JP2001185163A - Method of manufacturing gas diffusion electrode for solid polymeric electrolyte fuel cell - Google Patents

Method of manufacturing gas diffusion electrode for solid polymeric electrolyte fuel cell

Info

Publication number
JP2001185163A
JP2001185163A JP37397999A JP37397999A JP2001185163A JP 2001185163 A JP2001185163 A JP 2001185163A JP 37397999 A JP37397999 A JP 37397999A JP 37397999 A JP37397999 A JP 37397999A JP 2001185163 A JP2001185163 A JP 2001185163A
Authority
JP
Japan
Prior art keywords
gas diffusion
diffusion electrode
ion exchange
fuel cell
solvent
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP37397999A
Other languages
Japanese (ja)
Inventor
Toshihiro Tanuma
敏弘 田沼
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
AGC Inc
Original Assignee
Asahi Glass Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Asahi Glass Co Ltd filed Critical Asahi Glass Co Ltd
Priority to JP37397999A priority Critical patent/JP2001185163A/en
Publication of JP2001185163A publication Critical patent/JP2001185163A/en
Withdrawn legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Landscapes

  • Inert Electrodes (AREA)
  • Fuel Cell (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a method of manufacturing a gas diffusion electrode for a solid polymeric electrolyte fuel cell, having good porosity, conductivity, water repellency and durability. SOLUTION: The gas diffusion electrode is manufacturing by removing a solvent from a liquid mixture having a catalyst and a fluorine contained ion exchange resin dispersed or dissolved into the solvent to form particles having an average particle size of 0.1-100 μm and spraying the particles to the surface of an ion exchange membrane to be heated and compression bonded.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION 【発明の属する技術分野】TECHNICAL FIELD OF THE INVENTION

【0001】本発明は、固体高分子電解質型燃料電池用
のガス拡散電極の製造方法に関する。
The present invention relates to a method for manufacturing a gas diffusion electrode for a polymer electrolyte fuel cell.

【0002】[0002]

【従来の技術】水素と酸素を使用する燃料電池は、その
反応生成物が原理的に水のみであり環境への悪影響がほ
とんどない発電システムとして注目されている。なかで
も、近年、プロトン導電性のイオン交換膜を電解質とし
て使用する固体高分子電解質型燃料電池は、作動温度が
低く、出力密度が高く、且つ小型化が可能なため、車載
用電源など有望視されている。
2. Description of the Related Art A fuel cell using hydrogen and oxygen has attracted attention as a power generation system whose reaction product is only water in principle and has almost no adverse effect on the environment. In particular, in recent years, solid polymer electrolyte fuel cells using proton-conductive ion exchange membranes as electrolytes have low operating temperatures, high power densities, and can be miniaturized. Have been.

【0003】かかる固体高分子電解質型燃料電池は、上
記のように作動温度が低い(50〜120℃)ことが特
徴であるが、一方では、そのために排熱が補機動力など
に有効利用しがたい難点がある。これを補う意味でも固
体高分子電解質型燃料電池には、水素及び酸素の利用率
の高い運転条件も高いエネルギー効率及び高い出力密度
が要求されている。
[0003] Such a solid polymer electrolyte fuel cell is characterized by a low operating temperature (50 to 120 ° C) as described above. On the other hand, however, the exhaust heat is effectively used for auxiliaries and the like. There are difficult points. To make up for this, the polymer electrolyte fuel cell is required to have high energy efficiency and high power density even under operating conditions with high utilization rates of hydrogen and oxygen.

【0004】固体高分子電解質型燃料電池が上記要求を
満たすためには、電池を構成する要素のうち特にガス拡
散電極及び該電極をその両表面に形成したイオン交換膜
−電極接合体が重要である。従来、かかるガス拡散電極
は、電極反応を促進する触媒粉末、導電性を高めかつ水
蒸気の凝縮による多孔体の閉塞(フラッデイング)を防
止するための含フッ素イオン交換樹脂を、エタノールな
どのアルコール類の溶媒に溶解又は分散して含む粘性混
合物を、イオン交換膜の表面に直接塗布するか、又は別
のシート状基材に塗布して得られる層をイオン交換膜の
表面に転写又は接合することにより形成されている。
In order for a solid polymer electrolyte fuel cell to satisfy the above-mentioned requirements, a gas diffusion electrode and an ion-exchange membrane-electrode assembly having the electrode formed on both surfaces thereof are particularly important among the elements constituting the cell. is there. Conventionally, such a gas diffusion electrode is made of a catalyst powder for accelerating an electrode reaction, a fluorinated ion exchange resin for enhancing conductivity and preventing clogging (flooding) of a porous body by condensation of water vapor, with alcohols such as ethanol. Directly applying the viscous mixture, which is dissolved or dispersed in the above-mentioned solvent, to the surface of the ion exchange membrane, or transferring or bonding a layer obtained by applying the mixture to another sheet-like substrate to the surface of the ion exchange membrane. Is formed.

【0005】しかしながら、このようにしてガス拡散電
極を形成する場合、上記粘性混合物は、イオン交換膜又
はシート状基材への塗工性は、必ずしも良好でなく、ま
た、形成されたガス拡散電極は、多孔性、導電性、撥水
性、及び耐久性について必ずしも満足されるものではな
い。
However, when the gas diffusion electrode is formed in this way, the above-mentioned viscous mixture does not always have good coating properties on an ion-exchange membrane or a sheet-like substrate. Are not always satisfactory in terms of porosity, conductivity, water repellency, and durability.

