JP2001181085A - Method for growing compound semiconductor crystal and apparatus therefor - Google Patents

Method for growing compound semiconductor crystal and apparatus therefor

Info

Publication number
JP2001181085A
JP2001181085A JP37115199A JP37115199A JP2001181085A JP 2001181085 A JP2001181085 A JP 2001181085A JP 37115199 A JP37115199 A JP 37115199A JP 37115199 A JP37115199 A JP 37115199A JP 2001181085 A JP2001181085 A JP 2001181085A
Authority
JP
Japan
Prior art keywords
growth
compound semiconductor
resistor
semiconductor crystal
growing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP37115199A
Other languages
Japanese (ja)
Inventor
Hiroshi Sasahen
博 佐々辺
Seiji Mizuniwa
清治 水庭
Masaya Itani
賢哉 井谷
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Cable Ltd
Original Assignee
Hitachi Cable Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Cable Ltd filed Critical Hitachi Cable Ltd
Priority to JP37115199A priority Critical patent/JP2001181085A/en
Publication of JP2001181085A publication Critical patent/JP2001181085A/en
Pending legal-status Critical Current

Links

Landscapes

  • Crystals, And After-Treatments Of Crystals (AREA)
  • Liquid Deposition Of Substances Of Which Semiconductor Devices Are Composed (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a method for growing a compound semiconductor crystal, enabling single crystal growth and crystal growth of low dislocation density by controlling the temperature of a growing vessel in the circumferential direction to eliminate unevenness of the temperature, and provide an apparatus therefor. SOLUTION: This method for growing a compound semiconductor crystal comprises vertically installing a cylindrical growing vessel 7 having bottom in which a seed crystal 5 and a raw material 1 are put and heating the above raw material 7 in a prescribed temperature distribution by a heating element 9a of an electric oven provided so as to enclose the growing vessel 1 to melt the above raw material 7. In the crystal growing method, a cylindrical resistor 3 vertically cut into at least three portions in vertical direction is installed between the above growing vessel and the above heating element 9a of the electric oven so as to enclose the above growing vessel 1 and the current is applied to the resistor 3 to generate heat in the resistor 3 and the temperature is independently controlled. Thereby, temperature distribution of the above growing vessel 1 in the circumferential direction is made uniform to grow the crystal.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、垂直ブリッジマン
法による化合物半導体結晶成長方法及びその装置に係
り、特に石英ガラス成長容器やパイロリティック窒化硼
素(PBN)成長容器の円周方向の温度分布を制御して
化合物半導体結晶を成長させる化合物半導体結晶成長方
法及びその装置に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method and apparatus for growing a compound semiconductor crystal by the vertical Bridgman method, and more particularly to a method for measuring a circumferential temperature distribution of a quartz glass growth vessel or a pyrolytic boron nitride (PBN) growth vessel. TECHNICAL FIELD The present invention relates to a compound semiconductor crystal growth method for controlling and growing a compound semiconductor crystal and an apparatus therefor.

【0002】[0002]

【従来の技術】近年、φ3”(直径3インチ:7.62
cm)を超える大型で、しかも低転位密度のGaAs結
晶が得られる方法として、液体封止引上法(LEC法)
に代わって、垂直ブリッジマン法が注目されている。
2. Description of the Related Art In recent years, φ3 ″ (diameter 3 inches: 7.62)
cm), a method for obtaining a GaAs crystal having a large dislocation density and a low dislocation density is a liquid sealing pulling method (LEC method).
Instead, the vertical Bridgman method has attracted attention.

【0003】この方法は、成長容器の下部に種結晶を設
置し、その上にGaAs原料を置き、上部が高く下部が
低い温度分布を設けた縦型電気炉の中で、種結晶側の下
部から上部に向かって結晶固化させる方法である。
[0003] In this method, a seed crystal is placed at a lower portion of a growth vessel, a GaAs material is placed thereon, and a lower portion on a seed crystal side is placed in a vertical electric furnace having a high upper portion and a lower portion having a low temperature distribution. This is a method of solidifying crystals from the top toward the top.

