JP2001201236A - Refrigerator-freezer - Google Patents

Refrigerator-freezer

Info

Publication number
JP2001201236A
JP2001201236A JP2000008912A JP2000008912A JP2001201236A JP 2001201236 A JP2001201236 A JP 2001201236A JP 2000008912 A JP2000008912 A JP 2000008912A JP 2000008912 A JP2000008912 A JP 2000008912A JP 2001201236 A JP2001201236 A JP 2001201236A
Authority
JP
Japan
Prior art keywords
compression element
gas
temperature
valve
liquid separator
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2000008912A
Other languages
Japanese (ja)
Other versions
JP4240715B2 (en
Inventor
Hironari Akashi
浩業 明石
国新 ▲ゆ▼
Kokushin Yu
Kosuke Tsuboi
康祐 坪井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Refrigeration Co
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Refrigeration Co filed Critical Matsushita Refrigeration Co
Priority to JP2000008912A priority Critical patent/JP4240715B2/en
Publication of JP2001201236A publication Critical patent/JP2001201236A/en
Application granted granted Critical
Publication of JP4240715B2 publication Critical patent/JP4240715B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Abstract

PROBLEM TO BE SOLVED: To achieve lower power consumption by upgrading the total adiabatic efficiency of a compressor to improve an actual efficiency of the refrigeration cycle, concerning a refrigerator-freezer. SOLUTION: The refrigerator-freezer comprises first and second compression elements 16 and 17, a condenser 19, a first expansion device 20, an evaporator 21 for high temperature, a demister 22, a second expansion device 23 and an evaporator 24 for low temperature. Communication is conducted between the side of a liquid refrigerant outlet 25 of the demister 22 and the second expansion device 23, and between the side of a gas refrigerant outlet 26 of the demister 22 and the first compression element 16. As a result, a circuit for high temperature and a circuit for low temperature are formed as separate single stage compression cycle, and operation is made under appropriate pressure condtions that allow avoiding of an extreme low compression ratio, thereby improving the total adiabatic efficiency. This can improve actual efficiency of the refrigeration cycle, thereby reducing power consumption.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、2つの圧縮要素と
2つの蒸発器を備えた冷凍冷蔵装置に関するものであ
る。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a refrigerator having two compression elements and two evaporators.

【0002】[0002]

【従来の技術】近年、冷蔵室と冷凍室を備えた冷凍冷蔵
庫は、省エネルギーや各庫内の温度制御の精度向上が求
められている。その中で、2つの圧縮要素と2つの蒸発
器並びに気液分離器等を備え、二段圧縮冷凍サイクルを
形成して省エネルギー化を図る冷凍冷蔵庫用システムが
提案されている。
2. Description of the Related Art In recent years, a refrigerator having a refrigerator compartment and a freezer compartment has been required to save energy and improve the accuracy of temperature control in each compartment. Among them, a refrigerator-freezer system that includes two compression elements, two evaporators, a gas-liquid separator, and the like, and forms a two-stage compression refrigeration cycle to save energy has been proposed.

【0003】そのような冷凍冷蔵庫用システムとして、
例えばUSP4910972に示されているものがあ
る。
[0003] As such a refrigerator-freezer system,
For example, there is one shown in US Pat.

【0004】以下、図面を参照しながら上記従来の冷凍
冷蔵庫用システムを説明する。
Hereinafter, the above-described conventional refrigerator-freezer system will be described with reference to the drawings.

【0005】図5は従来の二段圧縮冷凍サイクルの冷媒
回路図である。図6は従来の二段圧縮冷凍サイクルに使
用される気液分離器の断面図である。
FIG. 5 is a refrigerant circuit diagram of a conventional two-stage compression refrigeration cycle. FIG. 6 is a sectional view of a gas-liquid separator used in a conventional two-stage compression refrigeration cycle.

【0006】図5、6において、1は第一膨張弁、2は
冷凍室用蒸発器、3は低段圧縮機、4は高段圧縮機、5
は凝縮器、6は第二膨張弁、7は冷蔵室用蒸発器であ
り、これらを順次配管8によって接続している。9は冷
蔵室用蒸発器7と第一膨張弁1の間に設けられ、低段圧
縮機3と高段圧縮機4の間の中間冷却を行う気液分離器
9であり、これらの各部品から冷凍室と冷蔵室を持つ冷
蔵庫用システムを形成している。気液分離器9は、本体
容器10とその上部に設けられた入口11、中間部に設
けられた出口12、下部に設けられた出口13、網14
から構成されている。気液分離器9の下部には冷媒が液
冷媒15として溜り、上部には冷媒が飽和ガスとして溜
まるようになっている。
5 and 6, reference numeral 1 denotes a first expansion valve, 2 denotes a freezer evaporator, 3 denotes a low-stage compressor, 4 denotes a high-stage compressor,
Denotes a condenser, 6 denotes a second expansion valve, and 7 denotes a refrigerator evaporator, which are sequentially connected by a pipe 8. Reference numeral 9 denotes a gas-liquid separator 9 which is provided between the refrigerator evaporator 7 and the first expansion valve 1 and performs intermediate cooling between the low-stage compressor 3 and the high-stage compressor 4. Has formed a refrigerator system with a freezer compartment and a refrigerator compartment. The gas-liquid separator 9 includes a main container 10 and an inlet 11 provided at an upper portion thereof, an outlet 12 provided at an intermediate portion, an outlet 13 provided at a lower portion, and a net 14.
It is composed of Refrigerant accumulates as a liquid refrigerant 15 in the lower part of the gas-liquid separator 9 and accumulates as a saturated gas in the upper part.

【0007】以上のように構成された冷凍冷蔵庫用シス
テムについて、以下その動作を説明する。
The operation of the refrigerator-freezer system configured as described above will be described below.

【0008】低段圧縮機3が運転されると、低段圧縮機
3は冷媒ガスを吸入して圧縮し、配管8に吐出する。低
段圧縮機3から配管8に吐出された冷媒ガスは、気液分
離器9の出口12からの冷媒ガスと混合して、高段圧縮
機4の吸入側から吸入され、再び圧縮される。高段圧縮
機4で圧縮された冷媒ガスは、配管8を介して凝縮器5
に送られる。凝縮器5で冷媒ガスは放熱して凝縮されて
液冷媒になった後、第二膨張弁6により減圧される。そ
して、冷蔵室用蒸発器7に流入し、一部はそこで蒸発す
る。このときに周囲から熱を奪うことによって冷蔵室用
蒸発器7は冷却作用を発揮し、冷蔵室を冷却する。そし
て、冷蔵室用蒸発器7を出た気液二相の冷媒は入口11
から気液分離器9に流入し、網14で固形の不純物が取
り除かれる。そして、気液分離器9内底部には液冷媒1
5が貯溜され、気液分離器9内上部には飽和ガス冷媒が
溜まり、気相と液相が分離される。そして、気液分離器
9の出口13からは液冷媒のみが第一膨張弁1方向に流
出し、そこで減圧されて冷凍室用蒸発器2に流入して蒸
発する。このときに周囲から熱を奪うことによって冷凍
室用蒸発器2は冷却作用を発揮し、冷凍室を冷却する。
そして、冷凍室用蒸発器2を出た低温ガス冷媒は、再び
低段圧縮機3に吸入される。
When the low-stage compressor 3 is operated, the low-stage compressor 3 sucks and compresses the refrigerant gas and discharges it to the pipe 8. The refrigerant gas discharged from the low-stage compressor 3 to the pipe 8 is mixed with the refrigerant gas from the outlet 12 of the gas-liquid separator 9, sucked from the suction side of the high-stage compressor 4, and compressed again. The refrigerant gas compressed by the high-stage compressor 4 is passed through a pipe 8 to a condenser 5.
Sent to The refrigerant gas radiates heat in the condenser 5 to be condensed into liquid refrigerant, and then decompressed by the second expansion valve 6. And it flows into the refrigerator evaporator 7, and a part evaporates there. At this time, the refrigerator evaporator 7 exerts a cooling effect by removing heat from the surroundings, and cools the refrigerator. The gas-liquid two-phase refrigerant that has exited the refrigerator evaporator 7 is supplied to the inlet 11.
The gas flows into the gas-liquid separator 9 and solid impurities are removed by the net 14. The liquid refrigerant 1 is provided at the bottom of the gas-liquid separator 9.
5 is stored, and a saturated gas refrigerant is stored in the upper part of the gas-liquid separator 9 to separate a gaseous phase and a liquid phase. Then, only the liquid refrigerant flows out from the outlet 13 of the gas-liquid separator 9 in the direction of the first expansion valve 1, where it is decompressed, flows into the freezer compartment evaporator 2, and evaporates. At this time, by removing heat from the surroundings, the freezing room evaporator 2 exerts a cooling action, and cools the freezing room.
Then, the low-temperature gas refrigerant that has exited the freezer evaporator 2 is sucked into the low-stage compressor 3 again.

