JP2001189401A - Wiring board and semiconductor device - Google Patents

Wiring board and semiconductor device

Info

Publication number
JP2001189401A
JP2001189401A JP37267999A JP37267999A JP2001189401A JP 2001189401 A JP2001189401 A JP 2001189401A JP 37267999 A JP37267999 A JP 37267999A JP 37267999 A JP37267999 A JP 37267999A JP 2001189401 A JP2001189401 A JP 2001189401A
Authority
JP
Japan
Prior art keywords
copper
wiring board
semiconductor device
conductor
copper composite
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP37267999A
Other languages
Japanese (ja)
Inventor
Kiyomitsu Suzuki
清光 鈴木
Kazuji Yamada
一二 山田
Haruo Akaboshi
晴夫 赤星
Yasuo Kondo
保夫 近藤
Kazutaka Okamoto
和孝 岡本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP37267999A priority Critical patent/JP2001189401A/en
Publication of JP2001189401A publication Critical patent/JP2001189401A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/4805Shape
    • H01L2224/4809Loop shape
    • H01L2224/48091Arched
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/481Disposition
    • H01L2224/48151Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive
    • H01L2224/48221Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked
    • H01L2224/48245Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being metallic
    • H01L2224/48247Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being metallic connecting the wire to a bond pad of the item
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/73Means for bonding being of different types provided for in two or more of groups H01L2224/10, H01L2224/18, H01L2224/26, H01L2224/34, H01L2224/42, H01L2224/50, H01L2224/63, H01L2224/71
    • H01L2224/732Location after the connecting process
    • H01L2224/73251Location after the connecting process on different surfaces
    • H01L2224/73265Layer and wire connectors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/10Details of semiconductor or other solid state devices to be connected
    • H01L2924/11Device type
    • H01L2924/13Discrete devices, e.g. 3 terminal devices
    • H01L2924/1304Transistor
    • H01L2924/1305Bipolar Junction Transistor [BJT]
    • H01L2924/13055Insulated gate bipolar transistor [IGBT]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/15Details of package parts other than the semiconductor or other solid state devices to be connected
    • H01L2924/181Encapsulation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/19Details of hybrid assemblies other than the semiconductor or other solid state devices to be connected
    • H01L2924/191Disposition
    • H01L2924/19101Disposition of discrete passive components
    • H01L2924/19105Disposition of discrete passive components in a side-by-side arrangement on a common die mounting substrate
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/19Details of hybrid assemblies other than the semiconductor or other solid state devices to be connected
    • H01L2924/191Disposition
    • H01L2924/19101Disposition of discrete passive components
    • H01L2924/19107Disposition of discrete passive components off-chip wires

Landscapes

  • Insulated Metal Substrates For Printed Circuits (AREA)
  • Structure Of Printed Boards (AREA)
  • Lead Frames For Integrated Circuits (AREA)
  • Cooling Or The Like Of Semiconductors Or Solid State Devices (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a wiring board of low thermal expansion and high- temperature conductivity which is superior in processability, together with a semiconductor device using it. SOLUTION: A conductor layer or conductor patter is formed on a copper composite member, comprising oxide copper with a resin insulating layer or copper oxide layer in-between.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は新規な半導体素子の
ヒートシンクやヒートスプレッダ用絶縁配線基板に係わ
り、特に銅複合材料を用いた絶縁配線基板とそれを用い
た半導体装置に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a novel insulated wiring board for a heat sink or a heat spreader of a semiconductor element, and more particularly to an insulated wiring board using a copper composite material and a semiconductor device using the same.

【0002】[0002]

【従来の技術】本発明に係わる半導体素子のヒートシン
クやヒートスプレッダ用絶縁配線基板として、基板材料
に高熱伝導性の金属である銅(Cu)やアルミ(Al)
を用いた銅絶縁基板やアルミ絶縁基板が1982年12
月号電子材料のpp.86〜92に記載されるなど良く知
られている。
2. Description of the Related Art As an insulating wiring substrate for a heat sink or a heat spreader of a semiconductor device according to the present invention, copper (Cu) or aluminum (Al), which is a metal having high thermal conductivity, is used as a substrate material.
Copper and aluminum insulating substrates using
Monthly electronic materials pp. 86-92.

【0003】[0003]

【発明が解決しようとする課題】ヒートシンクやヒート
スプレッダ用絶縁配線基板の基板材料に銅(Cu)やアル
ミ(Al)を用いると、これら金属材料の熱膨張係数はそ
れぞれ約17.24ppm/Kと大きく、半導体素子の素材
であるシリコンの熱膨張係数(約3ppm/K)とかけ離れ
ていた。このため、絶縁配線基板の上に半導体素子(I
GBTパワー素子など通電電流で発熱する半導体素子)
を直接、半田で接合した場合、ヒートサイクルの厳しい
環境下で使用すると、半田接合部にクラックや剥離など
の問題が生ずるなど信頼性が不足であった。絶縁配線基
板の上に直接、半田で接合した半導体装置(パワーモジ
ュールなど)は、ヒートサイクルの緩やかな環境下でし
か使用することができなかった。ヒートサイクルの厳し
い環境下で使用する場合は、半導体素子と絶縁配線基板
の間にモリブデン(Mo)やCIC(Cu−Invar−Cu
クラッド材)などの中間材を設けて、半田接合部に生じ
る熱応力を低減するなどの対策が必要であった。この結
果、半導体装置が高価になる欠点があった。また、半導
体装置を樹脂封止構造にしようとすると、銅(Cu)やア
ルミ(Al)からなるヒートシンクやヒートスプレッダは
半導体素子及び樹脂との全体的な熱膨張係数のマッチン
グが取れず、樹脂封止構造体にクラックや剥離などの問
題が生じた。
When copper (Cu) or aluminum (Al) is used as a substrate material of a heat sink or an insulated wiring board for a heat spreader, the coefficient of thermal expansion of each of these metallic materials is as large as about 17.24 ppm / K. The thermal expansion coefficient of silicon (about 3 ppm / K), which is a material for semiconductor devices. Therefore, the semiconductor element (I
(Semiconductor element that generates heat by passing current, such as GBT power element)
When soldering is directly performed by soldering, if used in an environment where heat cycles are severe, reliability such as cracking or peeling at the soldered joint occurs, which is insufficient. A semiconductor device (such as a power module) directly joined to an insulated wiring board by soldering can be used only under a mild heat cycle environment. When used in a severe heat cycle environment, molybdenum (Mo) or CIC (Cu-Invar-Cu) is placed between the semiconductor element and the insulated wiring board.
It was necessary to take measures such as providing an intermediate material such as a clad material to reduce the thermal stress generated in the solder joint. As a result, there is a disadvantage that the semiconductor device becomes expensive. Also, if a semiconductor device is made to have a resin-sealed structure, a heat sink or heat spreader made of copper (Cu) or aluminum (Al) cannot match the overall thermal expansion coefficient of the semiconductor element and the resin, resulting in a resin-sealed structure. Problems such as cracks and peeling occurred in the structure.

【0004】本発明の目的は、低熱膨張,高熱伝導性を
有し、加工性に優れた配線基板及びそれを用いた半導体
装置を提供するにある。
An object of the present invention is to provide a wiring board having low thermal expansion and high thermal conductivity and excellent workability, and a semiconductor device using the same.

【0005】[0005]

【課題を解決するための手段】本発明は、酸化銅を含む
銅複合部材上に樹脂絶縁層又は酸化銅層を介して導体層
が形成されていることを特徴とする配線基板にある。
According to the present invention, there is provided a wiring board, wherein a conductor layer is formed on a copper composite member containing copper oxide via a resin insulating layer or a copper oxide layer.

【0006】また、本発明は、酸化銅を含む銅複合部材
上に樹脂絶縁層又は酸化銅層を介して導体からなる配線
パターンが形成されていることを特徴とする配線基板に
ある。
The present invention also provides a wiring board, wherein a wiring pattern made of a conductor is formed on a copper composite member containing copper oxide via a resin insulating layer or a copper oxide layer.

【0007】即ち、本発明は、ヒートシンクやヒートス
プレッダ用絶縁配線基板の基板材料として、銅複合材料
を用いる。即ち、銅(Cu)と第一酸化銅(Cu2O)を
分散させた合金よりなる銅複合材料(Cu/Cu2O)を
用いる。本材料は、銅の高熱伝導性と第一酸化銅の低熱
膨張性をうまく利用し、銅と第一酸化銅の分散割合によ
って熱膨張係数と熱伝導率を制御できる低熱膨張,高熱
伝導の新材料である。例えば、銅複合材料中の第一酸化
銅(Cu2O)の量を50体積%にすると、熱膨張係数が
約9.7ppm/Kで、アルミ(Al)とほぼ同等の熱伝導
率を有する材料が得られる。なお、本材料は絶縁体では
なく、導体であるため通電材料としても使用することが
できる。銅複合材料を半導体素子のヒートシンンやヒー
トスプレッダ用の絶縁配線基板として用いることによ
り、半導体素子と絶縁配線基板の間にモリブデン(M
o)やCIC(Cu−Invar−Cuクラッド材)などの中
間材を設けることなく、低コストで半田接合部の信頼性
が高い半導体装置を得ることができる。また、絶縁配線
基板の表面に配置する導体部材の形状と実装方法に工夫
を施して、前記導体部材へ半導体素子の通電材能とヒー
トシンク機能を兼ね備えさせることにより、よりコスト
パフォーマンスの高い半導体装置が得られる。また、封
止用樹脂の熱膨張係数を8〜15ppm/K の範囲に設定
することにより、ヒートシンクやヒートスプレッダと半
導体素子及び樹脂との全体的な熱膨張係数のマッチング
が得られ、低コストで信頼性の高い半導体装置を得るこ
とができる。
That is, in the present invention, a copper composite material is used as a substrate material of an insulated wiring board for a heat sink or a heat spreader. That is, a copper composite material (Cu / Cu 2 O) made of an alloy in which copper (Cu) and cuprous oxide (Cu 2 O) are dispersed is used. This material utilizes the high thermal conductivity of copper and the low thermal expansion of copper (I) oxide to control the thermal expansion coefficient and thermal conductivity by the dispersion ratio of copper and copper (I) oxide. Material. For example, when the amount of cuprous oxide (Cu 2 O) in the copper composite material is 50% by volume, the thermal expansion coefficient is about 9.7 ppm / K, and the thermal conductivity is almost the same as aluminum (Al). The material is obtained. In addition, since this material is not an insulator but a conductor, it can be used as a current-carrying material. By using a copper composite material as an insulating wiring board for a heat sink or a heat spreader of a semiconductor element, molybdenum (M) is placed between the semiconductor element and the insulating wiring board.
o) It is possible to obtain a semiconductor device with low cost and high reliability of a solder joint without providing an intermediate material such as o) or CIC (Cu-Invar-Cu clad material). Further, by devising the shape and the mounting method of the conductor member arranged on the surface of the insulated wiring board, and having the conductor member have both the current-carrying material function and the heat sink function of the semiconductor element, a semiconductor device with higher cost performance can be provided. can get. Further, by setting the thermal expansion coefficient of the sealing resin in the range of 8 to 15 ppm / K, matching of the overall thermal expansion coefficients of the heat sink or the heat spreader with the semiconductor element and the resin can be obtained, and the reliability can be reduced at a low cost. A highly reliable semiconductor device can be obtained.