【0004】一般的には、パイロリティック窒化硼素
(PBN)製の成長容器(ルツボ)が用いられ、それを
石英ガラス容器で保持する構造がとられている。あるい
は、石英ガラス容器自体をルツボとして使用する場合も
ある。
[0004] In general, a growth container (crucible) made of pyrolytic boron nitride (PBN) is used, and a structure in which the container is held by a quartz glass container is used. Alternatively, the quartz glass container itself may be used as a crucible.

【0005】[0005]

【発明が解決しようとする課題】しかしながら、従来の
垂直ブリッジマン成長装置は、成長容器の周りの電気炉
発熱体(ヒータ)が成長軸方向(垂直方向)に数ゾーン
で構成され、成長軸方向(垂直方向)の温度勾配は形成
できるが、成長容器の円周方向の温度を均一にするのは
ヒータの製造上難しく、かつヒータセンタと成長容器と
の取り付け軸のずれ、また成長容器の円周方向での熱伝
導のばらつきもあり、円周方向の温度むらが生じやすか
った。
However, in the conventional vertical Bridgman growth apparatus, the electric furnace heating element (heater) around the growth vessel is composed of several zones in the growth axis direction (vertical direction), Although a (vertical) temperature gradient can be formed, it is difficult to make the temperature in the circumferential direction of the growth vessel uniform in the manufacture of the heater, and the mounting axis between the heater center and the growth vessel is displaced, and the growth vessel circle is formed. There was also variation in heat conduction in the circumferential direction, and temperature unevenness in the circumferential direction was likely to occur.

【0006】さらに、成長容器に温度むらが生じていた
場合、これを調整する機能がなく、このため単結晶成長
が困難であり、転位密度も部分的に高くなっていた。
Further, when the growth vessel has uneven temperature, there is no function of adjusting the temperature, and therefore, single crystal growth is difficult and the dislocation density is partially increased.

【0007】そこで、本発明の目的は、上述した従来技
術の問題点である成長容器の円周方向の温度を制御して
温度むらをなくすことにより、単結晶成長及び低転位密
度の結晶成長を可能にする化合物半導体結晶成長方法及
びその装置を提供することにある。
Therefore, an object of the present invention is to control the temperature in the circumferential direction of the growth vessel, which is a problem of the above-described prior art, to eliminate temperature unevenness, thereby achieving single crystal growth and crystal growth with a low dislocation density. It is an object of the present invention to provide a compound semiconductor crystal growth method and an apparatus thereof which enable the method.

【0008】[0008]

【課題を解決するための手段】上記課題を解決するため
に請求項1の発明は、種結晶及び原料を入れた有底筒体
状の成長容器を垂直に設置し、その成長容器を取り囲む
ように設けられた電気炉発熱体により上記原料を所定の
温度分布で加熱して溶解させ、垂直方向に化合物半導体
結晶を成長させる化合物半導体結晶成長方法において、
垂直方向に少なくとも3つに縦切りした筒状の抵抗体
を、上記成長容器を取り囲むように上記成長容器と上記
電気炉発熱体との間に設置し、それらの抵抗体に電流を
流して発熱させると共に、独立に温度制御することによ
り、上記成長容器の円周方向の温度分布を均一にして結
晶を成長させる方法である。
According to a first aspect of the present invention, a bottomed cylindrical growth vessel containing a seed crystal and a raw material is installed vertically so as to surround the growth vessel. In the compound semiconductor crystal growth method of heating and melting the above-mentioned raw materials at a predetermined temperature distribution by an electric furnace heating element provided in the compound semiconductor crystal to grow a compound semiconductor crystal in a vertical direction,
A cylindrical resistor vertically cut into at least three in the vertical direction is disposed between the growth vessel and the electric furnace heating element so as to surround the growth vessel, and a current flows through the resistors to generate heat. In addition, the temperature is independently controlled to grow the crystal with a uniform temperature distribution in the circumferential direction of the growth vessel.