【0006】このようなガス拡散電極を使用した固体高
分子電解質型燃料電池は、その特性も十分に満足できる
ものではなく、特に出力電流密度などは、更に一層の向
上が必要とされている。
The characteristics of the solid polymer electrolyte fuel cell using such a gas diffusion electrode are not sufficiently satisfactory, and the output current density and the like are particularly required to be further improved.

【0007】[0007]

【発明が解決しようとする課題】本発明は、固体高分子
電解質型燃料電池及びガス拡散電極における従来の難点
を解消するものであり、イオン交換膜の表面に容易に形
成することができ、且つ、得られたガス拡散電極も良好
な多孔性、導電性、撥水性、更には耐久性を有し、燃料
電池としても出力電流密度などが優れた特性を示す固体
高分子電解質型燃料電池用のガス拡散電極の製造方法を
提供する。
SUMMARY OF THE INVENTION The present invention solves the conventional problems of a solid polymer electrolyte fuel cell and a gas diffusion electrode, and can be easily formed on the surface of an ion exchange membrane. The obtained gas diffusion electrode also has good porosity, conductivity, water repellency, and durability, and the fuel cell also has excellent characteristics such as output current density for solid polymer electrolyte fuel cells. A method for manufacturing a gas diffusion electrode is provided.

【0008】[0008]

【課題を解決するための手段】本発明者の研究による
と、固体高分子電解質型燃料電池のガス拡散電極の成分
である、上記触媒及び含フッ素イオン交換樹脂を溶媒中
に分散、又は溶解せしめて粘性混合物を作製し、これを
イオン交換膜の表面に塗工する場合に、次のような事実
があることが判明した。即ち、上記粘性混合物中の各成
分の分散安定性は必ずしも良好でなく、種々の分散安定
剤等を添加しても、塗工中に粘性混合物の組成が変化
し、イオン交換膜の全体にわたって均一な組成の塗工層
を形成することは困難で、良好な性能を有するガス拡散
電極を製造することは必ずしも容易ではないということ
である。
According to the study of the present inventors, the above catalyst and fluorine-containing ion exchange resin, which are components of a gas diffusion electrode of a solid polymer electrolyte fuel cell, are dispersed or dissolved in a solvent. It has been found that the following facts exist when a viscous mixture is prepared and applied to the surface of an ion exchange membrane. That is, the dispersion stability of each component in the viscous mixture is not always good, and even when various dispersion stabilizers and the like are added, the composition of the viscous mixture changes during coating and is uniform over the entire ion exchange membrane. It is difficult to form a coating layer having a suitable composition, and it is not always easy to produce a gas diffusion electrode having good performance.

【0009】しかしながら、上記粘性混合物の代わり
に、好ましくは、該混合物の均一状態を保持しつつ特定
の平均粒径を有する粒子に造粒せしめ、該粒子の形態に
て、イオン交換膜の表面上に適用する場合には、上記粘
性混合物の分散安定性を気にすることなく塗工工程が容
易になり、電極を形成する際の作業性が改善される。そ
れだけでなく、上記した分散安定剤や粘度調節剤等の第
3物質を使用する必要がなくなるので、得られるガス拡
散電極、及びこれを使用した燃料電池の特性も著しく向
上することが見出された。かくして、本発明は、イオン
交換膜に接して配置される、固体高分子電解質型燃料電
池用のガス拡散電極の製造方法において、触媒及び含フ
ッ素イオン交換樹脂を溶媒中に分散又は溶解した液状混
合物から溶媒を除去して平均粒径が0.1〜100μm
の粒子に造粒し、該粒子をイオン交換膜の表面に散布
し、加熱圧着することによりガス拡散電極を製造するこ
とを特徴とする固体高分子電解質型燃料電池用のガス拡
散電極の製造方法にある。
However, instead of the viscous mixture, preferably, the mixture is granulated into particles having a specific average particle size while maintaining a uniform state of the mixture, and the mixture is formed on the surface of the ion exchange membrane in the form of the particles. In the case of applying the method, the coating process is facilitated without concern for the dispersion stability of the viscous mixture, and the workability in forming the electrode is improved. In addition, since it is not necessary to use the third substance such as the above-mentioned dispersion stabilizer and viscosity modifier, it has been found that the characteristics of the obtained gas diffusion electrode and the fuel cell using the same are significantly improved. Was. Thus, the present invention provides a method for producing a gas diffusion electrode for a solid polymer electrolyte fuel cell, which is disposed in contact with an ion exchange membrane, wherein the catalyst and the fluorinated ion exchange resin are dispersed or dissolved in a solvent. From which the average particle size is 0.1 to 100 μm
A method for producing a gas diffusion electrode for a solid polymer electrolyte fuel cell, comprising producing a gas diffusion electrode by granulating the particles into particles, spraying the particles on the surface of an ion exchange membrane, and heat-pressing the particles. It is in.