【0009】一方、気液分離器9内上部の飽和ガス冷媒
は出口12から流出し、低段圧縮機3から吐出された冷
媒ガスと混合して高段圧縮機4が吸入する冷媒ガスの温
度を下げ、効率を向上することができる。また、高段圧
縮機4の吐出ガスの温度も低くなるため、圧縮機の過熱
を防止でき、潤滑油の粘度低下による潤滑不良や潤滑油
の劣化を防止できる。
On the other hand, the saturated gas refrigerant in the upper part of the gas-liquid separator 9 flows out of the outlet 12 and mixes with the refrigerant gas discharged from the low-stage compressor 3, and the temperature of the refrigerant gas sucked by the high-stage compressor 4 And efficiency can be improved. Further, since the temperature of the discharge gas of the high-stage compressor 4 is also reduced, overheating of the compressor can be prevented, and poor lubrication and deterioration of the lubricating oil due to a decrease in the viscosity of the lubricating oil can be prevented.

【0010】このように二段圧縮冷凍サイクルは、一段
圧縮冷凍サイクルよりも理論上の効率が向上し、圧縮機
の信頼性が向上する。
As described above, the two-stage compression refrigeration cycle has a higher theoretical efficiency than the one-stage compression refrigeration cycle, and the reliability of the compressor is improved.

【0011】[0011]

【発明が解決しようとする課題】しかしながら上記従来
の構成では、低段圧縮機3は圧縮比が小さいために理論
圧縮動力は小さいが、実際に必要となる軸動力は、低段
圧縮機3で固定的に発生する摺動損失等のためにかなり
大きくなる。すなわち、軸動力に対する理論圧縮動力の
比である全断熱効率が悪くなるため、実際の冷凍サイク
ルの効率は理論的な冷凍サイクルの効率よりもかなり悪
くなる可能性があるという欠点があった。
However, in the above-mentioned conventional configuration, the low-stage compressor 3 has a small compression ratio and therefore a small theoretical compression power, but the shaft power actually required is low. It becomes considerably large due to sliding loss and the like that occur fixedly. That is, since the total adiabatic efficiency, which is the ratio of the theoretical compression power to the shaft power, is deteriorated, the efficiency of the actual refrigeration cycle may be considerably lower than the efficiency of the theoretical refrigeration cycle.

【0012】本発明は従来の課題を解決するもので、圧
縮機の全断熱効率を向上させて、実際の冷凍サイクルの
効率を向上させ、消費電力が少なく、効率の高い冷凍冷
蔵装置を提供することを目的とする。
SUMMARY OF THE INVENTION The present invention solves the conventional problems, and provides a refrigeration apparatus that improves the overall adiabatic efficiency of a compressor, improves the efficiency of an actual refrigeration cycle, consumes less power, and has high efficiency. The purpose is to:

【0013】また、上記従来の構成は、サイクルを循環
する冷媒は、冷蔵室を冷却してから冷凍室を冷却する順
番になるため、冷凍室と冷蔵室の冷却負荷のバランスが
変わったとき、特に冷凍室の冷却負荷が増えたときに冷
凍室は冷凍能力不足になると共に、冷凍サイクルの効率
が悪くなる可能性があるという欠点があった。
Further, in the above-mentioned conventional configuration, since the refrigerant circulating in the cycle is in the order of cooling the refrigerator compartment and then cooling the refrigerator compartment, when the balance of the cooling load between the refrigerator compartment and the refrigerator compartment changes, In particular, when the cooling load of the freezing compartment increases, the freezing compartment becomes insufficient in refrigeration capacity, and the efficiency of the refrigeration cycle may deteriorate.

【0014】本発明の他の目的は、冷凍冷蔵装置の冷凍
室と冷蔵室などの異なる温度帯の庫内のどちらか一方が
冷凍能力不足になったり、冷凍能力過剰になること無
く、各庫内を適正に冷却でき、かつ高効率で消費電力の
少ない冷凍冷蔵装置を提供することである。また、上記
従来の構成は、冷凍室用蒸発器2あるいは冷蔵室用蒸発
器7の片方だけの冷却ができないため、蒸発器の性能低
下を防止するための霜取りを行うとき、冷凍室と冷蔵室
の両冷却を停止しなければならず、その霜取りを行う間
に各庫内の温度が上昇してしまう可能性があるという欠
点があった。本発明の他の目的は、高温用(冷蔵室用)
蒸発器あるいは低温用(冷凍室用)蒸発器の霜取りを行
うときに片側のみの冷却を停止して庫内温度の上昇を防
止することができる冷凍冷蔵装置を提供することであ
る。また、上記従来の構成は、低段側圧縮機3と高段側
圧縮機4が直列接続であるため、並列接続を行う同一サ
イズの圧縮機と比べ圧縮機最大能力が小さくなり、ドア
の開閉や庫内に入れる食品の違いによる冷凍室、あるい
は冷蔵室庫内の冷却負荷が著しく増大したときに対応で
きず庫内各部の温度が不均一になったり、庫内温度が上
昇してしまう可能性があるという欠点があった。
Another object of the present invention is to provide a freezing and refrigerating apparatus in which each of the freezing compartments in different temperature zones, such as a freezing compartment and a refrigerating compartment, does not have insufficient refrigeration capacity or excessive freezing capacity. It is an object of the present invention to provide a refrigerating / refrigerating apparatus which can appropriately cool the inside of the apparatus, and which has high efficiency and low power consumption. Further, in the above-described conventional configuration, only one of the freezer evaporator 2 and the refrigerator compartment evaporator 7 cannot be cooled. Therefore, when performing defrosting to prevent the performance of the evaporator from deteriorating, the freezer compartment and the refrigerating compartment are not used. However, there is a disadvantage that the temperatures in the respective compartments may increase during the defrosting. Another object of the present invention is for high temperature (for cold room)
An object of the present invention is to provide a refrigerating and refrigerating apparatus that can stop cooling on only one side when defrosting an evaporator or a low-temperature (for a freezing room) evaporator and prevent a rise in the internal temperature of the refrigerator. Further, in the above-described conventional configuration, since the low-stage compressor 3 and the high-stage compressor 4 are connected in series, the maximum compressor capacity is reduced as compared with a compressor of the same size which is connected in parallel, and the door is opened and closed. It is not possible to cope when the cooling load in the freezer compartment or the refrigerator compartment due to the difference in the food put in the refrigerator or in the refrigerator compartment increases, and the temperature of each part in the refrigerator becomes uneven or the temperature in the refrigerator rises There was a drawback that there is.

【0015】本発明の他の目的は、冷凍室、冷蔵室庫内
の冷却負荷の変化に対応し庫内各部の温度の均一化が図
れ、更に冷凍室と冷蔵室の冷却負荷の著しい増大への対
応と、急速冷却を行うことのできる効率的な冷凍冷蔵装
置を提供することである。
Another object of the present invention is to make the temperature of each part of the freezer compartment and the refrigerator compartment uniform in response to the change of the cooling load in the refrigerator compartment, and to further increase the cooling load of the freezer compartment and the refrigerator compartment. And an efficient refrigeration apparatus capable of rapid cooling.

【0016】[0016]

【課題を解決するための手段】この目的を達成するため
に本発明は、第一圧縮要素と、第二圧縮要素と、前記第
一圧縮要素の吐出側並びに前記第二圧縮要素の吐出側と
共に配管接続した凝縮器と、前記凝縮器の出口側と配管
接続した第一膨張装置と、前記第一膨張装置の出口側に
配管接続した高温用蒸発器と、前記高温用蒸発器と前記
第一圧縮要素の吸入側との間に配管接続した気液分離器
と、前記気液分離器と配管接続した第二膨張装置と、前
記第二膨張装置と前記第二圧縮要素の吸入側との間に配
管接続した低温用蒸発器とからなり、前記気液分離器の
液冷媒出口側と第二膨張装置とが連通し、前記気液分離
器のガス冷媒出口側と前記第一圧縮要素とが連通した構
成としたのである。
In order to achieve this object, the present invention provides a first compression element, a second compression element, a discharge side of the first compression element and a discharge side of the second compression element. A condenser connected to the pipe, a first expansion device connected to the outlet side of the condenser, a high-temperature evaporator connected to the outlet side of the first expansion device, the high-temperature evaporator, and the first evaporator; A gas-liquid separator connected to the suction side of the compression element by a pipe, a second expansion device connected to the gas-liquid separator by a pipe, and a connection between the second expansion device and the suction side of the second compression element. A liquid refrigerant outlet side of the gas-liquid separator and the second expansion device communicate with each other, and the gas refrigerant outlet side of the gas-liquid separator and the first compression element It was a communication structure.

