JP2001194035A - Compression heat pump - Google Patents

Compression heat pump

Info

Publication number
JP2001194035A
JP2001194035A JP2000001558A JP2000001558A JP2001194035A JP 2001194035 A JP2001194035 A JP 2001194035A JP 2000001558 A JP2000001558 A JP 2000001558A JP 2000001558 A JP2000001558 A JP 2000001558A JP 2001194035 A JP2001194035 A JP 2001194035A
Authority
JP
Japan
Prior art keywords
compressor
refrigerant
superheat
degree
heat pump
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2000001558A
Other languages
Japanese (ja)
Inventor
Yukihiro Yano
幸博 矢野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kubota Corp
Original Assignee
Kubota Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kubota Corp filed Critical Kubota Corp
Priority to JP2000001558A priority Critical patent/JP2001194035A/en
Publication of JP2001194035A publication Critical patent/JP2001194035A/en
Pending legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2600/00Control issues
    • F25B2600/21Refrigerant outlet evaporator temperature

Abstract

PROBLEM TO BE SOLVED: To obtain a compression heat pump which can be protected effectively against damage due to abrupt inner temperature rise. SOLUTION: Means 9, 10 for detecting the degree of superheat Si of refrigerant R sucked into a compressor 1 and the degree of superheat So of refrigerant R delivered from the compressor 1 are provided. Based on the information detected by the detecting means 9, 10, a protective control means 11 executes a specified protective control, e.g. stopping of the compressor, if the degree of superheat Si of refrigerant R sucked into a compressor 1 is higher than the degree of superheat So of refrigerant R delivered from the compressor 1 and the difference exceeds a set allowance a (Si>So+α).

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、圧縮機―凝縮器―
膨張弁―蒸発器の順に冷媒を循環させる圧縮式ヒートポ
ンプに関し、詳しくは、圧縮機の保護に関する。
TECHNICAL FIELD The present invention relates to a compressor-condenser-
The present invention relates to a compression heat pump that circulates refrigerant in the order of an expansion valve and an evaporator, and more particularly, to protection of a compressor.

【0002】[0002]

【従来の技術】従来、圧縮式ヒートポンプでは、圧縮機
の異常運転に原因する圧縮機の損傷を防止するのに、次
の(イ)〜(ハ)の方式のうちの一つないし複数を採用
していた。
2. Description of the Related Art Conventionally, a compression heat pump employs one or more of the following methods (a) to (c) to prevent damage to a compressor due to abnormal operation of the compressor. Was.

【0003】(イ)圧縮機の機体温度を検出し、その検
出情報に基づき、圧縮機の機体温度が設定値よりも高く
なったとき圧縮機を自動停止する。
(A) The temperature of the compressor body is detected, and the compressor is automatically stopped when the temperature of the compressor body becomes higher than a set value based on the detected information.

【0004】(ロ)圧縮機からの吐出冷媒の温度を検出
し、その検出情報に基づき、圧縮機吐出冷媒の温度が設
定値よりも高くなったとき圧縮機を自動停止する。
(B) The temperature of the refrigerant discharged from the compressor is detected, and based on the detected information, when the temperature of the refrigerant discharged from the compressor becomes higher than a set value, the compressor is automatically stopped.

【0005】(ハ)圧縮機への吸込冷媒の圧力や圧縮機
からの吐出冷媒の圧力を検出し、その検出情報に基づ
き、圧縮機吸込冷媒の圧力が設定値よりも低下したとき
や圧縮吐出冷媒の圧力が設定値よりも高くなったとき圧
縮機を自動停止する。
(C) The pressure of the refrigerant sucked into the compressor and the pressure of the refrigerant discharged from the compressor are detected, and based on the detected information, when the pressure of the refrigerant sucked into the compressor becomes lower than a set value or when the pressure of the compressed refrigerant is reduced. When the pressure of the refrigerant becomes higher than the set value, the compressor is automatically stopped.

【0006】[0006]

【発明が解決しようとする課題】しかし、圧縮式ヒート
ポンプでは、運転状態の調整等で膨張弁を絞り側に調整
したとき、圧縮機吸込冷媒の過熱度が上昇するととも
に、圧縮機の冷却要因となる吸込冷媒の減少で圧縮機の
内部温度も上昇する傾向となるが、この変化が急激で圧
縮機の内部温度が急激に上昇した場合、圧縮機内部の動
作部が外郭部に比べ急速に大きく熱膨張し、この熱膨張
差のために圧縮機内部の動作部が外郭部に接触して圧縮
機の損傷を招くことがあった。
However, in the compression heat pump, when the expansion valve is adjusted to the throttle side by adjusting the operation state or the like, the degree of superheat of the refrigerant sucked into the compressor increases, and the cooling factor of the compressor is reduced. As the suction refrigerant decreases, the internal temperature of the compressor also tends to increase.However, if this change is rapid and the internal temperature of the compressor rises rapidly, the operating part inside the compressor becomes larger rapidly than the outer part. Thermal expansion may occur, and due to the difference in thermal expansion, the operating part inside the compressor may come into contact with the outer part, causing damage to the compressor.