【0010】[0010]

【発明の実施の形態】以下に本発明について更に説明す
る。本発明において製造されるガス拡散電極において
は、触媒及び含フッ素イオン交換樹脂が必須の成分とさ
れる。触媒としては、燃料極及び空気極で電極反応を促
進する物質が使用されるが、好ましくは、白金などの白
金族金属又はその合金が挙げられる。触媒は微粒子とし
てそのまま使用してもよいが、比表面積が、好ましく
は、200m/g 以上の活性炭、カーボンブラック
などを担体として使用し、金属の担持量が、触媒全質量
の好ましくは、10〜70%の担持触媒を使用すること
もできる。
BEST MODE FOR CARRYING OUT THE INVENTION The present invention will be further described below. In the gas diffusion electrode manufactured in the present invention, a catalyst and a fluorine-containing ion exchange resin are essential components. As the catalyst, a substance that promotes an electrode reaction at the fuel electrode and the air electrode is used, and preferably, a platinum group metal such as platinum or an alloy thereof is used. The catalyst may be used as it is as fine particles, but activated carbon or carbon black having a specific surface area of preferably 200 m 2 / g or more is used as a carrier, and the amount of supported metal is preferably 10% of the total mass of the catalyst. Up to 70% of the supported catalyst can be used.

【0011】ガス拡散電極に含まれる含フッ素イオン交
換樹脂は、導電性及びガスの透過性の点から、イオン交
換容量として、0.5〜2.0ミリ当量/グラム乾燥樹
脂を有するものが好ましく、特には、0.8〜1.5ミ
リ当量/グラム乾燥樹脂を有するものが適切である。ま
た、含フッ素イオン交換樹脂は、テトラフルオロエチレ
ンに基づく重合単位と、スルホン酸基又はカルボン酸基
を有するパーフルオロビニルエーテルに基づく重合単位
とを含む共重合体からなるものが好ましい。上記スルホ
ン酸基又はカルボン酸基を有するパーフルオロビニルエ
ーテルとしては、CF=CF(OCFCFX)
−(CF−Mからなるものが好ましい。ここ
で、mは0〜3の整数、nは1〜12の整数、p は0
又は1であり、XはF又はCFであり、Mはスルホン
酸基、カルボン酸基、又はその前駆体基である。それら
の好ましい具体例として以下の化合物が挙げられる。下
記の式中、q、r、sは1〜8の整数、tは1〜3の整
数である。 CF=CFO(CFSOH CF=CFOCFCF(CF)O(CF
H CF=CF(OCFCF(CF))O(C
SO
The fluorinated ion exchange resin contained in the gas diffusion electrode preferably has an ion exchange capacity of 0.5 to 2.0 meq / g dry resin from the viewpoint of conductivity and gas permeability. Particularly suitable are those having 0.8 to 1.5 meq / g dry resin. Further, the fluorinated ion exchange resin is preferably made of a copolymer containing a polymerization unit based on tetrafluoroethylene and a polymerization unit based on perfluorovinyl ether having a sulfonic acid group or a carboxylic acid group. The perfluorovinyl ether having the sulfonic acid group or a carboxylic acid group, CF 2 = CF (OCF 2 CFX) m -
O p - (CF 2) made of n -M is preferred. Here, m is an integer of 0 to 3, n is an integer of 1 to 12, and p is 0
Or 1, X is F or CF 3 , and M is a sulfonic acid group, a carboxylic acid group, or a precursor group thereof. Preferred examples thereof include the following compounds. In the following formula, q, r, and s are integers of 1 to 8, and t is an integer of 1 to 3. CF 2 = CFO (CF 2) q SO 3 H CF 2 = CFOCF 2 CF (CF 3) O (CF 2) r S
O 3 H CF 2 = CF ( OCF 2 CF (CF 3)) t O (C
F 2 ) s SO 3 H

【0012】ガス拡散電極に含まれる触媒と含フッ素イ
オン交換樹脂とは、質量比で触媒:含フッ素イオン交換
樹脂=0.4:0.6〜0.95:0.05であること
が電極の導電性と撥水性の点から好ましい。特には0.
6:0.4〜0.8:0.2が適切である。なお、ここ
でいう触媒の質量は、担持触媒の場合には担体の質量を
含むものである。
The catalyst and the fluorinated ion exchange resin contained in the gas diffusion electrode may have a mass ratio of catalyst: fluorinated ion exchange resin = 0.4: 0.6 to 0.95: 0.05. Is preferred in terms of conductivity and water repellency. Especially 0.
6: 0.4 to 0.8: 0.2 is appropriate. The mass of the catalyst used here includes the mass of the carrier in the case of a supported catalyst.

【0013】本発明におけるガス拡散電極の形成におい
ては、上記した成分のほかに必要に応じて他の物質が加
えられる。例えば空気極には、生成する水による閉塞を
さらに防止するため撥水剤が加えられる。撥水剤として
は、好ましくは、テトラフルオロエチレンとヘキサフル
オロプロピレンとの共重合体、テトラフルオロエチレン
とパーフルオロ(アルキルビニルエーテル)との共重合
体、ポリテトラフルオロエチレンなどが挙げられる。
In the formation of the gas diffusion electrode in the present invention, other substances are added as required in addition to the above-mentioned components. For example, a water repellent is added to the air electrode to further prevent clogging by generated water. Preferred examples of the water repellent include a copolymer of tetrafluoroethylene and hexafluoropropylene, a copolymer of tetrafluoroethylene and perfluoro (alkyl vinyl ether), and polytetrafluoroethylene.