【0009】請求項2の発明は、種結晶及び原料が入れ
られ垂直に設置された有底筒体状の成長容器と、その成
長容器を取り囲むように設けられ上記原料を所定の温度
分布で加熱して溶解させて垂直方向に化合物半導体結晶
を成長させる電気炉発熱体とを有する化合物半導体結晶
成長装置において、垂直方向に少なくとも3つに縦切り
され上記成長容器を取り囲むように上記成長容器と上記
電気炉発熱体との間に設置され電流が流されることによ
り発熱する筒状の抵抗体と、その抵抗体を上記成長容器
の周りに支持する押え支持具と、上記抵抗体に電流を流
すと共に上記成長容器の円周方向の温度分布を均一にす
べく、各々の抵抗体を独立に温度制御する温度制御手段
とを備えたものである。
According to a second aspect of the present invention, there is provided a bottomed cylindrical growth vessel in which a seed crystal and a raw material are placed and which is provided so as to surround the growth vessel, and the raw material is heated at a predetermined temperature distribution. An electric furnace heating element for growing the compound semiconductor crystal in the vertical direction by dissolving and growing the compound semiconductor crystal in the vertical direction. A cylindrical resistor that is installed between an electric furnace heating element and generates heat by passing an electric current, a presser support that supports the resistor around the growth vessel, and an electric current that flows through the resistor. In order to make the temperature distribution in the circumferential direction of the growth vessel uniform, temperature control means for independently controlling the temperature of each resistor is provided.

【0010】請求項3の発明は、上記成長容器は石英ガ
ラスで形成されているものである。
According to a third aspect of the present invention, the growth vessel is made of quartz glass.

【0011】請求項4の発明は、上記成長容器はPBN
で形成されているものである。
According to a fourth aspect of the present invention, the growth container is a PBN.
It is formed by.

【0012】請求項5の発明は、上記抵抗体及び押え支
持具はセラミックスで形成されているものである。
According to a fifth aspect of the present invention, the resistor and the holding member are formed of ceramics.

【0013】請求項6の発明は、上記抵抗体及び押え支
持具はシリコンカーバイドで形成されているものであ
る。
According to a sixth aspect of the present invention, the resistor and the holding support are formed of silicon carbide.

【0014】請求項7の発明は、上記抵抗体及び押え支
持具はグラファイトで形成されているものである。
According to a seventh aspect of the present invention, the resistor and the holding support are made of graphite.

【0015】すなわち、本発明の要点は、垂直ブリッジ
マン法によって単結晶を成長する方法及びその装置にお
いて、成長容器の周りの電気炉発熱体(ヒータ)によっ
て成長軸方向(垂直方向)に温度勾配を形成したとき、
軸方向(垂直方向)に少なくとも3つに縦切りした筒状
の抵抗体を用意し、その分割された筒状の抵抗体を、筒
状の石英ガラス成長容器を取り囲むように電気炉発熱体
との間に設置すると共に、各々の筒状の抵抗体に電流を
流し発熱させることにより円周方向の温度分布を制御す
ることができるようにした点にある。
That is, the gist of the present invention is to provide a method and an apparatus for growing a single crystal by the vertical Bridgman method, wherein a temperature gradient in a growth axis direction (vertical direction) is generated by an electric furnace heating element (heater) around a growth vessel. When forming
A tubular resistor that is longitudinally cut into at least three in the axial direction (vertical direction) is prepared, and the divided tubular resistor is connected to an electric furnace heating element so as to surround the tubular quartz glass growth vessel. And the temperature distribution in the circumferential direction can be controlled by applying a current to each cylindrical resistor to generate heat.

【0016】ここで、垂直ブリッジマン法には、温度勾
配のみで成長させるバーティカルグラディエントフリー
ジング法(VGF法)、成長容器を相対的に降下させて
成長させるバーティカルブリッジマン法(VB法)、さ
らにAs圧を制御する方式、B2 3 で融液表面を覆い
Asの揮散を防ぐ方式のいずれかの方法も含まれる。
Here, the vertical Bridgman method includes a vertical gradient freezing method (VGF method) in which the growth is performed only by the temperature gradient, a vertical bridgeman method (VB method) in which the growth vessel is relatively lowered, and further, As. Any of a method of controlling the pressure and a method of covering the melt surface with B 2 O 3 to prevent As from volatilizing are included.

【0017】上記構成によれば、抵抗体により、成長容
器の円周方向の温度分布が制御され、均一な状態で結晶
が成長する。これにより、低転位密度の化合物半導体結
晶が成長する。
According to the above configuration, the temperature distribution in the circumferential direction of the growth vessel is controlled by the resistor, and the crystal grows in a uniform state. As a result, a compound semiconductor crystal having a low dislocation density grows.

