JP3966064B2 - Method for producing polymer electrolyte fuel cell and method for producing gas diffusion electrode therefor - Google Patents

Method for producing polymer electrolyte fuel cell and method for producing gas diffusion electrode therefor Download PDF

Info

Publication number
JP3966064B2
JP3966064B2 JP2002124436A JP2002124436A JP3966064B2 JP 3966064 B2 JP3966064 B2 JP 3966064B2 JP 2002124436 A JP2002124436 A JP 2002124436A JP 2002124436 A JP2002124436 A JP 2002124436A JP 3966064 B2 JP3966064 B2 JP 3966064B2
Authority
JP
Japan
Prior art keywords
ion exchange
dispersion
gas diffusion
catalyst
diffusion electrode
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2002124436A
Other languages
Japanese (ja)
Other versions
JP2003317727A (en
Inventor
敏弘 田沼
伸二 木下
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
AGC Inc
Original Assignee
Asahi Glass Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Asahi Glass Co Ltd filed Critical Asahi Glass Co Ltd
Priority to JP2002124436A priority Critical patent/JP3966064B2/en
Publication of JP2003317727A publication Critical patent/JP2003317727A/en
Application granted granted Critical
Publication of JP3966064B2 publication Critical patent/JP3966064B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Description

【0001】
【発明の属する技術分野】
本発明は、固体高分子型燃料電池用のガス拡散電極の製造方法に関する。
【0002】
【従来の技術】
水素と酸素を使用する燃料電池は、その反応生成物が原理的に水のみであり環境への悪影響がほとんどない発電システムとして注目されている。なかでも、近年、プロトン導電性のイオン交換膜を電解質と使用する固体高分子型燃料電池は、作動温度が低く、出力密度が高く、かつ小型化が可能なため、車載用電源などの用途に有望視されている。
【0003】
固体高分子型燃料電池は、上述のように作動温度が低い(50〜120℃)ことが特徴であるが、一方では、そのために排熱が補機動力などに有効利用しがたい難点がある。これを補う意味でも固体高分子型燃料電池には、水素及び酸素の利用率の高い運転条件でも高いエネルギー効率及び高い出力密度が要求されている。
【0004】
固体高分子型燃料電池が上記要求を満たすためには、電池を構成する要素のうち特にガス拡散電極及び該電極をその両表面に形成したイオン交換膜と電極との接合体(膜電極接合体)が重要である。従来、ガス拡散電極は、電極反応を促進する触媒粉末と、導電性を高めかつ水蒸気の凝縮による多孔体の閉塞(フラッディング)を防止するための含フッ素イオン交換樹脂とを、エタノールなどのアルコール類の溶媒に溶解又は分散して含む粘性混合物を、イオン交換膜の表面に直接塗布するか、又は別のシート状基材に塗布して得られる層をイオン交換膜の表面に転写若しくは張り付けることにより形成されている。
【0005】
【発明が解決しようとする課題】
しかし、上記の方法でガス拡散電極を形成する場合、上記粘性混合物は、イオン交換膜又はシート状基材への塗工性や分散安定性が必ずしも良好でなく、また、形成されたガス拡散電極は、多孔性、導電性、撥水性、さらには耐久性について必ずしも満足されるものではなかった。
【0006】
そこで本発明は、固体高分子型燃料電池用のガス拡散電極の製造方法における従来技術の問題点を解消し、イオン交換膜又はシート状基材への塗工性、分散安定性が良好な電極形成用塗工液を使用することにより、良好な多孔性、導電性、撥水性、さらには耐久性を有する固体高分子型燃料電池用のガス拡散電極の製造方法を提供することを目的とする。
【0007】
【課題を解決するための手段】
本発明は、イオン交換膜に隣接して配置され、金属がカーボンに担持された触媒と含フッ素イオン交換樹脂とを含む固体高分子型燃料電池用ガス拡散電極の製造方法において、液体中で、前記触媒と前記含フッ素イオン交換樹脂とを、前記含フッ素イオン交換樹脂の質量Wと前記触媒中のカーボンの質量Wとの比(W/W)が0.01以上0.05未満となるように混合し、分散した触媒粒子の粒径分布において1.0μm以下の粒子の割合が全触媒粒子に対して20体積%以上となるように分散させて分散液Aを調製し、さらに前記含フッ素イオン交換樹脂を前記分散液Aに添加して、得られる分散液Bにおける前記含フッ素イオン交換樹脂の質量Wと前記触媒中のカーボンの質量Wとの比(W/W)が0.5〜1.7となるようにした後、分散液Bを用いて塗工することを特徴とする固体高分子型燃料電池用ガス拡散電極の製造方法を提供する。
【0008】
また、本発明は上記方法で得られるガス拡散電極をイオン交換膜に隣接して配置することを特徴とする固体高分子型燃料電池の製造方法を提供する。
【0009】
本発明者は検討の結果、固体高分子型燃料電池のガス拡散電極を、白金等の金属がカーボンに担持された担持触媒と含フッ素イオン交換樹脂とを含む塗工液(以下、電極作製用塗工液という)を用いて作製する場合、当該塗工液の調製法により塗工液の塗工性及び得られるガス拡散電極を用いた固体高分子型燃料電池の性能が異なることを見出した。そして、電極作製用塗工液の製造において、少量の含フッ素イオン交換樹脂の存在下で触媒を分散媒に分散させ、得られた分散液にさらに含フッ素イオン交換樹脂を添加することにより、塗工性及び得られる燃料電池の出力特性に優れる電極作製用塗工液が得られることを見出した。
【0010】
本発明ではまず液体中で含フッ素イオン交換樹脂と担持触媒とを混合し、さらに充分に触媒を分散させることにより分散液Aを得る。ここで液体とは触媒の分散媒となる液体である。このとき分散液Aは、分散した触媒粒子の粒径分布として1.0μm以下の触媒粒子の割合が全触媒粒子に対して20体積%以上となるように分散させることが好ましい。ここで粒径分布は、レーザー回折・散乱法により測定し、例えばマイクロトラック社製粒度分布装置MT3000を用いて測定する。分散液Aを測定して得られる粒径分布が、分散液A中の触媒粒子の粒径分布である。
【0011】
分散液Aの粒径分布を上記の範囲とするために、触媒を分散媒と混合した後、超音波分散機や、ビーズミル、ロールミル、ホモジナイザー等の分散機を用いて分散させることが好ましい。すなわち、超音波分散機を用いるか高せん断力を付与することにより分散させることが好ましい。これらの分散機を用いて分散液Aを上述の粒径分布とすると、電極特性に対して悪影響を与えることなく電極を形成する際の塗布性がきわめて良好となった電極形成用塗工液を作製できる。
【0012】
分散液Aにおいて、触媒粒子の粒径分布として1.0μm以下の粒子の割合が20体積%未満である場合には、例えばダイコータ法によって基材上に塗工液を塗布する場合に塗工層にひび割れができやすく塗工量を多くすることが困難になる。このような観点から上記粒径分布は、1.0μm以下の粒子の割合が30体積%以上であるとさらに好ましい。
【0013】
分散液Aを作製する際、含フッ素イオン交換樹脂は、含フッ素イオン交換樹脂の質量Wと触媒中のカーボンの質量Wとの比(W/W)が0.01以上0.05未満となるように混合する。この比が0.05以上であると、分散液A中の触媒粒子の分散が進みすぎ、最終的に得られる電極形成用塗工液(分散液B)の塗工の際に触媒層が割れやすくなる。また、W/Wが0.01未満であると、触媒の初期の分散が進みにくいため、後から含フッ素イオン交換樹脂を添加して調製する分散液B中に大きい粒径のものが残りやすくなる。その結果、分散液Bを塗工して得られる触媒層の塗工面に欠陥ができやすく、膜電極接合体の性能も低下する。分散液AにおけるW/Wは、より好ましくは0.02〜0.04である。
【0014】
本発明では、分散媒に少量の含フッ素イオン交換樹脂と担持触媒を混合し、分散させた後に、さらに含フッ素イオン交換樹脂を添加して、得られる分散液BにおけるW/Wが0.5〜1.7となるようにし、この分散液Bを電極形成用塗工液とする。ここで含フッ素イオン交換樹脂は、樹脂のまま添加することもできるが、分散液Bの分散性を考慮すると溶媒に溶解して、又は分散媒に分散させて添加することが好ましい。また、この工程で分散液B中への含フッ素イオン交換樹脂の混合は、さらにミルなどを使用して分散させる必要はなく、高せん断力を付与せずに単に混合するだけで充分である。
【0015】
また、分散液Bの調製の際、分散液B中のW/Wが0.5〜1.7となるようにしているが、W/Wはより好ましくは0.6〜1.5である。W/Wが0.5未満であると、含フッ素イオン交換樹脂の量が少なすぎて触媒と電解質である含フッ素イオン交換樹脂とガスとが接触する反応サイトの数が少なくなり電極特性が低下するおそれがある。W/Wが1.7を超えると、含フッ素イオン交換樹脂の量が多すぎるため該樹脂により電極の細孔が閉塞されガス拡散性が低下し、電極特性も低下するおそれがある。
【0016】
本発明により得られる電極形成用塗工液(分散液B)は、ずり速度100s−1における粘度が10〜1000(mPa・s)であることが好ましく、触媒粒子の粒径分布として1.0μm以下の粒子の割合が全触媒粒子に対して20体積%以上であることが好ましい。本発明の方法によれば、上記物性となるように塗工液を調製することが可能である。
【0017】
電極形成用塗工液の粘度が、ずり速度100s−1において10(mPa・s)未満であると、ダイコータ法等によって基材上に塗工液を塗布する際に液だれが起きやすく、十分な厚さの塗工層を形成しにくくなる。また、粘度が、ずり速度100s−1において1000(mPa・s)を超えると、液のハンドリング性が悪化し、またダイコータ法等による塗工の際に触媒層の塗工むら等の欠点が生じやすくなるおそれがある。塗工液の粘度は、ずり速度100s−1で50〜500(mPa・s)であるとより好ましい。なお、ここで粘度測定は、例えば東機産業社製粘度計RE550Hを用いて行うことができる。
【0018】
本発明では、触媒として白金又は白金合金等の金属をカーボンに担持した担持触媒を使用しているので、触媒粒子が凝集していると触媒粒子内部に担持されている金属と含フッ素イオン交換樹脂とは接触しにくくなると考えられる。触媒粒子が1.0μm以下の大きさであると、触媒粒子内部に担持されている金属が含フッ素イオン交換樹脂により被覆されやすくなるため燃料電池の出力が高まると思われる。
【0019】
【発明の実施の形態】
本発明により製造されるガス拡散電極は、金属をカーボンに担持した触媒及び含フッ素イオン交換樹脂を必須の成分として含む。触媒としては、アノード及びカソードで電極反応を促進する物質が使用されるが、白金などの白金族金属又はその合金をカーボンに担持したものが好ましい。カーボンとしては、比表面積が好ましくは200m/g以上の活性炭、カーボンブラックなどが好ましい。担持触媒においては、金属の担持量は担持触媒全質量に対し10〜70質量%であることが好ましい。
【0020】
ガス拡散電極に含まれる含フッ素イオン交換樹脂は、導電性及びガスの透過性の点から、イオン交換容量が0.5〜2.0ミリ当量/g乾燥樹脂であることが好ましく、特に0.8〜1.5ミリ当量/g乾燥樹脂であることが好ましい。また、含フッ素イオン樹脂は、テトラフルオロエチレンに基づく重合単位と、スルホン酸基を有するパーフルオロビニルエーテルに基づく重合単位とを含む共重合体からなるものが好ましい。上記スルホン酸基を有するパーフルオロビニルエーテルとしては、CF=CF(OCFCFX)(CFSOHで表されるものが好ましい。ここで、Xはフッ素原子又はトリフルオロメチル基であり、mは0〜3の整数、nは1〜12の整数、pは0又は1である。より好ましい具体例として以下の化合物が挙げられる。なお、下記の式中、q、rは1〜8の整数、tは1〜3の整数である。
【0021】
【化1】