【0017】これにより、圧縮機の全断熱効率を向上さ
せて、実際の冷凍サイクルの効率を向上させ、消費電力
が少なく、効率の高い冷凍冷蔵装置を提供することがで
きる。
As a result, the overall adiabatic efficiency of the compressor can be improved, the efficiency of the actual refrigeration cycle can be improved, and a refrigeration apparatus with low power consumption and high efficiency can be provided.

【0018】また、本発明は、高温用蒸発器の入口側と
出口側とを連通する第一バイパス通路と、前記第一バイ
パス通路に設けられた第一開閉弁とを備えた構成とした
のである。
Further, the present invention has a configuration in which a first bypass passage communicating the inlet side and the outlet side of the high-temperature evaporator is provided, and a first on-off valve provided in the first bypass passage. is there.

【0019】これにより、冷凍冷蔵装置の冷凍室と冷蔵
室などの異なる温度帯の庫内のどちらか一方が冷凍能力
不足になったり、冷凍能力過剰になること無く、各庫内
を適正に冷却でき、かつ高効率で消費電力の少ない冷凍
冷蔵装置を提供することができる。
Thus, the inside of each refrigerator can be properly cooled without any shortage of freezing capacity or excessive freezing capacity in one of the refrigerators of different temperature zones such as the freezing room and the refrigerator room of the freezing and refrigerating apparatus. It is possible to provide a refrigerating / refrigerating apparatus which can be made highly efficient and consumes less power.

【0020】また、本発明は、第一バイパス通路の分岐
点と高温用蒸発器との間に設けられた第二開閉弁と、気
液分離器と第二圧縮要素の吸入側との間に設けられた第
三開閉弁とを備えた構成としたのである。
The present invention also relates to a second opening / closing valve provided between the branch point of the first bypass passage and the high-temperature evaporator, and between the gas-liquid separator and the suction side of the second compression element. The configuration includes the third on-off valve provided.

【0021】これにより、高温用蒸発器あるいは低温用
蒸発器の霜取りを行うときに片側のみの冷却を停止して
庫内温度の上昇を防止することができる冷凍冷蔵装置を
提供することができる。
Thus, it is possible to provide a refrigerating and refrigerating apparatus capable of stopping the cooling of only one side when defrosting the high-temperature evaporator or the low-temperature evaporator and preventing the internal temperature from rising.

【0022】また、本発明は、第一圧縮要素の吸入側と
第二圧縮要素の吸入側とを連通する第二バイパス通路
と、前記第二バイパス通路に設けられた第四開閉弁と、
前記第一圧縮要素と気液分離器との間に設けられた第五
開閉弁とを備えた構成としたのである。
The present invention also provides a second bypass passage communicating the suction side of the first compression element and the suction side of the second compression element, a fourth on-off valve provided in the second bypass passage,
A fifth on-off valve provided between the first compression element and the gas-liquid separator is provided.

【0023】これにより、冷凍室、冷蔵室庫内の冷却負
荷の変化に対応し庫内各部の温度の均一化が図れ、更に
冷凍室と冷蔵室の冷却負荷の著しい増大への対応と、急
速冷却を行うことのできる効率的な冷凍冷蔵装置を提供
することができる。
This makes it possible to equalize the temperature of each part in the refrigerator in response to a change in the cooling load in the freezer compartment and the refrigerator compartment, and to cope with a remarkable increase in the cooling load in the freezer compartment and the refrigerator compartment. It is possible to provide an efficient freezing and refrigeration device capable of performing cooling.

【0024】[0024]

【発明の実施の形態】本発明の請求項1に記載の発明
は、第一圧縮要素と、第二圧縮要素と、前記第一圧縮要
素の吐出側並びに前記第二圧縮要素の吐出側と共に配管
接続した凝縮器と、前記凝縮器の出口側と配管接続した
第一膨張装置と、前記第一膨張装置の出口側に配管接続
した高温用蒸発器と、前記高温用蒸発器と前記第一圧縮
要素の吸入側との間に配管接続した気液分離器と、前記
気液分離器と配管接続した第二膨張装置と、前記第二膨
張装置と前記第二圧縮要素の吸入側との間に配管接続し
た低温用蒸発器とからなり、前記気液分離器の液冷媒出
口側と第二膨張装置とが連通し、前記気液分離器のガス
冷媒出口側と前記第一圧縮要素とが連通した構成とした
ものであり、高温用回路と低温用回路をそれぞれ別々の
一段圧縮サイクルとして形成し、極端な低圧縮比になら
ない適正な圧力条件で運転することにより、全断熱効率
が悪くなることを防止できる。従って、実際の冷凍サイ
クルの効率を向上させ、消費電力を少なくできるという
作用を有する。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS The invention according to claim 1 of the present invention is directed to a first compression element, a second compression element, a piping together with a discharge side of the first compression element and a discharge side of the second compression element. A condenser connected, a first expansion device connected to the outlet side of the condenser by piping, a high-temperature evaporator connected to the outlet side of the first expansion device, a high-temperature evaporator, and the first compression unit. A gas-liquid separator pipe-connected to the suction side of the element, a second expansion device pipe-connected to the gas-liquid separator, and between the second expansion device and the suction side of the second compression element. A low-temperature evaporator connected to a pipe, the liquid refrigerant outlet side of the gas-liquid separator communicates with the second expansion device, and the gas refrigerant outlet side of the gas-liquid separator communicates with the first compression element. The circuit for high temperature and the circuit for low temperature have separate single-stage compression cycles, respectively. Forming Te, by operating under appropriate pressure conditions as not to extremely low compression ratio, it is possible to prevent the overall adiabatic efficiency. Therefore, there is an effect that the efficiency of the actual refrigeration cycle can be improved and the power consumption can be reduced.

【0025】請求項2に記載の発明は、請求項1に記載
の発明に、さらに、高温用蒸発器の入口側と出口側とを
連通する第一バイパス通路と、前記第一バイパス通路に
設けられた第一開閉弁とを備えた構成としたものであ
り、請求項1に記載の発明の作用に加えて、冷凍室と冷
蔵室などの異なる温度帯の庫内うち低温側の冷却負荷が
相対的に大きくなったとき、第一開閉弁を開けることに
より、冷媒は高温用蒸発器よりも第一バイパス通路を主
に流れて、その冷却能力を冷凍室側(低温側)の低温用
蒸発器で主に発揮することになる。従って、冷凍室と冷
蔵室などの冷却負荷のアンバランスに対応できるため、
どちらか一方が冷凍能力不足になったり、冷凍能力過剰
になること無く、各庫内を適正に冷却でき、かつ高効率
で消費電力を少なくできるという作用を有する。
According to a second aspect of the present invention, in addition to the first aspect, a first bypass passage communicating the inlet side and the outlet side of the high-temperature evaporator is provided, and the first bypass passage is provided in the first bypass passage. In addition to the operation of the invention according to claim 1, the cooling load on the low-temperature side in the refrigerators of different temperature zones, such as a freezing room and a refrigerator room, is provided. When the pressure becomes relatively large, the first on-off valve is opened, so that the refrigerant mainly flows through the first bypass passage rather than the high-temperature evaporator, and the cooling capacity is reduced by the low-temperature evaporation on the freezer compartment side (low-temperature side). It will be mainly demonstrated in a container. Therefore, it is possible to cope with the imbalance between the cooling loads of the freezing room and the refrigeration room.
It is possible to appropriately cool the inside of each refrigerator, and to reduce the power consumption with high efficiency, without causing either one of the refrigeration capacity to be insufficient or the refrigeration capacity to be excessive.

