JP2001196400A - Method for manufacturing semiconductor device - Google Patents

Method for manufacturing semiconductor device

Info

Publication number
JP2001196400A
JP2001196400A JP2000002332A JP2000002332A JP2001196400A JP 2001196400 A JP2001196400 A JP 2001196400A JP 2000002332 A JP2000002332 A JP 2000002332A JP 2000002332 A JP2000002332 A JP 2000002332A JP 2001196400 A JP2001196400 A JP 2001196400A
Authority
JP
Japan
Prior art keywords
electrode
conductive
thermoplastic resin
semiconductor device
manufacturing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2000002332A
Other languages
Japanese (ja)
Inventor
Haruhiko Sakai
春彦 境
Shigeru Fujii
茂 藤井
Haruo Hyodo
治雄 兵藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sanyo Electric Co Ltd
Original Assignee
Sanyo Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sanyo Electric Co Ltd filed Critical Sanyo Electric Co Ltd
Priority to JP2000002332A priority Critical patent/JP2001196400A/en
Publication of JP2001196400A publication Critical patent/JP2001196400A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L24/00Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
    • H01L24/93Batch processes
    • H01L24/95Batch processes at chip-level, i.e. with connecting carried out on a plurality of singulated devices, i.e. on diced chips
    • H01L24/97Batch processes at chip-level, i.e. with connecting carried out on a plurality of singulated devices, i.e. on diced chips the devices being connected to a common substrate, e.g. interposer, said common substrate being separable into individual assemblies after connecting
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/26Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
    • H01L2224/31Structure, shape, material or disposition of the layer connectors after the connecting process
    • H01L2224/32Structure, shape, material or disposition of the layer connectors after the connecting process of an individual layer connector
    • H01L2224/321Disposition
    • H01L2224/32151Disposition the layer connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive
    • H01L2224/32221Disposition the layer connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked
    • H01L2224/32225Disposition the layer connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being non-metallic, e.g. insulating substrate with or without metallisation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/44Structure, shape, material or disposition of the wire connectors prior to the connecting process
    • H01L2224/45Structure, shape, material or disposition of the wire connectors prior to the connecting process of an individual wire connector
    • H01L2224/45001Core members of the connector
    • H01L2224/45099Material
    • H01L2224/451Material with a principal constituent of the material being a metal or a metalloid, e.g. boron (B), silicon (Si), germanium (Ge), arsenic (As), antimony (Sb), tellurium (Te) and polonium (Po), and alloys thereof
    • H01L2224/45138Material with a principal constituent of the material being a metal or a metalloid, e.g. boron (B), silicon (Si), germanium (Ge), arsenic (As), antimony (Sb), tellurium (Te) and polonium (Po), and alloys thereof the principal constituent melting at a temperature of greater than or equal to 950°C and less than 1550°C
    • H01L2224/45144Gold (Au) as principal constituent
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/4805Shape
    • H01L2224/4809Loop shape
    • H01L2224/48091Arched
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/481Disposition
    • H01L2224/48151Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive
    • H01L2224/48221Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked
    • H01L2224/48225Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being non-metallic, e.g. insulating substrate with or without metallisation
    • H01L2224/48227Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being non-metallic, e.g. insulating substrate with or without metallisation connecting the wire to a bond pad of the item
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/484Connecting portions
    • H01L2224/48463Connecting portions the connecting portion on the bonding area of the semiconductor or solid-state body being a ball bond
    • H01L2224/48465Connecting portions the connecting portion on the bonding area of the semiconductor or solid-state body being a ball bond the other connecting portion not on the bonding area being a wedge bond, i.e. ball-to-wedge, regular stitch
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/73Means for bonding being of different types provided for in two or more of groups H01L2224/10, H01L2224/18, H01L2224/26, H01L2224/34, H01L2224/42, H01L2224/50, H01L2224/63, H01L2224/71
    • H01L2224/732Location after the connecting process
    • H01L2224/73251Location after the connecting process on different surfaces
    • H01L2224/73265Layer and wire connectors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/91Methods for connecting semiconductor or solid state bodies including different methods provided for in two or more of groups H01L2224/80 - H01L2224/90
    • H01L2224/92Specific sequence of method steps
    • H01L2224/922Connecting different surfaces of the semiconductor or solid-state body with connectors of different types
    • H01L2224/9222Sequential connecting processes
    • H01L2224/92242Sequential connecting processes the first connecting process involving a layer connector
    • H01L2224/92247Sequential connecting processes the first connecting process involving a layer connector the second connecting process involving a wire connector
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/93Batch processes
    • H01L2224/95Batch processes at chip-level, i.e. with connecting carried out on a plurality of singulated devices, i.e. on diced chips
    • H01L2224/97Batch processes at chip-level, i.e. with connecting carried out on a plurality of singulated devices, i.e. on diced chips the devices being connected to a common substrate, e.g. interposer, said common substrate being separable into individual assemblies after connecting
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/10Details of semiconductor or other solid state devices to be connected
    • H01L2924/11Device type
    • H01L2924/13Discrete devices, e.g. 3 terminal devices
    • H01L2924/1304Transistor
    • H01L2924/1305Bipolar Junction Transistor [BJT]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/10Details of semiconductor or other solid state devices to be connected
    • H01L2924/11Device type
    • H01L2924/13Discrete devices, e.g. 3 terminal devices
    • H01L2924/1304Transistor
    • H01L2924/1306Field-effect transistor [FET]
    • H01L2924/13091Metal-Oxide-Semiconductor Field-Effect Transistor [MOSFET]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/10Details of semiconductor or other solid state devices to be connected
    • H01L2924/11Device type
    • H01L2924/14Integrated circuits
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/15Details of package parts other than the semiconductor or other solid state devices to be connected
    • H01L2924/151Die mounting substrate
    • H01L2924/156Material
    • H01L2924/15786Material with a principal constituent of the material being a non metallic, non metalloid inorganic material
    • H01L2924/15787Ceramics, e.g. crystalline carbides, nitrides or oxides

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Encapsulation Of And Coatings For Semiconductor Or Solid State Devices (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a method for manufacturing a semiconductor device capable of realizing a small-sized thin film package suitable for mounting a fine semiconductor chip by reducing in thickness a supporting board. SOLUTION: Two conductive foils 52, 53 and a thermoplastic resin film 51 disposed between the foils 52 and 53 are thermally press bonded and integrated to form the supporting board 50. At the press bonding time, a conductive material 57 is passed through the film 51 to form the material 57 for electrically connecting the foils 52, 53 without via hole. Electrodes 54, 55, and 56 are formed of the foils 52, 53 and the chip is mounted. Thus, an extremely thin type mounting structure can be simply manufactured, and the method for manufacturing the device optimum for mounting the fine chip is realized.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は半導体装置の製造方
法、特にパッケージ外形を超小型で薄型に形成できる微
小チップを収容する樹脂封止型の半導体装置の製造方法
に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method of manufacturing a semiconductor device, and more particularly to a method of manufacturing a resin-sealed semiconductor device accommodating a small chip capable of forming an ultra-compact and thin package.

【0002】[0002]

【従来の技術】従来の半導体装置の組立工程において
は、ウェハからダイシングして分離した半導体チップを
リードフレームに固着し、金型と樹脂注入によるトラン
スファーモールドによって半導体チップを封止し、リー
ドフレームを切断して個々の半導体装置毎に分離すると
いう工程が行われている。この製造方法によって得れら
る半導体装置は、図10に示したように、半導体チップ
1の周囲を樹脂層2で被覆し、該樹脂層2の側部から外
部接続用のリード端子3を導出した構造になる(例えば
特開平05−129473号)。
2. Description of the Related Art In a conventional semiconductor device assembling process, a semiconductor chip separated by dicing from a wafer is fixed to a lead frame, and the semiconductor chip is sealed by a transfer mold using a mold and resin injection. A process of cutting and separating each semiconductor device is performed. As shown in FIG. 10, the semiconductor device obtained by this manufacturing method covers the periphery of the semiconductor chip 1 with the resin layer 2 and leads out the lead terminals 3 for external connection from the side of the resin layer 2. (For example, Japanese Patent Laid-Open No. 05-129473).

【0003】この実装方法は、樹脂層2の外側にリード
端子3が突出すること、リードフレームの加工精度の問
題や金型との位置あわせ精度の問題により、外形寸法と
その実装面積の縮小化には限界が見えていた。
In this mounting method, the external dimensions and the mounting area are reduced due to the fact that the lead terminals 3 protrude outside the resin layer 2, the problem of the processing accuracy of the lead frame and the problem of the positioning accuracy with the mold. Saw the limits.

【0004】近年、外形寸法を半導体チップサイズと同
等あるいは近似した寸法にまで縮小する事が可能な、ウ
ェハスケールCSP(チップサイズパッケージ)が注目
され始めている。これは、図11(A)を参照して、半
導体ウェハ11に各種拡散などの前処理を施して多数の
半導体チップ12を形成し、図11(B)に示したよう
に半導体ウェハ11の上部を樹脂層13で被覆すると共
に樹脂層13表面に外部接続用の電極14を導出し、そ
の後半導体ウェハ11のダイシングラインに沿って半導
体チップ11を分割して、図11(C)に示したような
完成品としたものである。樹脂層13は半導体チップ1
2の表面(裏面を被覆する場合もある)を被覆するだけ
であり、半導体チップ12の側壁にはシリコン基板が露
出する。電極14は樹脂層13下部に形成された集積回
路網と電気的に接続されており、実装基板上に形成した
導電パターンに対して電極14を対向接着することによ
りこの半導体装置の実装が実現する。
In recent years, attention has been paid to a wafer-scale CSP (chip size package) capable of reducing an outer dimension to a size similar to or close to a semiconductor chip size. In this, referring to FIG. 11A, a large number of semiconductor chips 12 are formed by performing various pretreatments such as diffusion on a semiconductor wafer 11, and the upper portion of the semiconductor wafer 11 is formed as shown in FIG. Is covered with a resin layer 13, electrodes 14 for external connection are led out to the surface of the resin layer 13, and then the semiconductor chips 11 are divided along dicing lines of the semiconductor wafer 11, as shown in FIG. It is a finished product. The resin layer 13 is the semiconductor chip 1
2 only covers the front surface (which may cover the back surface) of the semiconductor chip 12, and the silicon substrate is exposed on the side wall of the semiconductor chip 12. The electrode 14 is electrically connected to an integrated circuit network formed below the resin layer 13, and the semiconductor device is mounted by bonding the electrode 14 to a conductive pattern formed on a mounting substrate. .