【0007】そして、圧縮機の機体温度や圧縮機吐出冷
媒の温度、あるいは、圧縮機吸込冷媒の圧力や圧縮機吐
出冷媒の圧力を検出対象として、それら検出温度や検出
圧力が単に設定値を超えたか否かだけで異常の有無を判
定する前記(イ)〜(ハ)の保護方式では、上記の如き
圧縮機内部温度の急激な上昇が起こる状況を、その内部
温度上昇の未発生段階ないし初期段階で、また、熱膨張
差による圧縮機損傷には至らない緩慢な内部温度上昇が
生じるだけの状況と区別して、的確に検知することがで
きず、このことから、上記の如き熱膨張差による圧縮機
の損傷を効果的に防止できない問題があった。
The temperature of the compressor body, the temperature of the refrigerant discharged from the compressor, or the pressure of the refrigerant sucked into the compressor or the pressure of the refrigerant discharged from the compressor are detected, and the detected temperatures and detected pressures simply exceed the set values. According to the protection methods (a) to (c), the presence or absence of an abnormality is determined only by determining whether the internal temperature of the compressor suddenly increases, as described above. At this stage, it is not possible to accurately detect the temperature difference, unlike the case where only a slow internal temperature rise occurs, which does not lead to compressor damage due to the difference in thermal expansion. There was a problem that damage to the compressor could not be effectively prevented.

【0008】この実情に鑑み、本発明の主たる課題は、
合理的な異常検出により上記の如き圧縮機内部温度の急
激な上昇に原因する圧縮機の損傷を効果的に防止できる
ようにする点にある。
In view of this situation, the main problems of the present invention are:
The reason is that it is possible to effectively prevent damage to the compressor caused by the rapid rise in the internal temperature of the compressor by the rational abnormality detection.

【0009】[0009]

【課題を解決するための手段】〔1〕請求項1に係る発
明では、圧縮機―凝縮器―膨張弁―蒸発器の順に冷媒を
循環させる圧縮式ヒートポンプにおいて、前記圧縮機へ
の吸込冷媒の過熱度及び前記圧縮機からの吐出冷媒の過
熱度を検出する検出手段を設け、その検出手段の検出情
報に基づき、前記吸込冷媒の過熱度が前記吐出冷媒の過
熱度よりも大きくて、その差が設定許容差よりも大きく
なったとき所定の保護制御を実行する保護制御手段を設
ける。
According to a first aspect of the present invention, there is provided a compression heat pump for circulating a refrigerant in the order of a compressor, a condenser, an expansion valve, and an evaporator. Detecting means for detecting the degree of superheating and the degree of superheating of the refrigerant discharged from the compressor is provided.Based on the detection information of the detecting means, the degree of superheating of the suction refrigerant is larger than the degree of superheating of the discharged refrigerant. Protection control means for executing a predetermined protection control when is larger than the set tolerance.

【0010】つまり、運転状態の調整等で膨張弁を絞り
側に調整したとき、圧縮機吸込冷媒の過熱度が上昇する
とともに圧縮機の内部温度も上昇する傾向となることに
おいて、その変化が急激な場合、現象としては、先ず圧
縮機吸込冷媒の過熱度が急激に上昇して圧縮機吸込冷媒
の過熱度と圧縮機吐出冷媒の過熱度とに大きな差が生
じ、これに僅かに遅れて圧縮機内部温度の急激な上昇と
圧縮機吐出冷媒の過熱度上昇が生じることが実験で確認
された。
That is, when the expansion valve is adjusted to the throttle side by adjusting the operating state or the like, the degree of superheat of the compressor suction refrigerant increases and the internal temperature of the compressor tends to increase. In such a case, as a phenomenon, first, the superheat degree of the compressor suction refrigerant rapidly rises, causing a large difference between the superheat degree of the compressor suction refrigerant and the superheat degree of the compressor discharge refrigerant, and the compression is slightly delayed. Experiments have confirmed that a sudden rise in the internal temperature of the compressor and an increase in the degree of superheating of the refrigerant discharged from the compressor occur.