【0014】上記ガス拡散電極を形成する、触媒及び含
フッ素イオン交換樹脂等は、次いで、溶媒中に分散又は
溶解した液状混合物が作製される。ここで使用される溶
媒としては、上記電極成分を良好に分散、溶解した均一
な組成を有する液状混合物を形成し、また、粉末化の段
階で速やかに逸散、除去できる性質を有するものの使用
が好ましい。例えば、炭素数1〜6のアルコール類、炭
素数2〜6のエーテル類、炭素数2〜6のジアルキルス
ルホキシド、水、含フッ素炭化水素などの一種又は二種
以上の溶媒が使用される。溶媒を二種以上併用する場合
は、その一種として水を使用し、水性溶媒とするのが好
ましい。
The catalyst, the fluorinated ion exchange resin, and the like forming the gas diffusion electrode are then dispersed or dissolved in a solvent to form a liquid mixture. As the solvent used here, the above-mentioned electrode components are dispersed well, forming a liquid mixture having a uniform composition in which the components are dissolved, and also having a property that can be quickly dissipated and removed at the stage of powdering. preferable. For example, one or more solvents such as alcohols having 1 to 6 carbon atoms, ethers having 2 to 6 carbon atoms, dialkyl sulfoxide having 2 to 6 carbon atoms, water, and fluorine-containing hydrocarbons are used. When two or more solvents are used in combination, it is preferable to use water as one of them, and to use an aqueous solvent.

【0015】上記溶媒は、沸点が好ましくは、40〜1
60℃、特には、60〜120℃であるものが適切であ
る。これらに該当する好ましい具体例としては、メタノ
ール、エタノール、n−プロパノール、2−プロパノー
ル、1−ブタノール、2−ブタノール、1,4−ジオキ
サン、n−プロピルエーテル、ジメチルスルホキシド、
1,1−ジクロロ−2,2,3,3,3−ペンタフルオ
ロプロパン、1,3−ジクロロ−1,2,2,3,3−
ペンタフルオロプロパン、2,2,3,3,3−ペンタ
フルオロプロパノールなどが挙げられる。
The solvent preferably has a boiling point of 40 to 1
Those having a temperature of 60 ° C, particularly 60 to 120 ° C, are suitable. Preferred specific examples corresponding to these include methanol, ethanol, n-propanol, 2-propanol, 1-butanol, 2-butanol, 1,4-dioxane, n-propyl ether, dimethyl sulfoxide,
1,1-dichloro-2,2,3,3,3-pentafluoropropane, 1,3-dichloro-1,2,2,3,3-
Pentafluoropropane, 2,2,3,3,3-pentafluoropropanol and the like can be mentioned.

【0016】本発明においては、次いで、上記液状混合
物は、好ましくは、含まれる電極成分が良く分散された
状態にて溶媒を除去することにより造粒される。造粒す
る方法としては、各種の手段が採用でき、例えば、溶媒
をエバポレータなどで蒸発させた後、適宜のミルで粉末
化してもよいが、造粒の手段として、スプレードライ法
を採用した場合には、電極触媒の活性が保持され、造粒
手段としての容易性と相俟って極めて良好であり好まし
い。
In the present invention, the liquid mixture is preferably granulated by removing the solvent in a state where the contained electrode components are well dispersed. As a method of granulation, various means can be adopted.For example, after evaporating a solvent by an evaporator or the like, powdering may be performed by an appropriate mill. In addition, the activity of the electrode catalyst is maintained, and it is very good and preferable in combination with the easiness as a granulation means.

【0017】上記スプレードライ法においては、気化温
度は50〜100℃が好ましく、ガス流速は0.3〜
1.0cm/分が好ましく、液の供給量は1〜20c
/分が好ましく、これらを調節することにより、上
記造粒される粒子径が制御される。また、造粒される液
状混合物においては、触媒及び一部の含フッ素イオン交
換樹脂は溶媒に溶解せず、固形物として液状混合物中に
存在するので、液状混合物の粘度が増大する。従って、
固形分濃度を制御して粘度を調節するのが好ましい。こ
の場合液状混合物中の固形分濃度は、0.1〜20質量
%、特には0.3〜10質量%であるのが好ましい。
In the above-mentioned spray drying method, the vaporization temperature is preferably from 50 to 100 ° C., and the gas flow rate is from 0.3 to 100 ° C.
1.0 cm 3 / min is preferable, and the supply amount of the liquid is 1 to 20 c
m 3 / min is preferable, and by adjusting these, the particle size of the granulated particles is controlled. In the liquid mixture to be granulated, the catalyst and a part of the fluorinated ion exchange resin are not dissolved in the solvent but exist as a solid in the liquid mixture, so that the viscosity of the liquid mixture increases. Therefore,
It is preferable to control the viscosity by controlling the solid concentration. In this case, the solid content concentration in the liquid mixture is preferably 0.1 to 20% by mass, particularly preferably 0.3 to 10% by mass.

【0018】液状混合物の作製は、触媒及び含フッ素イ
オン交換樹脂等を単純に溶媒に溶解、分散させてもよ
く、また含フッ素イオン交換樹脂を溶媒に溶解又は分散
したものに、触媒等を分散させてもよい。特に、触媒を
溶媒に分散したものに、含フッ素イオン交換樹脂等を溶
解させる場合に得られる電極特性が向上するので好まし
い。これは、液状混合物に触媒が良好に分散することに
基づくものと思われる。
In preparing the liquid mixture, the catalyst and the fluorinated ion exchange resin may be simply dissolved and dispersed in a solvent, or the catalyst and the like may be dispersed in a solution in which the fluorinated ion exchange resin is dissolved or dispersed. May be. In particular, it is preferable because the electrode characteristics obtained when a fluorine-containing ion exchange resin or the like is dissolved in a catalyst dispersed in a solvent are improved. This appears to be due to the good dispersion of the catalyst in the liquid mixture.