【0026】請求項3に記載の発明は、請求項1あるい
は請求項2に記載の発明に、さらに、第一バイパス通路
の分岐点と高温用蒸発器との間に設けられた第二開閉弁
と、気液分離器と第二圧縮要素の吸入側との間に設けら
れた第三開閉弁とを備えた構成としたものであり、請求
項1あるいは請求項2に記載の発明の作用に加えて、第
一開閉弁、第三開閉弁を開け、第二開閉弁を閉じること
により、冷媒は高温用蒸発器側には流れず第一バイパス
通路に流れて、その冷却能力を冷凍室側(低温側)の低
温用蒸発器のみに発揮することになる。従って、冷凍室
と冷蔵室の冷却負荷の大きなアンバランスに対応でき、
さらに、低温用蒸発器で冷却作用を行いながら、冷却作
用が停止している高温用蒸発器の霜取りを行うことがで
きる。また、第二開閉弁を開け、第一開閉弁、第三開閉
弁を閉じることにより、冷媒は高温用蒸発器を通り気液
分離器に流入した後、低温用蒸発器側には流れず第一圧
縮要素に吸入されるため、その冷却能力を冷蔵室側(高
温側)の高温用蒸発器のみに発揮することになる。従っ
て、冷凍室と冷蔵室の冷却負荷の大きなアンバランスに
対応でき、さらに、高温用蒸発器で冷却作用を行いなが
ら、冷却作用が停止している低温用蒸発器の霜取りを行
うことができるという作用を有する。
According to a third aspect of the present invention, in addition to the first or second aspect, a second on-off valve provided between a branch point of the first bypass passage and the high-temperature evaporator. And a third on-off valve provided between the gas-liquid separator and the suction side of the second compression element, and the function of the invention according to claim 1 or 2 is provided. In addition, by opening the first and third on-off valves and the third on-off valve and closing the second on-off valve, the refrigerant does not flow to the high-temperature evaporator side but flows to the first bypass passage, and its cooling capacity is reduced to the freezing room side. (Low temperature side) Only the low temperature evaporator is exhibited. Therefore, it is possible to cope with a large imbalance in the cooling load between the freezing compartment and the refrigerator compartment,
Further, while performing the cooling operation by the low-temperature evaporator, the high-temperature evaporator in which the cooling operation is stopped can be defrosted. Further, by opening the second on-off valve and closing the first on-off valve and the third on-off valve, the refrigerant flows into the gas-liquid separator through the high-temperature evaporator, and then does not flow to the low-temperature evaporator side. Since it is sucked into one compression element, its cooling capacity is exerted only on the high-temperature evaporator on the refrigerator compartment side (high-temperature side). Therefore, it is possible to cope with a large imbalance in the cooling load between the freezing compartment and the refrigerating compartment, and it is possible to perform defrosting on the low-temperature evaporator in which the cooling operation is stopped while performing the cooling operation with the high-temperature evaporator. Has an action.

【0027】請求項4に記載の発明は、請求項1あるい
は請求項2あるいは請求項3に記載の発明に、さらに、
第一圧縮要素の吸入側と第二圧縮要素の吸入側とを連通
する第二バイパス通路と、前記第二バイパス通路に設け
られた第四開閉弁と、前記第一圧縮要素と気液分離器と
の間に設けられた第五開閉弁とを備えた構成としたもの
であり、請求項1あるいは請求項2あるいは請求項3に
記載の発明の作用に加えて、第四開閉弁、第五開閉弁を
開けることにより、第一圧縮要素と第二圧縮要素の吸入
側が連通して二気筒並列の一段圧縮運転となり、冷媒は
高温用蒸発器で冷却作用を発揮した後、低温用蒸発器側
には流れず第一圧縮要素並びに第二圧縮要素に吸入され
るため、冷蔵室側(高温側)の急冷運転となる。また、
第一開閉弁、第四開閉弁を開け、第五開閉弁を閉めるこ
とにより、第一圧縮要素と第二圧縮要素の吸入側が連通
して二気筒並列の一段圧縮運転となり、冷媒は高温用蒸
発器側には流れず第一バイパス通路に流れて、その冷却
能力を冷凍室側(低温側)の低温用蒸発器のみに発揮す
ることになるため、冷凍室側の急冷運転となる。すなわ
ち、冷凍室、冷蔵室庫内の冷却負荷の変化に対応し庫内
各部の温度の均一化が図れ、更に冷凍室と冷蔵室の冷却
負荷の著しい増大への対応と、急速冷却を行うことがで
きるという作用を有する。
The invention described in claim 4 is the same as the invention described in claim 1, 2 or 3,
A second bypass passage communicating between the suction side of the first compression element and the suction side of the second compression element, a fourth on-off valve provided in the second bypass passage, the first compression element and the gas-liquid separator And a fifth on-off valve provided between the fourth and fifth on-off valves, the fifth on-off valve, the fifth on-off valve and the fifth on-off valve. By opening the on-off valve, the first compression element and the suction side of the second compression element communicate with each other to perform two-stage parallel single-stage compression operation.The refrigerant exerts a cooling action in the high-temperature evaporator, and then the low-temperature evaporator side. , And is sucked into the first compression element and the second compression element, so that the refrigeration compartment side (high temperature side) is rapidly cooled. Also,
By opening the first and fourth on-off valves and the fourth on-off valve and closing the fifth on-off valve, the suction side of the first compression element and the second compression element communicate with each other to perform two-cylinder parallel single-stage compression operation, and the refrigerant evaporates for high temperature. It does not flow to the cooler side, but flows to the first bypass passage, and its cooling capacity is exhibited only to the low-temperature evaporator on the freezer compartment side (low-temperature side). Therefore, rapid cooling operation on the freezer compartment side is performed. That is, the temperature of each part in the freezer compartment and the refrigerator compartment can be made uniform in response to changes in the cooling load in the refrigerator compartment, and the cooling load in the freezer compartment and the refrigerator compartment can be significantly increased and rapid cooling can be performed. It has the effect of being able to.

【0028】[0028]

【実施例】以下、本発明による冷凍冷蔵装置の実施例に
ついて、図面を参照しながら説明する。尚、従来と同一
構成については、同一符号を付して詳細な説明を省略す
る。
BRIEF DESCRIPTION OF THE DRAWINGS FIG. 1 is a perspective view of a refrigerator according to the present invention. The same components as those of the related art are denoted by the same reference numerals, and detailed description is omitted.

【0029】(実施例1)図1は本発明の実施例1によ
る冷凍冷蔵装置の冷媒回路図を示す。図2は同実施例の
冷凍冷蔵装置における冷凍サイクルの圧力−エンタルピ
線図である。
(Embodiment 1) FIG. 1 shows a refrigerant circuit diagram of a refrigeration apparatus according to Embodiment 1 of the present invention. FIG. 2 is a pressure-enthalpy diagram of a refrigeration cycle in the refrigeration apparatus of the embodiment.

【0030】図1、図2において、16は第一圧縮要
素、17は第二圧縮要素であり、第一圧縮要素16並び
に第二圧縮要素17は密閉容器18内に収納されてい
る。19は第一圧縮要素16の吐出側並びに第二圧縮要
素17の吐出側と共に配管接続した凝縮器である。20
は凝縮器19の出口側と配管接続した第一膨張装置、2
1は第一膨張装置20の出口側に配管接続した高温用蒸
発器である。22は高温用蒸発器21と第一圧縮要素1
6の吸入側との間に配管接続した気液分離器であり、2
3は気液分離器22と配管接続した第二膨張装置でり、
24は第二膨張装置23と第二圧縮要素17の吸入側と
の間に配管接続した低温用蒸発器である。気液分離器2
2の液冷媒出口25側と第二膨張装置23とが連通し、
気液分離器22のガス冷媒出口26側と第一圧縮要素1
6とが連通した構成となっている。
1 and 2, reference numeral 16 denotes a first compression element, 17 denotes a second compression element, and the first compression element 16 and the second compression element 17 are housed in a closed container 18. Reference numeral 19 denotes a condenser connected to the discharge side of the first compression element 16 and the discharge side of the second compression element 17 by piping. 20
Is a first expansion device connected to the outlet side of the condenser 19 by piping,
Reference numeral 1 denotes a high-temperature evaporator connected to the outlet of the first expansion device 20 by piping. 22 is a high-temperature evaporator 21 and the first compression element 1
6 is a gas-liquid separator connected to the suction side of 6
3 is a second expansion device connected to the gas-liquid separator 22 by piping,
Reference numeral 24 denotes a low-temperature evaporator connected to a pipe between the second expansion device 23 and the suction side of the second compression element 17. Gas-liquid separator 2
2, the liquid refrigerant outlet 25 side communicates with the second expansion device 23,
The gas refrigerant outlet 26 side of the gas-liquid separator 22 and the first compression element 1
6 communicate with each other.