【0011】このことから、上記の如く、圧縮機吸込冷
媒の検出過熱度が圧縮機吐出冷媒の検出過熱度よりも大
きくて、その差が設定許容差よりも大きくなったとき、
圧縮機内部温度の急激な上昇が生じる状況であると判定
して、所定の保護制御を実行するようにすれば、圧縮機
内部温度の急激な上昇が起こる状況を、その内部温度上
昇の未発生段階ないし初期段階で、また、熱膨張差によ
る圧縮機損傷には至らない緩慢な内部温度上昇が生じる
だけの状況(すなわち、圧縮機吸込冷媒の過熱度が緩慢
に上昇することで、それと大きな差を生じることなく圧
縮機吐出冷媒の過熱度も追従して上昇するような状況)
と区別して的確に検知した状態で、その異常状況に対し
所定の保護制御を的確に施すことができ、これにより、
圧縮機内部温度の急激な上昇に原因する圧縮機の損傷
(すなわち、圧縮機内部の動作部が外郭部に比べ急速に
大きく熱膨張して外郭部に接触することによる圧縮機の
損傷)を効果的に防止することができる。
From the above, as described above, when the detected superheat degree of the compressor suction refrigerant is larger than the detected superheat degree of the compressor discharge refrigerant, and the difference becomes larger than the set tolerance,
If it is determined that a sudden increase in the internal temperature of the compressor occurs and the predetermined protection control is executed, a situation in which the internal temperature of the compressor suddenly increases will be regarded as a state in which the internal temperature increase does not occur. In the initial stage or the initial stage, there is also a situation where only a slow internal temperature rise that does not lead to compressor damage due to the difference in thermal expansion occurs (that is, the superheat degree of the refrigerant suctioned by the compressor is slowly increased, which is a large difference from that. In which the degree of superheat of the refrigerant discharged from the compressor rises without causing any
In the state where it is accurately detected in distinction from the above, it is possible to appropriately perform predetermined protection control for the abnormal situation.
Effective against damage to the compressor caused by a sudden rise in the internal temperature of the compressor (that is, damage to the compressor due to the fact that the operating part inside the compressor thermally expands more rapidly than the outer part and contacts the outer part) Can be prevented.

【0012】ちなみに、圧縮機内部温度の急激な上昇に
よる圧縮機の損傷を防止するのに、上記の如く圧縮機吸
込冷媒の過熱度上昇が圧縮機内部温度の上昇よりも僅か
に先行することから、圧縮機吸込冷媒の過熱度が設定値
よりも大きくなったとき所定の保護制御を実行する方式
も考えられるが、このように圧縮機吸込冷媒の検出過熱
度が単に設定値を超えたか否かだけを判定条件とするの
では、熱膨張差による圧縮機損傷には至らない緩慢な内
部温度上昇を伴うだけの緩慢な過熱度上昇に対しても不
必要に保護制御が実行される場合が生じ、かえってヒー
トポンプ運転の安定性を損なう問題が生じる。
Incidentally, in order to prevent the compressor from being damaged due to a rapid rise in the internal temperature of the compressor, the superheat degree of the refrigerant sucked into the compressor slightly precedes the increase in the internal temperature of the compressor as described above. Although it is conceivable to execute a predetermined protection control when the superheat degree of the compressor suction refrigerant becomes larger than the set value, it is possible to determine whether the detected superheat degree of the compressor suction refrigerant simply exceeds the set value. If only the determination condition is used, the protection control may be unnecessarily executed even for a gradual increase in the degree of superheat, which involves only a gradual increase in the internal temperature that does not lead to compressor damage due to the difference in thermal expansion. However, there is a problem that the stability of the heat pump operation is impaired.

【0013】この点、上記構成であれば、圧縮機内部温
度の急激な上昇が起こる状況を、上記の如く熱膨張差に
よる圧縮機損傷には至らない緩慢な内部温度上昇が生じ
るだけの状況と区別して的確に検知できることから、保
護制御が不必要に実行されることを回避でき、ヒートポ
ンプ運転の安定性を高く保つことができる。
In this respect, with the above configuration, the situation in which the internal temperature of the compressor suddenly rises is referred to as the situation in which the internal temperature of the compressor is only slowly increased without causing damage to the compressor due to the difference in thermal expansion as described above. Since the detection can be accurately performed separately, the unnecessary execution of the protection control can be avoided, and the stability of the heat pump operation can be kept high.

【0014】〔2〕請求項2に係る発明では、請求項1
に係る発明の実施において、前記保護制御手段を、前記
保護制御として前記圧縮機の運転を停止する構成にす
る。
[2] In the invention according to the second aspect, the first aspect
In the embodiment of the present invention, the protection control means is configured to stop the operation of the compressor as the protection control.