【0008】銅(Cu)と第一酸化銅(Cu2O)を分
散させた銅複合部材(Cu/Cu2O)の上に樹脂よりな
る絶縁シートを介して導体箔を接着し、前記導体箔をエ
ッチング加工することによって導体パターン化すること
ができる。
[0008] through an insulating sheet made of a resin on the copper (Cu) and the first oxide (Cu 2 O) Cu composite member obtained by dispersing (Cu / Cu 2 O) was bonded to conductor foil, the conductor A conductor pattern can be formed by etching the foil.

【0009】銅(Cu)と第一酸化銅(Cu2O)を分
散させた銅複合部材(Cu/Cu2O)へイオン打ち込み
で酸素を打ち込むことにより前記銅複合部材の表面を所
定の深さまで第一酸化銅(Cu2O)層とする絶縁化処理
を行った後、水素雰囲気などの還元雰囲気中で前記絶縁
化処理された前記第一酸化銅層を所定の深さまで還元し
てその部分を純銅(Cu)層化し、前記純銅層をエッチ
ング加工することによって導体パターン化したことがで
きる。
Oxygen is implanted into a copper composite member (Cu / Cu 2 O) in which copper (Cu) and copper (I) oxide (Cu 2 O) are dispersed, so that the surface of the copper composite member has a predetermined depth. After performing the insulation treatment to form the first copper oxide (Cu 2 O) layer, the insulated first copper oxide layer is reduced to a predetermined depth in a reducing atmosphere such as a hydrogen atmosphere, and The portion can be formed into a pure copper (Cu) layer, and the pure copper layer can be etched to form a conductor pattern.

【0010】本発明に係る複合材料は以下の焼結合金又
はその熱間,冷間での鍛造,圧延による塑性加工材から
なるものが好ましい。
The composite material according to the present invention is preferably made of the following sintered alloy or a plastically worked material obtained by hot or cold forging or rolling.

【0011】(1)金属と該金属よりも熱膨張係数が小
さい無機化合物粒子とを有し、前記化合物粒子は断面の
面積率で前記粒子の全体の95%以上が互いに連なった
複雑形状の塊となって分散している。
(1) A complex-shaped mass having a metal and inorganic compound particles having a smaller coefficient of thermal expansion than the metal, wherein the compound particles have a cross-sectional area ratio of 95% or more of the whole particles connected to each other. It is dispersed.

【0012】(2)金属と該金属よりも熱膨張係数が小
さい無機化合物粒子とを有し、前記化合物粒子は単独で
存在する粒子の数が断面で100μm四方内に100個
以下であり、残りの前記化合物粒子は互いに連なった複
雑形状の塊となって分散している。
(2) It has a metal and inorganic compound particles having a smaller coefficient of thermal expansion than the metal, and the number of the compound particles alone is 100 or less in a cross section of 100 μm in a cross section. Are dispersed in the form of a complex mass connected to each other.

【0013】(3)金属と該金属よりも熱膨張係数が小
さい無機化合物粒子とを有し、前記化合物粒子はヴィッ
カース硬さが300以下である。
(3) It has a metal and inorganic compound particles having a smaller coefficient of thermal expansion than the metal, and the compound particles have a Vickers hardness of 300 or less.

【0014】(4)金属と該金属よりも熱膨張係数が小
さい無機化合物粒子とを有し、20℃での熱伝導率1W
/m・K当りの20〜150℃での平均熱膨張係数の増
加率が0.025〜0.035ppm/℃ である。
(4) having a metal and inorganic compound particles having a smaller coefficient of thermal expansion than the metal, and having a thermal conductivity of 1 W at 20 ° C.
The rate of increase of the average coefficient of thermal expansion at 20 to 150 ° C./m·K is 0.025 to 0.035 ppm / ° C.

【0015】(5)金属と該金属よりも熱膨張係数が小
さい無機化合物粒子とを有し、前記化合物粒子は互いに
連なり塊となって分散しており、前記塊は塑性加工によ
って伸ばされた方向に延びている。
(5) It has a metal and inorganic compound particles having a smaller coefficient of thermal expansion than the metal, wherein the compound particles are connected to each other and dispersed as a mass, and the mass is dispersed in a direction elongated by plastic working. Extends to.

【0016】(6)銅と酸化銅粒子とを有し、前記酸化
銅粒子は断面の面積率で前記粒子の全体の95%以上が
互いに連なった複雑形状の塊となって分散している。
(6) Copper and copper oxide particles are provided, and the copper oxide particles are dispersed in a complex-shaped mass in which 95% or more of the whole of the particles in cross-sectional area ratio are connected to each other.

【0017】更に、本発明に係る複合材料は以下の鋳造
合金又はその熱間,冷間での鍛造,圧延による塑性加工
材からなるものが好ましい。
Further, the composite material according to the present invention is preferably made of the following cast alloy or a plastically worked material obtained by hot or cold forging or rolling.

【0018】(1)金属と好ましくは該金属よりも熱膨
張係数が小さい無機化合物を有し、前記化合物は大部分
が好ましくは粒径50μm以下の粒状及びデンドライト
状に形成されている。
(1) A metal and preferably an inorganic compound having a smaller coefficient of thermal expansion than the metal, and the compound is mostly formed in the form of particles and preferably dendrites having a particle size of 50 μm or less.

【0019】前記化合物は棒状の幹に粒子状の枝が形成
されたデンドライト状に形成されているのが好ましい。
The compound is preferably formed in a dendrite shape in which a rod-like trunk is formed with a particulate branch.

【0020】(2)金属と無機化合物とを有し、前記化
合物は大部分が粒径5〜50μm以下の粒状及びデンド
ライト状に形成され、かつ前記化合物全体の1〜10%
が粒径1μm以下の微細粒子を形成している。
(2) It has a metal and an inorganic compound, and the compound is mostly formed in the form of particles and dendrite having a particle size of 5 to 50 μm or less, and 1 to 10% of the whole compound.
Formed fine particles having a particle size of 1 μm or less.

【0021】(3)金属と無機化合物とを有し、熱膨張
係数又は熱伝導率が凝固方向がその方向に水平な方向よ
りも大きい値を有する。
(3) It has a metal and an inorganic compound, and has a coefficient of thermal expansion or thermal conductivity larger than that of the direction in which the solidification direction is horizontal to that direction.

【0022】(4)銅と酸化銅とを有する複合材料にお
いて特に好ましいものである。
(4) A composite material containing copper and copper oxide is particularly preferable.

【0023】(5)金属と直径が5〜30μmである棒
状の無機化合物とを有し、好ましくは前記無機化合物は
その全体に対して、断面の面積率で90%以上が直径5
〜30μmである棒状である。
(5) It has a metal and a rod-shaped inorganic compound having a diameter of 5 to 30 μm, and preferably, the inorganic compound has a cross-sectional area ratio of 90% or more of the diameter 5
It has a rod shape of 3030 μm.

【0024】(6)銅と酸化銅とを有し、塑性加工され
ている。
(6) It has copper and copper oxide and is plastically processed.

【0025】(7)銅,酸化銅と不可避的不純物を有
し、前記酸化銅は10〜55体積%でデンドライトを形
成し、かつ室温から300℃の線膨張係数が5×10-6
〜17×10-6/℃及び室温の熱伝導率が100〜38
0W/m・kであり、異方性を有する。
(7) Copper and copper oxide and unavoidable impurities. The copper oxide forms a dendrite at 10 to 55% by volume, and has a linear expansion coefficient of 5 × 10 −6 from room temperature to 300 ° C.
~ 17 × 10 -6 / ° C and room temperature thermal conductivity of 100-38
It is 0 W / mk and has anisotropy.

【0026】(8)銅,酸化銅好ましくは第一酸化銅
(Cu2O)と不可避的不純物を有し、前記酸化銅は好ま
しくは10〜55体積%有し、一方向に配向した棒状で
あり、かつ室温から300℃の線膨張係数が5×10-6
〜17×10-6/℃及び室温の熱伝導率が100〜38
0W/m・kであり、さらに配向方向の熱伝導率が配向
方向に直角方向の熱伝導率より高く、好ましくはその差
が5〜100W/m・kである。
(8) Copper, copper oxide, preferably copper oxide (Cu 2 O) and unavoidable impurities. The copper oxide preferably has 10 to 55% by volume, and has a rod shape oriented in one direction. And a coefficient of linear expansion from room temperature to 300 ° C. of 5 × 10 -6
~ 17 × 10 -6 / ° C and room temperature thermal conductivity of 100-38
0 W / mk, and the thermal conductivity in the orientation direction is higher than the thermal conductivity in the direction perpendicular to the orientation direction, and the difference is preferably 5 to 100 W / mk.