【0031】以上のように構成された冷凍冷蔵装置につ
いて、以下その動作を説明する。
The operation of the refrigeration apparatus having the above-described configuration will be described below.

【0032】第一圧縮要素16、第二圧縮要素17が運
転されると、それらは冷媒ガスを吸入して圧縮し、配管
を介して凝縮器19に送られる。凝縮器19で冷媒ガス
は放熱して凝縮されて液冷媒になった後、第一膨張弁2
0により減圧される。そして、高温用蒸発器21に流入
し、一部はそこで蒸発する。このときに周囲から熱を奪
うことによって高温用蒸発器21は冷却作用を発揮し、
冷蔵室等の高温側の庫内を冷却する。そして、高温用蒸
発器21を出た気液二相の冷媒は気液分離器22内に流
入し、気液分離器22内底部には液冷媒が貯溜され、気
液分離器22内上部には飽和ガス冷媒が溜まり、気相と
液相が分離される。そして、気液分離器22の液冷媒出
口25からは液冷媒のみが第二膨張装置23方向に流出
し、そこで減圧されて低温用蒸発器24に流入して蒸発
する。このときに周囲から熱を奪うことによって低温用
蒸発器24は冷却作用を発揮し、冷凍室等の低温側の庫
内を冷却する。そして、低温蒸発器24を出た低温ガス
冷媒は、再び第二圧縮要素17に吸入される。一方、気
液分離器22内上部の飽和ガス冷媒はガス冷媒出口26
から流出し、再び第二圧縮要素16に吸入される。
When the first compression element 16 and the second compression element 17 are operated, they inhale and compress the refrigerant gas and are sent to the condenser 19 via the pipe. The refrigerant gas radiates heat in the condenser 19 and is condensed into liquid refrigerant.
The pressure is reduced by 0. Then, it flows into the high-temperature evaporator 21 and a part thereof is evaporated there. At this time, by removing heat from the surroundings, the high-temperature evaporator 21 exhibits a cooling action,
The inside of the refrigerator on the high-temperature side such as a refrigerator compartment is cooled. The gas-liquid two-phase refrigerant that has exited the high-temperature evaporator 21 flows into the gas-liquid separator 22, where the liquid refrigerant is stored at the bottom of the gas-liquid separator 22, and is stored at the upper part of the gas-liquid separator 22. The saturated gas refrigerant accumulates, and the gas phase and the liquid phase are separated. Then, only the liquid refrigerant flows out from the liquid refrigerant outlet 25 of the gas-liquid separator 22 in the direction of the second expansion device 23, where the pressure is reduced and flows into the low-temperature evaporator 24 to evaporate. At this time, by removing heat from the surroundings, the low-temperature evaporator 24 exhibits a cooling effect, and cools the inside of the refrigerator on the low-temperature side such as a freezing room. Then, the low-temperature gas refrigerant that has exited the low-temperature evaporator 24 is sucked into the second compression element 17 again. On the other hand, the saturated gas refrigerant in the upper part of the gas-liquid separator 22 is supplied to the gas refrigerant outlet 26.
And is sucked into the second compression element 16 again.

【0033】このように、高温用回路と低温用回路をそ
れぞれ別々の一段圧縮サイクルとして形成し、二段圧縮
のような極端な低圧縮比にならない適正な圧力条件で運
転することにより、全断熱効率が悪くなることを防止で
きる。従って、実際の冷凍サイクルの効率を向上させ、
消費電力を少なくできる。
As described above, the high-temperature circuit and the low-temperature circuit are formed as separate single-stage compression cycles, and are operated under appropriate pressure conditions such as two-stage compression that does not result in an extremely low compression ratio. Efficiency can be prevented from becoming worse. Therefore, the efficiency of the actual refrigeration cycle is improved,
Power consumption can be reduced.

【0034】以上のように本実施例の冷凍冷蔵装置は、
第一圧縮要素16と、第二圧縮要素17と、第一圧縮要
素16の吐出側並びに第二圧縮要素17の吐出側と共に
配管接続した凝縮器19と、凝縮器19の出口側と配管
接続した第一膨張装置20と、第一膨張装置20の出口
側に配管接続した高温用蒸発器21と、高温用蒸発器2
1と第一圧縮要素16の吸入側との間に配管接続した気
液分離器22と、気液分離器22と配管接続した第二膨
張装置23と、第二膨張装置23と第二圧縮要素17の
吸入側との間に配管接続した低温用蒸発器24とからな
り、気液分離器22の液冷媒出口25側と第二膨張装置
23とが連通し、気液分離器22のガス冷媒出口26側
と第一圧縮要素16とが連通した構成となっているの
で、高温用回路と低温用回路をそれぞれ別々の一段圧縮
サイクルとして形成し、二段圧縮のような極端な低圧縮
比にならない適正な圧力条件で運転することにより、全
断熱効率が悪くなることを防止できる。従って、実際の
冷凍サイクルの効率を向上させ、消費電力を少なくでき
る。
As described above, the freezing and refrigeration apparatus of this embodiment is
The first compression element 16, the second compression element 17, a condenser 19 connected to the discharge side of the first compression element 16 and the discharge side of the second compression element 17, and a pipe connection to an outlet side of the condenser 19. A first expansion device 20, a high-temperature evaporator 21 connected to the outlet side of the first expansion device 20 by piping, and a high-temperature evaporator 2
, A gas-liquid separator 22 connected to the suction side of the first compression element 16, a second expansion device 23 connected to the gas-liquid separator 22 by piping, a second expansion device 23, and a second compression element. 17 is connected to the liquid refrigerant outlet 25 of the gas-liquid separator 22 and the second expansion device 23, and the gas refrigerant of the gas-liquid separator 22 is connected to the low-temperature evaporator 24. Since the outlet 26 side and the first compression element 16 are configured to communicate with each other, the high-temperature circuit and the low-temperature circuit are formed as separate single-stage compression cycles, respectively, to achieve an extremely low compression ratio such as two-stage compression. By operating under an appropriate pressure condition, the total adiabatic efficiency can be prevented from deteriorating. Therefore, the efficiency of the actual refrigeration cycle can be improved, and the power consumption can be reduced.

【0035】(実施例2)図3は本発明の実施例2によ
る冷凍冷蔵装置の冷媒回路図を示す。
(Embodiment 2) FIG. 3 shows a refrigerant circuit diagram of a refrigeration apparatus according to Embodiment 2 of the present invention.

【0036】以下、図面を参照しながら説明するが、実
施例1と同一構成については、同一符号を付して詳細な
説明を省略する。 図3において、27は高温用蒸発器
19の入口側と出口側とを連通する第一バイパス通路で
あり、28は第一バイパス通路27に設けられた第一開
閉弁である。29は第一バイパス通路27の分岐点と高
温用蒸発器21との間に設けられた第二開閉弁であり、
30は気液分離器22と第二圧縮要素16の吸入側との
間に設けられた第三開閉弁である。
Hereinafter, description will be made with reference to the drawings. However, the same components as those in the first embodiment are denoted by the same reference numerals, and detailed description is omitted. In FIG. 3, reference numeral 27 denotes a first bypass passage connecting the inlet side and the outlet side of the high-temperature evaporator 19, and reference numeral 28 denotes a first on-off valve provided in the first bypass passage 27. 29 is a second on-off valve provided between the branch point of the first bypass passage 27 and the high-temperature evaporator 21;
Reference numeral 30 denotes a third on-off valve provided between the gas-liquid separator 22 and the suction side of the second compression element 16.

【0037】以上のように構成された冷凍冷蔵装置につ
いて、以下その動作を説明する。
The operation of the refrigeration apparatus having the above-described structure will be described below.

【0038】第一開閉弁28を閉じ、第二開閉弁29、
第三開閉弁30を開けて第一圧縮要素16、第二圧縮要
素17を運転すると実施例1と同じ冷凍サイクルが形成
されて、同じ効果が得られる。
The first on-off valve 28 is closed, and the second on-off valve 29,
When the third on-off valve 30 is opened and the first compression element 16 and the second compression element 17 are operated, the same refrigeration cycle as in the first embodiment is formed, and the same effect is obtained.