【0015】つまり、圧縮機内部温度の急激な上昇によ
る圧縮機損傷を防止する前記保護制御としては、膨張弁
回路部分の抵抗を強制的に低下させて圧縮機の冷却要因
となる圧縮機の吸込冷媒を急速に増加させるなどのこと
も考えられるが、圧縮機吸込冷媒の急激な過熱度上昇か
ら圧縮機内部温度の急激な上昇に至る時間は極僅かであ
ることから、圧縮機吸込冷媒を増加させて圧縮機内部を
冷却するなど、圧縮機の運転を継続しながらの保護制御
では、圧縮機内部温度の上昇に対し保護制御の実効が遅
れる傾向となって圧縮機損傷を充分に防止し切れない場
合が生じる可能性もある。
That is, as the protection control for preventing the compressor from being damaged due to a rapid rise in the internal temperature of the compressor, the resistance of the expansion valve circuit portion is forcibly reduced so that the suction of the compressor which becomes a cooling factor of the compressor is performed. Although it is conceivable to increase the refrigerant rapidly, the amount of time required from the sudden increase in the degree of superheat of the refrigerant sucked into the compressor to the sudden increase in the internal temperature of the compressor is extremely short. In the case of protection control while continuing compressor operation, such as cooling the inside of the compressor, the effectiveness of the protection control tends to be delayed as the compressor internal temperature rises. In some cases, there may not be.

【0016】これに比べ、上記の如く保護制御として圧
縮機の運転そのものを停止するようにすれば、仮に圧縮
機内部温度の急激な上昇に至って圧縮機内部の動作部が
熱膨張で外郭部に接触する状態になるとしても、圧縮機
の運転停止で圧縮機内部における動作部の動作を停止さ
せることから、その動作部と外郭部との接触は静的な接
触だけですみ、これにより、圧縮機内部温度の急激な上
昇に原因する圧縮機の損傷を一層確実に防止することが
できる。
On the other hand, if the operation of the compressor itself is stopped as the protection control as described above, if the internal temperature of the compressor suddenly rises and the operating part inside the compressor is thermally expanded, it becomes an outer part. Even if it comes into contact, the operation of the operating part inside the compressor is stopped by stopping the operation of the compressor, so that only static contact is required between the operating part and the outer part, The compressor can be more reliably prevented from being damaged due to a rapid rise in the internal temperature of the compressor.

【0017】[0017]

【発明の実施の形態】図1は圧縮式ヒートポンプの装置
構成を示し、Hは、圧縮機1−凝縮器2−膨張弁3−蒸
発器4の順に冷媒Rを循環させるヒートポンプ回路(冷
凍回路)である。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS FIG. 1 shows an apparatus configuration of a compression heat pump. H denotes a heat pump circuit (refrigeration circuit) for circulating a refrigerant R in the order of a compressor, a condenser, an expansion valve, and an evaporator. It is.

【0018】5は膨張弁3に対する冷媒Rの通過を遮断
する第1開閉弁、6は膨張弁3と第1開閉弁5との直列
接続回路に対するバイパス路であり、このバイパス路6
には簡易膨張弁として機能するキャピラリーチュ−ブ7
とバイパス路6に対する冷媒Rの通過を遮断する第2開
閉弁8とを直列状態で介装してある。
Reference numeral 5 denotes a first opening / closing valve for blocking the passage of the refrigerant R to the expansion valve 3, and reference numeral 6 denotes a bypass for a series connection circuit of the expansion valve 3 and the first opening / closing valve 5.
Has a capillary tube 7 functioning as a simple expansion valve.
And a second on-off valve 8 for blocking passage of the refrigerant R to the bypass passage 6 in series.

【0019】膨張弁3には機械式の温度自動膨張弁を採
用してあり、蒸発器4の出口側冷媒路に付設した感温筒
3aによる感知冷媒温度に応じ、蒸発器4からの送出冷
媒Rの過熱度Si(圧縮機吸込冷媒Rの過熱度)が設定
値となるように、膨張弁3の開度が調整されて冷媒流量
が調整される。
The expansion valve 3 employs a mechanical automatic temperature expansion valve, and sends out refrigerant from the evaporator 4 according to the temperature of the refrigerant sensed by the temperature-sensitive cylinder 3a attached to the outlet-side refrigerant passage of the evaporator 4. The degree of opening of the expansion valve 3 is adjusted and the refrigerant flow rate is adjusted such that the superheat degree R of R (the superheat degree of the compressor suction refrigerant R) becomes a set value.