【0027】(9)金属と該金属に対して共晶組織を形
成する無機化合物とを溶解し凝固する製造方法にあり、
特に銅と酸化銅を有する複合材料の製造方法において、
銅または銅及び酸化銅を原料とし、酸素分圧が10-2
a〜103 Paの雰囲気中で溶解後鋳造する工程と、8
00℃〜1050℃で熱処理する工程及び冷間もしくは
熱間で塑性加工する工程を含むことが好ましい。
(9) A production method in which a metal and an inorganic compound forming a eutectic structure with respect to the metal are dissolved and solidified,
Especially in the method of manufacturing a composite material having copper and copper oxide,
Copper or copper and copper oxide as raw materials, oxygen partial pressure is 10 -2 P
and a casting step after dissolution in a~10 3 Pa atmosphere, 8
It is preferable to include a step of performing a heat treatment at 00 ° C. to 1050 ° C. and a step of performing plastic working during cold or hot.

【0028】[0028]

【発明の実施の形態】(実施例1)図1は本発明に係わ
る銅複合材絶縁級線基板の一実施例を示したものであ
る。図1(a)に示すように、銅複合材料からなる銅複
合部材1の上に示したものである。図1(a)に示すよ
うに、銅複合材料からなる銅複合部材1の上に導体箔3
を絶縁シート2で固着した絶縁配線基板である。導体箔
3は厚さが約数十ミクロンの銅箔あるいは銅合金箔,絶
縁シート2は比較的高い熱伝導性を有する樹脂(例え
ば、シリカやアルミの粉末を混合して熱伝導率を高めた
エポキシ樹脂など)で構成される。図1(b)は図1
(a)の導体箔3をエッチング加工で導体パターン3a
にパターン化した状態を示したものである。銅複合材絶
縁配線基板は半導体装置の実装方法に応じて、図1
(a)もしくは図1(b)の状態で使用される。なお、
銅複合部材1はその中に第一酸化銅(Cu2O)を含有し
ているため、純銅などよりはるかに機械加工性に優れた
材料である。それ故、大きなサイズの銅複合材絶縁配線
基板から図1に示すような小サイズに切断加工すること
は極めて容易で、高い生産性を有する。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS (Embodiment 1) FIG. 1 shows an embodiment of a copper composite insulated wire substrate according to the present invention. As shown in FIG. 1A, it is shown on a copper composite member 1 made of a copper composite material. As shown in FIG. 1A, a conductor foil 3 is placed on a copper composite member 1 made of a copper composite material.
Is an insulated wiring board to which is fixed by an insulating sheet 2. The conductive foil 3 is a copper foil or a copper alloy foil having a thickness of about several tens of microns, and the insulating sheet 2 is a resin having a relatively high thermal conductivity (for example, silica or aluminum powder is mixed to increase the thermal conductivity). (Epoxy resin etc.). FIG.
The conductor pattern 3a is formed by etching the conductor foil 3 of FIG.
FIG. The copper composite insulated wiring board can be used as shown in FIG.
(A) or used in the state of FIG. 1 (b). In addition,
Since the copper composite member 1 contains copper (I) oxide (Cu 2 O) therein, it is a material having much better machinability than pure copper or the like. Therefore, it is extremely easy to cut a large-sized copper composite insulated wiring board into a small size as shown in FIG. 1 and has high productivity.

【0029】本実施例に用いた銅複合材は次の(A)〜
(E)によって製造したものを用いることができる。
The copper composite material used in this embodiment is as follows:
What was manufactured by (E) can be used.

【0030】(A)原料粉として、75μm以下の電解
Cu粉末と純度3N,粒径1〜2μmのCu2O 粉末を
用いた。Cu粉末とCu2O 粉末を表2に示す比率で14
00g調合した後、スチールボールを入れた乾式のポット
ミル中で10時間以上混合した。混合粉末を直径150
mmの金型に注入し、Cu2O 含有量に応じて400〜1
000kg/cm2 の圧力で冷間プレスして直径150mm×
高さ17〜19mmの予備成形体を得た。その後、予備成
形体をアルゴンガス雰囲気中で焼結させて化学分析,組
織観察,熱膨張係数,熱伝導率及びヴィッカース硬さの
測定に供した。なお、焼結温度はCu2O 含有量に応じ
て900℃〜1000℃の間で変化させ、各温度で3時
間保持した。熱膨張係数は室温から300℃の温度範囲
でTMA(Thermal Mechanical Analysis)装置を用いて行
い、熱伝導率はレーザーフラッシュ法により測定した。
その結果を表1に併記した。また、得られた試料No.4
焼結成形体のミクロ組織を図3に示す。
(A) As raw material powder, electrolytic Cu powder having a particle size of 75 μm or less and Cu 2 O powder having a purity of 3N and a particle size of 1 to 2 μm were used. Cu powder and Cu 2 O powder were mixed in the ratio shown in Table 2 to 14
After mixing 00 g, the mixture was mixed in a dry pot mill containing steel balls for 10 hours or more. 150 mixed powder
mm, and 400 to 1 depending on the Cu 2 O content.
Cold pressed at a pressure of 000 kg / cm 2 150 mm in diameter
A preform having a height of 17 to 19 mm was obtained. Thereafter, the preform was sintered in an argon gas atmosphere and subjected to chemical analysis, structure observation, measurement of thermal expansion coefficient, thermal conductivity, and measurement of Vickers hardness. The sintering temperature was varied between 900 ° C. and 1000 ° C. in accordance with the content of Cu 2 O, and kept at each temperature for 3 hours. The coefficient of thermal expansion was measured in a temperature range from room temperature to 300 ° C. using a TMA (Thermal Mechanical Analysis) device, and the thermal conductivity was measured by a laser flash method.
The results are shown in Table 1. In addition, the obtained sample No. 4
FIG. 3 shows the microstructure of the sintered compact.

【0031】焼結体組成は化学分析の結果、配合組成と
一致していた。また、熱膨張係数及び熱伝導率は、表1
より明らかなように、CuとCu2O の組成比を調整す
ることによって、広範囲に亘って変化しており、放熱板
に求められる熱的特性にコントロールできることがわか
った。
As a result of chemical analysis, the composition of the sintered body was consistent with the composition. Table 1 shows the thermal expansion coefficient and thermal conductivity.
As is clear, it was found that by adjusting the composition ratio of Cu and Cu 2 O, the composition varied over a wide range, and it was possible to control the thermal characteristics required for the heat sink.

【0032】図2は熱伝導率,熱膨張係数,固有抵抗と
Cu2O 含有量との関係を示す線図である。図に示すよ
うに、第一酸化銅(CuO2)の量が増加するに従って、
熱伝導率と熱膨張係数の値が小さくなり、逆に固有抵抗
は大きくなる。第一酸化銅(Cu2O)の量をどの値に設
定するかは半導体装置の実装形態や使用される環境によ
って異なるが、例えば50体積%などに設定される。こ
の場合、本銅複合材料の熱膨張係数は約9.7ppm/Kで
あり、アルミ(Al)とほぼ同等の高い熱伝導率を有す
る。なお、本材料は絶縁体ではなく、導体であるため通
電材料としても使用することができる。
FIG. 2 is a diagram showing the relationship between the thermal conductivity, the coefficient of thermal expansion, the specific resistance and the Cu 2 O content. As shown in the figure, as the amount of cuprous oxide (CuO 2 ) increases,
The values of the thermal conductivity and the coefficient of thermal expansion decrease, and conversely, the specific resistance increases. The value of the amount of cuprous oxide (Cu 2 O) to be set depends on the mounting form of the semiconductor device and the environment in which it is used, but is set to, for example, 50% by volume. In this case, the copper composite material has a thermal expansion coefficient of about 9.7 ppm / K, and has a high thermal conductivity almost equal to that of aluminum (Al). In addition, since this material is not an insulator but a conductor, it can be used as a current-carrying material.

【0033】[0033]

【表1】 [Table 1]

【0034】一方、ミクロ組織は図3(300倍)より
明らかなように、Cu2Oは混合工程において凝集,焼
結工程において肥大成長するが、粒径は50μm以下で
あり、Cu相とCu2O 相が均一に分散した緻密な組織
となっている。なお、写真中の白い部分がCu相、黒い
部分がCu2O 相である。
On the other hand, as is clear from FIG. 3 (300-fold), Cu 2 O agglomerates in the mixing step and grows enlarged in the sintering step, but the particle size is 50 μm or less, and the Cu phase and Cu phase It has a dense structure in which the 2 O phase is uniformly dispersed. The white part in the photograph is the Cu phase, and the black part is the Cu 2 O phase.

【0035】図に示す様に、Cu2O 粒子は断面の面積
率でその全体の99%以上が連らなった不規則な形状の
塊となって分散していることが明らかである。
As shown in the figure, it is clear that the Cu 2 O particles are dispersed as irregularly shaped masses in which 99% or more of the entire cross-sectional area ratio is continuous.

【0036】硬さ測定の結果、Cu相はHv75〜8
0、Cu2O がHv210〜230の硬さであった。ま
た、機械加工性を旋盤及びドリル加工で評価した結果、
加工性は非常に良好であり、形状付与が容易であること
がわかった。
As a result of the hardness measurement, the Cu phase was Hv75-8.
0, Cu 2 O had a hardness of Hv 210 to 230. In addition, as a result of evaluating the machinability by lathe and drill processing,
It was found that the workability was very good, and that the shape was easily imparted.

【0037】尚、本実施例では原料粉として第一酸化銅
(Cu2O)を用いたが、第二酸化銅(CuO)を用いて
も大気中で焼結することによりCu2O に変化し、複合
材はCu2O が分散したものとなる。
In this embodiment, cuprous oxide (Cu 2 O) is used as a raw material powder. However, even if copper dioxide (CuO) is used, it is converted into Cu 2 O by sintering in the air. The composite material has Cu 2 O dispersed therein.

【0038】(B)前述の(A)と同じ原料粉を用い、
Cu粉末とCu2O 粉末をCu−55体積%Cu2O の
組成比で550g調合した後、Vミキサー中で混合し
た。混合粉末を直径80mmの金型に注入し、600kg/
cm2 の圧力で冷間プレスして直径80mm×22mmの予備
成形体を得た。その後、予備成形体をアルゴンガス雰囲
気中で975℃×3時間の焼結を行った。次いで、得ら
れた焼結体を800℃に加熱して200トンプレスで鍛
練比1.8 まで鍛造した後500℃で軟化焼鈍し、実施
例1と同様に組織観察,熱伝達係数及び熱伝導率の測定
に供した。
(B) Using the same raw material powder as in (A) above,
After mixing 550 g of Cu powder and Cu 2 O powder at a composition ratio of Cu-55 volume% Cu 2 O, they were mixed in a V mixer. The mixed powder is poured into a mold having a diameter of 80 mm, and 600 kg /
A cold press was performed at a pressure of cm 2 to obtain a preform having a diameter of 80 mm × 22 mm. Thereafter, the preformed body was sintered at 975 ° C. for 3 hours in an argon gas atmosphere. Next, the obtained sintered body was heated to 800 ° C., forged to a forging ratio of 1.8 with a 200-ton press, and then softened and annealed at 500 ° C., and the structure was observed, the heat transfer coefficient and the heat conduction were the same as in Example 1. The rate was measured.