Figure 0003966064
【0022】
本発明において分散液Aにおいて用いる含フッ素イオン交換樹脂と、分散液Bの調製時に添加する含フッ素イオン交換樹脂とは、同じでも異なっていてもよい。例えばイオン交換容量が異なる含フッ素イオン交換樹脂を使用してもよいし、全く組成の異なる含フッ素イオン交換樹脂を使用してもよい。また分子量が異なるものを使用してもよい。具体的にはSOF基を有する重合体(前駆体)を合成し加水分解、酸型化によってSOH基に変換した重合体を上記含フッ素イオン交換樹脂として使用する場合に、前駆体の溶融温度Tが異なるものを使用してもよい。Tは分子量の目安になる物性値であり、一般にTが高いほど分子量は大きい。
【0023】
本発明では、分散液Aを作製する際に、まず少量の含フッ素重合体の存在下で分散媒中に触媒を接触させ分散させる。上記分散媒としては、アルコール、エーテル及びジアルキルスルホキシド又は水からなる群から選ばれる1種以上が好ましい。
【0024】
アルコール、エーテル及びジアルキルスルホキシドとしては、沸点が40〜160℃、特に60〜120℃のものが好ましい。そして炭素数が1〜6のアルコール、炭素数2〜6のエーテルが好ましい。なかでも上記に該当する溶媒の好ましい具体例としては、メタノール、エタノール、n−プロパノール、2−プロパノール、1−ブタノール、2−ブタノール、1,4−ジオキサン等が挙げられる。また、ジアルキルスルホキシドとしては、ジメチルスルホキシド、ジエチルスルホキシド等が挙げられる。
【0025】
本発明のガス拡散電極の製造方法においては、電極形成用塗工液中に触媒と含フッ素イオン交換樹脂と上述の分散媒のほかに必要に応じて他の物質を加えてもよい。例えばカソードの場合には、電池の反応により水が生成するので、当該水等によるガス拡散電極の細孔の閉塞を防止するため、撥水剤を加えてもよい。撥水剤としては、例えばテトラフルオロエチレン−ヘキサフルオロプロピレン共重合体、テトラフルオロエチレン−パーフルオロ(アルキルビニルエーテル)共重合体、ポリテトラフルオロエチレン等が挙げられる。
【0026】
本発明では、上述のように分散液Aの作製時において、触媒粒子の粒径分布を1.0μm以下の粒子の割合が20体積%以上となるようにビーズミル等を用いて分散させることが好ましいが、さらに分散性を高めるために、適宜アニオン系界面活性剤やノニオン系界面活性剤からなる分散剤を添加してもよい。分散剤を使用する場合、触媒と含フッ素イオン交換樹脂と該樹脂を溶解できる溶媒とを混合した後に分散媒を添加してもよいし、また含フッ素イオン交換樹脂の溶液を上記分散媒とあらかじめ混合した後に触媒を分散させてもよい。特に、触媒を上記分散媒に分散したものに、含フッ素イオン交換樹脂を混合させると、得られる電極特性が向上するので好ましい。この場合、塗工液中に触媒がきわめて良好に分散するためと思われる。
【0027】
さらに、電極形成用塗工液には、必要に応じて他の物質を添加することができる。例えば粘度を調節するための増粘剤又は希釈剤、さらには増孔剤などが添加できる。増粘剤としては、セロソルブ系のものが使用でき、希釈剤としては、水、炭化水素、含フッ素炭化水素などが使用できる。増孔剤としては、シリカ、アルミナなどが使用できる。
【0028】
本発明において得られる電極形成用塗工液から固体高分子電解質膜の表面にガス拡散電極を形成する場合、塗工液をイオン交換膜に直接塗布して電極を形成するか、又はカーボンペーパーなどの別のシート状基材の表面に塗布し、電極を形成した後、これをイオン交換膜に転写又は張り付けることにより電極を形成できる。塗工液のイオン交換膜又はシート状基材への塗布は、ダイコータ、スクリーン印刷などの既存の方法を適用できる。上記電極をシート状基材に形成しこれをイオン交換膜に転写し又は張り付ける場合、ホットプレス法、接着法(特開平7−220741、特開平7−254420)等によりイオン交換膜と電極を接合し膜電極接合体を作製することが好ましい。このようにして形成される電極(塗工層)の厚さは、ガス拡散性、出力等の観点から1〜50μm、特に5〜30μmが好ましい。
【0029】
本発明におけるガス拡散電極は、電極形成用塗工液を用いて形成される塗工層のみからなってもよいが、例えばカーボンペーパー等の導電性多孔質体を塗工層に隣接して配置し、ガス拡散層兼集電体として用い、塗工層と導電性多孔質体とから構成してもよい。塗工層をカーボンペーパー等に形成した場合はそのまま電極として使用できるし、また、膜電極接合体の外側にカーボンペーパー等を配置し、塗工層とカーボンペーパーを接合せずに用いることもできる。また、本発明により得られるガス拡散電極はカソード、アノードのいずれにも使用でき、一方のみに使用してもよく、両方に使用してもよい。
【0030】
本発明の燃料電池において、ガス拡散電極と隣接して配置されるイオン交換膜は、イオン交換容量が0.5〜2.0ミリ当量/g乾燥樹脂であることが好ましく、厚さが10〜80μmであることが好ましい。イオン交換膜を構成する材料としては、上記電極の形成に使用された含フッ素イオン交換樹脂として例示したものと同様のものが好ましく使用できる。すなわち、スルホン酸基を有する含フッ素イオン交換樹脂が好ましく、特にテトラフルオロエチレンに基づく重合単位とCF=CF(OCFCFX)(CFSOH(式中、Xはフッ素原子又はトリフルオロメチル基であり、mは0〜3の整数であり、nは1〜12の整数であり、pは0又は1である。)に基づく重合単位との共重合体が好ましい。
【0031】
【実施例】
以下に本発明の具体的態様を、実施例(例1)及び比較例(例2〜5)によって詳しく説明するが、本発明はこれらに限定されない。
【0032】
[例1(実施例)]
カーボンブラック粉末に白金を触媒全質量の60%担持した担持触媒10.0gに、水74.8g及びエタノール8.3gを添加し、さらにイオン交換容量が1.1ミリ当量/g乾燥樹脂でTが220℃であるCF=CFとCF=CFOCFCF(CF)OCFCFSOHとの共重合体(以下、樹脂aという)が8.0質量%含まれるエタノールとの混合物(以下、8.0質量%樹脂a溶液という)1.0gを添加し混合したものを70ml/分で超音波分散機に供給し分散させた。これに樹脂aが6.7質量%含まれるエタノールとの混合物70.3gを添加、混合し、分散液1を得た。
【0033】
このときのW/Wは1.2であった。ここで得られた分散液1の粒径分布をマイクロトラック社製粒度分布装置MT3000を用いて測定した。結果を表1に示す。また分散液1の粘度をずり速度100s−1において東機産業社製粘度計RE550Hで測定した。結果を表1に示す。
【0034】
イオン交換膜として、スルホン酸基を有するパーフルオロカーボン重合体からなるイオン交換膜(商品名:フレミオンS、旭硝子社製、イオン交換容量1.0ミリ当量/g乾燥樹脂、厚さ50μm)を使用し、該イオン交換膜に対して、カソード側及びアノード側の両面に上記分散液1を、いずれも白金含有量が0.5mg/cmとなるようにダイコータにて塗工した。次いで、120℃にて1時間乾燥することにより、厚さ20μmの多孔質のガス拡散電極をイオン交換膜の両面に形成した膜電極接合体(電極面積10cm)を作製した。
【0035】
上記膜電極接合体を使用して燃料電池セルを組み立て、該燃料電池の温度を80℃に保ち、カソードに酸素、アノードに水素をそれぞれ0.05MPa加圧で供給、連続運転し、電流密度1A/cmのときの端子電圧の経時的な変化を測定した。結果を表2に示す。また、ここで用いた上記分散液1のダイコータでの塗工性も評価したので、この結果は表1に示す。
【0036】
[例2(比較例)]
8.0質量%樹脂a溶液の量を15.0gに変更した以外は例1と同様にして70ml/分で超音波分散機に供給し分散させ、さらにこれに樹脂aが6.4質量%含まれるエタノールとの混合物56.3gを添加して混合した以外は例1における分散液1と同様に分散液2を得た。このときのW/Wは1.2であった。分散液2の粒径分布及び粘度を例1と同様に測定した。結果を表1に示す。また、分散液2を用いて例1と同様にして膜電極接合体を作製し、燃料電池セルを組立て、例1と同様に評価した。結果を表2に示す。
【0037】
[例3(比較例)]
8.0質量%樹脂a溶液の量を1.0gに変更した以外は例1と同様にして70ml/分で超音波分散機に供給し分散させ、さらにこれに樹脂aが4.9質量%含まれるエタノールとの混合物39.2gを添加して混合した以外は例1における分散液1と同様に分散液3を得た。このときのW/Wは0.5であった。分散液3の粒径分布及び粘度を例1と同様に測定した。結果を表1に示す。また、分散液3を用いて例1と同様にして膜電極接合体を作製し、燃料電池セルを組立て、例1と同様に評価した。結果を表2に示す。
【0038】
[例4(比較例)]
8.0質量%樹脂a溶液の量を1.0gに変更した以外は例1と同様にして70ml/分で超音波分散機に供給し分散させ、さらにこれに樹脂aが7.3質量%含まれるエタノールとの混合物97.0gを添加して混合した以外は例1における分散液1と同様に分散液4を得た。このときのW/Wは1.8であった。分散液4の粒径分布及び粘度を例1と同様に測定した。結果を表1に示す。また、分散液4を用いて例1と同様にして膜電極接合体を作製し、燃料電池セルを組立て、例1と同様に評価した。結果を表2に示す。
【0039】
[例5(比較例)]
カーボンブラック粉末に白金を触媒全質量の60%担持した担持触媒10.0gに、水74.8g、エタノール8.3gを添加、混合したものを70ml/分で超音波分散機に供給し分散させた。さらに樹脂aが6.7質量%含まれるエタノールとの混合物71.3gを添加、混合し、分散液5を得た。このときのW/Wは1.2であった。分散液5の粒径分布及び粘度を例1と同様に測定した。結果を表1に示す。また、分散液5を用いて例1と同様にして膜電極接合体を作製し、燃料電池セルを組立て、例1と同様に評価した。結果を表2に示す。
【0040】
[例6(実施例)]
カーボンブラック粉末に白金を触媒全質量の27%、ルテニウムを触媒全質量の13%担持した担持触媒10.0gに、水74.8g及びエタノール8.3gを添加し、8.0%樹脂a溶液を1.5gを添加し混合したものを70ml/分で超音波分散機に供給し分散させた。これに樹脂aが7.1質量%含まれるエタノールとの混合物83.2gを添加、混合し、分散液6を得た。このときのW/Wは1.0であった。また、分散液6の粒径分布及び粘度を例1と同様に測定した。結果を表1に示す。
【0041】
アノード側に上記分散液6を用いて白金含有量が0.4mg/cmとなるように、カソード側には例1で調製した分散液1を用いて白金含有量が0.5mg/cmとなるようにそれぞれ塗工した以外は、例1と同様にして膜電極接合体を作製した。この膜電極接合体を用いた以外は例1と同様にして燃料電池セルを組立て、例1と同様に評価した。結果を表2に示す。
【0042】
【表1】
Figure 0003966064
【0043】
【表2】
Figure 0003966064
【0044】
【発明の効果】
本発明の製造方法によれば、ガス拡散電極をイオン交換膜の表面に簡便かつ良好に形成でき、得られたガス拡散電極は、多孔性で、導電性、撥水性及び耐久性に優れる。そのため、本発明によるガス拡散電極を用いた固体高分子型燃料電池は出力特性が高く、かつ経時劣化が少ない。[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a method for producing a gas diffusion electrode for a polymer electrolyte fuel cell.
[0002]
[Prior art]
A fuel cell using hydrogen and oxygen is attracting attention as a power generation system that has almost no adverse environmental impact because its reaction product is essentially only water. In particular, in recent years, polymer electrolyte fuel cells that use proton-conducting ion exchange membranes as electrolytes have low operating temperatures, high output density, and can be miniaturized. Promising.
[0003]
The polymer electrolyte fuel cell is characterized by a low operating temperature (50 to 120 ° C.) as described above, but on the other hand, there is a difficulty that exhaust heat is difficult to effectively use for auxiliary power. . In order to compensate for this, polymer electrolyte fuel cells are required to have high energy efficiency and high power density even under operating conditions with high utilization rates of hydrogen and oxygen.
[0004]
In order for the polymer electrolyte fuel cell to satisfy the above requirements, among the elements constituting the cell, in particular, a gas diffusion electrode and an ion exchange membrane formed by forming the electrode on both surfaces of the electrode (membrane electrode assembly) )is important. Conventionally, a gas diffusion electrode includes a catalyst powder that promotes an electrode reaction, a fluorine-containing ion exchange resin for enhancing conductivity and preventing clogging (flooding) of a porous body due to condensation of water vapor, and alcohols such as ethanol. Applying a viscous mixture that is dissolved or dispersed in the solvent of the above directly on the surface of the ion exchange membrane, or transferring or sticking a layer obtained by applying it to another sheet-like substrate on the surface of the ion exchange membrane It is formed by.