【0020】9は圧縮機1への吸込冷媒Rの過熱度Si
を検出する吸込側過熱度センサ、10は圧縮機1からの
吐出冷媒Rの過熱度Soを検出する吐出側過熱度セン
サ、11は両過熱度センサ9,10の検出情報に基づ
き、第1,第2開閉弁5,8や圧縮機1を制御する制御
器である。
9 is a superheat degree Si of the refrigerant R sucked into the compressor 1.
Is a discharge side superheat sensor that detects the superheat So of the refrigerant R discharged from the compressor 1, and 11 is a first superheat sensor based on detection information of both superheat sensors 9 and 10. The controller controls the second on-off valves 5 and 8 and the compressor 1.

【0021】なお、詳述すれば、各過熱度センサ9,1
0は冷媒Rの温度・圧力を検出するセンサで構成され、
各部の冷媒過熱度Si,Soはそれらセンサの検出温度
・検出圧力に基づき制御器11において演算される。
It should be noted that, in detail, each of the superheat sensors 9 and 1
0 is constituted by a sensor for detecting the temperature and pressure of the refrigerant R,
Refrigerant superheat degrees Si and So of the respective parts are calculated by the controller 11 based on the detected temperatures and detected pressures of the sensors.

【0022】制御器11は通常の運転制御として、図2
に示す如く、圧縮機吐出冷媒Rの過熱度Soが第1設定
値So1よりも小さい状態では第1,第2開閉弁5,8
をともに閉じ状態にするのに対し、この状態から圧縮機
吐出冷媒Rの過熱度Soが第1設定値So1(具体的に
はSo1+e)よりも大きくなると第1開閉弁5のみを
開弁し、さらに、その状態から圧縮機吐出冷媒Rの過熱
度Soが第2設定値So2(具体的にはSo2+e)よ
りも大きくなると第2開閉弁8を開弁する。
The controller 11 performs normal operation control as shown in FIG.
As shown in the figure, when the degree of superheat So of the refrigerant R discharged from the compressor is smaller than the first set value So1, the first and second on-off valves 5, 8
Are closed, but when the superheat degree So of the compressor discharge refrigerant R becomes larger than the first set value So1 (specifically, So1 + e) from this state, only the first opening / closing valve 5 is opened, Further, when the superheat degree So of the compressor discharge refrigerant R becomes larger than the second set value So2 (specifically, So2 + e) from that state, the second on-off valve 8 is opened.

【0023】また逆に、圧縮機吐出冷媒Rの過熱度So
が第2設定値So2よりも大きい状態では第1,第2開
閉弁5,8をともに開き状態にするのに対し、この状態
から圧縮機吐出冷媒Rの過熱度Soが第2設定値So2
(具体的にはSo2−e)よりも小さくなると第2開閉
弁8のみを閉弁し、さらに、その状態から圧縮機吐出冷
媒Rの過熱度Soが第1設定値So1(具体的にはSo
1−e)よりも小さくなると第1開閉弁5を閉弁する。
On the contrary, the degree of superheat So of the refrigerant R discharged from the compressor is So
Is larger than the second set value So2, the first and second on-off valves 5 and 8 are both opened. On the other hand, the superheat degree So of the refrigerant R discharged from the compressor is changed from the second set value So2.
(Specifically, So2-e), only the second on-off valve 8 is closed, and from that state, the superheat degree So of the refrigerant R discharged from the compressor is reduced to the first set value So1 (specifically, So1).
When it becomes smaller than 1-e), the first on-off valve 5 is closed.

【0024】すなわち、このように第1,第2開閉弁
5,8を開閉制御することにより、バイパス路6の開閉
で冷媒流量の調整可能範囲を大きく確保しながらも、そ
の大きな流量調整可能範囲の全体にわたって膨張弁3に
よる冷媒流量の調整を精度良く行なえるようにしてあ
る。
In other words, by controlling the opening and closing of the first and second on-off valves 5 and 8 in this manner, the adjustable range of the refrigerant flow rate can be secured by opening and closing the bypass passage 6, but the large adjustable range of the flow rate can be obtained. The adjustment of the refrigerant flow rate by the expansion valve 3 can be accurately performed over the entirety of the above.

【0025】なお、eは第1,第2開閉弁5,8の動作
履歴にヒステリシスを付与して各弁5,8の動作を安定
化するための設定値である。
Note that e is a set value for providing a hysteresis to the operation history of the first and second on-off valves 5 and 8 to stabilize the operation of each of the valves 5 and 8.