【0005】斯かる半導体装置は、装置のパッケージサ
イズが半導体チップのチップサイズと同等であり、実装
基板に対しても対向接着で済むので、実装占有面積を大
幅に減らすことが出来る利点を有する。また、後工程に
拘わるコストを大幅に減じることが出来る利点を有する
ものである。(例えば、特開平9−64049号) しかしながら、チップサイズが10数mm角にも及ぶL
SIチップであればその寸法内に多数個の電極を配置す
ることが可能であるものの、例えばチップサイズが1m
m角に満たない程度のトランジスタチップ等では、この
寸法内に複数個の電極を配置することは物理的に無理が
あるし、実現したとしても実装が困難である欠点があ
る。
[0005] Such a semiconductor device has the advantage that the package size of the device is equivalent to the chip size of the semiconductor chip, and the device can be adhered to the mounting substrate by opposing, so that the area occupied by the mounting can be greatly reduced. Further, there is an advantage that the cost associated with the post-process can be significantly reduced. (For example, Japanese Patent Application Laid-Open No. 9-64049)
Although it is possible to arrange a large number of electrodes within the dimensions of an SI chip, for example, the chip size is 1 m
In a transistor chip or the like having a size smaller than the m-square, it is physically impossible to arrange a plurality of electrodes within this dimension, and even if it is realized, there is a disadvantage that mounting is difficult.

【0006】そこで、チップサイズが1mm角に満たな
い程度のチップでは図12(A)〜(F)に示すように
実装されている。
Therefore, chips having a chip size of less than 1 mm square are mounted as shown in FIGS.

【0007】まず図12(A)において、セラミックや
ガラスエポキシ等からなる絶縁基板21を用意し、それ
らが1枚あるいは数枚重ね合わされて、板厚が250〜
350μmと製造工程における機械的強度を維持し得る
厚みと、長辺×短辺が1.0mm×0.8mm程度の矩
形形状を有している。この絶縁基板21には半導体チッ
プの搭載部分が500個以上と多数形成され、その1個
を示したのが図12である。
First, in FIG. 12A, an insulating substrate 21 made of ceramic, glass epoxy, or the like is prepared.
It has a thickness of 350 μm that can maintain mechanical strength in the manufacturing process, and has a rectangular shape with a long side × short side of about 1.0 mm × 0.8 mm. This insulating substrate 21 is formed with a large number of semiconductor chip mounting portions of 500 or more, and FIG. 12 shows one of them.

【0008】次に図12(B)に示すように、この絶縁
基板21にはこれを貫通する、円形の第1のビアホール
30と第2のビアホール31a、31bが形成される。
形成方法はレーザー光による方法が簡便であるが、少な
くとも1個の搭載部に3個は必要である。
Next, as shown in FIG. 12B, a circular first via hole 30 and second circular via holes 31a and 31b are formed in the insulating substrate 21 so as to penetrate the insulating substrate 21.
The method of forming the laser beam is simple, but at least three are required for at least one mounting portion.

【0009】更に図12(C)に示すように、各ビアホ
ール30、31a、31bの内部はタングステンなどの
導電材料34によって埋設される。素材としては、電気
的導電性と熱伝導性に優れた素材で埋設する。
Further, as shown in FIG. 12C, the inside of each via hole 30, 31a, 31b is filled with a conductive material 34 such as tungsten. The material is buried with a material having excellent electrical and thermal conductivity.

【0010】図12(D)に示すように、絶縁基板21
の表面には、タングステン等の金属ペーストの印刷と、
電解メッキ法による前記金属ペースト上への金メッキに
よって導電パターンを形成し、アイランド部22と電極
部23a、23bとを形成している。また絶縁基板21
の裏面には、同様にタングステン等の金属ペーストの印
刷と、電解メッキ法による前記金属ペースト上への金メ
ッキによって第1の外部接続電極28と第2の外部接続
電極29a、29bが形成される。従って、ビアホール
30、31a、31bによって、アイランド部22と第
1の外部接続電極28とを、電極部23a、23bと第
2の外部接続電極29a、29bとを、各々電気接続す
る。第1の外部接続電極28が例えばコレクタ電極とな
り、第2の外部接続電極29a、29bが例えばベー
ス、エミッタ電極となる。
[0010] As shown in FIG.
On the surface of the printing of metal paste such as tungsten,
A conductive pattern is formed by gold plating on the metal paste by an electrolytic plating method, and an island portion 22 and electrode portions 23a and 23b are formed. Also, the insulating substrate 21
The first external connection electrode 28 and the second external connection electrodes 29a and 29b are similarly formed on the back surface by printing a metal paste such as tungsten and gold plating on the metal paste by an electrolytic plating method. Therefore, the island portions 22 and the first external connection electrodes 28 are electrically connected to the electrode portions 23a and 23b and the second external connection electrodes 29a and 29b by the via holes 30, 31a and 31b, respectively. The first external connection electrodes 28 are, for example, collector electrodes, and the second external connection electrodes 29a, 29b are, for example, base and emitter electrodes.

【0011】更に図12(E)に示すように、アイラン
ド部22の上には、Agペーストなどの導電性接着剤2
4によって半導体チップ25が固着される。半導体チッ
プ25の表面にはアルミ電極パッド26が形成され、電
極パッド26と電極部23a、23bとが、ボンディン
グワイヤ27によって電気接続される。電極パッド26
側に1stボンド、電極部23側に2ndボンドが打た
れる。バイポーラトランジスタで有れば、電極部23
a、23bはエミッタとベースに対応し、パワーMOS
FETで有れば、ソースとゲートに対応する。
Further, as shown in FIG. 12E, a conductive adhesive 2 such as an Ag paste is
4, the semiconductor chip 25 is fixed. An aluminum electrode pad 26 is formed on the surface of the semiconductor chip 25, and the electrode pad 26 is electrically connected to the electrode portions 23 a and 23 b by bonding wires 27. Electrode pad 26
A first bond is formed on the side and a second bond is formed on the electrode portion 23 side. If it is a bipolar transistor, the electrode portion 23
a, 23b correspond to the emitter and the base, and the power MOS
If it is an FET, it corresponds to the source and the gate.

【0012】更に図12(F)に示すように、絶縁基板
21の上方には、半導体チップ25とボンディングワイ
ヤ27を封止する樹脂層32で被覆される。樹脂層32
は絶縁基板21と共にパッケージ外形を構成する。パッ
ケージの周囲4側面は樹脂層32と絶縁基板21の切断
面で形成され、パッケージの上面は平坦化した樹脂層3
2の表面、パッケージの下面は絶縁基板21の裏面側で
形成される。なお絶縁基板21の裏面には第1の外部接
続電極28と第2の外部接続電極29a、29bとが露
出され、プリント基板等への実装する際にはんだ付けさ
れる。
Further, as shown in FIG. 12F, the upper portion of the insulating substrate 21 is covered with a resin layer 32 for sealing the semiconductor chip 25 and the bonding wires 27. Resin layer 32
Constitutes a package outer shape together with the insulating substrate 21. The four peripheral sides of the package are formed by a cut surface of the resin layer 32 and the insulating substrate 21, and the upper surface of the package is a flattened resin layer 3.
2 and the lower surface of the package are formed on the back surface side of the insulating substrate 21. The first external connection electrode 28 and the second external connection electrodes 29a and 29b are exposed on the back surface of the insulating substrate 21, and are soldered when mounted on a printed circuit board or the like.

【0013】図13(A)(B)(C)に完成した半導
体装置を示す。(A)は平面図、(B)は断面図、
(C)は裏面図である。図12とビアホールの位置が不
一致となっているが、図12は説明上便宜的に実際の位
置(図13)と異なっている。図中、21はセラミック
やガラスエポキシ等からなる絶縁基板である。絶縁基板
21の表面には、アイランド部22と電極部23a、2
3bとを形成している。アイランド部22の上には、A
gペーストなどの導電性接着剤24によって半導体チッ
プ25が固着されている。半導体チップ25の表面には
アルミ電極パッド26が形成され、電極パッド26と電
極部23a、23bとが、ボンディングワイヤ27によ
って電気接続される。前記絶縁基板21の裏面側には、
同じく金属ペーストと金メッキ層によって第1の外部接
続電極28と第2の外部接続電極29a、29bが形成
される。絶縁基板21にはこれを貫通する、円形の第1
のビアホール30と第2のビアホール31a、31bが
形成され、各ビアホール30、31a、31bの内部は
タングステンなどの導電材料34によって埋設される。
該ビアホール30、31a、31bによって、アイラン
ド部22と第1の外部接続電極28とを、電極部23
a、23bと第2の外部接続電極29a、29bとを、
各々電気接続する。第1の外部接続電極28が例えばコ
レクタ電極となり、第2の外部接続電極29a、29b
が例えばベース、エミッタ電極となる。
FIGS. 13A, 13B and 13C show completed semiconductor devices. (A) is a plan view, (B) is a sectional view,
(C) is a rear view. Although FIG. 12 and the position of the via hole do not match, FIG. 12 differs from the actual position (FIG. 13) for convenience of explanation. In the figure, reference numeral 21 denotes an insulating substrate made of ceramic, glass epoxy, or the like. On the surface of the insulating substrate 21, an island portion 22 and electrode portions 23a,
3b. A on the island part 22
The semiconductor chip 25 is fixed by a conductive adhesive 24 such as g paste. An aluminum electrode pad 26 is formed on the surface of the semiconductor chip 25, and the electrode pad 26 is electrically connected to the electrode portions 23 a and 23 b by bonding wires 27. On the back side of the insulating substrate 21,
Similarly, a first external connection electrode 28 and second external connection electrodes 29a and 29b are formed by the metal paste and the gold plating layer. The insulating substrate 21 has a circular first
Is formed, and the inside of each via hole 30, 31a, 31b is buried with a conductive material 34 such as tungsten.
The via holes 30, 31a and 31b connect the island portion 22 and the first external connection electrode 28 to the electrode portion 23.
a, 23b and the second external connection electrodes 29a, 29b,
Each is electrically connected. The first external connection electrode 28 becomes, for example, a collector electrode, and the second external connection electrodes 29a, 29b
Are, for example, base and emitter electrodes.

