ニトロセルロース、シアノエチルセ
ルロース、各種ラテックス、アクリロニトリル、フッ化
ビニル、フッ化ビニリデン、フッ化プロピレン、フッ化
クロロプレン等の重合体及びこれらの混合体などを使用
するようにしてもよい。
Further, in this embodiment, P is used as the binder.
VDF is exemplified, but as a binder other than the exemplified,
Teflon, polyethylene, polystyrene, polybutadiene, butyl rubber, nitrile rubber, styrene / butadiene rubber, polysulfide rubber, nitrocellulose, cyanoethylcellulose, various latexes, acrylonitrile, vinyl fluoride, vinylidene fluoride, propylene fluoride, chloroprene fluoride, etc. A polymer and a mixture thereof may be used.

【0033】更にまた、本実施形態では、負極活物質に
非晶質炭素を用いたが、リチウムイオンを挿入、脱離可
能な黒鉛やその他の材料を使用するようにしてもよい。
Further, in this embodiment, amorphous carbon is used as the negative electrode active material, but graphite or other material into which lithium ions can be inserted and desorbed may be used.

【0034】[0034]

【発明の効果】以上説明したように、本発明によれば、
捲回群の群径に対する正極及び負極の対向長さの比を9
0以上110以下としたので、入出力特性に優れる高出
力密度の円筒形リチウム二次電池を得ることができる。
As described above, according to the present invention,
The ratio of the facing length of the positive electrode and the negative electrode to the group diameter of the wound group is 9
Since it is 0 or more and 110 or less, a cylindrical lithium secondary battery having high output density and excellent in input / output characteristics can be obtained.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明が適用可能な実施の形態の円筒形リチウ
ム二次電池の断面図である。
FIG. 1 is a cross-sectional view of a cylindrical lithium secondary battery according to an embodiment to which the present invention can be applied.

【符号の説明】[Explanation of symbols]

20 円筒形リチウムイオン電池(非水電解液二次電
池) W 捲回群 W1 正極集電体 W2 正極合剤 W3 負極集電体 W4 負極合剤 W5 セパレータ
Reference Signs List 20 cylindrical lithium ion battery (non-aqueous electrolyte secondary battery) W Winding group W1 Positive electrode current collector W2 Positive electrode mixture W3 Negative electrode current collector W4 Negative electrode mixture W5 Separator

───────────────────────────────────────────────────── フロントページの続き (72)発明者 鈴木 克典 東京都中央区日本橋本町二丁目8番7号 新神戸電機株式会社内 (72)発明者 弘中 健介 東京都中央区日本橋本町二丁目8番7号 新神戸電機株式会社内 Fターム(参考) 5H029 AJ01 AK03 AL06 AL07 AM03 AM05 AM07 BJ02 BJ14 CJ22 DJ04 DJ07 HJ03 HJ16  ──────────────────────────────────────────────────続 き Continuation of the front page (72) Katsunori Suzuki 2-8-7 Nihonbashi Honcho, Chuo-ku, Tokyo Inside Shin-Kobe Electric Machinery Co., Ltd. (72) Kensuke Hironaka 2-87 Nihonbashi Honcho 2-chome, Chuo-ku, Tokyo F-term (reference) in Shin-Kobe Electric Co., Ltd. 5H029 AJ01 AK03 AL06 AL07 AM03 AM05 AM07 BJ02 BJ14 CJ22 DJ04 DJ07 HJ03 HJ16

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 正極集電体の両面に正極活物質を含む正
極合剤が塗着された正極と、負極集電体の両面に充放電
によりリチウムイオンが挿脱可能な負極活物質を含む負
極合剤が塗着された負極と、を前記リチウムイオンが通
過可能なセパレータを介して捲回した捲回群を備える円
筒形リチウム二次電池において、前記捲回群の群径に対
する正極及び負極の対向長さの比が90以上110以下
であることを特徴とする円筒形リチウム二次電池。
1. A positive electrode in which a positive electrode mixture containing a positive electrode active material is applied to both surfaces of a positive electrode current collector, and a negative electrode active material into which lithium ions can be inserted and removed by charging and discharging on both surfaces of a negative electrode current collector. A negative electrode coated with a negative electrode mixture, and a cylindrical lithium secondary battery including a winding group wound through a separator through which the lithium ions can pass, wherein the positive electrode and the negative electrode with respect to the group diameter of the winding group Wherein the ratio of the opposing lengths is 90 or more and 110 or less.
【請求項2】 出力密度が3.2kW/dm以上であ
ることを特徴とする請求項1に記載の円筒形リチウム二
次電池。
2. The cylindrical lithium secondary battery according to claim 1, wherein the power density is 3.2 kW / dm 3 or more.
JP2000015184A 2000-01-25 2000-01-25 Cylindrical lithium secondary battery Pending JP2001210382A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2000015184A JP2001210382A (en) 2000-01-25 2000-01-25 Cylindrical lithium secondary battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000015184A JP2001210382A (en) 2000-01-25 2000-01-25 Cylindrical lithium secondary battery

Publications (1)

Publication Number Publication Date
JP2001210382A true JP2001210382A (en) 2001-08-03

Family

ID=18542519

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000015184A Pending JP2001210382A (en) 2000-01-25 2000-01-25 Cylindrical lithium secondary battery

Country Status (1)

Country Link
JP (1) JP2001210382A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011032873A (en) * 2009-07-29 2011-02-17 Nippon Pillar Packing Co Ltd Bellows pump

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011032873A (en) * 2009-07-29 2011-02-17 Nippon Pillar Packing Co Ltd Bellows pump

Similar Documents

Publication Publication Date Title
JP4688604B2 (en) Lithium ion battery
US20090286139A1 (en) Lithium secondary battery
JP4631234B2 (en) Cylindrical lithium-ion battery
JP2004319311A (en) Winding type cylindrical lithium ion battery
JP4752154B2 (en) Method for manufacturing lithium secondary battery
JP2001223029A (en) Nonaqueous electrolyte secondary battery
JP2002015774A (en) Nonaqueous electrolyte lithium secondary cell
JP3433695B2 (en) Cylindrical lithium-ion battery
JPH11126600A (en) Lithium ion secondary battery
JP4352654B2 (en) Non-aqueous electrolyte secondary battery
JP2010192185A (en) Lithium secondary cell and manufacturing method therefor
JP2002373701A (en) Method of manufacturing for nonaqueous electrolyte secondary battery
JP2000294229A (en) Nonaqueous electrolytic secondary battery
JP4365633B2 (en) Lithium secondary battery
JP4688527B2 (en) Lithium secondary battery
JP2005100955A (en) Winding type lithium ion battery
JP2001210383A (en) Nonaqueous electrolytic solution secondary battery
JP3624793B2 (en) Lithium ion battery
JP5433484B2 (en) Lithium ion secondary battery
JP2001210382A (en) Cylindrical lithium secondary battery
JP3783503B2 (en) Lithium secondary battery
JP5254910B2 (en) Lithium ion secondary battery
JP3518484B2 (en) Lithium ion battery
JP5165875B2 (en) Non-aqueous electrolyte battery
JP2002198101A (en) Nonaqueous electrolytic solution secondary battery