【0026】また、制御器11は、ヒートポンプ回路H
の運転開始の際、第1,第2開閉弁5,8を閉じた状態
で圧縮機1を起動するのに対し、その圧縮機1の起動
後、圧縮機吸込冷媒Rの過熱度Siが設定値(例えば1
2°deg)まで上昇すると(すなわち、冷媒循環を遮
断した状態での圧縮機吸引により吸込側過熱度がある程
度まで上昇すると)、図2に破線で示す如く第1開閉弁
5を開いて冷媒循環を開始させ、これにより、圧縮機1
への液冷媒の吸入を防止した状態で通常運転状態への移
行を円滑に行なうようにしてある。
The controller 11 includes a heat pump circuit H
When the operation of the compressor 1 is started, the compressor 1 is started with the first and second on-off valves 5 and 8 closed, but after the start of the compressor 1, the superheat degree Si of the compressor suction refrigerant R is set. Value (for example, 1
2 ° deg) (that is, when the suction side superheat increases to a certain degree due to the suction of the compressor with the refrigerant circulation shut off), the first on-off valve 5 is opened as shown by the broken line in FIG. To start the compressor 1
The transition to the normal operation state is performed smoothly in a state where the suction of the liquid refrigerant to the air is prevented.

【0027】さらにまた、制御器11は、膨張弁3の絞
り側(冷媒流量減少側)への調整時に生じることがある
圧縮機内部温度の急激な上昇で圧縮機1の損傷を招く虞
があることに対し、図3に示す如く、圧縮機吸込冷媒R
の過熱度Siが圧縮機吐出冷媒Rの過熱度Soよりも設
定許容差α(例えばα=15°deg)以上に大きくな
った(Si>So+α)とき、保護制御として圧縮機1
の運転を緊急停止するようにしてある。
Further, the controller 11 may cause damage to the compressor 1 due to a rapid rise in the internal temperature of the compressor which may occur when the expansion valve 3 is adjusted to the throttle side (refrigerant flow reduction side). On the other hand, as shown in FIG.
Is greater than the superheat degree So of the compressor discharge refrigerant R by more than the set tolerance α (for example, α = 15 ° deg) (Si> So + α), the compressor 1 is used as protection control.
Emergency stop of the operation.

【0028】つまり、回路H中に存在する冷媒封じ込め
部の封じ込め冷媒Rが循環系へ戻されることや負荷の減
少などで圧縮機吸込冷媒Rの過熱度Siが設定値よりも
低下すると膨張弁3は絞り側に調整されるが、このと
き、圧縮機吸込冷媒Rの過熱度Siが上昇するととも
に、圧縮機1の冷却要因となる吸込冷媒Rの減少で圧縮
機1の内部温度も上昇する傾向となる。
That is, if the superheat degree Si of the compressor suction refrigerant R becomes lower than the set value due to the return of the confined refrigerant R in the refrigerant confinement section existing in the circuit H to the circulation system or a decrease in load, the expansion valve 3 Is adjusted to the throttle side. At this time, the degree of superheat Si of the compressor suction refrigerant R increases, and the internal temperature of the compressor 1 also increases due to the decrease of the suction refrigerant R which is a cooling factor of the compressor 1. Becomes

【0029】そして、この変化が急激で圧縮機内部温度
の上昇が急激である場合、圧縮機内部の動作部が外郭部
に比べ急速に大きく熱膨張し、この熱膨張差のために圧
縮機内部の動作部が外郭部に接触して圧縮機1の損傷を
招く虞があるのに対し、上記の如き吸込側過熱度Siと
吐出側過熱度Soとの比較(Si>So+α?)によ
り、圧縮機内部温度の急激な上昇が起こる状況を的確に
判定して、その異常状況に対し圧縮機1の運転を停止す
ることで、圧縮機内部温度の急激な上昇に原因する圧縮
機1の損傷を効果的に防止するようにしてある。
When this change is rapid and the temperature inside the compressor rises rapidly, the operating part inside the compressor expands more rapidly than the outer part, and the difference in thermal expansion causes the internal part of the compressor to expand. Of the compressor 1 may be damaged due to the contact of the working part with the outer shell part, whereas the comparison between the suction side superheat degree Si and the discharge side superheat degree So (Si> So + α?) By accurately judging a situation in which a rapid rise in the internal temperature of the compressor occurs, and stopping the operation of the compressor 1 in response to the abnormal situation, damage to the compressor 1 due to a rapid rise in the internal temperature of the compressor can be prevented. This is effectively prevented.