【0018】[0018]

【発明の実施の形態】次に、本発明の好適一実施の形態
を添付図面に基づいて詳述する。
Next, a preferred embodiment of the present invention will be described in detail with reference to the accompanying drawings.

【0019】図1に本発明にかかる化合物半導体結晶成
長装置の概略断面図を示す。
FIG. 1 is a schematic sectional view of a compound semiconductor crystal growth apparatus according to the present invention.

【0020】図1に示すように、本発明にかかる化合物
半導体結晶成長装置は、種結晶5と原料を収容する筒状
の石英ガラス成長容器1と、この石英ガラス成長容器1
内の原料を所定の温度勾配で加熱して溶解し単結晶6を
成長させるための縦型電気炉9とから構成されている。
As shown in FIG. 1, a compound semiconductor crystal growth apparatus according to the present invention comprises a cylindrical quartz glass growth vessel 1 containing a seed crystal 5 and raw materials,
And a vertical electric furnace 9 for growing the single crystal 6 by heating and melting the raw material therein at a predetermined temperature gradient.

【0021】縦型電気炉9には、石英ガラス成長容器1
を介して原料を加熱するための電気炉発熱体9aが、成
長容器1を取り囲むようにその外方に設けられている。
The vertical electric furnace 9 includes a quartz glass growth vessel 1.
An electric furnace heating element 9 a for heating the raw material via the inside is provided outside the growth vessel 1 so as to surround the growth vessel 1.

【0022】そして、この石英ガラス成長容器1と電気
炉発熱体9aとの間には、電流を流したときには石英ガ
ラス成長容器1の円周方向の温度むらを緩和すると共
に、電流を流さないときには、電気炉発熱体9aからの
熱が均等に原料に伝達されるように均熱し、また結晶固
化時には石英ガラス成長容器1を保温する筒状の抵抗体
3が、上下からその筒状抵抗体3を挟んで支持し石英ガ
ラス成長容器1の周りに固定する上部押え支持具2a及
び下部押え支持具2bにより、石英ガラス成長容器1に
近接して設けられている。
When a current is applied between the quartz glass growth vessel 1 and the electric furnace heating element 9a, the temperature variation in the circumferential direction of the quartz glass growth vessel 1 is reduced, and when the current is not applied, In addition, a cylindrical resistor 3 for equalizing heat so that heat from the electric furnace heating element 9a is evenly transmitted to the raw material, and for keeping the quartz glass growth vessel 1 warm during crystal solidification, is formed from above and below. Are provided in the vicinity of the quartz glass growth vessel 1 by an upper holding support 2a and a lower holding support 2b which support and fix around the quartz glass growth vessel 1.

【0023】また、石英ガラス成長容器1の下部には、
石英ガラス成長容器1を回転自在に支持すると共に結晶
成長に応じて下降させるための駆動架台10が設けられ
ている。
In the lower part of the quartz glass growth vessel 1,
A drive base 10 for rotatably supporting the quartz glass growth vessel 1 and lowering it in accordance with crystal growth is provided.

【0024】さらに詳述すれば、石英ガラス成長容器1
は、種結晶5が設置される小径の首部、原料が収容され
ると共に成長結晶が収容される大径の胴部、首部から胴
部に亘って徐々に拡径され首部と胴部とを接続する肩部
を有し、石英ガラス成長容器1内を真空密閉する石英ガ
ラスキャップ4が溶着され、種結晶5が下側に配置され
るように首部を下方に向けて肩部サセプタ8で支持され
縦(垂直)に配置されている。
More specifically, the quartz glass growth vessel 1
Is a small-diameter neck in which the seed crystal 5 is installed, a large-diameter trunk in which the raw material is accommodated and the grown crystal is accommodated, and the neck is gradually expanded from the neck to the trunk to connect the neck and the trunk. A quartz glass cap 4 for sealing the inside of the quartz glass growth vessel 1 in a vacuum is welded and supported by a shoulder susceptor 8 with its neck downward so that the seed crystal 5 is arranged on the lower side. It is arranged vertically (vertically).