【0039】鍛造材は、側面に多少の耳割れが観察され
たが、それ以外の部分は健全であり、本発明の銅複合材
料は、塑性加工性に優れることが判明した。
In the forged material, some edge cracks were observed on the side surface, but the other parts were sound. It was found that the copper composite material of the present invention was excellent in plastic workability.

【0040】図4は、鍛造材の鍛伸方向に平行な断面の
ミクロ組織(300倍)を示す。
FIG. 4 shows the microstructure (300 times) of a cross section parallel to the forging direction of the forged material.

【0041】Cu相及びCu2O 相は、変形して鍛伸方
向に配向しているが、クラック等の欠陥は認められな
い。図に示す様にCu2O 粒子は95%以上が連らなっ
た塊となり、塑性加工によって伸ばされた方向に延ばさ
れていることが分かる。
The Cu phase and Cu 2 O phase are deformed and oriented in the forging direction, but no defects such as cracks are observed. As shown in the figure, it can be seen that the Cu 2 O particles become a mass in which 95% or more are continuous and are extended in the direction in which they are extended by plastic working.

【0042】表2は、レーザーフラッシュ法による熱伝
導率の測定結果を示すが、鍛造しない焼結ままの状態で
は、熱伝導率の異方性は認められない。しかし、鍛造す
ることによって異方性が生じ、Cu相及びCu2O 相の
配向方向(鍛伸方向)に対して平行なL方向の熱伝導率
は、それに直角なC方向(鍛造方向)の2倍以上の値を示
している。また、室温から300℃までの熱膨張係数を
測定した結果、異方性はほとんど認められず、実施例1
の同一組成のものと同等であった。
Table 2 shows the measurement results of the thermal conductivity by the laser flash method. In the as-sintered state without forging, no anisotropy of the thermal conductivity is recognized. However, anisotropy is generated by forging, and the thermal conductivity in the L direction parallel to the orientation direction (forging direction) of the Cu phase and Cu 2 O phase is in the C direction (forging direction) perpendicular to the direction. The value is twice or more. In addition, as a result of measuring the coefficient of thermal expansion from room temperature to 300 ° C., almost no anisotropy was observed.
Of the same composition.

【0043】[0043]

【表2】 [Table 2]

【0044】(C)銅と純度2NのCu2O 粉末を表3
に示す比率で調合した原料を大気溶解後に鋳造した複合
材料に関して、線膨張係数,熱伝導率及び硬さを測定し
た。熱膨張係数は、標準試料をSiO2 とし、押し棒式
測定装置を用いて室温から300℃の温度範囲で測定し
た。また熱伝導率はレーザーフラッシュ法により測定し
た。その結果を表1に併記した。また、得られた試料N
o.3のミクロ組織(100倍)を図5に示す。視野は7
20×950μmである。図に示す様に酸化銅はデンド
ライト状に形成されており、更に粒径10〜50μmの
粒状のものが大部分で、径100μmの塊のものが1個
見られる。また、径が30μm以下で長さが50μm以
上の棒状とデンドライト状のものが約10個であり、更
に基地に0.2 μm以下の粒状のものが前述の棒状及び
デンドライト状の形成した部分から0.5μm 程度の幅
の非形成帯があり、その部分を除分散しており、またそ
れが糸状に連らなったものもの形成されている。
(C) Copper and 2N-purity Cu 2 O powder are shown in Table 3.
The linear expansion coefficient, the thermal conductivity, and the hardness were measured for a composite material which was cast after dissolving the raw materials prepared in the ratios shown in Table 1 in the air. The coefficient of thermal expansion was measured in a temperature range from room temperature to 300 ° C. using a push bar type measuring device with a standard sample being SiO 2 . The thermal conductivity was measured by a laser flash method. The results are shown in Table 1. In addition, the obtained sample N
The microstructure of o.3 (100 times) is shown in FIG. Field of view is 7
It is 20 × 950 μm. As shown in the figure, the copper oxide is formed in a dendrite shape, and most of the particles have a particle size of 10 to 50 μm, and one lump having a diameter of 100 μm is seen. In addition, there are about 10 rods and dendrites having a diameter of 30 μm or less and a length of 50 μm or more, and particles having a diameter of 0.2 μm or less are formed on the base from the above-mentioned rod and dendrite formed portions. There is a non-formation zone having a width of about 0.5 μm, the portion is dedispersed, and the band is formed in a continuous string.

【0045】熱膨張係数及び熱伝導率は、表3より明ら
かなように、CuとCu2O の組成比を調整することに
よって、広範囲にわたって変化しており、放熱板に求め
られる熱的特性に制御できることがわかった。
As is clear from Table 3, the thermal expansion coefficient and the thermal conductivity vary over a wide range by adjusting the composition ratio of Cu and Cu 2 O. I found that I could control it.

【0046】[0046]

【表3】 [Table 3]

【0047】一方、ミクロ組織は図5より明らかなよう
に、Cu2O はデンドライトを形成し、Cu相とCu2
O 相が均一に分散した緻密な組織となっている。な
お、写真中の白い部分がCu相,黒い部分がCu2O 相
である。
On the other hand, as is clear from FIG. 5, the microstructure of Cu 2 O forms dendrite, and the Cu phase and Cu 2
It has a dense structure in which the O 2 phase is uniformly dispersed. The white part in the photograph is the Cu phase, and the black part is the Cu 2 O phase.

【0048】硬さ測定の結果、Cu相はHv75〜8
0,Cu2O がHv210〜230の硬さであった。ま
た、機械加工性を旋盤及びドリル加工で評価した結果、
加工性は非常に良好であり、形状付与が容易であること
がわかった。
As a result of the hardness measurement, the Cu phase was Hv75-8.
0, Cu 2 O had a hardness of Hv 210 to 230. In addition, as a result of evaluating the machinability by lathe and drill processing,
It was found that the workability was very good, and that the shape was easily imparted.

【0049】(D)一方向凝固法を用いて、銅と純度3
NのCu2O 粉末を表4に示す比率で調合した原料を、
種々の酸素分圧下で溶解後に鋳造し、複合材料を作製し
た。酸素分圧10-2Paの雰囲気下で溶解後に鋳造した
試料No.7のミクロ組織(100倍)を観察した結果C
2O 相はデンドライトを形成し、さらに粒径5〜50
μmの粒状のものが大部分である。また、径が30μm
以下で長さ50μm以上の直線状に連らなった棒状及び
デンドライト状のものが約16個形成された組織となっ
ている。粒径100μm以上の塊が1個見られる。基地
にはほとんどが粒径0.2μm 以下のもの、またそれが
糸状になって互いに網目状に連らなったものも形成され
ている。その基地での微細なCu2O 粒子の形成は図5
と同様に非形成帯がある。
(D) Copper and a purity of 3
A raw material prepared by mixing N 2 Cu 2 O powder at the ratio shown in Table 4
After melting under various oxygen partial pressures, they were cast to produce composite materials. Observation of the microstructure (100 times) of Sample No. 7 cast after melting in an atmosphere of oxygen partial pressure of 10 -2 Pa C
The u 2 O phase forms dendrites and has a particle size of 5-50.
Most of the particles have a size of μm. The diameter is 30 μm
Below, it is a structure in which approximately 16 rod-like and dendrite-like ones linearly connected to each other with a length of 50 μm or more are formed. One lump having a particle size of 100 μm or more is observed. Most of the bases are formed with a particle size of 0.2 μm or less, and also formed into a string and connected to each other in a network. The formation of fine Cu 2 O particles at the matrix is shown in FIG.
There is a non-forming zone as well.

【0050】[0050]

【表4】 [Table 4]

【0051】また、酸素分圧103Pa の雰囲気下で溶
解後に鋳造した試料No.8のミクロ組織(100倍)を
図6に示す。写真から明らかなように、Cu2O 相はデ
ンドライトを形成し、さらに一方向に配向した組織とな
っており、さらに原料及び酸素分圧を変化させることに
より、Cu2O 相の形状及び密度を制御できることがわ
かった。図に示す様に粒径5〜30μmの粒状のもの、
径が30μm以下,長さ50μm以上の棒状及びデンド
ライト状のものが約33個形成されている。最も長いも
ので約200μmである。基地には図5と同様に粒径
0.2 μm以下の微細な粒子は前述の粒状,棒状,デン
ドライド状の形成周辺には図1と同様の非形成帯があ
り、本実施例ではこれらが全体に形成されているので、
微細粒子の形成域は少なくなっている。
FIG. 6 shows the microstructure (magnification: 100 times) of Sample No. 8 which was cast after melting in an atmosphere of an oxygen partial pressure of 10 3 Pa. As is clear from the photograph, the Cu 2 O phase forms a dendrite and has a structure oriented in one direction, and the shape and density of the Cu 2 O phase are changed by changing the raw material and the oxygen partial pressure. I found that I could control it. As shown in the figure, a granular one having a particle size of 5 to 30 μm,
Approximately 33 rods and dendrites having a diameter of 30 μm or less and a length of 50 μm or more are formed. The longest one is about 200 μm. At the base, as in FIG. 5, fine particles having a particle size of 0.2 μm or less have a non-forming zone similar to that of FIG. 1 around the above-mentioned granular, rod-like and dendritic formations. Because it is formed as a whole,
The formation area of the fine particles is reduced.