【0030】以上、本実施形態において、吸込側及び吐
出側の過熱度センサ9,10は、圧縮機1への吸込冷媒
Rの過熱度Si及び圧縮機1からの吐出冷媒Rの過熱度
Soを検出する検出手段を構成し、そして、制御器11
は、その検出手段の検出情報に基づき、圧縮器吸込冷媒
Rの過熱度Siが圧縮機吐出冷媒Rの過熱度Soよりも
大きくて、その差が設定許容差αよりも大きくなったと
き所定の保護制御を実行する保護制御手段を構成する。
As described above, in the present embodiment, the superheat degree sensors 9 and 10 on the suction side and the discharge side detect the superheat degree Si of the refrigerant R sucked into the compressor 1 and the superheat degree So of the refrigerant R discharged from the compressor 1. A detecting means for detecting the signal;
Is determined when the superheat degree Si of the compressor suction refrigerant R is larger than the superheat degree So of the compressor discharge refrigerant R based on the detection information of the detection means, and the difference becomes larger than the set tolerance α. Construct protection control means for executing protection control.

【0031】〔別実施形態〕次に別の実施形態を列記す
る。ヒートポンプ回路Hの具体的回路構造は、図1に示
す如き構造に限定されるものではなく、種々の変更が可
能であり、例えば、直列接続や並列接続の複数の蒸発器
や複数の凝縮器を備える構造や、四方弁等により熱交換
器を蒸発器として機能させる状態と凝縮器として機能さ
せる状態とに切り換えるようにした構造等であってもよ
い。
[Another Embodiment] Next, another embodiment will be described. The specific circuit structure of the heat pump circuit H is not limited to the structure as shown in FIG. 1 and can be variously changed. For example, a plurality of evaporators or a plurality of condensers connected in series or in parallel are connected. A structure including a four-way valve or the like may be used to switch between a state in which the heat exchanger functions as an evaporator and a state in which the heat exchanger functions as a condenser.

【0032】膨張弁3は機械式の温度自動膨張弁に限定
されるものではなく、例えば電子制御式の膨張弁など、
種々の形式の膨張弁を使用できる。
The expansion valve 3 is not limited to a mechanical automatic expansion valve. For example, an electronically controlled expansion valve may be used.
Various types of expansion valves can be used.

【0033】圧縮機吸込冷媒Rの過熱度Siが圧縮機吐
出冷媒Rの過熱度Soよりも設定許容差α以上に大きい
(Si>So+α)か否かをもって、圧縮機内部温度の
急激な上昇が起こる状況か否かを判定するのに、その設
定許容差αはヒートポンプ回路構造や運転条件などに応
じて適当値を決定すればよい。
Whether or not the superheat degree Si of the compressor suction refrigerant R is larger than the superheat degree So of the compressor discharge refrigerant R by the set tolerance α or more (Si> So + α), the sudden rise in the internal temperature of the compressor is determined. In order to determine whether or not a situation occurs, an appropriate value of the set tolerance α may be determined according to the heat pump circuit structure, operating conditions, and the like.

【0034】前述の実施形態では、保護制御として圧縮
機1の運転を停止するようにしたが、圧縮機内部温度の
上昇が比較的生じ難い回路の場合など、場合によって
は、保護制御として、膨張弁回路部分の抵抗を強制的に
低下させることで圧縮機1の吸込冷媒量を急速に増加さ
せるなどの制御を採用するようにしてもよい。
In the above-described embodiment, the operation of the compressor 1 is stopped as the protection control. However, in a case where the internal temperature of the compressor is relatively unlikely to rise, the expansion control may be used as the protection control in some cases. Control such as rapidly increasing the suction refrigerant amount of the compressor 1 by forcibly reducing the resistance of the valve circuit portion may be employed.

【0035】また、圧縮機吸込冷媒Rの過熱度Siが圧
縮機吐出冷媒Rの過熱度Soよりも設定許容差α以上に
大きく(Si>So+α)なったとき圧縮機停止などの
所定の保護制御を実施することに加え、他の異常状況に
対する圧縮機保護を目的として先述の(イ)〜(ハ)の
如き保護方式を併用するようにしてもよい。
Further, when the superheat degree Si of the compressor suction refrigerant R becomes larger than the superheat degree So of the compressor discharge refrigerant R by more than the set tolerance α (Si> So + α), predetermined protection control such as compressor stop is performed. In addition to the above, the protection methods described in (a) to (c) above may be used in combination for the purpose of protecting the compressor against other abnormal situations.

【0036】本発明による圧縮式ヒートポンプは、凝縮
器での発生温熱を暖房や諸物の加熱あるいは融雪に用い
るものや、蒸発器での発生冷熱を冷房や諸物の冷却に用
いるものなど、どのような用途のものであってもよい。
The compression heat pump according to the present invention may be any one such as one using the heat generated in the condenser for heating, heating various objects or melting snow, and one using the cold generated in the evaporator for cooling or cooling various objects. Such applications may be used.