【0014】絶縁基板21の上方は、半導体チップ25
とボンディングワイヤ27とを封止する樹脂層32で被
覆される。樹脂層32は絶縁基板21と共にパッケージ
外形を構成する。パッケージの周囲4側面は樹脂層32
と絶縁基板21の切断面で形成され、パッケージの上面
は平坦化した樹脂層32の表面、パッケージの下面は絶
縁基板21の裏面側で形成される。
The semiconductor chip 25 is located above the insulating substrate 21.
And the bonding wire 27 is covered with a resin layer 32. The resin layer 32 forms an outer shape of the package together with the insulating substrate 21. The four sides around the package are resin layers 32
The upper surface of the package is formed on the flattened surface of the resin layer 32, and the lower surface of the package is formed on the back surface side of the insulating substrate 21.

【0015】[0015]

【発明が解決しようとする課題】しかしながら上述した
実装方法においていろいろな問題点がある。第1に、両
面の電極等を接続するために、絶縁基板を貫通するビア
ホールが不可欠であり、またこのビアホール内を金属ペ
ーストで充填するため工程数が増加し、コスト高の原因
となる。この加工精度も0.15mm程度が限界であるの
で、更なる小型化の障害となっている。第2に各電極を
タングステン等の高価な金属ペーストを用いているの
で、工程数も多く且つ高温の金属ペーストの焼成も必要
となりローコストの製造方法とは言えない。第3に絶縁
基板がビアホールの形成や各電極の金属ペーストで形成
するので、その工程を実施するために機械的強度を維持
する必要があり、0.25mmから0.35mmは必要であ
るために薄型化の阻害要因となっている等々の多くの問
題点が発生している。
However, there are various problems in the above-described mounting method. First, in order to connect electrodes and the like on both surfaces, a via hole penetrating the insulating substrate is indispensable, and since the inside of the via hole is filled with a metal paste, the number of steps increases, which causes an increase in cost. Since the processing accuracy is limited to about 0.15 mm, it is an obstacle to further miniaturization. Secondly, since each electrode uses an expensive metal paste such as tungsten, the number of processes is large and baking of a high-temperature metal paste is required, which cannot be said to be a low-cost manufacturing method. Thirdly, since the insulating substrate is formed with via holes or metal paste for each electrode, it is necessary to maintain mechanical strength in order to carry out the process, and 0.25 mm to 0.35 mm is required. There are many problems such as hindrance to thinning.

【0016】[0016]

【課題を解決するための手段】本発明は上述した種々の
問題点に鑑みてなされたもであり、第1の導電箔と、熱
可塑性樹脂フィルムと、導電材を所望の位置に付着した
第2の導電箔とを熱圧着して前記導電材を前記熱可塑性
樹脂フィルムを貫通させて前記第1および第2の導電箔
を電気的に接続する支持基板を形成する工程と、前記第
1の導電箔で固着電極および取り出し電極を形成し、前
記第2の導電箔で前記固着電極および取り出し電極に対
応し前記導電材で電気的に接続された接続電極を形成す
る工程と、前記固着電極に導電ペーストを用いて半導体
素子を固着する工程と、前記半導体素子の電極と前記取
り出し電極をボンディング接続する工程と、前記接続電
極を露出して全体を絶縁樹脂で被覆する工程とを備える
ことを特徴とする。
SUMMARY OF THE INVENTION The present invention has been made in view of the above-mentioned various problems, and has a first conductive foil, a thermoplastic resin film, and a conductive material adhered to a desired position. Forming a support substrate that electrically connects the first and second conductive foils by thermocompression bonding the second conductive foil with the second conductive foil to penetrate the conductive material through the thermoplastic resin film; Forming a fixed electrode and a lead electrode with a conductive foil, forming a connection electrode corresponding to the fixed electrode and the lead electrode with the second conductive foil and electrically connected with the conductive material; The method includes a step of fixing a semiconductor element using a conductive paste, a step of bonding and connecting the electrode of the semiconductor element and the extraction electrode, and a step of exposing the connection electrode and covering the whole with an insulating resin. To be

【0017】[0017]

【発明の実施の形態】本発明の半導体装置の製造方法の
一実施例を図1から図9を参照して説明する。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS One embodiment of a method for manufacturing a semiconductor device according to the present invention will be described with reference to FIGS.

【0018】第1工程:図1(A)(B)(C)参照 本工程ではまず支持基板50を形成することにある。図
1(A)に示すように、第1の導電箔52、熱可塑性樹
脂から成るフィルム51および第2の導電箔53を準備
する。第1および第2の導電箔52,53は安価で電気
抵抗の低い銅箔が適しており、12μm厚で熱可塑性樹
脂から成るフィルム51との当接面を凹凸に粗面化して
固着強度を高めるようにしている。熱可塑性樹脂51と
しては液晶ポリマーが最適であり、本実施例では全芳香
族ポリエステル系液晶ポリマー(商品名ベクトラ)OC
−42を用いた。この全芳香族ポリエステル系液晶ポリ
マーは物性的特性として、融点が325℃、はんだ耐熱
性は320℃であり、十分に半導体素子の実装基板とし
て使用できる。これは例えばガラスエポキシ基板のはん
だ耐熱性が260℃であることからも容易に分かる。第
2の導電箔53表面には導電材57である銀ぺーストを
所定の位置にスクリーン印刷して熱可塑性樹脂フィルム
51を貫通する高さ(例えば50μm以上)に尖ったバ
ンプ80を予め形成しておく。
First step: See FIGS. 1A, 1B and 1C In this step, first, a support substrate 50 is formed. As shown in FIG. 1A, a first conductive foil 52, a film 51 made of a thermoplastic resin, and a second conductive foil 53 are prepared. As the first and second conductive foils 52 and 53, inexpensive copper foil having low electric resistance is suitable, and the contact surface with the film 51 made of a thermoplastic resin having a thickness of 12 μm is roughened to have irregularities to improve the bonding strength. I try to raise it. A liquid crystal polymer is most suitable as the thermoplastic resin 51. In this embodiment, a wholly aromatic polyester liquid crystal polymer (trade name: Vectra) OC
-42 was used. This wholly aromatic polyester-based liquid crystal polymer has physical properties such as a melting point of 325 ° C. and a soldering heat resistance of 320 ° C., and can be sufficiently used as a mounting substrate for a semiconductor element. This can be easily understood from the fact that the solder heat resistance of the glass epoxy substrate is 260 ° C., for example. On the surface of the second conductive foil 53, a silver paste, which is a conductive material 57, is screen-printed at a predetermined position to previously form a bump 80 having a height (for example, 50 μm or more) penetrating the thermoplastic resin film 51. Keep it.

【0019】第1および第2の導電箔52,53と熱可
塑性樹脂フィルム51は最初は幅1mのロール状で供給
され、多数の支持基板50を形成した後に個別の支持基
板50に分離される。この個別の支持基板50が図9に
示すものであり、この個別の支持基板50にも24行2
4列に576個の半導体素子の搭載部70が形成される
ことになる。
The first and second conductive foils 52 and 53 and the thermoplastic resin film 51 are initially supplied in the form of a roll having a width of 1 m, formed into a large number of support substrates 50, and then separated into individual support substrates 50. . This individual support substrate 50 is shown in FIG.
The mounting portions 70 of 576 semiconductor elements are formed in four rows.

【0020】次に、図1(B)に示すように第1の導電
箔52、熱可塑性樹脂フィルム51および第2の導電箔
53を熱圧着して一体化された支持基板50を形成す
る。この熱圧着時に熱可塑性樹脂フィルム51は加熱さ
れて軟化するので、第2の導電箔53に付着された導電
材57となるバンプ80は熱可塑性樹脂フィルム51を
貫通し第1の導電箔52まで到達する。
Next, as shown in FIG. 1B, the first conductive foil 52, the thermoplastic resin film 51, and the second conductive foil 53 are thermocompression-bonded to form an integrated support substrate 50. During this thermocompression bonding, the thermoplastic resin film 51 is heated and softened, so that the bumps 80 serving as the conductive material 57 attached to the second conductive foil 53 penetrate the thermoplastic resin film 51 and extend to the first conductive foil 52. To reach.

【0021】熱可塑性樹脂フィルム51として液晶ポリ
マーを用いた場合は、加熱温度300℃、圧着圧力4.
4〜8.7kPaで真空熱圧着を行う。このとき液晶ポ
リマーはガラス転移点である310℃に近くかなり軟化
しているので、導電ペーストで形成された先端が尖った
バンプ80がこの液晶ポリマーを貫通する。なおこのと
きに接着剤は使用していない。
When a liquid crystal polymer is used as the thermoplastic resin film 51, the heating temperature is 300.degree.
Vacuum thermocompression bonding is performed at 4 to 8.7 kPa. At this time, since the liquid crystal polymer is considerably softened near the glass transition point of 310 ° C., the pointed bump 80 formed of the conductive paste penetrates the liquid crystal polymer. At this time, no adhesive was used.

【0022】更に、図1(C)に示すように熱圧着を完
了すると、第1の導電箔52、熱可塑性樹脂フィルム5
1、第2の導電箔53は密着して一体化されるので、導
電ペーストよりなるバンプ80も潰されて0.15mm
の径の柱状の導電材57を形成する。
Further, as shown in FIG. 1C, when the thermocompression bonding is completed, the first conductive foil 52, the thermoplastic resin film 5
Since the first and second conductive foils 53 are in close contact and integrated, the bumps 80 made of conductive paste are also crushed to 0.15 mm.
A columnar conductive material 57 having a diameter of is formed.