[0005]
[Problems to be solved by the invention]
However, when the gas diffusion electrode is formed by the above method, the viscous mixture is not necessarily good in coating property and dispersion stability on the ion exchange membrane or the sheet-like substrate, and the formed gas diffusion electrode Was not necessarily satisfactory in terms of porosity, conductivity, water repellency, and durability.
[0006]
Therefore, the present invention eliminates the problems of the prior art in the method for producing a gas diffusion electrode for a polymer electrolyte fuel cell, and has good coating properties and dispersion stability on an ion exchange membrane or sheet-like substrate. It is an object of the present invention to provide a method for producing a gas diffusion electrode for a polymer electrolyte fuel cell having good porosity, conductivity, water repellency, and durability by using a forming coating solution. .
[0007]
[Means for Solving the Problems]
The present invention provides a gas diffusion electrode for a polymer electrolyte fuel cell, which is disposed adjacent to an ion exchange membrane and includes a catalyst in which a metal is supported on carbon and a fluorine-containing ion exchange resin. and the said catalyst fluorinated ion exchange resin, the ratio of the mass W C of the carbon with mass W F of the fluorinated ion exchange resin wherein the catalyst (W F / W C) is 0.01 to 0.05 Dispersion so that the ratio of particles of 1.0 μm or less in the particle size distribution of the dispersed catalyst particles is 20% by volume or more with respect to all catalyst particles in the particle size distribution of the dispersed catalyst particles, Further, the fluorine-containing ion exchange resin is added to the dispersion A, and the ratio of the mass W F of the fluorine-containing ion exchange resin to the mass W C of carbon in the catalyst (W F / W C) is 0.5 After such a .7, to provide a method of manufacturing a polymer electrolyte fuel cell gas diffusion electrode, characterized in that the coating with the dispersion B.
[0008]
The present invention also provides a method for producing a polymer electrolyte fuel cell, wherein the gas diffusion electrode obtained by the above method is disposed adjacent to an ion exchange membrane.
[0009]
As a result of the study, the present inventor has determined that a gas diffusion electrode of a polymer electrolyte fuel cell is applied to a coating liquid (hereinafter referred to as electrode preparation) containing a supported catalyst in which a metal such as platinum is supported on carbon and a fluorine-containing ion exchange resin. It was found that the application property of the coating liquid and the performance of the polymer electrolyte fuel cell using the obtained gas diffusion electrode differ depending on the preparation method of the coating liquid. . In the production of the electrode preparation coating liquid, the catalyst is dispersed in a dispersion medium in the presence of a small amount of the fluorine-containing ion exchange resin, and the fluorine-containing ion exchange resin is further added to the obtained dispersion liquid. It has been found that a coating solution for electrode preparation having excellent workability and output characteristics of the resulting fuel cell can be obtained.
[0010]
In the present invention, first, the fluorine-containing ion exchange resin and the supported catalyst are mixed in a liquid, and the catalyst is sufficiently dispersed to obtain a dispersion A. Here, the liquid is a liquid that serves as a dispersion medium for the catalyst. At this time, the dispersion A is preferably dispersed such that the ratio of the catalyst particles having a particle size of 1.0 μm or less as a particle size distribution of the dispersed catalyst particles is 20% by volume or more with respect to all the catalyst particles. Here, the particle size distribution is measured by a laser diffraction / scattering method, for example, using a particle size distribution device MT3000 manufactured by Microtrack. The particle size distribution obtained by measuring the dispersion A is the particle size distribution of the catalyst particles in the dispersion A.
[0011]
In order to make the particle size distribution of the dispersion A within the above range, it is preferable that the catalyst is mixed with a dispersion medium and then dispersed using a dispersing machine such as an ultrasonic dispersing machine, a bead mill, a roll mill, or a homogenizer. That is, it is preferable to disperse by using an ultrasonic disperser or applying a high shear force. Using these dispersers, when the dispersion A has the above-mentioned particle size distribution, an electrode-forming coating liquid with extremely good coating properties when forming electrodes without adversely affecting the electrode characteristics is obtained. Can be made.
[0012]
In the dispersion A, when the ratio of the particles having a particle size of 1.0 μm or less as the particle size distribution of the catalyst particles is less than 20% by volume, for example, when the coating liquid is applied onto the substrate by the die coater method, the coating layer It is easy to crack and it becomes difficult to increase the coating amount. From this point of view, the particle size distribution is more preferably such that the proportion of particles of 1.0 μm or less is 30% by volume or more.
[0013]
Making the dispersion A, the fluorinated ion exchange resin, the ratio between the mass W C of the carbon mass W F and the catalyst of the fluorinated ion exchange resin (W F / W C) is 0.01 or more 0. Mix to be less than 05. When this ratio is 0.05 or more, the dispersion of the catalyst particles in the dispersion A is excessively advanced, and the catalyst layer is cracked when the finally obtained electrode-forming coating liquid (dispersion B) is applied. It becomes easy. In addition, when W F / W C is less than 0.01, the initial dispersion of the catalyst is difficult to proceed. Therefore, the dispersion B prepared by adding a fluorine-containing ion exchange resin later has a large particle size. It becomes easy to remain. As a result, the coated surface of the catalyst layer obtained by applying the dispersion B is likely to be defective, and the performance of the membrane / electrode assembly is also deteriorated. W F / W C in the dispersion liquid A is more preferably 0.02 to 0.04.