【図面の簡単な説明】[Brief description of the drawings]

【図1】装置構成を示す図FIG. 1 is a diagram showing a device configuration.

【図2】開閉弁の制御形態を示す図FIG. 2 is a diagram showing a control mode of an on-off valve;

【図3】制御フローを示す図FIG. 3 is a diagram showing a control flow.

【符号の説明】[Explanation of symbols]

1 圧縮機 2 凝縮器 3 膨張弁 4 蒸発器 9,10 検出手段 11 保護制御手段 R 冷媒 Si 圧縮機吸込冷媒の過熱度 So 圧縮機吐出冷媒の過熱度 α 設定許容差 DESCRIPTION OF SYMBOLS 1 Compressor 2 Condenser 3 Expansion valve 4 Evaporator 9,10 Detecting means 11 Protection control means R Refrigerant Si Superheat degree of compressor suction refrigerant So Superheat degree of compressor discharge refrigerant α Setting tolerance

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 圧縮機―凝縮器―膨張弁―蒸発器の順に
冷媒を循環させる圧縮式ヒートポンプであって、 前記圧縮機への吸込冷媒の過熱度及び前記圧縮機からの
吐出冷媒の過熱度を検出する検出手段を設け、 その検出手段の検出情報に基づき、前記吸込冷媒の過熱
度が前記吐出冷媒の過熱度よりも大きくて、その差が設
定許容差よりも大きくなったとき所定の保護制御を実行
する保護制御手段を設けてある圧縮式ヒートポンプ。
1. A compression heat pump that circulates refrigerant in the order of a compressor, a condenser, an expansion valve, and an evaporator, wherein a degree of superheat of refrigerant sucked into the compressor and a degree of superheat of refrigerant discharged from the compressor are provided. Detecting means for detecting the detected refrigerant, based on the detection information of the detecting means, when the degree of superheat of the suction refrigerant is larger than the degree of superheat of the discharge refrigerant and the difference is larger than a set tolerance, a predetermined protection. A compression heat pump provided with protection control means for performing control.
【請求項2】 前記保護制御手段を、前記保護制御とし
て前記圧縮機の運転を停止する構成にしてある請求項1
記載の圧縮式ヒートポンプ。
2. The protection control means according to claim 1, wherein the operation of the compressor is stopped as the protection control.
A compression heat pump as described.
JP2000001558A 2000-01-07 2000-01-07 Compression heat pump Pending JP2001194035A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2000001558A JP2001194035A (en) 2000-01-07 2000-01-07 Compression heat pump

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000001558A JP2001194035A (en) 2000-01-07 2000-01-07 Compression heat pump

Publications (1)

Publication Number Publication Date
JP2001194035A true JP2001194035A (en) 2001-07-17

Family

ID=18530780

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000001558A Pending JP2001194035A (en) 2000-01-07 2000-01-07 Compression heat pump

Country Status (1)

Country Link
JP (1) JP2001194035A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009257759A (en) * 2002-04-08 2009-11-05 Daikin Ind Ltd Refrigerator

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009257759A (en) * 2002-04-08 2009-11-05 Daikin Ind Ltd Refrigerator

Similar Documents

Publication Publication Date Title
US8539786B2 (en) System and method for monitoring overheat of a compressor
JP5506770B2 (en) Air conditioner
JP4475660B2 (en) Refrigeration equipment
JPH08261542A (en) Air conditioner
JP3445861B2 (en) Air conditioner
JP2007155226A (en) Air conditioner
US4831834A (en) Method of protecting a refrigerating apparatus
JP3589203B2 (en) Air conditioner
JP2500517B2 (en) Refrigeration system operation controller
JP2001194035A (en) Compression heat pump
JP4006245B2 (en) Air conditioner
JPH09159293A (en) Compressor protection controller for air conditioner
JP3948190B2 (en) Air conditioner
JPH1030852A (en) Air conditioner
JP2822764B2 (en) Operation control device for outdoor fan of air conditioner
JP2842020B2 (en) Operation control device for air conditioner
JPH0213908Y2 (en)
JP4318369B2 (en) Screw type refrigerator
JPH07111181B2 (en) Compressor capacity control device
JP2522116B2 (en) Operation control device for air conditioner
JPH05280810A (en) Air conditioner
JP2536354B2 (en) Refrigerator protection device
JP2503785B2 (en) Operation control device for air conditioner
JP2687727B2 (en) Compressor protection device for refrigeration equipment
JPH06272971A (en) Air conditioner