【0023】図7に本発明の熱可塑性樹脂フィルム51
として用いた全芳香族ポリエステル系液晶ポリマー(商
品名ベクトラ)OC−42の動的弾性率を示す。全芳香
族ポリエステル系液晶ポリマー(商品名ベクトラ)OC
−42のガラス転移点の温度は310℃であるが、27
0℃を超えると動的弾性率が著しく落ちることが分か
る。従って各工程の熱処理温度は270℃以下で行え
ば、軟化による組立の障害があまり発生しない。
FIG. 7 shows a thermoplastic resin film 51 of the present invention.
2 shows the dynamic elastic modulus of a wholly aromatic polyester-based liquid crystal polymer (trade name: Vectra) OC-42 used as a sample. Wholly aromatic polyester liquid crystal polymer (Vectra) OC
The temperature of the glass transition point of −42 is 310 ° C.,
It can be seen that when the temperature exceeds 0 ° C., the dynamic elastic modulus drops significantly. Therefore, if the heat treatment temperature in each step is set at 270 ° C. or less, there is not much trouble in assembly due to softening.

【0024】第2工程:図2(A)(B)参照 斯かる支持基板50の両主面は第1および第2の導電箔
52,53で被覆されている。図2(A)示すように、
この第1の導電箔52上には所定の形状の固着電極5
4、取り出し電極55上を覆うようにレジスト膜81を
付着し、第2の導電箔53上にも所定の形状の第1およ
び第2の接続電極56、56a、56b上を覆うように
レジスト膜81を付着する。レジスト膜81としては液
状のレジスト材料をスピンコートして感光現像しても良
いし、フィルム状のレジスト材料を貼り付けて感光現像
しても良い。
Second step: See FIGS. 2A and 2B Both main surfaces of the support substrate 50 are covered with first and second conductive foils 52 and 53. As shown in FIG.
The fixed electrode 5 having a predetermined shape is formed on the first conductive foil 52.
4. A resist film 81 is attached so as to cover the extraction electrode 55, and the resist film is also formed on the second conductive foil 53 so as to cover the first and second connection electrodes 56, 56a, and 56b having a predetermined shape. Attach 81. As the resist film 81, a liquid resist material may be spin-coated and subjected to photosensitive development, or a film-shaped resist material may be attached and subjected to photosensitive development.

【0025】続いてレジスト膜81をマスクとして第1
および第2の導電箔52,53を塩化第2鉄溶液を用い
て化学的にエッチングして、第1の導電箔52で固着電
極54、取り出し電極55a、55bを形成し、第2の
導電箔53で第1および第2の接続電極56、56a、
56bを形成する。これらの電極の具体的な形状は後で
図9(A)(B)を参照して説明するので、その部分を
参照されたい。これらの電極は全てが連結電極72,7
3や導電材57で電気的に接続されているので、電解メ
ッキによりこれらの電極上に金メッキの下地となるニッ
ケルメッキ層(5μm以上)とその上に金メッキ層
(0.5μm以上)を形成している。
Subsequently, the first resist film 81 is used as a mask.
Then, the second conductive foils 52 and 53 are chemically etched using a ferric chloride solution to form the fixed electrode 54 and the lead-out electrodes 55a and 55b with the first conductive foil 52. At 53, the first and second connection electrodes 56, 56a,
Form 56b. Since the specific shapes of these electrodes will be described later with reference to FIGS. 9A and 9B, please refer to those portions. These electrodes are all connected electrodes 72, 7
3 and a conductive material 57, a nickel plating layer (5 μm or more) serving as a base for gold plating and a gold plating layer (0.5 μm or more) are formed on these electrodes by electrolytic plating. ing.

【0026】なお、上述した第1および第2の工程で形
成される支持基板50は別の場所で生産したものを予め
準備しておけば、組み立て工程を短縮でき効率的であ
る。
If the support substrate 50 formed in the first and second steps described above is prepared in advance at another place, the assembling step can be shortened and efficient.

【0027】第3工程:図3参照 上述したように各電極を形成した支持基板50の各搭載
部70(図9参照)毎に、半導体チップ58をダイボン
ドする。半導体チップ58は固着電極54表面にAgペ
ーストなどの導電ペースト59によって固着される。導
電ペースト59は個別の支持基板50の固着電極54上
にスクリーン印刷で付着された後、半導体チップ58を
載置して、還元雰囲気中の電気炉内で熱可塑性樹脂フィ
ルムのガラス転移点310℃以下の約150℃の温度で
約30分間硬化させる。
Third Step: See FIG. 3 A semiconductor chip 58 is die-bonded to each mounting portion 70 (see FIG. 9) of the support substrate 50 on which the electrodes are formed as described above. The semiconductor chip 58 is fixed to the surface of the fixed electrode 54 with a conductive paste 59 such as an Ag paste. After the conductive paste 59 is applied by screen printing on the fixed electrodes 54 of the individual support substrates 50, the semiconductor chip 58 is mounted, and the glass transition point 310 ° C. of the thermoplastic resin film is set in an electric furnace in a reducing atmosphere. Cure at the following temperature of about 150 ° C. for about 30 minutes.

【0028】また本工程で、固着電極54は第1の接続
電極56と半分程度重なって形成されているが、半導体
チップ58の約半分以上が第1の接続電極56と重なっ
て固着電極54に上に固着され、かつ2個の導電材57
と重なるように固着することによりボンディング時に半
導体チップ58の上下の沈みを抑えることができボンデ
ィング細線のループ形状を安定化できる。さらに望まし
くは半導体チップ58の電極60を第1の接続電極56
上に位置するようにするとボンディング時の半導体チッ
プ58の上下の沈みを除去できる。
In this step, the fixed electrode 54 is formed so as to overlap with the first connection electrode 56 by about half. However, about half or more of the semiconductor chip 58 overlaps with the first connection electrode 56 and forms the fixed electrode 54. Fixed on the top and two conductive members 57
When the semiconductor chip 58 is bonded, the sinking of the semiconductor chip 58 in the vertical direction can be suppressed, and the loop shape of the bonding fine wire can be stabilized. More preferably, the electrode 60 of the semiconductor chip 58 is connected to the first connection electrode 56.
When it is positioned above, the upper and lower sinks of the semiconductor chip 58 during bonding can be removed.

【0029】第4工程:図4参照 半導体チップ58の電極パッド60と取り出し電極55
a、55bとを各々金などのボンディングワイヤ61で
接続する。金線によりボールボンドをする場合は、支持
基板50を150℃に加熱して半導体チップ58の電極
パッド60に金線の一端に形成したボール部分を熱圧着
し、多端を取り出し電極55a、55bに熱圧着する。
この際、熱可塑性樹脂フィルム51はセラミックやガラ
スエポキシ基板に比べて軟質でボンディングが難しいの
で、第2の接続電極56a、56bと重なる取り出し電
極55a、55b上にボンディングをすることにより両
導電箔を形成する銅箔の堅さを利用すると良い。更に第
2接続電極56a、56bと導電材57および取り出し
電極55a、55bが重なる部分にボンディングする
と、熱可塑性樹脂フィルム51の軟質性の障害を完全に
クリアできる。
Fourth step: see FIG. 4 The electrode pad 60 and the extraction electrode 55 of the semiconductor chip 58
a and 55b are connected by bonding wires 61 such as gold. In the case of performing ball bonding with a gold wire, the supporting substrate 50 is heated to 150 ° C., and the ball portion formed at one end of the gold wire is thermocompression-bonded to the electrode pad 60 of the semiconductor chip 58, and multiple ends are taken out to the electrodes 55a and 55b. Thermocompression bonding.
At this time, since the thermoplastic resin film 51 is softer than the ceramic or glass epoxy substrate and is difficult to bond, the two conductive foils are bonded by bonding on the extraction electrodes 55a and 55b overlapping the second connection electrodes 56a and 56b. It is preferable to use the hardness of the copper foil to be formed. Further, by bonding the second connection electrodes 56a and 56b to the portions where the conductive material 57 and the extraction electrodes 55a and 55b overlap, the soft failure of the thermoplastic resin film 51 can be completely cleared.

【0030】第5工程:図5(A)(B)参照 支持基板50の各載置部70に半導体チップ58のダイ
ボンドとボンディング細線61による接続が終了する
と、絶縁樹脂62により全体のモールドを行う。本工程
では支持基板50の裏面に露出する接続電極56、56
a、56bを除き、半導体チップ58、固着電極54、
取り出し電極55a、55bおよびボンディング細線6
1をエポキシ系樹脂62でトランスファーモールドす
る。
Fifth Step: As shown in FIGS. 5A and 5B, when the die bonding of the semiconductor chip 58 and the connection by the bonding thin wires 61 to the mounting portions 70 of the support substrate 50 are completed, the entire molding is performed by the insulating resin 62. . In this step, the connection electrodes 56, 56 exposed on the back surface of the support substrate 50
a, 56b, except for the semiconductor chip 58, the fixed electrode 54,
Extraction electrodes 55a, 55b and bonding thin wire 6
1 is transfer-molded with an epoxy resin 62.