[0014]
In the present invention, by mixing a small amount of fluorine-containing ion exchange resin and the supported catalyst in the dispersion medium, after dispersing, further addition of a fluorinated ion exchange resin, W F / W C in the dispersion B obtained is 0 The dispersion liquid B is used as an electrode-forming coating liquid. Here, the fluorine-containing ion exchange resin can be added as it is, but considering the dispersibility of the dispersion B, it is preferable to add the fluorine-containing ion exchange resin after being dissolved in a solvent or dispersed in a dispersion medium. Further, in this step, the fluorine-containing ion exchange resin is not necessarily dispersed in the dispersion B by using a mill or the like, and it is sufficient to simply mix without applying a high shearing force.
[0015]
Further, the preparation of the dispersion B, but W F / W C in the dispersion B is set to be 0.5 to 1.7, the W F / W C and more preferably 0.6 to 1 .5. When W F / W C is less than 0.5, few in number becomes the electrode characteristics of the reaction sites and fluorinated ion exchange resin and the gas is a catalyst and the electrolyte is too small, the amount of the fluorine-containing ion exchange resin is in contact May decrease. When W F / W C exceeds 1.7, the amount of the fluorine-containing ion exchange resin is too large, so that the pores of the electrode are blocked by the resin, gas diffusibility is lowered, and electrode characteristics may be lowered.
[0016]
The electrode-forming coating solution (dispersion B) obtained by the present invention preferably has a viscosity of 10 to 1000 (mPa · s) at a shear rate of 100 s −1 , and the particle size distribution of the catalyst particles is 1.0 μm. The ratio of the following particles is preferably 20% by volume or more based on the total catalyst particles. According to the method of the present invention, it is possible to prepare a coating solution so as to have the above physical properties.
[0017]
If the viscosity of the electrode-forming coating solution is less than 10 (mPa · s) at a shear rate of 100 s −1 , dripping easily occurs when the coating solution is applied onto the substrate by a die coater method or the like. It becomes difficult to form a coating layer with a sufficient thickness. Further, when the viscosity exceeds 1000 (mPa · s) at a shear rate of 100 s −1 , the handling property of the liquid deteriorates, and defects such as uneven coating of the catalyst layer occur during coating by the die coater method or the like. May be easier. The viscosity of the coating solution is more preferably 50 to 500 (mPa · s) at a shear rate of 100 s −1 . In addition, a viscosity measurement can be performed here, for example using the Toki Sangyo company viscometer RE550H.
[0018]
In the present invention, since a supported catalyst in which a metal such as platinum or a platinum alloy is supported on carbon is used as a catalyst, if the catalyst particles are aggregated, the metal supported in the catalyst particles and the fluorine-containing ion exchange resin It is thought that it becomes difficult to contact. If the catalyst particles have a size of 1.0 μm or less, the metal supported inside the catalyst particles is likely to be covered with the fluorine-containing ion exchange resin, so that the output of the fuel cell is expected to increase.
[0019]
DETAILED DESCRIPTION OF THE INVENTION
The gas diffusion electrode produced by the present invention contains a catalyst having a metal supported on carbon and a fluorine-containing ion exchange resin as essential components. As the catalyst, a substance that promotes an electrode reaction at the anode and the cathode is used, but a catalyst in which a platinum group metal such as platinum or an alloy thereof is supported on carbon is preferable. The carbon is preferably activated carbon or carbon black having a specific surface area of preferably 200 m 2 / g or more. In the supported catalyst, the supported amount of metal is preferably 10 to 70% by mass with respect to the total mass of the supported catalyst.
[0020]
The fluorine-containing ion exchange resin contained in the gas diffusion electrode is preferably a dry resin having an ion exchange capacity of 0.5 to 2.0 meq / g from the viewpoint of conductivity and gas permeability. It is preferably 8 to 1.5 meq / g dry resin. In addition, the fluorine-containing ion resin is preferably made of a copolymer containing a polymer unit based on tetrafluoroethylene and a polymer unit based on perfluorovinyl ether having a sulfonic acid group. As the perfluorovinyl ether having a sulfonic acid group, those represented by CF 2 ═CF (OCF 2 CFX) m O p (CF 2 ) n SO 3 H are preferable. Here, X is a fluorine atom or a trifluoromethyl group, m is an integer of 0 to 3, n is an integer of 1 to 12, and p is 0 or 1. More preferable specific examples include the following compounds. In the following formula, q and r are integers of 1 to 8, and t is an integer of 1 to 3.
[0021]
[Chemical 1]
Figure 0003966064
[0022]
In the present invention, the fluorinated ion exchange resin used in the dispersion A and the fluorinated ion exchange resin added when preparing the dispersion B may be the same or different. For example, fluorine-containing ion exchange resins having different ion exchange capacities may be used, or fluorine-containing ion exchange resins having completely different compositions may be used. Also, those having different molecular weights may be used. Specifically, when a polymer (precursor) having an SO 2 F group is synthesized, hydrolyzed, and converted to an SO 3 H group by acidification, the precursor is used as the fluorine-containing ion exchange resin. may be using a melt temperature T Q is different from those of. T Q is a physical property value which is a measure of molecular weight, as generally T Q is high molecular weight is large.
[0023]
In the present invention, when preparing the dispersion A, the catalyst is first brought into contact with and dispersed in the dispersion medium in the presence of a small amount of the fluoropolymer. As said dispersion medium, 1 or more types chosen from the group which consists of alcohol, ether, dialkyl sulfoxide, or water are preferable.