【0052】表4に、上記2種類の複合材料の線膨張係
数及び熱伝導率の測定結果を示す。その結果、いずれの
複合材料においても、線膨張係数と熱伝導率に異方性が
認められた。縦方向は鋳物の凝固方向であり、横方向は
凝固方向に水平な方向である。熱膨張係数はCu2Oの
含有量が30vol%以上になると縦方向が横方向より若
干大きくなる。また、熱伝導率は縦方向が横方向よりも
1.1 倍以上大きくなる。
Table 4 shows the measurement results of the linear expansion coefficient and the thermal conductivity of the two types of composite materials. As a result, in each of the composite materials, anisotropy was recognized in the linear expansion coefficient and the thermal conductivity. The vertical direction is the solidification direction of the casting, and the horizontal direction is the direction horizontal to the solidification direction. The thermal expansion coefficient becomes slightly larger in the vertical direction than in the horizontal direction when the content of Cu 2 O is 30 vol% or more. Further, the thermal conductivity is 1.1 times or more higher in the vertical direction than in the horizontal direction.

【0053】なお、原料溶湯中に酸素ガスをバブリング
することによっても、雰囲気ガスとして酸素を用いた場
合と同様の結果が得られた。
The same result as in the case where oxygen was used as the atmosphere gas was also obtained by bubbling oxygen gas into the raw material melt.

【0054】(E)前述の(D)試料No.8を900℃
において90%の加工度まで熱間加工した結果、加工性
は健全であり、本発明の複合材料は、塑性加工性に優れ
ることが判明した。図7は表5に示す試料No.9の加工
方向に平行な断面のミクロ組織(100倍)である。鋳
造のままのものに比較して配向性が顕著となり、またC
2O 相は塑性加工方向に伸ばされ一方向に伸長し、か
つ1から20の範囲でアスペクト比を有する組織となっ
た。棒径は20μm以下で、1〜10μmがほとんどで
ある。また、長さが100μm以上のものは約15個で
ある。更に、鋳造時の0.2μm 以下の微細粒子2〜5
μm程度の粒子に成長して消失している。また表5に併
記するように、上記試料No.9の線膨張係数及び熱伝導
率には、いっそう顕著な異方性が認められた。特に、熱
伝導率は棒状に沿った縦方向が横方向の1.22 倍の値
を示した。また、熱膨張係数は縦方向が横方向よりも若
干大きくなっている。
(E) The above (D) sample No. 8 was heated at 900 ° C.
As a result of hot working to a workability of 90%, the workability was sound, and it was found that the composite material of the present invention was excellent in plastic workability. FIG. 7 is a microstructure (100 times) of a cross section parallel to the processing direction of Sample No. 9 shown in Table 5. The orientation becomes remarkable as compared with the as-cast one, and the C
The u 2 O phase was elongated in the plastic working direction and elongated in one direction, and formed a structure having an aspect ratio in the range of 1 to 20. The rod diameter is 20 μm or less, and most is 1 to 10 μm. Further, about 15 pieces have a length of 100 μm or more. Furthermore, fine particles 2-5
It grows into particles of about μm and disappears. As also shown in Table 5, more remarkable anisotropy was recognized in the coefficient of linear expansion and the thermal conductivity of the sample No. 9. In particular, the thermal conductivity showed a value that was 1.22 times higher in the vertical direction along the rod shape than in the horizontal direction. The thermal expansion coefficient is slightly larger in the vertical direction than in the horizontal direction.

【0055】[0055]

【表5】 [Table 5]

【0056】(実施例2)本発明による銅複合材絶縁配
線基板の他の実施例を図8に示す。図は、実施例1と同
様に銅複合材料からなる銅複合部材1と導体パターン3
aの間を第一酸化銅(Cu2O)よりなる絶縁部材4で絶
縁したものである。
(Embodiment 2) FIG. 8 shows another embodiment of the copper composite insulated wiring board according to the present invention. The figure shows a copper composite member 1 made of a copper composite material and a conductor pattern 3 as in the first embodiment.
a is insulated by an insulating member 4 made of copper oxide (Cu 2 O).

【0057】図8に示した銅複合材絶縁配線基板の製造
方法を図9に示す。図9(a)は、銅(Cu)と第一酸
化銅(Cu2O)を分散させた銅複合材料(Cu/Cu2
O)からなる銅複合部材1である。図9(b)の工程
で、銅複合部材1の表面へイオン打ち込みで酸素を打ち
込み、銅複合部材1の表面を所定の深さ(数〜数十ミク
ロンの深さ)までその全体を第一酸化銅(Cu2O)層と
する絶縁化処理を行う。即ち、銅複合部材1の表面に絶
縁部材4を形成する。図9(c)の工程で、水素雰囲気
などの還元雰囲気中で絶縁化処理された第一酸化銅層の
みよりなる絶縁部材4を所定の深さ(数ミクロン以下)
まで還元し、その部分を純銅(Cu)層3xにする。な
お、還元時の温度は数百度である。図9(d)の工程
で、前記純銅層3xの上に銅をメッキして、厚めの純銅
層3yとする。最後に、図9(e)の工程で、純銅層3
yをエッチング加工で導体パターン3aにパターン化す
る。 (実施例3)本発明による銅複合材絶縁配線基板の他の
実施例を図10に示す。本図は、パターン化された導体
パターン5の材料を純銅あるいは銅合金から銅複合材料
に変更した点が図1と異なる。銅複合材料の熱膨張係数
は純銅のそれより半導体素子の材料であるシリコンによ
り近いため、導体パターンの上に半田で半導体素子を接
合したときのヒートサイクル下における半田接合部の信
頼性は、図1の絶縁基板を用いたときよりもさらに向上
する。
FIG. 9 shows a method of manufacturing the copper composite insulated wiring board shown in FIG. FIG. 9A shows a copper composite material (Cu / Cu 2 ) in which copper (Cu) and cuprous oxide (Cu 2 O) are dispersed.
O) is a copper composite member 1. In the step of FIG. 9B, oxygen is implanted into the surface of the copper composite member 1 by ion implantation, and the entire surface of the copper composite member 1 is first brought to a predetermined depth (a depth of several to several tens of microns). An insulating treatment for forming a copper oxide (Cu 2 O) layer is performed. That is, the insulating member 4 is formed on the surface of the copper composite member 1. In the step of FIG. 9 (c), the insulating member 4 made of only the copper oxide layer insulated in a reducing atmosphere such as a hydrogen atmosphere has a predetermined depth (several microns or less).
To a pure copper (Cu) layer 3x. The temperature at the time of reduction is several hundred degrees. In the step of FIG. 9D, copper is plated on the pure copper layer 3x to form a thick pure copper layer 3y. Finally, in the step of FIG.
y is patterned into a conductor pattern 3a by etching. (Embodiment 3) Another embodiment of the copper composite insulated wiring board according to the present invention is shown in FIG. This figure differs from FIG. 1 in that the material of the patterned conductor pattern 5 is changed from pure copper or a copper alloy to a copper composite material. Since the thermal expansion coefficient of the copper composite material is closer to that of silicon, which is the material of the semiconductor element, than that of pure copper, the reliability of the solder joint under a heat cycle when the semiconductor element is joined by solder on the conductor pattern is shown in the figure. This is further improved as compared with the case where one insulating substrate is used.

【0058】(実施例4)本発明による銅複合材絶縁配
線基板の他の実施例を図11に示す。絶縁シート2を介
して、銅複合部材1の表面の一部へ導体部材6,7を設
けた点が図1の絶縁配線基板と異なる点である。即ち、
導体部材6,7の一部が銅複合部材1の外周より大きく
外側に張り出しているのが特徴である。なお、導体部材
6と7は、厚さが100ミクロン以上の純銅あるいは銅
合金あるいは銅複合材料などで構成される。後述するよ
うに、これらの導体部材6,7は半導体素子の通電部材
やヒートシンク部材として使用することができるので、
半導体素子を実装した半導体装置のコストパフォーマン
スを上げることができる。
(Embodiment 4) Another embodiment of the copper composite insulated wiring board according to the present invention is shown in FIG. The point that the conductor members 6 and 7 are provided on a part of the surface of the copper composite member 1 via the insulating sheet 2 is different from the insulated wiring board of FIG. That is,
It is characterized in that a part of the conductor members 6, 7 protrudes outward more than the outer periphery of the copper composite member 1. The conductor members 6 and 7 are made of pure copper, a copper alloy, a copper composite material, or the like having a thickness of 100 microns or more. As described later, these conductor members 6 and 7 can be used as a current-carrying member or a heat sink member of a semiconductor element.
The cost performance of a semiconductor device on which a semiconductor element is mounted can be improved.

【0059】(実施例5)本発明による銅複合材絶縁配
線基板の他の実施例を図12に示す。絶縁シート2を介
して、銅複合部材1の表面の一部へ設けた導体部材6a
と7aの形状がその中間部で図に示すように、折曲げら
れている点が図11の絶縁配線基板と異なる点である。
導体部材6a,7aの形状を折曲げることによって、半
導体素子を絶縁配線基板の上に半田で接合して樹脂封止
したとき、半導体装置は他の電子機器への装着性が大い
に向上する場合がある。また、樹脂封止構造の半導体装
置をよりコンパクトにすることもできる。
(Embodiment 5) Another embodiment of the copper composite insulated wiring board according to the present invention is shown in FIG. Conductor member 6a provided on a part of the surface of copper composite member 1 via insulating sheet 2
As shown in the figure, the shape of each of FIGS. 7a and 7a is different from the insulated wiring board of FIG.
When the semiconductor element is joined to the insulated wiring board by soldering and resin-sealed by bending the shape of the conductor members 6a and 7a, the semiconductor device may greatly improve the mountability to other electronic devices. is there. Further, the semiconductor device having the resin-sealed structure can be made more compact.

【0060】(実施例6)本発明による銅複合材絶縁配
線基板の他の実施例を図13に示す。絶縁シート2を介
して、銅複合部材1の表面の一部へ設けた導体部材6b
と7bの形状がその中間部で図に示すように、折曲げら
れ且つその一部が銅複合部材1の表面に対して垂直に配
置されている点が図6の絶縁配線基板と異なる点であ
る。このような場合も、本絶縁基板を半導体装置へ適用
したとき、前図と同様なメリットが得られる。
(Embodiment 6) Another embodiment of the copper composite insulated wiring board according to the present invention is shown in FIG. Conductor member 6b provided on a part of the surface of copper composite member 1 via insulating sheet 2
6 and 7b are different from the insulated wiring board of FIG. 6 in that the shape is bent at a middle portion thereof as shown in the drawing, and a part thereof is disposed perpendicular to the surface of the copper composite member 1. is there. Also in such a case, when the present insulating substrate is applied to a semiconductor device, the same advantages as those in the previous figure can be obtained.