【0031】すなわち、図5(A)に示すように、支持
基板50をモールド金型90、91内に配置する。モー
ルド下金型91に支持基板50を当接させ、モールド上
金型90で形成されるキャビティ92内に各載置部70
に固着された半導体チップ58を配置する。続いてモー
ルド下金型91に設けたランナー93からゲート94を
介してエポキシ樹脂をキャビティ92内に圧入して、す
べての半導体チップ58を共通の絶縁樹脂層62で被覆
する。このトランスファーモールドは熱可塑性樹脂フィ
ルム51のガラス転移点温度(310℃)以下の約18
0℃で行う。このとき支持基板50はエポキシ樹脂の圧
入によりモールド下金型91に押し付けられ、熱可塑性
樹脂フィルム51が軟化しても反るような問題は生じな
い。この工程では、絶縁樹脂層62の表面が少なくとも
半導体チップ58およびボンディング細線61の上端ま
でを覆うように支持基板50から0.5〜1.0mmの
高さに設計される。
That is, as shown in FIG. 5A, the support substrate 50 is placed in the molds 90 and 91. The support substrate 50 is brought into contact with the lower mold 91, and each mounting portion 70 is placed in a cavity 92 formed by the upper mold 90.
The semiconductor chip 58 fixed to the substrate is disposed. Subsequently, epoxy resin is pressed into the cavity 92 from the runner 93 provided in the lower mold 91 via the gate 94, and all the semiconductor chips 58 are covered with the common insulating resin layer 62. This transfer mold has a temperature of about 18 ° C. or less which is lower than the glass transition temperature (310 ° C.) of the thermoplastic resin film 51.
Perform at 0 ° C. At this time, the support substrate 50 is pressed against the lower mold 91 by press-fitting the epoxy resin, and there is no problem that the thermoplastic resin film 51 is warped even if it is softened. In this step, the height of the insulating resin layer 62 is designed to be 0.5 to 1.0 mm from the support substrate 50 such that the surface of the insulating resin layer 62 covers at least up to the upper end of the semiconductor chip 58 and the bonding wire 61.

【0032】更に図5(B)に示すように、モールド金
型90、91より取り出し冷却した後、搭載部70毎に
絶縁樹脂層62と支持基板50を切断して各々の半導体
素子に分離する。切断にはダイシング装置を用い、ダイ
シングライン71に沿って絶縁樹脂層62と支持基板5
0とをダイシングブレード85で同時に切断することに
より、搭載部70毎に分割した半導体装置を形成する。
この工程で切断された接続部72,73(図8(A)参
照)の残りが、図8で示した接続部72、73ある。ダ
イシング工程においては支持基板50の裏面側にブルー
シート(たとえば、商品名:UVシート、リンテック株
式会社製)を貼り付け、前記ダイシングブレードがブル
ーシートの表面に到達するような切削深さで切断する。
Further, as shown in FIG. 5B, after taking out from the molds 90 and 91 and cooling, the insulating resin layer 62 and the support substrate 50 are cut for each mounting part 70 and separated into respective semiconductor elements. . The dicing device is used for cutting, and the insulating resin layer 62 and the supporting substrate 5 are cut along the dicing line 71.
0 are simultaneously cut by the dicing blade 85 to form a semiconductor device divided for each mounting section 70.
The rest of the connection portions 72 and 73 (see FIG. 8A) cut in this step are the connection portions 72 and 73 shown in FIG. In the dicing process, a blue sheet (for example, trade name: UV sheet, manufactured by Lintec Corporation) is attached to the back surface of the support substrate 50, and cut at a cutting depth such that the dicing blade reaches the surface of the blue sheet. .

【0033】図6は、上述の工程によって形成され、ス
クライブにより個別に分離された各半導体素子を示す斜
視図である。本発明の製造方法で完成された半導体装置
を図8および図9を参照して説明する。 図8は、本発
明の完成された個別の半導体装置を説明する図であり、
(A)が平面図、(B)が断面図、(C)が裏面図であ
る。図9は、本発明に用いる支持基板を説明する図であ
り、(A)が平面図、(B)が裏面図である。
FIG. 6 is a perspective view showing each semiconductor element formed by the above-described steps and separated individually by scribing. A semiconductor device completed by the manufacturing method of the present invention will be described with reference to FIGS. FIG. 8 is a diagram illustrating a completed individual semiconductor device of the present invention.
(A) is a plan view, (B) is a cross-sectional view, and (C) is a back view. 9A and 9B are diagrams illustrating a support substrate used in the present invention, wherein FIG. 9A is a plan view and FIG. 9B is a rear view.

【0034】支持基板50は、熱可塑性樹脂のフィルム
51の両面に2枚の導電箔52,53(図3参照)を熱
圧着して形成されている。熱可塑性樹脂は加熱すること
により軟化して二次加工が容易であり、従来用いていた
セラミックスやガラスエポキシの硬質基板よりはるかに
扱いやすくなる。熱可塑性樹脂としては液晶ポリマーが
最適であり、本実施例では全芳香族ポリエステル系液晶
ポリマー(商品名ベクトラ)を用いた。この全芳香族ポ
リエステル系液晶ポリマーは物性的特性として、融点が
325℃、はんだ耐熱性は320℃であり、十分に半導
体素子の実装基板として使用できる。これは例えばガラ
スエポキシ基板のはんだ耐熱性が260℃であることか
らも容易に分かる。
The support substrate 50 is formed by thermocompression bonding two conductive foils 52 and 53 (see FIG. 3) on both surfaces of a thermoplastic resin film 51. The thermoplastic resin is softened by heating and is easily subjected to secondary processing, and is much easier to handle than a conventionally used ceramic or glass epoxy hard substrate. A liquid crystal polymer is most suitable as the thermoplastic resin. In this example, a wholly aromatic polyester liquid crystal polymer (Vectra) was used. This wholly aromatic polyester-based liquid crystal polymer has physical properties such as a melting point of 325 ° C. and a soldering heat resistance of 320 ° C., and can be sufficiently used as a mounting substrate for a semiconductor element. This can be easily understood from the fact that the solder heat resistance of the glass epoxy substrate is 260 ° C., for example.

【0035】熱可塑性樹脂フィルム51の両面にはこの
樹脂フィルムで離間されかつ電気的に絶縁された2枚の
導電箔52,53が圧着されている。この導電箔として
は安価で電気的抵抗の小さい銅箔が最適である。具体的
には50μmの厚みの熱可塑性樹脂フィルム51の両面
に各々12μmの厚みの銅箔52,53が圧着されてい
る。一方の導電箔52はエッチングされて所望形状のパ
ターンに加工され、固着電極54と取り出し電極55
a、55bを形成する。固着電極54は少なくとも半導
体チップ58が載置できる大きさと形状を有しており、
この固着電極54に隣接して少し離間して取り出し電極
55a、55bが複数個形成されている。他方の導電箔
53もエッチングされて所望形状のパターンに加工さ
れ、固着電極54と取り出し電極55a、55bと対向
する位置に接続電極56、56a、56bを形成する。
接続電極56、56a、56bはプリント基板にはんだ
付けできる大きさに形成され、はんだ付けの際にはんだ
ブリッジが形成されないように離間され、対応する固着
電極54および取り出し電極55a、55bよりは小さ
く形成される。なお固着電極54、取り出し電極55
a、55bおよび接続電極56、56a、56bは電解
メッキによりその表面をニッケルメッキ層と金メッキ層
で被覆されており、導電ペーストとの接触抵抗を減少さ
せ、またボンディング細線の固着を可能にしている。
Two conductive foils 52 and 53 which are separated from each other and electrically insulated by the resin film are pressure-bonded to both surfaces of the thermoplastic resin film 51. As the conductive foil, an inexpensive copper foil having a small electric resistance is optimal. Specifically, copper foils 52 and 53 each having a thickness of 12 μm are pressure-bonded to both surfaces of a thermoplastic resin film 51 having a thickness of 50 μm. One conductive foil 52 is etched and processed into a desired shape pattern, and the fixed electrode 54 and the extraction electrode 55
a and 55b are formed. The fixed electrode 54 has at least a size and a shape on which the semiconductor chip 58 can be mounted.
A plurality of extraction electrodes 55a and 55b are formed adjacent to the fixed electrode 54 and slightly apart therefrom. The other conductive foil 53 is also etched and processed into a desired shape pattern, and connection electrodes 56, 56a, 56b are formed at positions facing the fixed electrode 54 and the extraction electrodes 55a, 55b.
The connection electrodes 56, 56a, 56b are formed in a size that can be soldered to a printed circuit board, are separated so that a solder bridge is not formed at the time of soldering, and are formed smaller than the corresponding fixed electrodes 54 and extraction electrodes 55a, 55b. Is done. Note that the fixed electrode 54 and the extraction electrode 55
The surfaces of the a and 55b and the connection electrodes 56, 56a and 56b are covered with a nickel plating layer and a gold plating layer by electrolytic plating to reduce the contact resistance with the conductive paste and enable the bonding of the bonding thin wires. .

【0036】導電材57は一方の導電箔52で形成され
た固着電極54、取り出し電極55a、55bと他方の
導電箔53で形成された対応する接続電極56、56
a、56bとを接続している。導電材57としては銀ペ
ーストを用い、熱可塑性樹脂51を加熱して軟化させて
導電材57を貫通させている。従って予めビアホールを
設ける必要が無くなる。導電材57を貫通させる位置は
図1(A)(C)に破線丸印で示すように、固着電極5
4では取り出し電極55a、55bと離れた側の上下両
端近くに2個設け、取り出し電極55a、55bではほ
ぼ中央部に1個形成している。
The conductive material 57 is composed of the fixed electrode 54 formed by one conductive foil 52, the extraction electrodes 55 a and 55 b, and the corresponding connection electrodes 56 formed by the other conductive foil 53.
a, 56b. A silver paste is used as the conductive material 57, and the thermoplastic resin 51 is heated and softened to penetrate the conductive material 57. Therefore, it is not necessary to provide a via hole in advance. The position through which the conductive material 57 is penetrated is indicated by a broken-line circle in FIGS.
In No. 4, two are provided near the upper and lower ends on the side distant from the extraction electrodes 55a and 55b, and one is formed substantially in the center of the extraction electrodes 55a and 55b.