[0024]
As the alcohol, ether and dialkyl sulfoxide, those having a boiling point of 40 to 160 ° C, particularly 60 to 120 ° C are preferable. And a C1-C6 alcohol and a C2-C6 ether are preferable. Among these, preferred specific examples of the solvent corresponding to the above include methanol, ethanol, n-propanol, 2-propanol, 1-butanol, 2-butanol, 1,4-dioxane and the like. Examples of the dialkyl sulfoxide include dimethyl sulfoxide and diethyl sulfoxide.
[0025]
In the method for producing a gas diffusion electrode of the present invention, in addition to the catalyst, the fluorinated ion exchange resin, and the above-mentioned dispersion medium, other substances may be added to the electrode forming coating liquid as necessary. For example, in the case of the cathode, water is generated by the reaction of the battery, so that a water repellent may be added to prevent the pores of the gas diffusion electrode from being blocked by the water or the like. Examples of the water repellent include tetrafluoroethylene-hexafluoropropylene copolymer, tetrafluoroethylene-perfluoro (alkyl vinyl ether) copolymer, polytetrafluoroethylene, and the like.
[0026]
In the present invention, at the time of preparing the dispersion A as described above, it is preferable to disperse the particle size distribution of the catalyst particles using a bead mill or the like so that the ratio of particles having a size of 1.0 μm or less is 20% by volume or more. However, in order to further improve the dispersibility, a dispersant composed of an anionic surfactant or a nonionic surfactant may be added as appropriate. When a dispersant is used, a dispersion medium may be added after mixing the catalyst, the fluorine-containing ion exchange resin, and a solvent capable of dissolving the resin, or the solution of the fluorine-containing ion exchange resin may be mixed with the dispersion medium in advance. The catalyst may be dispersed after mixing. In particular, it is preferable to mix a fluorine-containing ion exchange resin with the catalyst dispersed in the dispersion medium because the obtained electrode characteristics are improved. In this case, it seems that the catalyst is very well dispersed in the coating solution.
[0027]
Furthermore, other substances can be added to the electrode forming coating solution as necessary. For example, a thickener or diluent for adjusting the viscosity, and a pore thickener can be added. As the thickener, cellosolve-based ones can be used, and as the diluent, water, hydrocarbons, fluorine-containing hydrocarbons and the like can be used. Silica, alumina, etc. can be used as the pore-increasing agent.
[0028]
When forming a gas diffusion electrode on the surface of the solid polymer electrolyte membrane from the electrode forming coating solution obtained in the present invention, the coating solution is directly applied to the ion exchange membrane to form an electrode, or carbon paper or the like An electrode can be formed by applying it to the surface of another sheet-like substrate and forming an electrode and then transferring or pasting the electrode on an ion exchange membrane. Application of the coating liquid to the ion exchange membrane or the sheet-like substrate can be performed by an existing method such as a die coater or screen printing. When the electrode is formed on a sheet-like base material and transferred or pasted on an ion exchange membrane, the ion exchange membrane and the electrode are bonded by a hot press method, an adhesion method (Japanese Patent Laid-Open Nos. 7-220741, 7-254420) or the like. It is preferable to produce a membrane electrode assembly by bonding. The thickness of the electrode (coating layer) thus formed is preferably 1 to 50 μm, particularly preferably 5 to 30 μm from the viewpoints of gas diffusibility, output, and the like.
[0029]
The gas diffusion electrode in the present invention may be composed only of a coating layer formed using an electrode-forming coating solution. For example, a conductive porous body such as carbon paper is disposed adjacent to the coating layer. However, it may be used as a gas diffusion layer / current collector, and may be composed of a coating layer and a conductive porous body. When the coating layer is formed on carbon paper or the like, it can be used as an electrode as it is, or carbon paper or the like can be arranged outside the membrane electrode assembly and used without bonding the coating layer and carbon paper. . Further, the gas diffusion electrode obtained by the present invention can be used for either the cathode or the anode, and may be used for only one or both.
[0030]
In the fuel cell of the present invention, the ion exchange membrane disposed adjacent to the gas diffusion electrode is preferably a dry resin having an ion exchange capacity of 0.5 to 2.0 meq / g and a thickness of 10 to 10. It is preferable that it is 80 micrometers. As the material constituting the ion exchange membrane, the same materials as those exemplified as the fluorine-containing ion exchange resin used for forming the electrode can be preferably used. That is, a fluorine-containing ion exchange resin having a sulfonic acid group is preferable. Particularly, a polymer unit based on tetrafluoroethylene and CF 2 ═CF (OCF 2 CFX) m O p (CF 2 ) n SO 3 H (wherein X is A fluorine atom or a trifluoromethyl group, m is an integer of 0 to 3, n is an integer of 1 to 12, and p is 0 or 1. .
[0031]
【Example】
Specific embodiments of the present invention will be described in detail below with reference to Examples (Example 1) and Comparative Examples (Examples 2 to 5), but the present invention is not limited to these.
[0032]
[Example 1 (Example)]
70.0 g of water and 8.3 g of ethanol are added to 10.0 g of a supported catalyst in which platinum is supported on carbon black powder by 60% of the total mass of the catalyst, and the ion exchange capacity is 1.1 meq / g dry resin. Ethanol containing 8.0% by mass of a copolymer of CF 2 ═CF 2 and CF 2 ═CFOCF 2 CF (CF 3 ) OCF 2 CF 2 SO 3 H (hereinafter referred to as resin a) having a Q of 220 ° C. And a mixture obtained by adding 1.0 g of the mixture (hereinafter referred to as 8.0 mass% resin a solution) to an ultrasonic disperser at 70 ml / min. To this, 70.3 g of a mixture with ethanol containing 6.7% by mass of resin a was added and mixed to obtain dispersion 1.
[0033]