【0039】この状態から、冷凍室と冷蔵室などの異な
る温度帯の庫内うち低温側の冷却負荷が相対的に大きく
なったとき、第一開閉弁28を開けることにより、冷媒
は高温用蒸発器21よりも第一バイパス通路28を主に
流れて、その冷却能力を冷凍室側(低温側)の低温用蒸
発器24で主に発揮することになる。従って、冷凍室と
冷蔵室の冷却負荷のアンバランスに対応できるため、ど
ちらか一方が冷凍能力不足になったり、冷凍能力過剰に
なること無く、各庫内を適正に冷却でき、かつ高効率で
消費電力を少なくできる。
From this state, when the cooling load on the low temperature side becomes relatively large in the compartments of different temperature zones such as the freezing room and the refrigerator compartment, the first on-off valve 28 is opened, so that the refrigerant is evaporated for high temperature. It flows mainly through the first bypass passage 28 rather than the vessel 21, and its cooling capacity is mainly exerted by the low-temperature evaporator 24 on the freezer compartment side (low-temperature side). Therefore, since it is possible to cope with the imbalance of the cooling load between the freezing compartment and the refrigerating compartment, it is possible to appropriately cool the interior of each compartment without causing the refrigerating capacity to be insufficient or the refrigerating capacity to be excessive, and to achieve high efficiency. Power consumption can be reduced.

【0040】また、第一開閉弁28、第三開閉弁30を
開け、第二開閉弁29を閉じることにより、冷媒は高温
用蒸発器21側には流れず第一バイパス通路27に流れ
て、その冷却能力を冷凍室側(低温側)の低温用蒸発器
24のみに発揮することになる。従って、冷凍室と冷蔵
室の冷却負荷の大きなアンバランスに対応でき、さら
に、低温用蒸発器24で冷却作用を行いながら、冷却作
用が停止している高温用蒸発器21の霜取りを行うこと
ができる。
Further, by opening the first opening / closing valve 28 and the third opening / closing valve 30 and closing the second opening / closing valve 29, the refrigerant flows to the first bypass passage 27 without flowing to the high-temperature evaporator 21 side. The cooling capacity is exerted only on the low-temperature evaporator 24 on the freezing room side (low-temperature side). Therefore, it is possible to cope with a large imbalance in the cooling load between the freezing compartment and the refrigerator compartment, and to perform the defrosting operation on the high-temperature evaporator 21 in which the cooling operation is stopped while performing the cooling operation on the low-temperature evaporator 24. it can.

【0041】また、第二開閉弁29を開け、第一開閉弁
28、第三開閉弁30を閉じることにより、冷媒は高温
用蒸発器21を通り気液分離器22に流入した後、低温
用蒸発器24側には流れず第一圧縮要素16に吸入され
るため、その冷却能力を冷蔵室側(高温側)の高温用蒸
発器21のみに発揮することになる。従って、冷凍室と
冷蔵室の冷却負荷の大きなアンバランスに対応でき、さ
らに、高温用蒸発器21で冷却作用を行いながら、冷却
作用が停止している低温用蒸発器24の霜取りを行うこ
とができる。
Further, by opening the second on-off valve 29 and closing the first on-off valve 28 and the third on-off valve 30, the refrigerant flows into the gas-liquid separator 22 through the high-temperature evaporator 21 and then to the low-temperature Since it is sucked into the first compression element 16 without flowing to the evaporator 24 side, its cooling capacity is exerted only on the high-temperature evaporator 21 on the refrigerator compartment side (high-temperature side). Therefore, it is possible to cope with a large imbalance in the cooling load between the freezing compartment and the refrigerating compartment, and to perform the defrosting operation on the low-temperature evaporator 24 in which the cooling operation is stopped while performing the cooling operation on the high-temperature evaporator 21. it can.

【0042】以上のように本実施例の冷凍冷蔵装置は、
高温用蒸発器21の入口側と出口側とを連通する第一バ
イパス通路27と、第一バイパス通路27に設けられた
第一開閉弁28と、第一バイパス通路27の分岐点と高
温用蒸発器21との間に設けられた第二開閉弁29と、
気液分離器22と第二圧縮要素17の吸入側との間に設
けられた第三開閉弁30とを備えた構成となっているの
で、冷凍冷蔵装置の冷凍室と冷蔵室などの異なる温度帯
の庫内のどちらか一方が冷凍能力不足になったり、冷凍
能力過剰になること無く、各庫内を適正に冷却でき、か
つ高効率で消費電力を少なくできる。また、高温用蒸発
器21あるいは低温用蒸発器24の霜取りを行うときに
片側のみの冷却を停止して庫内温度の上昇を防止するこ
とができる。
As described above, the freezing and refrigeration apparatus of this embodiment is
A first bypass passage 27 communicating the inlet side and the outlet side of the high temperature evaporator 21, a first on-off valve 28 provided in the first bypass passage 27, a branch point of the first bypass passage 27, and a high temperature evaporation A second on-off valve 29 provided between the vessel 21 and
Since the third opening / closing valve 30 provided between the gas-liquid separator 22 and the suction side of the second compression element 17 is provided, different temperatures of the freezing room and the refrigerating room of the refrigerating and refrigerating device are used. It is possible to appropriately cool the inside of each of the compartments, and to reduce the power consumption with high efficiency, without causing either one of the compartments in the band to have a refrigeration capacity shortage or an excess refrigeration capacity. In addition, when defrosting the high-temperature evaporator 21 or the low-temperature evaporator 24, cooling on only one side is stopped to prevent an increase in the internal temperature.

【0043】(実施例3)図4は本発明の実施例3によ
る冷凍冷蔵装置の冷媒回路図を示す。
(Embodiment 3) FIG. 4 shows a refrigerant circuit diagram of a refrigeration apparatus according to Embodiment 3 of the present invention.

【0044】以下、図面を参照しながら説明するが、実
施例1並びに実施例2と同一構成については、同一符号
を付して詳細な説明を省略する。図4において、31は
第一圧縮要素16の吸入側と第二圧縮要素17の吸入側
とを連通する第二バイパス通路であり、32は第二バイ
パス通路31に設けられた第四開閉弁であり、33は第
一圧縮要素16と気液分離器22との間に設けられた第
五開閉弁である。
Hereinafter, description will be made with reference to the drawings. However, the same components as those in the first and second embodiments are denoted by the same reference numerals, and detailed description will be omitted. In FIG. 4, reference numeral 31 denotes a second bypass passage communicating the suction side of the first compression element 16 and the suction side of the second compression element 17, and 32 denotes a fourth on-off valve provided in the second bypass passage 31. Reference numeral 33 denotes a fifth on-off valve provided between the first compression element 16 and the gas-liquid separator 22.

【0045】以上のように構成された冷凍冷蔵装置につ
いて、以下その動作を説明する。
The operation of the freezing and refrigeration apparatus having the above-described configuration will be described below.

【0046】第四開閉弁32を閉じ、第五開閉弁33を
開けて第一圧縮要素16、第二圧縮要素17を運転する
と、実施例2と同じ効果が得られる。
When the first compression element 16 and the second compression element 17 are operated with the fourth on-off valve 32 closed and the fifth on-off valve 33 opened, the same effect as in the second embodiment can be obtained.

【0047】そして、第一開閉弁28、第三開閉弁30
を閉じ、第二開閉弁29、第四開閉弁32、第五開閉弁
33を開けることにより、第一圧縮要素16と第二圧縮
要素17の吸入側が連通して二気筒並列の一段圧縮運転
となり、冷媒は高温用蒸発器21で冷却作用を発揮した
後、低温用蒸発器24側には流れず第一圧縮要素16並
びに第二圧縮要素17に吸入されるため、冷蔵室側(高
温側)の急冷運転となる。このとき、第三開閉弁30を
開けても第二膨張装置23による抵抗のため、低温用蒸
発器24側に冷媒はほとんど流れず同様の効果が得られ
る。
The first on-off valve 28 and the third on-off valve 30
And the second on-off valve 29, the fourth on-off valve 32, and the fifth on-off valve 33 are opened, so that the suction sides of the first compression element 16 and the second compression element 17 communicate with each other, and a two-cylinder parallel single-stage compression operation is performed. After the refrigerant exerts a cooling action in the high-temperature evaporator 21, it does not flow to the low-temperature evaporator 24 but is drawn into the first compression element 16 and the second compression element 17. Quench operation. At this time, even if the third on-off valve 30 is opened, almost no refrigerant flows to the low-temperature evaporator 24 due to the resistance of the second expansion device 23, and the same effect is obtained.