【0037】半導体チップ58は固着電極54上にAg
ペーストなどの導電ペースト59により固着されてい
る。半導体チップ58としては、バイポーラトランジス
タ、パワーMOSFET等の3端子素子又はダイオード
などの2端子素子が形成されているウエファーから供給
される。半導体チップ58自体は、N+/N型構造のよ
うに、裏面側に高濃度不純物層を有しており、該高濃度
層を介して、ダイオード素子で有ればアノード又はカソ
ードの一方の端子を、バイポーラ型トランジスタで有れ
ばコレクタ端子を、パワーMOSFETで有ればドレイ
ン端子を導出する構造を有しているので、この高濃度層
が導電ペースト59を介して固着電極54にオーミック
接続される。
The semiconductor chip 58 has Ag fixed on the fixed electrode 54.
It is fixed by a conductive paste 59 such as a paste. The semiconductor chip 58 is supplied from a wafer on which a three-terminal element such as a bipolar transistor or a power MOSFET or a two-terminal element such as a diode is formed. The semiconductor chip 58 itself has a high-concentration impurity layer on the back side like an N + / N-type structure, and through the high-concentration layer, connects one terminal of an anode or a cathode if it is a diode element. In the case of a bipolar transistor, the collector terminal is provided, and in the case of a power MOSFET, the drain terminal is provided, so that this high concentration layer is ohmically connected to the fixed electrode 54 via the conductive paste 59. .

【0038】半導体チップ58の表面にはアルミ電極パ
ッド60が形成され、電極パッド60と取り出し電極5
5a、55bとが、金線ボンディングワイヤ61によっ
て電気接続される。電極パッド60側に1stボンド、
取り出し電極55a、55b側に2ndボンドが打たれ
る。バイポーラトランジスタで有れば、取り出し電極5
5a、55bはエミッタとベースに対応し、パワーMO
SFETで有れば、ソースとゲートに対応する。
An aluminum electrode pad 60 is formed on the surface of the semiconductor chip 58, and the electrode pad 60 and the extraction electrode 5 are formed.
5a and 55b are electrically connected by a gold wire bonding wire 61. 1st bond on the electrode pad 60 side,
A second bond is formed on the side of the extraction electrodes 55a and 55b. If it is a bipolar transistor, the extraction electrode 5
5a and 55b correspond to the emitter and the base, respectively.
If it is an SFET, it corresponds to the source and the gate.

【0039】支持基板50の上面は、半導体チップ5
8、固着電極54、取り付け電極55a、55bおよび
ボンディングワイヤ61とを被覆する絶縁樹脂62で封
止される。絶縁樹脂62は支持基板51と共にパッケー
ジ外形を構成する。パッケージの周囲4側面は絶縁樹脂
62と支持基板51の切断面で形成され、パッケージの
上面は平坦化した絶縁樹脂層62の表面、パッケージの
下面は支持基板50の裏面側で形成される。絶縁樹脂6
2は一般的に用いられるエポキシ樹脂を用いる。
The upper surface of the supporting substrate 50 is
8. Sealed with an insulating resin 62 covering the fixed electrode 54, the mounting electrodes 55a and 55b, and the bonding wires 61. The insulating resin 62 forms a package outer shape together with the support substrate 51. The four peripheral sides of the package are formed by the cut surface of the insulating resin 62 and the support substrate 51, the upper surface of the package is formed by the flattened surface of the insulating resin layer 62, and the lower surface of the package is formed by the back surface of the support substrate 50. Insulating resin 6
2 uses a commonly used epoxy resin.

【0040】次に、図9を参照して支持基板51の上面
に一方の導電箔52から形成される固着電極54および
取り出し電極55a、55bと、裏面に他方の導電箔5
3から形成される接続電極56、56a、56bの関係
を説明する。
Next, referring to FIG. 9, fixed electrode 54 and extraction electrodes 55a and 55b formed from one conductive foil 52 on the upper surface of support substrate 51, and the other conductive foil 5
The relationship between the connection electrodes 56, 56a, and 56b formed from 3 will be described.

【0041】点線で囲んだ各搭載部70は、例えば長辺
×短辺が0.9mm×0.8mmの矩形形状を有してお
り、これらは互いに20〜50μmの間隔を隔てて24
行24列の行列上に縦横に配置されている。前記間隔は
後の工程でのダイシングライン71となる。導電パター
ンは、各搭載部70内において固着電極54と取り出し
電極55a、55bを形成し、これらのパターンは各搭
載部70内において同一形状である。
Each of the mounting portions 70 surrounded by a dotted line has a rectangular shape of, for example, 0.9 mm × 0.8 mm long side × short side, and these are separated from each other by a distance of 20 to 50 μm.
They are arranged vertically and horizontally on a matrix of 24 rows. The interval becomes a dicing line 71 in a later step. The conductive pattern forms the fixed electrode 54 and the extraction electrodes 55a and 55b in each mounting portion 70, and these patterns have the same shape in each mounting portion 70.

【0042】固着電極54からは2本の連結部72が連
続したパターンで延長される。これらの線幅は固着電極
54よりも狭い線幅で、例えば0.075mmの線幅で
延在する。連結部72はダイシングライン71を超えて
隣の搭載部70の取り出し電極55a、55bに連結す
るまで延在する。更に、固着電極54から上下方向に連
結部73が、連結部72とは直行する方向に延在され、
ダイシングライン71を越えて隣の搭載部70の固着電
極54に連結するまで延在される。連結部73は更に、
搭載部70周囲を取り囲む共通連結部74に連結され、
各搭載部70の固着電極54と取り出し電極55a、5
5bとを電気的に共通接続する。
From the fixed electrode 54, two connecting portions 72 are extended in a continuous pattern. These line widths are narrower than the fixed electrode 54 and extend with a line width of, for example, 0.075 mm. The connecting portion 72 extends beyond the dicing line 71 until it is connected to the extraction electrodes 55a and 55b of the adjacent mounting portion 70. Further, a connecting portion 73 extends vertically from the fixed electrode 54 in a direction perpendicular to the connecting portion 72,
It extends until it is connected to the fixed electrode 54 of the adjacent mounting part 70 beyond the dicing line 71. The connecting portion 73 further includes
Connected to a common connecting portion 74 surrounding the mounting portion 70,
The fixed electrode 54 and the extraction electrodes 55a, 5
5b is electrically connected in common.

【0043】支持基板50の裏面側には、第1と第2の
接続電極56、56a、56bを形成する。これらの接
続電極56、56a、56bは、搭載部70の端から
0.05〜0.1mm程度後退されたパターンで形成さ
れている。両導電箔52,53を離間する熱可塑性樹脂
51は丸印で図示する位置で導電材57で貫通されて電
気的接続をされている。具体的には固着電極54と第1
の接続電極56は上下に2個設けた導電材57で接続さ
れ、各々の取り出し電極55a、55bは第2の接続電
極56a、56bとその中央部に設けた導電材57で接
続されている。従って各電極は導電材57を介して、支
持基板50表面側の共通連結部74に接続される。従っ
て、ダイシング後にそれぞれが細い連結部72,73を
切断されることで個々の電極として機能する。全パター
ンが電気的に共通接続されるので、電解メッキ法により
各電極表面をニッケルメッキ層および金メッキ層で被覆
することが可能となる。
On the back side of the support substrate 50, first and second connection electrodes 56, 56a, 56b are formed. These connection electrodes 56, 56 a, 56 b are formed in a pattern recessed from the end of the mounting section 70 by about 0.05 to 0.1 mm. The thermoplastic resin 51 separating the two conductive foils 52 and 53 is penetrated by a conductive material 57 at a position shown by a circle to be electrically connected. Specifically, the fixed electrode 54 and the first
The connection electrodes 56 are connected by two conductive members 57 provided above and below, and the respective extraction electrodes 55a and 55b are connected to the second connection electrodes 56a and 56b by a conductive material 57 provided at the center thereof. Therefore, each electrode is connected to the common connection part 74 on the surface side of the support substrate 50 via the conductive material 57. Therefore, each of the thin connecting portions 72 and 73 is cut after dicing to function as an individual electrode. Since all the patterns are electrically connected in common, it is possible to cover the surface of each electrode with a nickel plating layer and a gold plating layer by an electrolytic plating method.

【0044】熱可塑性樹脂51はセラミックやガラスエ
ポキシ基板に比較すると軟質であるので、ボンディング
する際にボンディング圧力が発散する欠点がある。これ
を防止するために取り出し電極55a、55bと第2の
接続電極56a、56bはほぼ重なるように配置され、
少なくとも両電極が重なる位置の取り出し電極55a、
55b上にボンディング細線をボンディングすることが
望ましく、更には両電極と導電材57とが重なる取り出
し電極55a、55bの中央にボンディング細線をボン
ディングすることがより望ましい。また固着電極54は
第1の接続電極56と半分程度重なって形成されている
が、半導体チップの約半分以上が第1の接続電極56と
重なって固着電極54に上に固着され、かつ2個の導電
材57と重なるように固着することによりボンディング
時に半導体チップの上下の沈みを抑えることができボン
ディング細線のループ形状を安定化できる。さらに望ま
しくは半導体チップ58の電極60を第1の接続電極5
6上に位置するようにするとボンディング時の半導体チ
ップの上下の沈みを除去できる。
Since the thermoplastic resin 51 is softer than a ceramic or glass epoxy substrate, there is a disadvantage that the bonding pressure is diverged during bonding. In order to prevent this, the extraction electrodes 55a, 55b and the second connection electrodes 56a, 56b are arranged so as to substantially overlap,
An extraction electrode 55a at a position where at least both electrodes overlap,
It is desirable to bond a bonding thin wire on 55b, and it is more preferable to bond the bonding thin wire to the center of the extraction electrodes 55a and 55b where both electrodes and the conductive material 57 overlap. The fixed electrode 54 is formed so as to overlap with the first connection electrode 56 by about half. However, about half or more of the semiconductor chip overlaps with the first connection electrode 56 and is fixed on the fixed electrode 54, and two By fixing the conductive material 57 so as to overlap with the conductive material 57, the vertical sinking of the semiconductor chip during bonding can be suppressed, and the loop shape of the bonding thin wire can be stabilized. More preferably, the electrode 60 of the semiconductor chip 58 is connected to the first connection electrode 5.
6, the upper and lower sinks of the semiconductor chip during bonding can be removed.