W F / W C at this time was 1.2. The particle size distribution of Dispersion 1 obtained here was measured using a particle size distribution device MT3000 manufactured by Microtrac. The results are shown in Table 1. Also the viscosity of the dispersion 1 was measured by Toki Sangyo Co., Ltd. viscometer RE550H in shear rate 100s -1. The results are shown in Table 1.
[0034]
As an ion exchange membrane, an ion exchange membrane made of a perfluorocarbon polymer having a sulfonic acid group (trade name: Flemion S, manufactured by Asahi Glass Co., Ltd., ion exchange capacity 1.0 meq / g dry resin, thickness 50 μm) is used. The dispersion 1 was applied to the ion exchange membrane on both the cathode side and the anode side with a die coater so that the platinum content was 0.5 mg / cm 2 . Subsequently, the membrane electrode assembly (electrode area 10 cm < 2 >) which formed the porous gas diffusion electrode of 20 micrometers in thickness on both surfaces of the ion exchange membrane was dried by drying at 120 degreeC for 1 hour.
[0035]
A fuel cell is assembled using the membrane electrode assembly, the temperature of the fuel cell is maintained at 80 ° C., oxygen is supplied to the cathode and hydrogen is supplied to the anode at a pressure of 0.05 MPa, and continuous operation is performed. The change with time of the terminal voltage at / cm 2 was measured. The results are shown in Table 2. Moreover, since the coating property in the die coater of the said dispersion liquid 1 used here was also evaluated, this result is shown in Table 1.
[0036]
[Example 2 (comparative example)]
Except that the amount of the 8.0 mass% resin a solution was changed to 15.0 g, it was supplied to the ultrasonic disperser at 70 ml / min and dispersed in the same manner as in Example 1, and further, the resin a was 6.4 mass%. Dispersion 2 was obtained in the same manner as Dispersion 1 in Example 1 except that 56.3 g of a mixture with ethanol was added and mixed. W F / W C at this time was 1.2. The particle size distribution and viscosity of Dispersion 2 were measured as in Example 1. The results are shown in Table 1. A membrane / electrode assembly was prepared using the dispersion 2 in the same manner as in Example 1, a fuel cell was assembled, and evaluated in the same manner as in Example 1. The results are shown in Table 2.
[0037]
[Example 3 (comparative example)]
Except that the amount of the 8.0 mass% resin a solution was changed to 1.0 g, it was supplied to and dispersed in an ultrasonic disperser at 70 ml / min in the same manner as in Example 1, and the resin a was further added to 4.9 mass%. Dispersion 3 was obtained in the same manner as Dispersion 1 in Example 1 except that 39.2 g of the mixture with ethanol was added and mixed. W F / W C at this time was 0.5. The particle size distribution and viscosity of dispersion 3 were measured in the same manner as in Example 1. The results are shown in Table 1. A membrane / electrode assembly was prepared using the dispersion 3 in the same manner as in Example 1, a fuel cell was assembled, and evaluated in the same manner as in Example 1. The results are shown in Table 2.
[0038]
[Example 4 (comparative example)]
Except that the amount of the 8.0 mass% resin a solution was changed to 1.0 g, it was supplied to and dispersed in an ultrasonic disperser at 70 ml / min in the same manner as in Example 1, and the resin a was further added to 7.3 mass%. Dispersion 4 was obtained in the same manner as Dispersion 1 in Example 1 except that 97.0 g of a mixture with ethanol was added and mixed. W F / W C at this time was 1.8. The particle size distribution and viscosity of dispersion 4 were measured in the same manner as in Example 1. The results are shown in Table 1. A membrane / electrode assembly was prepared using the dispersion 4 in the same manner as in Example 1, a fuel cell was assembled, and evaluated in the same manner as in Example 1. The results are shown in Table 2.
[0039]
[Example 5 (comparative example)]
70.0 g of water and 8.3 g of ethanol were added to 10.0 g of a supported catalyst in which platinum was supported on carbon black powder by 60% of the total mass of the catalyst, and the mixture was mixed and supplied to an ultrasonic disperser at 70 ml / min. It was. Furthermore, 71.3 g of a mixture with ethanol containing 6.7% by mass of resin a was added and mixed to obtain dispersion 5. W F / W C at this time was 1.2. The particle size distribution and viscosity of the dispersion 5 were measured in the same manner as in Example 1. The results are shown in Table 1. A membrane / electrode assembly was prepared using the dispersion 5 in the same manner as in Example 1, a fuel cell was assembled, and evaluated in the same manner as in Example 1. The results are shown in Table 2.
[0040]
[Example 6 (Example)]
70.0 g of water and 8.3 g of ethanol are added to 10.0 g of a supported catalyst in which platinum is supported on carbon black powder by 27% of the total catalyst mass and ruthenium by 13% of the total mass of the catalyst, and 8.0% resin a solution is added. The mixture obtained by adding 1.5 g of the mixture was supplied to an ultrasonic disperser at 70 ml / min and dispersed. To this, 83.2 g of a mixture with ethanol containing 7.1% by mass of resin a was added and mixed to obtain dispersion 6. W F / W C at this time was 1.0. Further, the particle size distribution and viscosity of the dispersion 6 were measured in the same manner as in Example 1. The results are shown in Table 1.
[0041]
The platinum content is 0.5 mg / cm 2 using the dispersion 1 prepared in Example 1 on the cathode side so that the platinum content is 0.4 mg / cm 2 using the dispersion 6 on the anode side. A membrane / electrode assembly was prepared in the same manner as in Example 1 except that coating was performed so that A fuel cell was assembled in the same manner as in Example 1 except that this membrane electrode assembly was used, and evaluated in the same manner as in Example 1. The results are shown in Table 2.
[0042]
[Table 1]
Figure 0003966064
[0043]
[Table 2]
Figure 0003966064
[0044]
【The invention's effect】
According to the production method of the present invention, the gas diffusion electrode can be easily and satisfactorily formed on the surface of the ion exchange membrane, and the obtained gas diffusion electrode is porous and excellent in conductivity, water repellency and durability. Therefore, the polymer electrolyte fuel cell using the gas diffusion electrode according to the present invention has high output characteristics and little deterioration with time.