【0025】また、電気炉発熱体9aは、全体で所望の
温度勾配を形成できるように、上部ヒータ、中間部ヒー
タ、及び下部ヒータが成長軸に沿って上下3段に積み上
げられて構成されており、具体的には、下部で低温、中
間部で単結晶の固化温度、上部で原料融液を保持する高
温になるように制御されている。
The electric furnace heating element 9a is formed by stacking an upper heater, an intermediate heater, and a lower heater in three stages vertically along a growth axis so that a desired temperature gradient can be formed as a whole. Specifically, the temperature is controlled so as to be low at the lower part, solidified at a single crystal in the intermediate part, and high at the upper part to hold the material melt.

【0026】また、図2に筒状抵抗体の斜視図を示す。FIG. 2 is a perspective view of a cylindrical resistor.

【0027】図2に示すように、この筒状抵抗体3は、
セラミックス材などを縦方向(垂直方向)に3つに分割
して形成された3つのセグメント3a,3a,3aを有
し、各セグメント3a,3a,3aには、それぞれ、そ
れ自体に電流を流すための一対の端子11が設けられて
いる。
As shown in FIG. 2, this cylindrical resistor 3 is
It has three segments 3a, 3a, 3a formed by dividing a ceramic material or the like into three in the vertical direction (vertical direction), and a current flows through each of the segments 3a, 3a, 3a. Terminals 11 are provided.

【0028】筒状抵抗体3は、内径が石英ガラス成長容
器1の外径より若干大きく形成され、上述したように押
え支持具2a,2bで固定した際に石英ガラス成長容器
1に近接するように形成されている。
The cylindrical resistor 3 is formed to have an inner diameter slightly larger than the outer diameter of the quartz glass growth vessel 1 so that it is close to the quartz glass growth vessel 1 when fixed by the holding supports 2a and 2b as described above. Is formed.

【0029】さらに各セグメント3a,3a,3aの内
部には、それぞれ、セグメント3aの温度を計測すると
共に温度制御する温度制御手段としての熱電対12が設
けられている。
Further, inside each of the segments 3a, 3a, 3a, a thermocouple 12 as a temperature control means for measuring the temperature of the segment 3a and controlling the temperature is provided.

【0030】尚、図2においては、手前のセグメント3
aにのみ端子11及び熱電対12を図示したが、他の2
つのセグメント3a,3aも同様に構成されているため
省略した。
In FIG. 2, the segment 3 in the foreground is shown.
a, the terminal 11 and the thermocouple 12 are shown in FIG.
The three segments 3a, 3a are omitted because they have the same configuration.

【0031】次に、この装置を用いて化合物半導体結晶
成長方法を作用と共に説明する。
Next, a compound semiconductor crystal growing method using this apparatus will be described together with its operation.

【0032】まず、石英ガラス成長容器1の中に、種結
晶5と原料を入れた後、石英ガラス成長容器1を真空で
封じる。この石英ガラス成長容器1を、筒状抵抗体3で
肩部サセプタ8と共に囲み、さらに上端、下端より押え
支持具2a,2bで筒状抵抗体3と石英ガラス成長容器
1とを押さえ、駆動架台10の上に設置し、縦型電気炉
9を大気中で昇温する。
First, after the seed crystal 5 and the raw material are put into the quartz glass growth vessel 1, the quartz glass growth vessel 1 is sealed in a vacuum. The quartz glass growth container 1 is surrounded by the cylindrical resistor 3 together with the shoulder susceptor 8, and the cylindrical resistor 3 and the quartz glass growth container 1 are further pressed from the upper and lower ends by the holding supports 2 a and 2 b, and the driving frame is 10 and the vertical electric furnace 9 is heated in the atmosphere.

【0033】そして、縦型電気炉9の各ゾーンの発熱体
9aの温度設定を変え、種結晶5が位置する下部を例え
ば約1235℃、原料が位置する上部を例えば約124
5℃に調整し、原料を溶かし込んで融液とした後、種付
けを行う。
Then, the temperature setting of the heating element 9a in each zone of the vertical electric furnace 9 is changed so that the lower part where the seed crystal 5 is located is, for example, about 1235 ° C.
After adjusting the temperature to 5 ° C. and dissolving the raw materials to form a melt, seeding is performed.