【0048】また、第一開閉弁28、第三開閉弁30、
第四開閉弁32を開け、第二開閉弁29、第五開閉弁3
3を閉めることにより、第一圧縮要素16と第二圧縮要
素17の吸入側が連通して二気筒並列の一段圧縮運転と
なり、冷媒は高温用蒸発器21側には流れず第一バイパ
ス通路27に流れて、その冷却能力を冷凍室側(低温
側)の低温用蒸発器24のみに発揮することになるた
め、冷凍室側の急冷運転となる。このとき、第二開閉弁
29を開けると冷媒は高温用蒸発器21側にも流れ冷蔵
室側の冷却も行うことができる。
The first on-off valve 28, the third on-off valve 30,
The fourth on-off valve 32 is opened, and the second on-off valve 29 and the fifth on-off valve 3 are opened.
By closing 3, the suction side of the first compression element 16 and the suction side of the second compression element 17 communicate with each other to perform two-stage parallel single-stage compression operation, and the refrigerant does not flow to the high-temperature evaporator 21 side but to the first bypass passage 27. It flows and exerts its cooling capacity only on the low-temperature evaporator 24 on the freezer compartment side (lower temperature side), so that the freezing compartment side is rapidly cooled. At this time, when the second on-off valve 29 is opened, the refrigerant flows to the high-temperature evaporator 21 side and can also cool the refrigerator compartment side.

【0049】以上のように本実施例の冷凍冷蔵装置は、
第一圧縮要素16の吸入側と第二圧縮要素17の吸入側
とを連通する第二バイパス通路31と、第二バイパス通
路31に設けられた第四開閉弁32と、第一圧縮要素1
6と気液分離器22との間に設けられた第五開閉弁33
とを備えた構成となっているので、冷凍室、冷蔵室庫内
の冷却負荷の変化に対応し庫内各部の温度の均一化が図
れ、更に冷凍室と冷蔵室の冷却負荷の著しい増大への対
応と、急速冷却を行うことができる。
As described above, the freezing and refrigeration apparatus of this embodiment is
A second bypass passage 31 communicating the suction side of the first compression element 16 and the suction side of the second compression element 17, a fourth on-off valve 32 provided in the second bypass passage 31,
Fifth opening / closing valve 33 provided between the valve 6 and the gas-liquid separator 22
With this configuration, the temperature of each part in the refrigerator can be made uniform in response to changes in the cooling load in the freezer compartment and the refrigerator compartment, and the cooling load in the freezer compartment and the refrigerator compartment can be significantly increased. And rapid cooling can be performed.

【0050】[0050]

【発明の効果】以上説明したように請求項1に記載の発
明は、第一圧縮要素と、第二圧縮要素と、前記第一圧縮
要素の吐出側並びに前記第二圧縮要素の吐出側と共に配
管接続した凝縮器と、前記凝縮器の出口側と配管接続し
た第一膨張装置と、前記第一膨張装置の出口側に配管接
続した高温用蒸発器と、前記高温用蒸発器と前記第一圧
縮要素の吸入側との間に配管接続した気液分離器と、前
記気液分離器と配管接続した第二膨張装置と、前記第二
膨張装置と前記第二圧縮要素の吸入側との間に配管接続
した低温用蒸発器とからなり、前記気液分離器の液冷媒
出口側と第二膨張装置とが連通し、前記気液分離器のガ
ス冷媒出口側と前記第一圧縮要素とが連通した構成とな
っているので、高温用回路と低温用回路をそれぞれ別々
の一段圧縮サイクルとして形成し、二段圧縮のような極
端な低圧縮比にならない適正な圧力条件で運転すること
により、全断熱効率が悪くなることを防止できる。従っ
て、実際の冷凍サイクルの効率を向上させ、消費電力を
少なくできる。
As described above, according to the first aspect of the present invention, the first compression element, the second compression element, the discharge side of the first compression element, and the piping together with the discharge side of the second compression element. A condenser connected, a first expansion device connected to the outlet side of the condenser by piping, a high-temperature evaporator connected to the outlet side of the first expansion device, a high-temperature evaporator, and the first compression unit. A gas-liquid separator pipe-connected to the suction side of the element, a second expansion device pipe-connected to the gas-liquid separator, and between the second expansion device and the suction side of the second compression element. A low-temperature evaporator connected to a pipe, the liquid refrigerant outlet side of the gas-liquid separator communicates with the second expansion device, and the gas refrigerant outlet side of the gas-liquid separator communicates with the first compression element. The circuit for high temperature and the circuit for low temperature have separate single-stage compression cycles. It formed as, by operating under appropriate pressure conditions as not to extremely low compression ratio such as a two-stage compression, it is possible to prevent the overall adiabatic efficiency. Therefore, the efficiency of the actual refrigeration cycle can be improved, and the power consumption can be reduced.

【0051】また、請求項2に記載の発明は、請求項1
に記載の発明に加えて、高温用蒸発器の入口側と出口側
とを連通する第一バイパス通路と、前記第一バイパス通
路に設けられた第一開閉弁とを備えた構成となっている
ので、さらに、冷凍冷蔵装置の冷凍室と冷蔵室などの異
なる温度帯の庫内のどちらか一方が冷凍能力不足になっ
たり、冷凍能力過剰になること無く、各庫内を適正に冷
却でき、かつ高効率で消費電力を少なくできる。
Further, the invention according to claim 2 is the same as the invention according to claim 1.
In addition to the configuration described in (1), a first bypass passage communicating the inlet side and the outlet side of the high-temperature evaporator, and a first on-off valve provided in the first bypass passage are provided. So, furthermore, either one of the refrigerators in different temperature zones such as the freezing room and the refrigerator compartment of the freezing and refrigeration apparatus does not have insufficient refrigeration capacity, and each refrigerator can be properly cooled without excessive refrigeration capacity, In addition, power consumption can be reduced with high efficiency.

【0052】また、請求項3に記載の発明は、請求項2
に記載の発明に加えて、第一バイパス通路の分岐点と高
温用蒸発器との間に設けられた第二開閉弁と、気液分離
器と第二圧縮要素の吸入側との間に設けられた第三開閉
弁とを備えた構成となっているので、さらに、高温用蒸
発器あるいは低温用蒸発器の霜取りを行うときに片側の
みの冷却を停止して庫内温度の上昇を防止することがで
きる。
Further, the invention according to claim 3 provides the invention according to claim 2
In addition to the invention described in the above, a second on-off valve provided between the branch point of the first bypass passage and the high-temperature evaporator, provided between the gas-liquid separator and the suction side of the second compression element And the third on-off valve is provided, so that when defrosting the high-temperature evaporator or the low-temperature evaporator, cooling on only one side is stopped to prevent an increase in the internal temperature. be able to.

【0053】また、請求項4に記載の発明は、請求項1
あるいは請求項2あるいは請求項3に記載の発明に加え
て、第一圧縮要素の吸入側と第二圧縮要素の吸入側とを
連通する第二バイパス通路と、前記第二バイパス通路に
設けられた第四開閉弁と、前記第一圧縮要素と気液分離
器との間に設けられた第五開閉弁とを備えた構成となっ
ているので、さらに、冷凍室、冷蔵室庫内の冷却負荷の
変化に対応し庫内各部の温度の均一化が図れ、更に冷凍
室と冷蔵室の冷却負荷の著しい増大への対応と、急速冷
却を行うことができる。
The invention described in claim 4 is the first invention.
Alternatively, in addition to the invention described in claim 2 or 3, a second bypass passage communicating the suction side of the first compression element and the suction side of the second compression element, and the second bypass passage is provided in the second bypass passage. Since the fourth opening / closing valve and the fifth opening / closing valve provided between the first compression element and the gas-liquid separator are provided, the cooling load in the freezer compartment and the refrigerator compartment is further reduced. , The temperatures of the various parts in the refrigerator can be made uniform, and furthermore, it is possible to cope with a remarkable increase in the cooling load of the freezing compartment and the refrigerating compartment and to perform rapid cooling.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明による冷凍冷蔵装置の実施例1の冷媒回
路図
FIG. 1 is a refrigerant circuit diagram of Embodiment 1 of a refrigeration apparatus according to the present invention.

【図2】同実施例の冷凍冷蔵装置における冷凍サイクル
の圧力−エンタルピ線図
FIG. 2 is a pressure-enthalpy diagram of a refrigeration cycle in the refrigeration apparatus of the embodiment.

【図3】本発明による冷凍冷蔵装置の実施例2の冷媒回
路図
FIG. 3 is a refrigerant circuit diagram of Embodiment 2 of the refrigeration apparatus according to the present invention.

【図4】本発明による冷凍冷蔵装置の実施例3の冷媒回
路図
FIG. 4 is a refrigerant circuit diagram of Embodiment 3 of the refrigeration apparatus according to the present invention.