【0019】更に、上記液状混合物には、本発明の目的
を阻害しない限り、必要に応じて他の物質を添加するこ
とができる。例えば、増粘剤又は希釈剤、更には増孔剤
などが添加できる。増粘剤としては、セルロース、セロ
ソルブ系のものが使用でき、希釈剤としては、水、炭化
水素.含フッ素炭化水素などが使用できる。増孔剤とし
ては、シリカ、アルミナなどが使用できる。
Further, other substances can be added to the above-mentioned liquid mixture, if necessary, as long as the object of the present invention is not hindered. For example, a thickener or a diluent, and further, a pore-forming agent and the like can be added. Cellulose and cellosolve-based thickeners can be used, and water, hydrocarbon and the like can be used as diluents. Fluorine-containing hydrocarbons and the like can be used. Silica, alumina, and the like can be used as the pore-forming agent.

【0020】上記液状混合物から造粒して得られる粒子
は、平均粒径が0.1〜100μm、好ましくは、0.
5〜40μmを有するのが適切である。上記範囲よりも
小さい場合には、電極形成の際の粒子の散布がしにくく
なり、また得られる電極層のガス透過性が悪化する。一
方、大きい場合には、粒子を散布する際の流動性が悪化
し、いずれも不適当である。また、粒子の嵩密度として
は、好ましくは、0.1〜0.9g/cm,特には、
0.2〜0.7g/cmであるのが適切である。かか
る嵩蜜度を有する場合には、粒子から電極を形成する際
の流動性の点から扱いやすく、また得られる電極層のガ
ス透過性も良好である。
The particles obtained by granulating the above liquid mixture have an average particle diameter of 0.1 to 100 μm, preferably 0.1 to 100 μm.
Suitably, it has a thickness of 5 to 40 μm. If it is smaller than the above range, it becomes difficult to disperse particles during electrode formation, and the gas permeability of the obtained electrode layer deteriorates. On the other hand, when the particle size is large, the fluidity at the time of dispersing the particles deteriorates, and all are unsuitable. The bulk density of the particles is preferably 0.1 to 0.9 g / cm 3 ,
It is appropriate to a 0.2~0.7g / cm 3. When it has such a bulkiness, it is easy to handle from the viewpoint of fluidity when forming an electrode from particles, and the gas permeability of the obtained electrode layer is also good.

【0021】得られた粉末から固体高分子電解質たるイ
オン交換膜の表面にガス拡散電極を形成する場合、粒子
をイオン交換膜の表面に直接散布して電極を形成する
か、又はカーボンペーパーなどの別のシート状基材の表
面に散布し電極を形成した後これをイオン交換膜に転写
又は接合することによって行ってもよい。イオン交換膜
又はシート状基材への粒子の散布は、スプレーコート、
ダイコートなどの方法を適用できる。上記粉末を散布さ
れたイオン交換膜は、次いで、好ましくは、温度130
〜200℃、特には150〜 180℃、圧力 0.5
〜10M Pa、特には、1.0〜6.0M Paにて加熱圧着
される。
When a gas diffusion electrode is formed on the surface of an ion exchange membrane, which is a solid polymer electrolyte, from the obtained powder, particles are directly sprayed on the surface of the ion exchange membrane to form an electrode, or a carbon paper or the like is used. Alternatively, the electrode may be formed by spraying on the surface of another sheet-like substrate, and then transferring or bonding the electrode to an ion exchange membrane. Spraying the particles on the ion exchange membrane or sheet-like substrate, spray coating,
A method such as die coating can be applied. The ion-exchange membrane on which the powder has been sprayed is then preferably heated to a temperature of 130
~ 200 ° C, especially 150 ~ 180 ° C, pressure 0.5
Thermocompression bonding is carried out at a pressure of 10 to 10 MPa, particularly 1.0 to 6.0 MPa.

【0022】一方、上記別のシート状基材に粒子を散布
した場合には、上記と同様に熱圧着され、電極層を形成
した後、これをイオン交換膜面に転写し又は接合され
る。この場合、ホットプレス法、接着法(特開平7−2
20741公報、特開平7−254420公報)などが
使用できる。かくして、形成される電極の厚みは、好ま
しくは、1〜50μm、特には、5〜30μmが適切で
ある。
On the other hand, when the particles are scattered on the another sheet-like base material, they are thermocompression-bonded in the same manner as described above to form an electrode layer, which is then transferred or bonded to the ion exchange membrane surface. In this case, the hot pressing method and the bonding method (Japanese Patent Laid-Open No. 7-2)
20741, JP-A-7-254420) and the like. Thus, the thickness of the formed electrode is preferably 1 to 50 μm, particularly preferably 5 to 30 μm.

【0023】本発明で、表面に電極が形成されるイオン
交換膜は、イオン交換容量として、好ましくは、0.5
〜2.0ミリ当量/グラムを有し、厚みとして、好まし
くは、10〜80μmを有する。イオン交換膜を構成す
る材料としては、上記電極の形成に使用された含フッ素
イオン交換樹脂として記載された材料から選択して使用
できる。なかでも、スルホン酸型含フッ素イオン交換樹
脂が好ましく、特には、CF2=CF2とCF2=CF−
(OCF2CFX)m−Op−(CF2n−SO3H(式
中、mは0〜3、nは1〜12、p は0又は1、Xは
F又はCF。)との共重合体からなるスルホン酸型パ
ーフルオロカーボンイオン交換樹脂が適切である。
In the present invention, the ion exchange membrane having an electrode formed on the surface preferably has an ion exchange capacity of 0.5
2.02.0 meq / gram, and preferably has a thickness of 10-80 μm. The material constituting the ion exchange membrane can be selected from the materials described as the fluorinated ion exchange resin used for forming the electrode. Among them, preferably a sulfonic acid type fluorinated ion exchange resin, in particular, CF 2 = CF 2 and CF 2 = CF-
(OCF 2 CFX) m -O p - (. Wherein, m is 0 to 3, n is 1 to 12, p is 0 or 1, X is F or CF 3) (CF 2) n -SO 3 H and A sulfonic acid type perfluorocarbon ion exchange resin comprising a copolymer of the above is suitable.