【0034】その後、固液界面の温度勾配を約4℃/c
mに調整しながら石英ガラス成長容器1を回転又は回転
せず下降させ、3mm/hrの速度で石英ガラス成長容
器1を矢印で示すように下降させて結晶固化を行う。
Thereafter, the temperature gradient at the solid-liquid interface is set to about 4 ° C./c.
The quartz glass growth vessel 1 is rotated with or without rotation while adjusting to m, and the quartz glass growth vessel 1 is lowered at a speed of 3 mm / hr as indicated by an arrow to solidify the crystal.

【0035】この時、3分割した筒状抵抗体3内の各々
の熱電対12による温度を基に、各々のセグメント3a
の電力量を制御し、3箇所の温度が均一になるようにす
る。
At this time, based on the temperature of each thermocouple 12 in the cylindrical resistor 3 divided into three, each segment 3a
Is controlled so that the temperatures at three locations become uniform.

【0036】この温度制御は、石英ガラス成長容器1の
円周方向で温度むらがあれば、低温部分に相当するセグ
メント3aに電流を流し、温度むら部分が無くなるまで
加熱する。また、温度むらが解消された際、又は石英ガ
ラス成長容器1の円周方向に温度むらが無い場合には、
筒状抵抗体3が発熱体9aからの熱を均等に石英ガラス
成長容器1に伝達する均熱管として作用し、結晶固化時
には、保温管として作用し、半径方向、成長軸方向の温
度分布が緩やかになる。
In this temperature control, if there is temperature unevenness in the circumferential direction of the quartz glass growth vessel 1, a current is applied to the segment 3a corresponding to a low temperature portion, and heating is performed until the temperature unevenness portion disappears. Further, when the temperature unevenness is eliminated, or when there is no temperature unevenness in the circumferential direction of the quartz glass growth vessel 1,
The cylindrical resistor 3 acts as a heat equalizing tube for uniformly transmitting heat from the heating element 9a to the quartz glass growth vessel 1, and acts as a heat retaining tube during solidification of the crystal, and the temperature distribution in the radial direction and the growth axis direction is moderate. become.

【0037】これにより、石英ガラス成長容器1の成長
軸の円周方向に温度分布が均一(温度むらが無い)状態
で結晶が成長する。
As a result, the crystal grows in a state where the temperature distribution is uniform (no temperature unevenness) in the circumferential direction of the growth axis of the quartz glass growth vessel 1.

【0038】そして、全体を固化した後、約100℃/
hrで室温まで冷却し、石英ガラス成長容器1を、筒状
抵抗体3と共に縦型電気炉9から取り出す。
Then, after solidifying the whole, about 100 ° C. /
After cooling to room temperature at hr, the quartz glass growth vessel 1 is taken out of the vertical electric furnace 9 together with the tubular resistor 3.

【0039】このように、石英ガラス成長容器1の円周
方向の温度が均一の状態で結晶を成長させることによ
り、低転位密度の化合物半導体結晶を成長させることが
できる。
As described above, by growing the crystal in a state where the temperature in the circumferential direction of the quartz glass growth vessel 1 is uniform, a compound semiconductor crystal having a low dislocation density can be grown.

【0040】[0040]

【実施例】次に、より具体的な実施例について述べる。Next, a more specific embodiment will be described.

【0041】(実施例1)GaAs単結晶成長を例にと
り、図1及び図2を参照しながら説明する。
(Example 1) An example of GaAs single crystal growth will be described with reference to FIGS.

【0042】図1に示したように、GaAs単結晶を成
長させる際には、石英ガラス成長容器1の中に種結晶5
とGaAs原料6000グラムを入れた後、石英ガラス
成長容器1を真空で封じる。縦(垂直)方向に3分割し
た筒状のセラミックス製抵抗体3で、肩部サセプタ8と
共に石英ガラス成長容器1を囲み、上端、下端よりセラ
ミックス製押え支持具2a,2bで筒状のセラミックス
製抵抗体3と石英ガラス成長容器1を押さえ、駆動架台
10の上に設置し、縦型電気炉9を大気中で昇温する。
As shown in FIG. 1, when growing a GaAs single crystal, a seed crystal 5 is placed in a quartz glass growth vessel 1.
And 6000 g of GaAs material, and then the quartz glass growth vessel 1 is sealed in a vacuum. A cylindrical ceramic resistor 3 divided into three parts in the vertical (vertical) direction surrounds the quartz glass growth vessel 1 together with the shoulder susceptor 8, and is formed of ceramic ceramic holding members 2a and 2b from upper and lower ends. The resistor 3 and the quartz glass growth vessel 1 are held down, placed on the drive stand 10, and the temperature of the vertical electric furnace 9 is raised in the atmosphere.