Claims (7)

イオン交換膜に隣接して配置され、金属がカーボンに担持された触媒と含フッ素イオン交換樹脂とを含む固体高分子型燃料電池用ガス拡散電極の製造方法において、
液体中で、前記触媒と前記含フッ素イオン交換樹脂とを、前記含フッ素イオン交換樹脂の質量Wと前記触媒中のカーボンの質量Wとの比(W/W)が0.01以上0.05未満となるように混合し、分散した触媒粒子の粒径分布において1.0μm以下の粒子の割合が全触媒粒子に対して20体積%以上となるように分散させて分散液Aを調製し、
さらに前記含フッ素イオン交換樹脂を前記分散液Aに添加して、得られる分散液Bにおける前記含フッ素イオン交換樹脂の質量Wと前記触媒中のカーボンの質量Wとの比(W/W)が0.5〜1.7となるようにした後、
分散液Bを用いて塗工することを特徴とする
固体高分子型燃料電池用ガス拡散電極の製造方法。
In a method for producing a gas diffusion electrode for a polymer electrolyte fuel cell, which is disposed adjacent to an ion exchange membrane and includes a catalyst in which a metal is supported on carbon and a fluorine-containing ion exchange resin,
In a liquid, and the said catalyst fluorinated ion exchange resin, the ratio between the mass W C of the carbon in said the mass W F of the fluorinated ion exchange resin catalyst (W F / W C) is 0.01 Dispersion A was dispersed so that the proportion of particles of 1.0 μm or less in the particle size distribution of the dispersed catalyst particles mixed and dispersed so as to be less than 0.05 was 20% by volume or more with respect to all catalyst particles. Prepare
Further, the fluorine-containing ion exchange resin is added to the dispersion A, and the ratio of the mass W F of the fluorine-containing ion exchange resin to the mass W C of carbon in the catalyst (W F / W C ) is 0.5-1.7,
A method for producing a gas diffusion electrode for a polymer electrolyte fuel cell, wherein coating is performed using the dispersion B.
前記分散液Aの調製において、前記触媒粒子と前記含フッ素イオン交換樹脂は超音波分散機にて又は高せん断力を付与して分散させ、前記分散液Bの調製においては前記分散液Aと前記含フッ素イオン交換樹脂とを高せん断力を付与せずに混合する請求項1に記載の固体高分子型燃料電池用ガス拡散電極の製造方法。In the preparation of the dispersion A, the catalyst particles and the fluorine-containing ion exchange resin are dispersed by an ultrasonic disperser or by applying a high shear force. In the preparation of the dispersion B, the dispersion A and the The method for producing a gas diffusion electrode for a polymer electrolyte fuel cell according to claim 1, wherein the fluorine-containing ion exchange resin is mixed without applying a high shearing force. 前記含フッ素イオン交換樹脂は、テトラフルオロエチレンに基づく重合単位とCF=CF(OCFCFX)(CFSOHに基づく重合単位(Xはフッ素原子又はトリフルオロメチル基であり、mは0〜3の整数であり、nは1〜12の整数であり、pは0又は1である。)とからなる共重合体からなる請求項1又は2に記載のガス拡散電極の製造方法。The fluorinated ion exchange resin, polymerized units and CF 2 = CF (OCF 2 CFX ) m O p (CF 2) n SO 3 polymerized units (X-based H fluorine atom or a trifluoromethyl group based on tetrafluoroethylene And m is an integer of 0 to 3, n is an integer of 1 to 12, and p is 0 or 1.) The gas diffusion according to claim 1 or 2, comprising a copolymer Electrode manufacturing method. 前記分散液Bのずり速度100s−1における粘度が10〜1000(mPa・s)となるように分散液Bを調製する請求項1〜3のいずれかに記載のガス拡散電極の製造方法。The method for producing a gas diffusion electrode according to any one of claims 1 to 3, wherein the dispersion B is prepared so that the viscosity of the dispersion B at a shear rate of 100 s -1 is 10 to 1000 (mPa · s). 前記分散液Bをイオン交換膜の表面に直接塗布することにより、又は前記分散液Bをシート状基材に塗布して塗工層を形成した後に該塗工層をイオン交換膜の表面に転写又は張り付けることにより、ガス拡散電極を前記イオン交換膜に隣接して配置するように製造する請求項1〜4のいずれかに記載のガス拡散電極の製造方法。Transfer the coating layer onto the surface of the ion exchange membrane by directly applying the dispersion B onto the surface of the ion exchange membrane, or after coating the dispersion B onto a sheet-like substrate and forming a coating layer Alternatively, the gas diffusion electrode manufacturing method according to any one of claims 1 to 4, wherein the gas diffusion electrode is manufactured so as to be disposed adjacent to the ion exchange membrane by pasting. 前記分散液Bを、ダイコータを用いて塗工する請求項1〜5のいずれかに記載のガス拡散電極の製造方法。The method for producing a gas diffusion electrode according to claim 1, wherein the dispersion B is applied using a die coater. イオン交換膜からなる固体高分子電解質膜と、該電解質膜を介して対向するアノード及びカソードとを備える固体高分子型燃料電池の製造方法において、請求項1〜6のいずれかに記載の製造方法で得られたガス拡散電極をアノード及び/又はカソードとすることを特徴とする固体高分子型燃料電池の製造方法。A method for producing a polymer electrolyte fuel cell comprising a polymer electrolyte membrane comprising an ion exchange membrane, and an anode and a cathode facing each other with the electrolyte membrane interposed therebetween. A method for producing a polymer electrolyte fuel cell, wherein the gas diffusion electrode obtained in (1) is used as an anode and / or a cathode.
JP2002124436A 2002-04-25 2002-04-25 Method for producing polymer electrolyte fuel cell and method for producing gas diffusion electrode therefor Expired - Fee Related JP3966064B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002124436A JP3966064B2 (en) 2002-04-25 2002-04-25 Method for producing polymer electrolyte fuel cell and method for producing gas diffusion electrode therefor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002124436A JP3966064B2 (en) 2002-04-25 2002-04-25 Method for producing polymer electrolyte fuel cell and method for producing gas diffusion electrode therefor