【0045】上述した本発明による半導体装置は両導電
箔の離間材料として熱可塑性樹脂フィルム51を利用し
ていることにより、熱可塑性に起因する軟質性の障害を
取り除くことが重要である。しかし熱可塑性樹脂フィル
ム51として液晶ポリマーを用いることによる数々の利
点も有している。電気特性では、誘電率において1MH
z(20℃、96H、65%RH)で3.0,1GHz
で2.9であり、ガラスエポキシ基板で誘電率が1MH
zで4.7〜5.0と比較するとかなり優れている。ま
た表面抵抗は14×1013Ωであり、ポリイミド樹脂の
1.1×1013Ωと比較しても大幅に絶縁性が高い。こ
れらから本発明の支持基板50は極めて高周波領域での
特性が良好であることが明らかである。更に耐折性につ
いてはJIS C5016評価規格でR=0.38mm
で44回もあり、同一条件でポリイミド樹脂は33回と
比較すれば細線の断線が少ない。更に吸水率0.04%
であり、湿度下での絶縁性は良好であり、ガスバリヤー
性も高く、ノンハロゲン、スルーホールメッキレスと環
境調和も優れている。
In the above-described semiconductor device according to the present invention, since the thermoplastic resin film 51 is used as a material for separating the two conductive foils, it is important to remove a soft failure caused by thermoplasticity. However, the use of the liquid crystal polymer as the thermoplastic resin film 51 has many advantages. In electrical properties, the dielectric constant is 1 MH
3.0, 1 GHz at z (20 ° C., 96H, 65% RH)
Is 2.9 and the dielectric constant is 1 MH on a glass epoxy substrate.
It is considerably better than 4.7 to 5.0 in z. The surface resistance is 14 × 10 13 Ω, which is much higher than the polyimide resin 1.1 × 10 13 Ω. From these, it is clear that the characteristics of the support substrate 50 of the present invention in an extremely high frequency region are excellent. Further, regarding the folding resistance, R = 0.38 mm according to the JIS C5016 evaluation standard.
In the same conditions, the polyimide resin is less likely to be broken than the 33 times under the same conditions. 0.04% water absorption
It has good insulation properties under humidity, high gas barrier properties, and excellent environmental harmony with non-halogen and no through-hole plating.

【0046】[0046]

【発明の効果】本発明によれば、第1に、2枚の導電箔
52,53の他方の導電箔に予め導電ペーストのバンプ
80形成し、その間に熱可塑性樹脂フィルム51を挟ん
で熱圧着するだけで導電材57を形成できるので、両面
の電極等を接続するためのビアホールが不要となり、ま
たこのビアホール内に金属ペーストで充填する必要も無
くなるので作業性で極めて良く、ローコストの製造方法
を実現できる。またこの加工精度もバンプ80のスクリ
ーン印刷の精度で決められるので、小型化の要求にも十
分に対応できる。
According to the present invention, first, a bump 80 of a conductive paste is previously formed on the other conductive foil of the two conductive foils 52 and 53, and a thermocompression bonding is performed with the thermoplastic resin film 51 interposed therebetween. Since the conductive material 57 can be formed only by performing the method, a via hole for connecting the electrodes and the like on both surfaces is not required, and the via hole does not need to be filled with a metal paste. realizable. Since the processing accuracy is also determined by the accuracy of the screen printing of the bump 80, it can sufficiently cope with a demand for miniaturization.

【0047】第2に各電極は導電箔、特に銅箔のエッチ
ングで形成できるので、タングステン等の高価な金属ペ
ーストを用いている必要もなく、工程数も短縮でき且つ
高温の金属ペーストの焼成も不要となりローコストの製
造方法を提供できる。
Second, since each electrode can be formed by etching a conductive foil, particularly a copper foil, there is no need to use an expensive metal paste such as tungsten, the number of steps can be reduced, and the firing of a high-temperature metal paste can be performed. It becomes unnecessary and a low-cost manufacturing method can be provided.

【0048】第3に支持基板50は高々75μmの厚み
で形成でき、薄型化の要望も十分に満足される。
Third, the support substrate 50 can be formed with a thickness of at most 75 μm, and the demand for thinning is sufficiently satisfied.

【0049】第4に熱可塑性樹脂フィルム51の持つ軟
質性は各工程の熱処理温度をガラス転移点温度310℃
以下で行うことにより、組立上の障害を除去できる。
Fourth, the softness of the thermoplastic resin film 51 is determined by setting the heat treatment temperature in each step to a glass transition temperature of 310 ° C.
By performing the following, it is possible to eliminate an obstacle in assembling.

【0050】第5に導電箔52,53として銅箔を用い
ると電気抵抗も低くでき、飽和オン抵抗も大幅に改善で
きる。
Fifth, when copper foil is used as the conductive foils 52 and 53, the electric resistance can be reduced and the saturation on-resistance can be greatly improved.

【0051】第6に2枚の導電箔52,53の層間絶縁
膜として熱可塑性樹脂フィルム51を用いているので、
ビアホールの形成やスルーホールメッキ等を不要にで
き、導電材57を熱可塑性樹脂フィルム51を熱圧着時
に貫通させるだけで両導電箔52,53で形成した各電
極を電気的に接続できる極めて簡単な実装を提供でき
る。このためにノンハロゲン、スルーホールめっきレス
で極めて環境に優しい実装構造となる。
Sixth, since the thermoplastic resin film 51 is used as an interlayer insulating film between the two conductive foils 52 and 53,
The formation of via holes and through-hole plating can be eliminated, and the electrodes formed by the conductive foils 52 and 53 can be electrically connected only by penetrating the conductive material 57 at the time of thermocompression bonding of the thermoplastic resin film 51. Can provide an implementation. For this reason, a non-halogen, no through-hole plating and extremely environmentally friendly mounting structure is obtained.

【0052】第7に本発明の支持基板50は銅箔が約1
2μm、熱可塑性樹脂フィルム51が約50μmで形成
されるので、全体では厚みが高々75μmにでき、従来
のセラミック基板の厚みがセラミックだけで0.25m
mから0.35mmもあり、約1/5に薄型化できる利
点を有する。このため完成された半導体装置の薄型化に
も大いに貢献でき、1mm角以下の極めて微細なトラン
ジスタチップ等の実装構造には最適である。
Seventh, the supporting substrate 50 of the present invention has a copper foil of about 1 mm.
Since the thickness of the thermoplastic resin film 51 is about 50 μm, the thickness can be as high as 75 μm as a whole.
m to 0.35 mm, which is advantageous in that the thickness can be reduced to about 1/5. For this reason, it is possible to greatly contribute to a reduction in thickness of a completed semiconductor device, and it is most suitable for a mounting structure of an extremely fine transistor chip of 1 mm square or less.

【0053】第8に本発明で用いた熱可塑性樹脂フィル
ム51は、高周波領域における誘電率はポリイミド樹脂
と同じであり、また表面抵抗はガラスエポキシ基板と同
等であり、良好な高周波特性を得られる。
Eighth, the thermoplastic resin film 51 used in the present invention has the same dielectric constant in the high-frequency region as the polyimide resin, and has the same surface resistance as the glass epoxy substrate, so that good high-frequency characteristics can be obtained. .

【0054】第9に本発明で用いた熱可塑性樹脂フィル
ム51は、熱可塑性による軟質さを有しているので、ポ
リイミド樹脂以上に耐折性に優れているので、微細幅の
配線でも断線する確率が極めて低く、各電極の微細化に
最適である。
Ninth, since the thermoplastic resin film 51 used in the present invention has softness due to thermoplasticity and is more excellent in folding resistance than polyimide resin, it breaks even in a wiring having a fine width. The probability is extremely low, and it is optimal for miniaturization of each electrode.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の半導体装置の製造方法を説明する図で
ある。
FIG. 1 is a diagram illustrating a method for manufacturing a semiconductor device according to the present invention.

【図2】本発明の半導体装置の製造方法を説明する図で
ある。
FIG. 2 is a diagram illustrating a method for manufacturing a semiconductor device according to the present invention.

【図3】本発明の半導体装置の製造方法を説明する図で
ある。
FIG. 3 is a diagram illustrating a method for manufacturing a semiconductor device according to the present invention.

【図4】本発明の半導体装置の製造方法を説明する図で
ある。
FIG. 4 is a diagram illustrating a method for manufacturing a semiconductor device according to the present invention.

【図5】本発明の半導体装置の製造方法を説明する図で
ある。
FIG. 5 is a diagram illustrating a method for manufacturing a semiconductor device according to the present invention.

【図6】本発明の半導体装置の製造方法により完成され
た半導体装置を説明する斜視図である。
FIG. 6 is a perspective view illustrating a semiconductor device completed by a method of manufacturing a semiconductor device according to the present invention.

【図7】本発明の半導体装置の製造方法に用いる熱可塑
性樹脂フィルムの特性を説明する図である。
FIG. 7 is a diagram illustrating characteristics of a thermoplastic resin film used in the method of manufacturing a semiconductor device according to the present invention.

【図8】本発明の半導体装置の製造方法により完成され
た半導体装置を説明する図である。
FIG. 8 is a diagram illustrating a semiconductor device completed by the method of manufacturing a semiconductor device according to the present invention.

【図9】 本発明の半導体装置の製造方法に用いる支持
基板を説明する図である。
FIG. 9 is a diagram illustrating a support substrate used in the method for manufacturing a semiconductor device of the present invention.

【図10】従来の半導体装置を説明する図である。FIG. 10 is a diagram illustrating a conventional semiconductor device.

【図11】従来の半導体装置を説明する図である。FIG. 11 is a diagram illustrating a conventional semiconductor device.

【図12】従来の半導体装置の製造方法を説明する図で
ある。
FIG. 12 is a diagram illustrating a conventional method of manufacturing a semiconductor device.

【図13】従来の半導体装置を説明する図である。FIG. 13 is a diagram illustrating a conventional semiconductor device.