【0024】[0024]

【実施例】以下に本発明の具体的態様を実施例によって
詳しく説明するが、本発明の解釈はこれらに限定されな
いことはいうまでもない。
EXAMPLES Hereinafter, specific embodiments of the present invention will be described in detail with reference to Examples, but it is needless to say that the interpretation of the present invention is not limited to these.

【0025】[実施例1]カーボンブラック粉末に白金を
40質量%担持した触媒1.05gを、イオン交換容量
が1.1ミリ当量/g 乾燥樹脂であるCF2=CF2
CF2=CF−OCF2CF(CF3)−OCF2CF2
3Hとの共重合体からなる含フッ素イオン交換樹脂の
6.25質量%エタノール溶液7.2gと水6.75g
との混合物に良く分散させ、固形分濃度が全質量の10
%の液状混合物を得た。かかる液状混合物をスプレード
ライ法により、気化温度80℃、ガス流速0.5cm
/分及び、液供給量10cm/分の条件により造粒し
て、平均粒径30μm、嵩密度0.5g/cmを有す
る粒子を得た。
Example 1 1.05 g of a catalyst in which 40% by mass of platinum was supported on carbon black powder was used. Ion exchange capacity was 1.1 meq / g. CF 2 = CF 2 and CF 2 = CF which are dry resins -OCF 2 CF (CF 3) -OCF 2 CF 2 S
7.2 g of a 6.25 mass% ethanol solution of a fluorine-containing ion exchange resin comprising a copolymer with O 3 H and 6.75 g of water
And a solid content concentration of 10% of the total mass.
% Liquid mixture was obtained. By spray drying such a liquid mixture, vaporization temperature 80 ° C., the gas flow rate 0.5 cm 3
Per minute and a liquid supply amount of 10 cm 3 / min, to obtain particles having an average particle diameter of 30 μm and a bulk density of 0.5 g / cm 3 .

【0026】一方、イオン交換膜として、フレミオンS
膜(スルホン酸型パーフルオロカーボンイオン交換膜の
旭硝子社商品名、イオン交換容量1.0ミリ当量/g
乾燥樹脂、膜厚50μm)を使用した。該イオン交換膜
を分速5メートルにて水平方向に移動させ、その両面に
対して、上記で得られた粒子を、いずれも白金含有量が
0.5mg/cm2となるように散布した。次いで、加
圧ローラーにより、160℃、5.0M Paにて熱圧着し
て、厚み15μmの多孔質の空気極側及び水素極側のガ
ス拡散電極を表面に有するイオン交換膜・電極接合体
(電極面積10cm2)を作製した。
On the other hand, Flemion S is used as an ion exchange membrane.
Membrane (Sulfonic acid type perfluorocarbon ion exchange membrane, trade name of Asahi Glass Co., Ltd., ion exchange capacity 1.0 meq / g
Dry resin, film thickness 50 μm) was used. The ion exchange membrane was moved in the horizontal direction at a speed of 5 meters per minute, and the particles obtained above were sprayed on both surfaces thereof so that the platinum content was 0.5 mg / cm 2 . Then, it is thermocompression-bonded with a pressure roller at 160 ° C. and 5.0 M Pa to form an ion-exchange membrane-electrode assembly having a 15 μm-thick porous air electrode side and hydrogen electrode side gas diffusion electrodes on its surface ( The electrode area was 10 cm 2 ).

【0027】かかるイオン交換膜・電極接合体を使用し
て燃料電池セルを組み立て、該燃料電池セルを、0.2
MPa、水素/空気系、セル温度70℃において0.6
0Vの定電圧駆動で連続運転し、出力電流密度(A/c
)の経時的な変化を測定したところ、表1に示す結
果が得られた。
A fuel cell is assembled using the ion exchange membrane / electrode assembly, and the fuel cell is
MPa, hydrogen / air system, 0.6 at cell temperature 70 ° C
Continuous operation with 0V constant voltage drive, output current density (A / c
When the change over time of m 2 ) was measured, the results shown in Table 1 were obtained.

【0028】[実施例2]実施例1と同様にして作製した
固形分濃度10質量%の液状混合物の溶媒をエバポレー
タで飛ばし、残った固形物をジルコニアビーズ(径1m
m)を用いるボールミルにおいて、3時間かけて微粒化
した。これにより、平均粒径70mm、嵩密度0.8g
/cmの粒子を得た。
Example 2 The solvent of the liquid mixture having a solid concentration of 10% by mass prepared in the same manner as in Example 1 was blown off by an evaporator, and the remaining solid was zirconia beads (diameter: 1 m).
In the ball mill using m), the particles were atomized over 3 hours. Thereby, the average particle size is 70 mm, and the bulk density is 0.8 g.
/ Cm 3 particles were obtained.