【0043】電気炉9の各ゾーンの温度設定を変え、種
結晶5が位置する下部を約1235℃、原料が位置する
上部を約1245℃に調整し、原料を溶かし込んで融液
とした後、種付けを行う。その後、固液界面の温度勾配
を約4℃/cmに調整しながら石英ガラス成長容器1を
回転又は回転せず下降させ、3mm/hrの速度で石英
ガラス成長容器1を矢印で示すように下降させて結晶固
化を行う。
The temperature of each zone of the electric furnace 9 was changed, and the lower part where the seed crystal 5 was located was adjusted to about 1235 ° C. and the upper part where the raw material was located was adjusted to about 1245 ° C. , Seeding. Thereafter, while adjusting the temperature gradient at the solid-liquid interface to about 4 ° C./cm, the quartz glass growth vessel 1 is rotated or lowered without rotating, and the quartz glass growth vessel 1 is lowered at a speed of 3 mm / hr as indicated by an arrow. Then, crystal solidification is performed.

【0044】この時、図2に示すように、3分割したセ
ラミックス製抵抗体3内の各々の熱電対12による温度
を基に、各々のセラミックス製抵抗体3のセグメント3
aの電力量を制御し、3箇所の温度が均一になるように
する。
At this time, as shown in FIG. 2, the segment 3 of each ceramic resistor 3 is determined based on the temperature of each thermocouple 12 in the ceramic resistor 3 divided into three.
The power amount of a is controlled so that the temperatures at three locations become uniform.

【0045】そして、全体を固化した後、約100℃/
hrで室温まで冷却し、石英ガラス成長容器1を、筒状
のセラミックス製抵抗体3と共に縦型電気炉9から取り
出す。
After solidifying the whole, about 100 ° C. /
After cooling to room temperature for hr, the quartz glass growth vessel 1 is taken out of the vertical electric furnace 9 together with the cylindrical ceramic resistor 3.

【0046】この方法により、導電性基板にて、セラミ
ックス製抵抗体3を取り付け前には、円周方向の温度差
が2℃あり、その温度差のある箇所の転位密度が約20
00ヶ/cm2 あったが、セラミックス製抵抗体3を取
り付け後には、円周方向の温度差が0.5℃以下にな
り、転位密度が約200ヶ/cm2 まで低減することが
できた。
According to this method, before the ceramic resistor 3 is mounted on the conductive substrate, the temperature difference in the circumferential direction is 2 ° C., and the dislocation density at the location where the temperature difference is about 20 ° C.
00 months / cm 2 it was was, but after mounting a ceramic resistor 3, the temperature difference in the circumferential direction becomes 0.5 ℃ less, dislocation density can be reduced to about 200 months / cm 2 .

【0047】(実施例2)実施例2として、実施例1と
同様にGaAs単結晶を成長させる場合、セラミックス
製抵抗体3及びセラミックス製押え支持具2a,2bの
代用として、グラファイト製抵抗体及び押え支持具を用
いた。
Embodiment 2 As Embodiment 2, when a GaAs single crystal is grown in the same manner as in Embodiment 1, a graphite resistor and a ceramic holding member 2a, 2b are used instead of the ceramic resistor 3 and the ceramic holding supports 2a, 2b. A holding support was used.

【0048】そして、実施例1と同じ原料を同量用い、
同じ条件及び手順で、結晶成長を行った。
Then, the same raw materials as in Example 1 were used in the same amounts,
Crystal growth was performed under the same conditions and procedure.

【0049】この場合も、実施例1で示した、円周方向
の温度差が0.5℃以下で、転位密度が約200ヶ/c
2 の結果とほぼ同等の結果を得た。
Also in this case, the temperature difference in the circumferential direction shown in Example 1 is 0.5 ° C. or less, and the dislocation density is about 200 / c.
A result almost equal to the result of m 2 was obtained.