【図5】従来の二段圧縮冷凍サイクルの冷媒回路図FIG. 5 is a refrigerant circuit diagram of a conventional two-stage compression refrigeration cycle.

【図6】従来の二段圧縮冷凍サイクルに使用される気液
分離器の断面図
FIG. 6 is a cross-sectional view of a gas-liquid separator used in a conventional two-stage compression refrigeration cycle.

【符号の説明】[Explanation of symbols]

16 第一圧縮要素 17 第二圧縮要素 19 凝縮器 20 第一膨張装置 21 高温用蒸発器 22 気液分離器 23 第二膨張装置 24 低温用蒸発器 25 液冷媒出口 26 ガス冷媒出口 27 第一バイパス通路 28 第一開閉弁 29 第二開閉弁 30 第三開閉弁 31 第二バイパス通路 32 第四開閉弁 33 第五開閉弁 16 first compression element 17 second compression element 19 condenser 20 first expansion device 21 high temperature evaporator 22 gas-liquid separator 23 second expansion device 24 low temperature evaporator 25 liquid refrigerant outlet 26 gas refrigerant outlet 27 first bypass Passageway 28 First on-off valve 29 Second on-off valve 30 Third on-off valve 31 Second bypass passage 32 Fourth on-off valve 33 Fifth on-off valve

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.7 識別記号 FI テーマコート゛(参考) F25B 31/00 F25B 31/00 A 47/02 47/02 A (72)発明者 坪井 康祐 大阪府東大阪市高井田本通4丁目2番5号 松下冷機株式会社内 Fターム(参考) 3L045 AA01 AA03 BA01 CA02 DA02 HA02 HA06 JA02 JA14 LA14 PA01 PA04 PA05 ──────────────────────────────────────────────────の Continued on the front page (51) Int.Cl. 7 Identification symbol FI Theme coat ゛ (Reference) F25B 31/00 F25B 31/00 A 47/02 47/02 A (72) Inventor Kosuke Tsuboi Higashi Osaka, Osaka Matsushita Refrigerating Machinery Co., Ltd. F-term (reference) 3L045 AA01 AA03 BA01 CA02 DA02 HA02 HA06 JA02 JA14 LA14 PA01 PA04 PA05

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】 第一圧縮要素と、第二圧縮要素と、前記
第一圧縮要素の吐出側並びに前記第二圧縮要素の吐出側
と共に配管接続した凝縮器と、前記凝縮器の出口側と配
管接続した第一膨張装置と、前記第一膨張装置の出口側
に配管接続した高温用蒸発器と、前記高温用蒸発器と前
記第一圧縮要素の吸入側との間に配管接続した気液分離
器と、前記気液分離器と配管接続した第二膨張装置と、
前記第二膨張装置と前記第二圧縮要素の吸入側との間に
配管接続した低温用蒸発器とからなり、前記気液分離器
の液冷媒出口側と第二膨張装置とが連通し、前記気液分
離器のガス冷媒出口側と前記第一圧縮要素とが連通した
冷凍冷蔵装置。
A first compression element, a second compression element, a condenser connected to a discharge side of the first compression element and a discharge side of the second compression element, and a pipe connected to an outlet side of the condenser. A connected first expansion device, a high-temperature evaporator connected to the outlet side of the first expansion device, and a gas-liquid separation pipe connected between the high-temperature evaporator and the suction side of the first compression element. Vessel, a second expansion device connected to the gas-liquid separator by piping,
A low-temperature evaporator connected to a pipe between the second expansion device and the suction side of the second compression element, wherein a liquid refrigerant outlet side of the gas-liquid separator communicates with the second expansion device; A refrigeration unit in which a gas refrigerant outlet side of a gas-liquid separator communicates with the first compression element.
【請求項2】 高温用蒸発器の入口側と出口側とを連通
する第一バイパス通路と、前記第一バイパス通路に設け
られた第一開閉弁とを備えた請求項1に記載の冷凍冷蔵
装置。
2. The refrigerator according to claim 1, further comprising: a first bypass passage communicating between an inlet side and an outlet side of the high-temperature evaporator; and a first on-off valve provided in the first bypass passage. apparatus.
【請求項3】 第一バイパス通路の分岐点と高温用蒸発
器との間に設けられた第二開閉弁と、気液分離器と第二
圧縮要素の吸入側との間に設けられた第三開閉弁とを備
えた請求項2に記載の冷凍冷蔵装置。
3. A second on-off valve provided between a branch point of the first bypass passage and the high-temperature evaporator, and a second on-off valve provided between the gas-liquid separator and the suction side of the second compression element. The refrigeration apparatus according to claim 2, comprising a three-way valve.
【請求項4】 第一圧縮要素の吸入側と第二圧縮要素の
吸入側とを連通する第二バイパス通路と、前記第二バイ
パス通路に設けられた第四開閉弁と、前記第一圧縮要素
と気液分離器との間に設けられた第五開閉弁とを備えた
請求項1または2または3に記載の冷凍冷蔵装置。
4. A second bypass passage communicating between a suction side of the first compression element and a suction side of the second compression element, a fourth on-off valve provided in the second bypass passage, and the first compression element. The refrigeration apparatus according to claim 1, further comprising a fifth on-off valve provided between the refrigeration apparatus and the gas-liquid separator.
JP2000008912A 2000-01-18 2000-01-18 Refrigeration equipment Expired - Fee Related JP4240715B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2000008912A JP4240715B2 (en) 2000-01-18 2000-01-18 Refrigeration equipment

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000008912A JP4240715B2 (en) 2000-01-18 2000-01-18 Refrigeration equipment

Publications (2)

Publication Number Publication Date
JP2001201236A true JP2001201236A (en) 2001-07-27
JP4240715B2 JP4240715B2 (en) 2009-03-18

Family

ID=18537127

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000008912A Expired - Fee Related JP4240715B2 (en) 2000-01-18 2000-01-18 Refrigeration equipment

Country Status (1)

Country Link
JP (1) JP4240715B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2007000042A1 (en) * 2005-06-27 2007-01-04 Fleming Mark A Refrigerator or freezer with enhanced efficiency
CN106288473A (en) * 2016-07-28 2017-01-04 广东美芝制冷设备有限公司 Refrigerating plant
WO2020143629A1 (en) * 2019-01-10 2020-07-16 Qingdao Haier Refrigerator Co., Ltd. Fast switching multiple evaporator system for an appliance

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2007000042A1 (en) * 2005-06-27 2007-01-04 Fleming Mark A Refrigerator or freezer with enhanced efficiency
CN106288473A (en) * 2016-07-28 2017-01-04 广东美芝制冷设备有限公司 Refrigerating plant
WO2020143629A1 (en) * 2019-01-10 2020-07-16 Qingdao Haier Refrigerator Co., Ltd. Fast switching multiple evaporator system for an appliance

Also Published As

Publication number Publication date
JP4240715B2 (en) 2009-03-18

Similar Documents

Publication Publication Date Title
JP3630632B2 (en) refrigerator
KR100352536B1 (en) Refrigerator
US6327871B1 (en) Refrigerator with thermal storage
AU2003211883B2 (en) Refrigerating Device
US20090126399A1 (en) Refigeration system
KR20070039590A (en) Freezing apparatus
JP3975664B2 (en) Refrigerating refrigerator, operation method of freezing refrigerator
JP2007093017A (en) Refrigerating apparatus
US20100326125A1 (en) Refrigeration system
JP2011012885A (en) Refrigerator
JP3847499B2 (en) Two-stage compression refrigeration system
JP4123257B2 (en) Refrigeration equipment
JP2000121178A (en) Cooling cycle and refrigerator
JP3576040B2 (en) Cooling systems and refrigerators
JP2001235245A (en) Freezer
JP4608790B2 (en) refrigerator
JP2008175436A (en) Refrigerating device
JP4240715B2 (en) Refrigeration equipment
JP4169080B2 (en) Freezer refrigerator
JP2002277082A (en) Freezer
JP2006125843A (en) Cooling cycle and refrigerator
JPH04288454A (en) Refrigerating device using heat transfer of capillary tube and suction line
JP2001201194A (en) Cold storage system with deep freezer
JPH04313647A (en) Heat pump type air conditioner
KR102494567B1 (en) A refrigerator and a control method the same

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070116

RD01 Notification of change of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7421

Effective date: 20070214

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20080425

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20080904

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080909

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20081021

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20081209

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20081222

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120109

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120109

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130109

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130109

Year of fee payment: 4

LAPS Cancellation because of no payment of annual fees