【0061】(実施例7)本発明による実施例1に示し
た銅複合材絶縁配線基板を利用した半導体装置の実施例
を図14に示す。図に示すように、銅複合材料よりなり
ヒートシンク機能を有する銅複合部材1の上に、樹脂性
の絶縁シート2を用いて固着した導体パターン3a,3
b,3c及び3dが形成されている銅複合材絶縁配線基
板へ半導体素子を実装した半導体装置である。半導体素
子(IGBTパワー素子など)12はその他の電子部品
13と共に、それぞれ半田8a,8bを介して導体パタ
ーン3b,3cの上に接合される。純銅あるいは銅合金
などで構成される通電部材9と半導体素子12は導線1
1a,導体パターン3a,導線11bを経由して電気的
に結線される。同様に、電子部品22は導体パターン3
d,導線11cを介して通電部材10と電気的に結線さ
れる。図に示すように、本半導体装置は銅複合部材1と
通電部材9,10の一部が露出するように樹脂14で封
止される。銅複合部材1はその一部が樹脂14から露出
していること且つ高い熱伝導率を有する銅複合材料で構
成されていることにより、半田8a,導体パターン3
b,銅複合部材1を介して、半導体素子12で発生した
熱を外部に効率良く逃がすことができる。その結果、半
導体素子12の発熱温度を低い値に抑制することができ
る。なお、封止用樹脂14の熱膨張係数を8〜15ppm
/K の範囲に設定することによって、即ち銅複合材料
との熱膨張係数をマッチングさせることによって、樹脂
14と銅複合部材1間の熱膨張係数の差が小さくなり、
封止構造体へのクラック発生などを防止でき、信頼性の
高い半導体装置が得られる。このような構成にすること
により、半導体素子と絶縁配線基板の間にモリブデン
(Mo)やCIC(Cu−Invar−Cuクラッド材)など
の中間材を設けなくても、半田接合部の信頼性が確保さ
れ、コストパフォーマンスの高い半導体装置が得られ
る。
(Embodiment 7) FIG. 14 shows an embodiment of a semiconductor device using the copper composite insulated wiring board shown in Embodiment 1 according to the present invention. As shown in the figure, conductive patterns 3a and 3 are fixed on a copper composite member 1 made of a copper composite material and having a heat sink function using a resinous insulating sheet 2.
This is a semiconductor device in which a semiconductor element is mounted on a copper composite insulated wiring board on which b, 3c and 3d are formed. A semiconductor element (such as an IGBT power element) 12 is joined together with other electronic components 13 to the conductor patterns 3b and 3c via solders 8a and 8b, respectively. The conducting member 9 made of pure copper or copper alloy and the semiconductor element 12 are connected to the conductor 1
1a, the conductor pattern 3a, and the conductor 11b, and are electrically connected. Similarly, the electronic component 22 includes the conductor pattern 3
d, electrically connected to the conducting member 10 via the conducting wire 11c. As shown in the figure, the present semiconductor device is sealed with a resin 14 so that the copper composite member 1 and a part of the current-carrying members 9 and 10 are exposed. Since the copper composite member 1 is partially exposed from the resin 14 and is made of a copper composite material having a high thermal conductivity, the solder 8 a and the conductor pattern 3 are formed.
b, heat generated in the semiconductor element 12 can be efficiently released to the outside via the copper composite member 1. As a result, the heat generation temperature of the semiconductor element 12 can be suppressed to a low value. In addition, the thermal expansion coefficient of the sealing resin 14 is 8 to 15 ppm.
/ K, that is, by matching the coefficient of thermal expansion with the copper composite material, the difference in the coefficient of thermal expansion between the resin 14 and the copper composite member 1 is reduced,
Cracking of the sealing structure can be prevented, and a highly reliable semiconductor device can be obtained. With such a configuration, the reliability of the solder joint can be improved without providing an intermediate material such as molybdenum (Mo) or CIC (Cu-Invar-Cu clad material) between the semiconductor element and the insulated wiring board. As a result, a semiconductor device having high cost performance can be obtained.

【0062】本発明に係る樹脂封止半導体装置は、樹脂
及び70重量%以上、好ましくは80〜95重量%の球
形石英粉を含む組成物により封止され、前記樹脂はエポ
キシ樹脂を主とし、シリコーン重合体を前記エポキシ樹
脂100重量部当り20重量部以下、好ましくは10重
量部以下(0重量部を含む)を含む樹脂が好ましく、特
に面付実装型樹脂封止半導体装置が好ましい。
A resin-sealed semiconductor device according to the present invention is sealed with a composition containing a resin and 70% by weight or more, preferably 80 to 95% by weight of a spherical quartz powder, wherein the resin is mainly an epoxy resin, A resin containing a silicone polymer in an amount of 20 parts by weight or less, preferably 10 parts by weight or less (including 0 parts by weight) per 100 parts by weight of the epoxy resin is preferable, and a surface-mounted resin-sealed semiconductor device is particularly preferable.

【0063】更に、本発明は、前述の組成物を用いてト
ランスファ成形するのが好ましい。球状石英粉はその9
0重量%以上が0.5〜100μm の粒径を有するこ
と、その粒度分布がRRS粒度線図で表示した場合に直
線で、その勾配nが0.6〜0.95であること、封止硬
化物の線膨張係数が1.3×10-5/℃以下が好まし
い。
Further, in the present invention, transfer molding is preferably performed using the above-mentioned composition. Spherical quartz powder is part 9
0% by weight or more has a particle size of 0.5 to 100 μm, its particle size distribution is a straight line when represented by an RRS particle size diagram, and its gradient n is 0.6 to 0.95; The cured product preferably has a coefficient of linear expansion of 1.3 × 10 −5 / ° C. or less.

【0064】本発明で用いる球状の溶融石英粉は、予め
所定の粒度分布に粉砕した溶融石英粉を、プロパン,ブ
タン,アセチレン,水素などの可燃性ガスを燃料とする
溶射装置から発生させた高温火炎中に一定量ずつ供給し
て溶融して球形化し、冷却したものが好ましい。
The spherical fused silica powder used in the present invention is a high-temperature fused silica powder, which has been previously ground to a predetermined particle size distribution, generated from a thermal spraying apparatus using a combustible gas such as propane, butane, acetylene or hydrogen as a fuel. It is preferable to supply a fixed amount into the flame, melt it, make it spherical, and cool it.

【0065】本発明で用いるシリコーン重合体は、アミ
ノ基,カルボキシル基,エポキシ基,水酸基,ピリミジ
ン基等の官能基を末端あるいは側鎖に持つポリジメチル
シロキサンである。
The silicone polymer used in the present invention is a polydimethylsiloxane having a functional group such as an amino group, a carboxyl group, an epoxy group, a hydroxyl group or a pyrimidine group at a terminal or a side chain.

【0066】常温で固体のエポキシ樹脂は、半導体封止
用材料として一般に用いられているクレゾールノボラッ
ク型エポキシ樹脂,フェノールノボラック型エポキシ樹
脂,ビスフェノールA型エポキシ樹脂等を指し、硬化剤
としてフェノールノボラックやクレゾールノボラック等
のノボラック樹脂,無水ピロメリット酸や無水ベンゾフ
ェノン等の酸無水物等を用い、さらに硬化促進剤,可撓
化剤,カップリング剤,着色剤,難燃化剤,離型剤等を
必要に応じて配合することができる。
The epoxy resin which is solid at room temperature refers to a cresol novolak type epoxy resin, a phenol novolak type epoxy resin, a bisphenol A type epoxy resin or the like generally used as a semiconductor encapsulating material, and phenol novolak or cresol as a curing agent. Uses novolak resins such as novolak, acid anhydrides such as pyromellitic anhydride and benzophenone anhydride, and requires additional curing accelerators, flexible agents, coupling agents, coloring agents, flame retardants, release agents, etc. Can be blended according to

【0067】このエポキシ樹脂組成物は、各素材を70
〜100℃に加熱した二軸ロールや押出機で混練し、ト
ランスファプレスで金型温度160〜190℃,成形圧
力30〜100kg/cm2,硬化時間1〜3分で成形する
ことができる。
In this epoxy resin composition, each material was used in an amount of 70%.
The mixture can be kneaded with a biaxial roll or an extruder heated to 100100 ° C. and molded by a transfer press at a mold temperature of 160 to 190 ° C., a molding pressure of 30 to 100 kg / cm 2 , and a curing time of 1 to 3 minutes.

【0068】充填材としてn=0.95 の球状充填材を
用い、表6に示すエポキシ樹脂組成物を80℃に加熱し
た二軸ロールで10分間混練した。
Using a spherical filler of n = 0.95 as the filler, the epoxy resin composition shown in Table 6 was kneaded with a biaxial roll heated to 80 ° C. for 10 minutes.

【0069】[0069]

【表6】 [Table 6]

【0070】本実施例によれば、用いられる半導体封止
用樹脂組成物が、流動性に優れ、硬化後の線膨張係数が
小さく、弾性率も小さいので、半導体素子との線膨張係
数の差によって生じる熱応力を小さくすることができ、
耐クラック性及び接続信頼性に優れた面付実装型樹脂封
止半導体装置が得られる優れた効果を有する。
According to this example, the resin composition for semiconductor encapsulation used was excellent in fluidity, had a small coefficient of linear expansion after curing, and a small modulus of elasticity. Thermal stress caused by
It has an excellent effect of obtaining a surface-mounted resin-sealed semiconductor device having excellent crack resistance and connection reliability.