【0029】この粒子を用いて実施例1と同様にしてイ
オン交換膜・電極接合体を作製し、これを使用して、実
施例1と同様にして燃料電池セルを組み立てその性能を
測定したところ、表1に示す結果が得られた。
Using these particles, an ion-exchange membrane / electrode assembly was prepared in the same manner as in Example 1. Using this, a fuel cell was assembled and the performance was measured in the same manner as in Example 1. The results shown in Table 1 were obtained.

【0030】[比較例1]実施例1と同様にして作製した
固形分濃度10質量%の液状混合物を粉末化することな
く、そのままバーコーターにより、イオン交換膜の両面
に塗布し、白金含有量及び厚みも実施例1と全く同じに
なるように実施することにより、イオン交換膜・電極接
合体を作製した。これを用いて、実施例1と同様にして
燃料電池セルを組み立て、その性能を測定したところ、
表1に示す結果が得られた。
Comparative Example 1 A liquid mixture having a solid content of 10% by mass prepared in the same manner as in Example 1 was applied to both surfaces of an ion exchange membrane by a bar coater without powdering, and the platinum content was determined. In addition, the ion exchange membrane / electrode assembly was produced by carrying out the process so that the thickness was exactly the same as in Example 1. Using this, a fuel cell was assembled in the same manner as in Example 1, and the performance was measured.
The results shown in Table 1 were obtained.

【0031】[0031]

【表1】 [Table 1]

【0032】[0032]

【発明の効果】本発明の製造方法によれば、イオン交換
膜の表面にガス拡散電極が簡便かつ良好に形成でき、且
つ得られたガス拡散電極は、良好な多孔性、導電性、撥
水性、更には耐久性を有し、かかるガス拡散電極を用い
た固体高分子電解質型燃料電池は出力電流密度が高いな
どの優れた特性を有し、且つ経時劣化が小さい。
According to the production method of the present invention, a gas diffusion electrode can be conveniently and easily formed on the surface of an ion exchange membrane, and the obtained gas diffusion electrode has good porosity, conductivity, and water repellency. Further, the solid polymer electrolyte fuel cell using such a gas diffusion electrode has excellent characteristics such as high output current density, and has little deterioration over time.

Claims (5)

【特許請求の範囲】[Claims] 【請求項1】イオン交換膜に接して配置される、固体高
分子電解質型燃料電池用のガス拡散電極の製造方法にお
いて、触媒及び含フッ素イオン交換樹脂を溶媒中に分散
又は溶解した液状混合物から溶媒を除去して平均粒径が
0.1〜100μmの粒子に造粒し、該粒子をイオン交
換膜表面に散布し、加熱圧着することによりガス拡散電
極を製造することを特徴とする固体高分子電解質型燃料
電池用のガス拡散電極の製造方法。
1. A method for producing a gas diffusion electrode for a solid polymer electrolyte fuel cell, which is disposed in contact with an ion exchange membrane, wherein a catalyst and a fluorine-containing ion exchange resin are dispersed or dissolved in a solvent from a liquid mixture. Removing the solvent, granulating the particles into particles having an average particle diameter of 0.1 to 100 μm, spraying the particles on the surface of the ion exchange membrane, and heat-pressing to produce a gas diffusion electrode; A method for producing a gas diffusion electrode for a molecular electrolyte fuel cell.
【請求項2】前記液状混合物の固形分濃度が0.1〜2
0質量%であり、これをスプレードライ法により造粒す
る請求項1に記載のガス拡散電極の製造方法。
2. The liquid mixture according to claim 1, wherein said liquid mixture has a solid content of 0.1 to 2%.
The method for producing a gas diffusion electrode according to claim 1, wherein the amount is 0 mass%, and the granulation is performed by a spray drying method.
【請求項3】前記加熱圧着を、温度100〜250℃、
圧力0.5〜10M Paにてカレンダーロールにて行う
請求項1又は2に記載のガス拡散電極の製造方法。
3. The thermocompression bonding is performed at a temperature of 100 to 250 ° C.
The method for producing a gas diffusion electrode according to claim 1, wherein the method is performed using a calender roll at a pressure of 0.5 to 10 MPa.
【請求項4】前記溶媒は、炭素数1〜6のアルコール
類、炭素数2〜6のエーテル類、炭素数2〜6のジアル
キルスルホキシド及び水から選ばれる少なくとも一種で
ある請求項1、2又は3に記載のガス拡散電極の製造方
法。
4. The solvent according to claim 1, wherein the solvent is at least one selected from alcohols having 1 to 6 carbon atoms, ethers having 2 to 6 carbon atoms, dialkyl sulfoxide having 2 to 6 carbon atoms and water. 3. The method for producing a gas diffusion electrode according to item 3.
【請求項5】請求項1〜4のいずれかに記載の製造方法
で得られたガス拡散電極をイオン交換膜に接して配置す
ることを特徴とする固体高分子電解質型燃料電池の製造
方法。
5. A method for producing a solid polymer electrolyte fuel cell, wherein the gas diffusion electrode obtained by the production method according to claim 1 is arranged in contact with an ion exchange membrane.
JP37397999A 1999-12-28 1999-12-28 Method of manufacturing gas diffusion electrode for solid polymeric electrolyte fuel cell Withdrawn JP2001185163A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP37397999A JP2001185163A (en) 1999-12-28 1999-12-28 Method of manufacturing gas diffusion electrode for solid polymeric electrolyte fuel cell

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP37397999A JP2001185163A (en) 1999-12-28 1999-12-28 Method of manufacturing gas diffusion electrode for solid polymeric electrolyte fuel cell

Publications (1)