Publications (2)

Publication Number Publication Date
JP2003317727A JP2003317727A (en) 2003-11-07
JP3966064B2 true JP3966064B2 (en) 2007-08-29

Family

ID=29539479

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002124436A Expired - Fee Related JP3966064B2 (en) 2002-04-25 2002-04-25 Method for producing polymer electrolyte fuel cell and method for producing gas diffusion electrode therefor

Country Status (1)

Country Link
JP (1) JP3966064B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006092926A (en) * 2004-09-24 2006-04-06 Jsr Corp Paste composition for electrode and electrode layer manufactured from composition
CN101617424B (en) * 2007-02-02 2012-11-28 旭硝子株式会社 Process for producing membrane electrode assembly for solid polymer electrolyte fuel cell, and process for producing solid polymer electrolyte fuel cell

Also Published As

Publication number Publication date
JP2003317727A (en) 2003-11-07

Similar Documents

Publication Publication Date Title
KR101598232B1 (en) Fluoroionomer liquid composition
KR101470656B1 (en) Catalyst-polymer liquid dispersion for fuel cell applications
JP2011103308A (en) Method for manufacturing catalyst coated film
EP1588449A2 (en) Catalyst ink
US20080118808A1 (en) Electrolyte membrane for polymer electrolyte fuel cell, process for its production and membrane-electrode assembly for polymer electrolyte fuel cell
US7709122B2 (en) Proton conductive electrolyte membrane, solid polymer fuel cell and method for producing proton conductive electrolyte membrane
JP2003036856A (en) Gas diffusion electrode and polymer electrolyte fuel cell having its electrode
JP2004259661A (en) Membrane/electrode jointed body and its manufacturing method
JP4987857B2 (en) Polymer dispersion and electrocatalyst ink
JP4918753B2 (en) Electrode, battery, and manufacturing method thereof
JP3966064B2 (en) Method for producing polymer electrolyte fuel cell and method for producing gas diffusion electrode therefor
EP2036927B1 (en) Ionic polymer particle dispersion liquid and method for producing the same
JP3899928B2 (en) Method for producing polymer electrolyte fuel cell and method for producing gas diffusion electrode therefor
JP5614891B2 (en) Membrane electrode composite and solid polymer electrolyte fuel cell
JP2001202970A (en) Gas diffusion electrode for solid polymer electrolyte fuel cell and its manufacturing method
JP7207023B2 (en) Catalyst ink and catalyst layer
JP2003045440A (en) Manufacturing method of gas diffusion electrode for solid polymer fuel cell and manufacturing method of solid polymer fuel cell
JP2001185163A (en) Method of manufacturing gas diffusion electrode for solid polymeric electrolyte fuel cell
JP2001160400A (en) Manufacturing method of gas diffusion electrode for solid elctrolyte fuel cell
JP2002252001A (en) Gas diffusion electrode and solid high polymer type fuel cell equipped with this
JP2020177734A (en) Method for manufacturing electrode catalyst layer for fuel cell
JP2001118581A (en) Method for manufacturing gas-spreading electrode for solid polymer electrolyte type fuel cell
JP5281319B2 (en) Method for producing membrane electrode assembly for polymer electrolyte fuel cell, and polymer electrolyte fuel cell
JP2001351637A (en) Solid polymer fuel cell and its manufacturing method
JP2001126739A (en) Mehtod of preparing gas diffusion electrode for solid polymer electrolytic fuel cell

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050419

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20070425

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20070508

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20070521

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100608

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100608

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110608

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120608

Year of fee payment: 5

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120608

Year of fee payment: 5

R371 Transfer withdrawn

Free format text: JAPANESE INTERMEDIATE CODE: R371

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120608

Year of fee payment: 5

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130608

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130608

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140608

Year of fee payment: 7

LAPS Cancellation because of no payment of annual fees