【0071】(実施例8)本発明による実施例1に示し
た銅複合材絶縁配線基板を利用した半導体装置の他の実
施例を図15に示す。図に示すように、半導体素子12
は半田8を介して導体パターン3aの上に接合され、銅
複合部材1とは導線11aで、銅複合部材1aとは導線
11bで結線される。本半導体装置は銅複合部材1と1
aの一部が露出するように樹脂14で封止している。銅
複合部材1は半導体素子12のヒートシンク機能と通電
機能を兼ね備えており、半田8,導体パターン3a,銅
複合部材1を介して、半導体素子12で発生した熱を外
部に効率良く逃がすことができる。本図の場合も、半田
接合部の信頼性が確保され、コストパフォーマンスの高
い半導体装置が得られる。
(Eighth Embodiment) FIG. 15 shows another embodiment of the semiconductor device using the copper composite insulated wiring board shown in the first embodiment of the present invention. As shown in FIG.
Are connected to the conductor pattern 3a via the solder 8, and are connected to the copper composite member 1 by a conductor 11a and to the copper composite member 1a by a conductor 11b. The present semiconductor device is composed of copper composite members 1 and 1
a is sealed with a resin 14 so that a part of “a” is exposed. The copper composite member 1 has both a heat sink function and a conduction function of the semiconductor element 12, and can efficiently release heat generated in the semiconductor element 12 to the outside via the solder 8, the conductor pattern 3 a, and the copper composite member 1. . Also in the case of this drawing, the reliability of the solder joint is ensured, and a semiconductor device with high cost performance can be obtained.

【0072】(実施例9)本発明による実施例1に示し
た銅複合材絶縁配線基板を利用した半導体装置の他の実
施例を図16に示す。図に示すように、半導体素子12
は銅複合部材1の上へ絶縁シート2で固着された導体部
材6aに半田8で接合される。半導体素子12は導線1
1a,11bを介して、導体部材6a,7aとそれぞれ
結線される。こうすることによって、導体部材6aと7
aから半導体素子12へ電圧,電流が供給される。導体
部材6a,7aと銅複合部材1の一部が露出するよう
に、半導体素子12は樹脂14で封止される。導体部材
6aは低熱膨張係数を有する実施例1で示した銅複合材
料で構成されるため、半導体素子12と導体部材6aの
半田8による接合部の信頼性が向上する。なお、導体部
材6aが純銅あるいは銅合金で構成されても、その厚さ
が数百ミクロン以下であれば、同様に半田接合部の信頼
性が確保される。導体部材6aは通電機能とヒートシン
ク機能を兼ね備えているため、半導体素子12で発生し
た熱を半田8から導体部材6aを介して外部に逃がすこ
とができる。また、半導体素子12で発生した熱を銅複
合部材1を介しても外部に効率良く逃がすことができ
る。このように半導体素子12を樹脂14でコンパクト
な樹脂構造体に封止しても、半導体素子12の発熱温度
の上昇をさらに抑制できる。本図の場合も、モリブデン
やCICなどの中間材を設けなくても半田接合部の信頼
性を確保でき、コストパフォーマンスの高い半導体装置
が得られる。本図は図12に記載した銅複合材絶縁配線
基板を利用した例を示したものであるが、図11及び図
13の銅複合材絶縁配線基板を適用した場合についても
同様の効果が得られると共に、種々の実装形態に対応す
ることが可能である。
Embodiment 9 FIG. 16 shows another embodiment of the semiconductor device using the copper composite insulated wiring board shown in Embodiment 1 of the present invention. As shown in FIG.
Is joined to the conductor member 6a fixed on the copper composite member 1 by the insulating sheet 2 with solder 8. The semiconductor element 12 is the conductor 1
They are connected to the conductor members 6a and 7a via 1a and 11b, respectively. By doing so, the conductor members 6a and 7
a, a voltage and a current are supplied to the semiconductor element 12. The semiconductor element 12 is sealed with the resin 14 so that the conductor members 6a and 7a and a part of the copper composite member 1 are exposed. Since the conductor member 6a is made of the copper composite material having a low coefficient of thermal expansion described in the first embodiment, the reliability of the joint between the semiconductor element 12 and the conductor member 6a by the solder 8 is improved. Even if the conductor member 6a is made of pure copper or a copper alloy, if the thickness is several hundred microns or less, the reliability of the solder joint is similarly secured. Since the conductor member 6a has both an energizing function and a heat sink function, heat generated in the semiconductor element 12 can be released from the solder 8 to the outside via the conductor member 6a. Further, heat generated in the semiconductor element 12 can be efficiently released to the outside even through the copper composite member 1. Even when the semiconductor element 12 is sealed in a compact resin structure with the resin 14 as described above, an increase in the heat generation temperature of the semiconductor element 12 can be further suppressed. Also in the case of this drawing, the reliability of the solder joint can be secured without providing an intermediate material such as molybdenum or CIC, and a semiconductor device with high cost performance can be obtained. Although this drawing shows an example in which the copper composite insulated wiring board shown in FIG. 12 is used, the same effect can be obtained when the copper composite insulated wiring board shown in FIGS. 11 and 13 is applied. In addition, it is possible to support various mounting forms.

【0073】(実施例10)本発明による実施例1に示
した銅複合材絶縁配線基板を利用した半導体装置の他の
実施例を図17に示す。図に示すように、銅複合部材1
の上に導体部材6,7と導体パターン3aを絶縁シート
2で固着した銅複合部材絶縁配線基板に、半導体素子1
2を半田8で接合した後、半導体素子12の上部に空間
17を設けるようにキャップ15を接着剤16で接着し
た半導体装置である。なお、半導体素子12と導体部材
6,7はそれぞれ導線11a,11bで結線されてい
る。本図の場合は、半導体素子12で発生した熱は半田
8から銅複合部材1を介してのみ外部に逃がされる。本
図の場合も、半導体素子と絶縁配線基板の間にモリブデ
ンやCICなどの中間材を設けなくても半田接合部の信
頼性が確保でき、コストパフォーマンスの高い半導体装
置が得られる。
(Embodiment 10) FIG. 17 shows another embodiment of a semiconductor device using the copper composite insulated wiring board shown in Embodiment 1 of the present invention. As shown in the figure, the copper composite member 1
A semiconductor element 1 is mounted on a copper composite member insulated wiring board in which conductor members 6 and 7 and a conductor pattern 3a are fixed on the
2 is a semiconductor device in which a cap 15 is bonded with an adhesive 16 such that a space 17 is provided above a semiconductor element 12 after bonding the semiconductor chip 2 with solder 8. In addition, the semiconductor element 12 and the conductor members 6 and 7 are connected by conducting wires 11a and 11b, respectively. In the case of this figure, the heat generated in the semiconductor element 12 is released from the solder 8 to the outside only through the copper composite member 1. Also in the case of this drawing, the reliability of the solder joint can be secured without providing an intermediate material such as molybdenum or CIC between the semiconductor element and the insulated wiring board, and a semiconductor device with high cost performance can be obtained.

【0074】(実施例11)本発明による銅複合材絶縁
配線基板を利用した半導体装置の他の実施例を図18に
示す。本図は、銅複合部材1の上に導体箔3を絶縁シー
ト2で固着した銅複合材絶縁配線基板を良く知られたメ
タルコア基板として使用するもので、半導体素子12を
半田8で導体箔3へ接合することにより、半導体素子1
2で発生した熱を銅複合部材1を介して外部に効率良く
逃がすものである。メタルコア基板として利用する場合
は、銅複合部材1を図に示すように折曲げることがあ
る。
Embodiment 11 FIG. 18 shows another embodiment of a semiconductor device using a copper composite insulated wiring board according to the present invention. In this drawing, a copper composite insulated wiring board in which a conductor foil 3 is fixed on a copper composite member 1 with an insulating sheet 2 is used as a well-known metal core board. Bonding to the semiconductor element 1
The heat generated in 2 is efficiently released to the outside via the copper composite member 1. When used as a metal core substrate, the copper composite member 1 may be bent as shown in the figure.

【0075】半導体素子と絶縁配線基板の間にモリブデ
ン(Mo)やCIC(Cu−Invar−Cuクラッド材)
などの中間材を設けなくても、絶縁配線基板の基板材料
に銅複合材料を適用することにより、ヒートサイクルの
厳しい環境下での半田接合部の信頼性を確保できるコス
トパフォーマンスの高い半導体装置を得ることができ
る。
Molybdenum (Mo) or CIC (Cu-Invar-Cu clad material) between the semiconductor element and the insulated wiring board
By using a copper composite material as the substrate material of the insulated wiring board without providing an intermediate material such as such, a highly cost-effective semiconductor device that can ensure the reliability of the solder joints in a severe heat cycle environment Obtainable.

【0076】[0076]

【発明の効果】本発明によれば、信頼性が高く、製造容
易な半導体装置を得ることができる。
According to the present invention, a highly reliable semiconductor device which can be easily manufactured can be obtained.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明に係わる銅複合材絶縁配線基板の一実施
例を示した図。
FIG. 1 is a view showing one embodiment of a copper composite insulated wiring board according to the present invention.

【図2】銅複合材料の材料特性を示した図。FIG. 2 is a diagram showing material characteristics of a copper composite material.

【図3】本発明の銅複合材の断面の顕微鏡写真。FIG. 3 is a micrograph of a cross section of the copper composite material of the present invention.

【図4】本発明の銅複合材の断面の顕微鏡写真。FIG. 4 is a micrograph of a cross section of the copper composite of the present invention.

【図5】本発明の銅複合材の断面の顕微鏡写真。FIG. 5 is a micrograph of a cross section of the copper composite material of the present invention.

【図6】本発明の銅複合材の断面の顕微鏡写真。FIG. 6 is a micrograph of a cross section of the copper composite of the present invention.

【図7】本発明の銅複合材の断面の顕微鏡写真。FIG. 7 is a micrograph of a cross section of the copper composite material of the present invention.

【図8】本発明による銅複合材絶縁配線基板の他の実施
例を示した図。
FIG. 8 is a diagram showing another embodiment of the copper composite insulated wiring board according to the present invention.

【図9】前図の銅複合材絶縁配線基板の製造方法を示し
た図。
FIG. 9 is a diagram showing a method of manufacturing the copper composite insulated wiring board of the preceding figure.

【図10】本発明による銅複合材絶縁配線基板の他の実
施例を示した図。
FIG. 10 is a view showing another embodiment of the copper composite insulated wiring board according to the present invention.

【図11】本発明による銅複合材絶縁配線基板の他の実
施例を示した図。
FIG. 11 is a view showing another embodiment of the copper composite insulated wiring board according to the present invention.

【図12】本発明による銅複合材絶縁配線基板の他の実
施例を示した図。
FIG. 12 is a view showing another embodiment of the copper composite insulated wiring board according to the present invention.