───────────────────────────────────────────────────── フロントページの続き (72)発明者 兵藤 治雄 大阪府守口市京阪本通2丁目5番5号 三 洋電機株式会社内 Fターム(参考) 5F061 AA01 BA04 BA05 CA21 CB13 ──────────────────────────────────────────────────続 き Continuing on the front page (72) Inventor Haruo Hyodo 2-5-5 Keihanhondori, Moriguchi-shi, Osaka F-term in Sanyo Electric Co., Ltd. 5F061 AA01 BA04 BA05 CA21 CB13

Claims (12)

【特許請求の範囲】[Claims] 【請求項1】 第1の導電箔と、熱可塑性樹脂フィルム
と、導電材を所望の位置に付着した第2の導電箔とを熱
圧着して前記導電材を前記熱可塑性樹脂フィルムを貫通
させて前記第1および第2の導電箔を電気的に接続する
支持基板を形成する工程と、 前記第1の導電箔で固着電極および取り出し電極を形成
し、前記第2の導電箔で前記固着電極および取り出し電
極に対応し前記導電材で電気的に接続された接続電極を
形成する工程と、 前記固着電極に導電ペーストを用いて半導体素子を固着
する工程と、 前記半導体素子の電極と前記取り出し電極をボンディン
グ接続する工程と、 前記接続電極を露出して全体を絶縁樹脂で被覆する工程
とを具備することを特徴とする半導体装置の製造方法。
1. A first conductive foil, a thermoplastic resin film, and a second conductive foil having a conductive material adhered to a desired position are thermocompression-bonded so that the conductive material penetrates the thermoplastic resin film. Forming a support substrate for electrically connecting the first and second conductive foils, and forming a fixed electrode and an extraction electrode with the first conductive foil, and forming the fixed electrode with the second conductive foil. Forming a connection electrode which is electrically connected with the conductive material corresponding to the extraction electrode, and fixing a semiconductor element to the fixing electrode using a conductive paste; and an electrode of the semiconductor element and the extraction electrode. And a step of exposing the connection electrode and covering the whole with an insulating resin.
【請求項2】 前記第1および第2の導電箔として銅箔
を用い、化学的エッチングで 前記固着電極、取り出し
電極および接続電極を形成することを特徴とする請求項
1記載の半導体装置の製造方法。
2. The manufacturing of a semiconductor device according to claim 1, wherein said fixed electrode, extraction electrode and connection electrode are formed by chemical etching using copper foil as said first and second conductive foils. Method.
【請求項3】 前記熱可塑性樹脂として液晶ポリマーを
用いたことを特徴とする請求項1記載の半導体装置の製
造方法。
3. The method for manufacturing a semiconductor device according to claim 1, wherein a liquid crystal polymer is used as said thermoplastic resin.
【請求項4】 前記導電材として銀ペーストを用いたこ
とを特徴とする請求項1記載の半導体装置の製造方法。
4. The method according to claim 1, wherein a silver paste is used as the conductive material.
【請求項5】 前記半導体素子を固着する前記導電ペー
ストとして銀ペーストを用い、該銀ペーストの硬化を前
記熱可塑性樹脂フィルムのガラス転移点以下の温度で行
うことを特徴とする請求項1記載の半導体装置の製造方
法。
5. The method according to claim 1, wherein a silver paste is used as the conductive paste for fixing the semiconductor element, and the silver paste is cured at a temperature equal to or lower than a glass transition point of the thermoplastic resin film. A method for manufacturing a semiconductor device.
【請求項6】 前記絶縁樹脂の被覆は前記熱可塑性樹脂
フィルムのガラス転移点以下の温度でトランスファーモ
ールドで行うことを特徴とする請求項1記載の半導体装
置の製造方法。
6. The method according to claim 1, wherein the coating of the insulating resin is performed by transfer molding at a temperature equal to or lower than a glass transition point of the thermoplastic resin film.
【請求項7】 第1の導電箔と、熱可塑性樹脂フィルム
と、導電材を所望の位置に付着した第2の導電箔とを熱
圧着して前記導電材を前記熱可塑性樹脂フィルムを貫通
させて前記第1および第2の導電箔を電気的に接続し、
前記第1の導電箔で固着電極および取り出し電極を形成
し、前記第2の導電箔で前記固着電極および取り出し電
極に対応し前記導電材で電気的に接続された接続電極を
形成した支持基板を準備する工程と、 前記固着電極に導電ペーストを用いて半導体素子を固着
する工程と、 前記半導体素子の電極と前記取り出し電極をボンディン
グ接続する工程と、 前記接続電極を露出して全体を絶縁樹脂で被覆する工程
とを具備することを特徴とする半導体装置の製造方法。
7. A first conductive foil, a thermoplastic resin film, and a second conductive foil having a conductive material adhered to a desired position are thermocompression-bonded so that the conductive material penetrates the thermoplastic resin film. Electrically connecting the first and second conductive foils,
A supporting substrate in which a fixed electrode and an extraction electrode are formed of the first conductive foil, and a connection electrode electrically connected by the conductive material corresponding to the fixed electrode and the extraction electrode is formed of the second conductive foil. Preparing, fixing the semiconductor element to the fixed electrode using a conductive paste, bonding the electrode of the semiconductor element and the extraction electrode, and exposing the connection electrode with an insulating resin. A method of manufacturing a semiconductor device.
【請求項8】 前記第1および第2の導電箔として銅箔
を用い、化学的エッチングで 前記固着電極、取り出し
電極および接続電極を形成することを特徴とする請求項
7記載の半導体装置の製造方法。
8. The method of manufacturing a semiconductor device according to claim 7, wherein said fixed electrode, extraction electrode and connection electrode are formed by chemical etching using copper foil as said first and second conductive foils. Method.
【請求項9】 前記熱可塑性樹脂として液晶ポリマーを
用いたことを特徴とする請求項7記載の半導体装置の製
造方法。
9. The method for manufacturing a semiconductor device according to claim 7, wherein a liquid crystal polymer is used as said thermoplastic resin.
【請求項10】 前記導電材として銀ペーストを用いた
ことを特徴とする請求項7記載の半導体装置の製造方
法。
10. The method for manufacturing a semiconductor device according to claim 7, wherein a silver paste is used as said conductive material.
【請求項11】 前記半導体素子を固着する前記導電ペ
ーストとして銀ペーストを用い、該銀ペーストの硬化を
前記熱可塑性樹脂フィルムのガラス転移点以下の温度で
行うことを特徴とする請求項7記載の半導体装置の製造
方法。
11. The method according to claim 7, wherein a silver paste is used as the conductive paste for fixing the semiconductor element, and the silver paste is cured at a temperature equal to or lower than a glass transition point of the thermoplastic resin film. A method for manufacturing a semiconductor device.
【請求項12】 前記絶縁樹脂の被覆は前記熱可塑性樹
脂フィルムのガラス転移点以下の温度でトランスファー
モールドで行うことを特徴とする請求項7記載の半導体
装置の製造方法。
12. The method of manufacturing a semiconductor device according to claim 7, wherein the coating of the insulating resin is performed by transfer molding at a temperature equal to or lower than a glass transition point of the thermoplastic resin film.
JP2000002332A 2000-01-11 2000-01-11 Method for manufacturing semiconductor device Pending JP2001196400A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2000002332A JP2001196400A (en) 2000-01-11 2000-01-11 Method for manufacturing semiconductor device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000002332A JP2001196400A (en) 2000-01-11 2000-01-11 Method for manufacturing semiconductor device

Publications (1)

Publication Number Publication Date
JP2001196400A true JP2001196400A (en) 2001-07-19

Family

ID=18531452

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000002332A Pending JP2001196400A (en) 2000-01-11 2000-01-11 Method for manufacturing semiconductor device

Country Status (1)

Country Link
JP (1) JP2001196400A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001196390A (en) * 2000-01-11 2001-07-19 Sanyo Electric Co Ltd Method of manufacturing semiconductor device
JP2003110057A (en) * 2001-09-28 2003-04-11 Sanyo Electric Co Ltd Manufacturing method of semiconductor device
WO2023189996A1 (en) * 2022-03-31 2023-10-05 住友ベークライト株式会社 Resin composition for molding, manufacturing method for sealing structure, and sealing structure

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001196390A (en) * 2000-01-11 2001-07-19 Sanyo Electric Co Ltd Method of manufacturing semiconductor device
JP2003110057A (en) * 2001-09-28 2003-04-11 Sanyo Electric Co Ltd Manufacturing method of semiconductor device
WO2023189996A1 (en) * 2022-03-31 2023-10-05 住友ベークライト株式会社 Resin composition for molding, manufacturing method for sealing structure, and sealing structure
JP7501801B2 (en) 2022-03-31 2024-06-18 住友ベークライト株式会社 Molding resin composition, method for producing sealed structure, and sealed structure

Similar Documents

Publication Publication Date Title
US6548328B1 (en) Circuit device and manufacturing method of circuit device
US9496205B2 (en) Power semiconductor package
JP3526788B2 (en) Method for manufacturing semiconductor device
JP3420057B2 (en) Resin-sealed semiconductor device
US7541681B2 (en) Interconnection structure, electronic component and method of manufacturing the same
KR101469770B1 (en) Power device package and method of fabricating the same
KR100272686B1 (en) Semiconductor device and method for manufacturing the same
KR20010029402A (en) Chip scale surface mount package for semiconductor device and process of fabricating the same
JPH09252065A (en) Semiconductor device, manufacture thereof, and board frame
JP4159348B2 (en) Circuit device manufacturing method
JP3574026B2 (en) Circuit device and method of manufacturing the same
JP3500015B2 (en) Semiconductor device and manufacturing method thereof
JP2001196400A (en) Method for manufacturing semiconductor device
JP3691335B2 (en) Circuit device manufacturing method
JP3744771B2 (en) Manufacturing method of semiconductor device
JP2001185646A (en) Semiconductor device
JP3574025B2 (en) Circuit device and method of manufacturing the same
JP4711483B2 (en) Manufacturing method of semiconductor device
JP2001196493A (en) Semiconductor device
EP2800130A1 (en) Chip-to-substrate transient liquid phase bonding using a spacer
JP2002176120A (en) Semiconductor device
JP2002176121A (en) Method for manufacturing semiconductor device
JP4165952B2 (en) Semiconductor device
JPH1032284A (en) Semiconductor device
JP3744772B2 (en) Manufacturing method of semiconductor device

Legal Events

Date Code Title Description
RD01 Notification of change of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7421

Effective date: 20051226