Publication Number Publication Date
JP2001185163A true JP2001185163A (en) 2001-07-06

Family

ID=18503078

Family Applications (1)

Application Number Title Priority Date Filing Date
JP37397999A Withdrawn JP2001185163A (en) 1999-12-28 1999-12-28 Method of manufacturing gas diffusion electrode for solid polymeric electrolyte fuel cell

Country Status (1)

Country Link
JP (1) JP2001185163A (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007149503A (en) * 2005-11-28 2007-06-14 Toyota Central Res & Dev Lab Inc Membrane-electrode assembly and its manufacturing method
WO2008084713A1 (en) * 2006-12-27 2008-07-17 Toyota Jidosha Kabushiki Kaisha Composite powder for fuel cell, method for manufacturing the composite powder, electrode for fuel cell, and method for manufacturing membrane electroe structure
JP2008181845A (en) * 2006-12-27 2008-08-07 Toyota Motor Corp Composite powder for fuel cell and its manufacturing method, electrode for fuel cell, and manufacturing method for membrane electrode structure
WO2009075357A1 (en) * 2007-12-13 2009-06-18 Asahi Glass Company, Limited Electrode for solid polymer fuel cell, membrane electrode assembly, and process for producing catalyst layer
US8147745B2 (en) 2008-10-17 2012-04-03 Asahi Glass Company, Limited Process for producing fiber and method for producing catalyst layer
US20130071556A1 (en) * 2006-08-31 2013-03-21 Toyota Jidosha Kabushiki Kaisha. Solid Polymer Fuel Cell-Purpose Electrolyte Membrane, Production Method Therefor, and Membrane-Electrode Assembly

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007149503A (en) * 2005-11-28 2007-06-14 Toyota Central Res & Dev Lab Inc Membrane-electrode assembly and its manufacturing method
US20130071556A1 (en) * 2006-08-31 2013-03-21 Toyota Jidosha Kabushiki Kaisha. Solid Polymer Fuel Cell-Purpose Electrolyte Membrane, Production Method Therefor, and Membrane-Electrode Assembly
WO2008084713A1 (en) * 2006-12-27 2008-07-17 Toyota Jidosha Kabushiki Kaisha Composite powder for fuel cell, method for manufacturing the composite powder, electrode for fuel cell, and method for manufacturing membrane electroe structure
JP2008181845A (en) * 2006-12-27 2008-08-07 Toyota Motor Corp Composite powder for fuel cell and its manufacturing method, electrode for fuel cell, and manufacturing method for membrane electrode structure
WO2009075357A1 (en) * 2007-12-13 2009-06-18 Asahi Glass Company, Limited Electrode for solid polymer fuel cell, membrane electrode assembly, and process for producing catalyst layer
JPWO2009075357A1 (en) * 2007-12-13 2011-04-28 旭硝子株式会社 Method for producing electrode for polymer electrolyte fuel cell, membrane electrode assembly, and catalyst layer
US8147745B2 (en) 2008-10-17 2012-04-03 Asahi Glass Company, Limited Process for producing fiber and method for producing catalyst layer

Similar Documents

Publication Publication Date Title
JP3584612B2 (en) Polymer electrolyte fuel cell and method for manufacturing electrode thereof
JP5220028B2 (en) Process for producing highly fluorinated polymer dispersions
JP5220027B2 (en) Method for producing redispersible particles of highly fluorinated polymers
JP2001185163A (en) Method of manufacturing gas diffusion electrode for solid polymeric electrolyte fuel cell
KR20020091827A (en) Ion exchange polymer dispersion and process for its production
EP1154505B1 (en) Solid polymer type fuel cell and production method thereof
JP2001202970A (en) Gas diffusion electrode for solid polymer electrolyte fuel cell and its manufacturing method
JP2000188111A (en) Solid high polymer electrolyte fuel cell
JP3588889B2 (en) Solid polymer electrolyte fuel cell
JP5614891B2 (en) Membrane electrode composite and solid polymer electrolyte fuel cell
JP2002008667A (en) Electrode for solid polymer type fuel cell, and its manufacturing method
JP2001160400A (en) Manufacturing method of gas diffusion electrode for solid elctrolyte fuel cell
JP2001118581A (en) Method for manufacturing gas-spreading electrode for solid polymer electrolyte type fuel cell
JP3899928B2 (en) Method for producing polymer electrolyte fuel cell and method for producing gas diffusion electrode therefor
JP2001126739A (en) Mehtod of preparing gas diffusion electrode for solid polymer electrolytic fuel cell
JP3966064B2 (en) Method for producing polymer electrolyte fuel cell and method for producing gas diffusion electrode therefor
JPH11339824A (en) Manufacture of electrode-membrane joining body for solid polymer electrolyte fuel cell
JP4529276B2 (en) Method for producing polymer electrolyte fuel cell
JP2003045440A (en) Manufacturing method of gas diffusion electrode for solid polymer fuel cell and manufacturing method of solid polymer fuel cell
JP2003109612A (en) Method of manufacturing gas diffusion electrode for solid high molecular fuel cell
JP2001351637A (en) Solid polymer fuel cell and its manufacturing method
JP2000188110A (en) Solid high polymer electrolyte fuel cell and its gas diffusion electrode
WO2001078173A1 (en) Method for manufacturing solid polymer type fuel cell and method for manufacturing gas diffusion electrode therefore
JP2001023647A (en) Solid polymer type fuel cell and electrode thereof
JP6158377B2 (en) Solid polymer electrolyte fuel cell

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20070306