【図13】本発明による銅複合材絶縁配線基板の他の実
施例を示した図。
FIG. 13 is a view showing another embodiment of the copper composite insulated wiring board according to the present invention.

【図14】本発明による銅複合材絶縁配線基板を利用し
た半導体装置の実施例を示した図。
FIG. 14 is a diagram showing an embodiment of a semiconductor device using a copper composite insulated wiring board according to the present invention.

【図15】本発明による半導体装置の他の実施例を示し
た図。
FIG. 15 is a diagram showing another embodiment of the semiconductor device according to the present invention.

【図16】本発明による半導体装置の他の実施例を示し
た図。
FIG. 16 is a diagram showing another embodiment of the semiconductor device according to the present invention.

【図17】本発明による半導体装置の他の実施例を示し
た図。
FIG. 17 is a diagram showing another embodiment of the semiconductor device according to the present invention.

【図18】本発明による半導体装置の他の実施例を示し
た図。
FIG. 18 is a diagram showing another embodiment of the semiconductor device according to the present invention.

【符号の説明】[Explanation of symbols]

1,1a…銅複合部材、2…絶縁シート、3…導体箔、
3a,3b,3c,3d,5…導体パターン、3x,3
y…純銅層、4…絶縁部材、6,6a,6b,7,7
a,7b…導体部材、8,8a,8b…半田、9,10
…通電部材、11a,11b,11c…導線、12…半
導体素子、13…電子部品、14…樹脂、15…キャッ
プ、16…接着剤、17…空間。
1, 1a: copper composite member, 2: insulating sheet, 3: conductor foil,
3a, 3b, 3c, 3d, 5 ... conductor pattern, 3x, 3
y: pure copper layer, 4: insulating member, 6, 6a, 6b, 7, 7
a, 7b: conductor member, 8, 8a, 8b: solder, 9, 10
... energizing members, 11a, 11b, 11c ... conducting wires, 12 ... semiconductor elements, 13 ... electronic components, 14 ... resin, 15 ... caps, 16 ... adhesives, 17 ... space.

フロントページの続き (51)Int.Cl.7 識別記号 FI テーマコート゛(参考) H05K 1/02 H01L 23/36 M 1/05 C (72)発明者 赤星 晴夫 茨城県日立市大みか町七丁目1番1号 株 式会社日立製作所日立研究所内 (72)発明者 近藤 保夫 茨城県日立市大みか町七丁目1番1号 株 式会社日立製作所日立研究所内 (72)発明者 岡本 和孝 茨城県日立市大みか町七丁目1番1号 株 式会社日立製作所日立研究所内 Fターム(参考) 5E315 BB04 BB05 BB10 BB14 DD13 GG01 GG22 5E338 AA18 BB65 BB75 CC01 CD05 EE02 EE32 5F036 AA01 BB08 BD01 BD21 5F067 AA03 CA03 EA04 Continued on the front page (51) Int.Cl. 7 Identification symbol FI Theme coat II (Reference) H05K 1/02 H01L 23/36 M 1/05 C (72) Inventor Haruo Akahoshi 7-chome, Omikacho, Hitachi City, Ibaraki Prefecture 1 Hitachi, Ltd. Hitachi Research Laboratory (72) Inventor Yasuo Kondo 7-1-1, Omikacho, Hitachi City, Ibaraki Prefecture Hitachi, Ltd. Hitachi Research Laboratory (72) Inventor Kazutaka Okamoto Omikamachi, Hitachi City, Ibaraki Prefecture 7-1-1 1-1 F-term in Hitachi, Ltd. Hitachi Research Laboratory (reference) 5E315 BB04 BB05 BB10 BB14 DD13 GG01 GG22 5E338 AA18 BB65 BB75 CC01 CD05 EE02 EE32 5F036 AA01 BB08 BD01 BD21 5F067 AA03 CA03 EA04

Claims (8)

【特許請求の範囲】[Claims] 【請求項1】酸化銅を含む銅複合部材上に樹脂絶縁層又
は酸化銅層を介して導体層が形成されていることを特徴
とする配線基板。
1. A wiring board, wherein a conductor layer is formed on a copper composite member containing copper oxide via a resin insulating layer or a copper oxide layer.
【請求項2】酸化銅を含む銅複合部材上に樹脂絶縁層又
は酸化銅層を介して導体からなる配線パターンが形成さ
れていることを特徴とする配線基板。
2. A wiring board, wherein a wiring pattern made of a conductor is formed on a copper composite member containing copper oxide via a resin insulating layer or a copper oxide layer.
【請求項3】請求項1又は2において、前記導体の一部
が前記複合部材の外周より大きく外側に張り出している
か、またはその中間部で折曲げられているか、または前
記複合部材の表面に対して垂直に配置されていることを
特徴とする配線基板。
3. The composite member according to claim 1, wherein a part of the conductor projects outward beyond the outer periphery of the composite member, or is bent at an intermediate portion thereof, or a portion of the conductor with respect to a surface of the composite member. A wiring board, which is vertically arranged.
【請求項4】請求項1〜3のいずれかに記載の配線基板
上に半導体素子を搭載したことを特徴とする半導体装
置。
4. A semiconductor device having a semiconductor element mounted on the wiring board according to claim 1.
【請求項5】請求項4において、前記半導体素子が前記
配線基板と共に樹脂で封止され、前記複合部材及び導体
の一部が樹脂から露出していることを特徴とする半導体
装置。
5. The semiconductor device according to claim 4, wherein the semiconductor element is sealed with a resin together with the wiring board, and a part of the composite member and the conductor are exposed from the resin.
【請求項6】請求項5において、封止用樹脂の熱膨張係
数が8〜15ppm/K であることを特徴とする半導体装
置。
6. The semiconductor device according to claim 5, wherein the thermal expansion coefficient of the sealing resin is 8 to 15 ppm / K.
【請求項7】請求項4において、前記半導体素子の上部
に空間を形成するように前記配線基板へキャップを接着
したことを特徴とする半導体装置。
7. The semiconductor device according to claim 4, wherein a cap is bonded to said wiring board so as to form a space above said semiconductor element.
【請求項8】請求項1〜3のいずれかに記載の配線基板
を半導体素子を実装するメタルコア基板として用いた半
導体装置。
8. A semiconductor device using the wiring substrate according to claim 1 as a metal core substrate on which a semiconductor element is mounted.
JP37267999A 1999-12-28 1999-12-28 Wiring board and semiconductor device Pending JP2001189401A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP37267999A JP2001189401A (en) 1999-12-28 1999-12-28 Wiring board and semiconductor device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP37267999A JP2001189401A (en) 1999-12-28 1999-12-28 Wiring board and semiconductor device

Publications (1)

Publication Number Publication Date
JP2001189401A true JP2001189401A (en) 2001-07-10

Family

ID=18500871

Family Applications (1)

Application Number Title Priority Date Filing Date
JP37267999A Pending JP2001189401A (en) 1999-12-28 1999-12-28 Wiring board and semiconductor device

Country Status (1)

Country Link
JP (1) JP2001189401A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016058574A (en) * 2014-09-10 2016-04-21 三菱電機株式会社 Semiconductor device

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0529490A (en) * 1991-07-24 1993-02-05 Denki Kagaku Kogyo Kk Circuit board for mounting semiconductor
JPH09209058A (en) * 1996-01-30 1997-08-12 Kyocera Corp Composite material with high thermal conductivity and its production
JPH10125826A (en) * 1996-10-24 1998-05-15 Hitachi Ltd Semiconductor device and manufacture thereof
JPH10313073A (en) * 1997-05-13 1998-11-24 Hitachi Powdered Metals Co Ltd Thin-plate part for semiconductor package and manufacture of the same

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0529490A (en) * 1991-07-24 1993-02-05 Denki Kagaku Kogyo Kk Circuit board for mounting semiconductor
JPH09209058A (en) * 1996-01-30 1997-08-12 Kyocera Corp Composite material with high thermal conductivity and its production
JPH10125826A (en) * 1996-10-24 1998-05-15 Hitachi Ltd Semiconductor device and manufacture thereof
JPH10313073A (en) * 1997-05-13 1998-11-24 Hitachi Powdered Metals Co Ltd Thin-plate part for semiconductor package and manufacture of the same

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016058574A (en) * 2014-09-10 2016-04-21 三菱電機株式会社 Semiconductor device

Similar Documents

Publication Publication Date Title
US7170186B2 (en) Laminated radiation member, power semiconductor apparatus, and method for producing the same
KR100490879B1 (en) W-Cu ALLOY WITH HOMOGENEOUS MICRO-STRUCTURE AND THE MANUFACTURING METHOD THEREOF
JPH06244330A (en) Heat-controlling composite material used in electronic circuit device, and manufacture thereof
CN104550975B (en) Method for preparing silicon-aluminum alloy electronic packaging material by virtue of rapid injection molding
JP2001223450A (en) Metal base circuit board
JP3371874B2 (en) Power module
JP2001189401A (en) Wiring board and semiconductor device
JP2001217362A (en) Laminated heat dissipating member, power semiconductor device using it, and method of production
JP2000239762A (en) Copper alloy low in thermal expansion coefficient and high in thermal conductivity, and electrical and electronic equipment parts using the copper alloy
KR20040084315A (en) Method for fabrication of high silicon Al-Si alloy for electronic packaging material by vacuum arc melting method
JP4407858B2 (en) Module structure
JP3552587B2 (en) Composite materials and semiconductor devices
JP2000311972A (en) Semiconductor device
JP2000311971A (en) Semiconductor device and heat sink thereof
JP2005252136A (en) Aluminum-ceramic junction substrate, and manufacturing method thereof
JP4187082B2 (en) Metal base circuit board and manufacturing method thereof
JP3736251B2 (en) Composite material and method for producing the same
JP2001284509A (en) Al-SiC COMPOSITE BODY
JP2001217364A (en) Al-SiC COMPOSITE
JP2000311980A (en) Lead frame and semiconductor device
JPS58147140A (en) Lead wire of semiconductor device
JP2000313905A (en) Composite material and its various uses
JPH0978156A (en) High conductivity sintered material and its production
JP4249371B2 (en) Metal base circuit board
JP2005281422A (en) Resin adhesive and package for storing electronic component

Legal Events

Date Code Title Description
A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20040106