【0050】(実施例3)実施例3として、実施例1と
同様にGaAs単結晶を成長させる場合、セラミックス
製抵抗体3及びセラミックス製押え支持具2a,2bの
代用として、シリコンカーバイド(SiC)製抵抗体及
び押え支持具を用いた。
Embodiment 3 As Embodiment 3, when a GaAs single crystal is grown in the same manner as in Embodiment 1, silicon carbide (SiC) is used instead of the ceramic resistor 3 and the ceramic holding supports 2a, 2b. A resistor and a holding support were used.

【0051】そして、実施例1と同じ原料を同量用い、
同じ条件及び手順で、結晶成長を行った。
Then, the same raw materials as in Example 1 were used in the same amounts,
Crystal growth was performed under the same conditions and procedure.

【0052】この場合も、実施例1で示した、円周方向
の温度差が0.5℃以下で、転位密度が約200ヶ/c
2 の結果とほぼ同等の結果を得た。
Also in this case, the temperature difference in the circumferential direction is 0.5 ° C. or less and the dislocation density is about 200
A result almost equal to the result of m 2 was obtained.

【0053】また、他の実施例としては、本実施の形態
では石英ガラス成長容器1そのものを成長用ルツボとし
て成長を行った場合について説明したが、例えばPBN
ルツボの中で成長を行い、ルツボ全体を石英アンプルで
覆った場合でも、その石英アンプルを、本実施の形態で
説明した分割型の抵抗体3で周りを支持することによ
り、円周方向の温度分布を均一にでき、低転位の単結晶
が得られる。
Further, as another example, in this embodiment, the case where the growth is performed using the quartz glass growth vessel 1 itself as a growth crucible has been described.
Even when the growth is performed in a crucible and the whole crucible is covered with a quartz ampule, the quartz ampule is supported around by the divided resistor 3 described in the present embodiment, so that the temperature in the circumferential direction can be improved. The distribution can be made uniform and a low dislocation single crystal can be obtained.

【0054】さらに、本実施の形態では筒状抵抗体3を
3分割したが、4分割以上にすることにより、より細か
な温度制御が行えることは言うまでもない。
Further, in the present embodiment, the cylindrical resistor 3 is divided into three parts, but it is needless to say that finer temperature control can be performed by dividing the resistance into four or more.

【0055】また、本実施の形態ではGaAsの単結晶
成長について述べたが、GaAsの他に、例えばIn
P、GaP等の単結晶成長に応用することも可能であ
る。
In this embodiment, the single crystal growth of GaAs has been described.
It is also possible to apply to the growth of single crystals such as P and GaP.

【0056】[0056]

【発明の効果】以上要するに本発明によれば、垂直ブリ
ッジマン法による石英ガラス成長容器での単結晶成長に
て、石英ガラス成長容器を筒状の抵抗体で覆い、上部、
下部より押え支持具により固定し、3分割した抵抗体3
のそれぞれに電流を流し、発熱させるようにしたので、
電気炉発熱体9aによる石英ガラス成長容器1の温度む
らを3分割の抵抗体の電力量制御により補正し、石英ガ
ラス成長容器1の円周方向の温度分布を均一にすること
ができる。
In summary, according to the present invention, a single crystal is grown in a quartz glass growth vessel by the vertical Bridgman method, and the quartz glass growth vessel is covered with a cylindrical resistor.
Resistor 3 which is fixed from the lower part by a holding support and divided into three parts
The current is passed through each of them to generate heat,
The uneven temperature of the quartz glass growth vessel 1 due to the electric furnace heating element 9a can be corrected by controlling the electric power of the three-divided resistor, so that the circumferential temperature distribution of the quartz glass growth vessel 1 can be made uniform.

【0057】これにより、円周方向の温度分布が均一な
状態で化合物半導体結晶が成長するので、低転位の単結
晶を得ることができる。
As a result, the compound semiconductor crystal grows in a state in which the temperature distribution in the circumferential direction is uniform, so that a low dislocation single crystal can be obtained.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明にかかる化合物半導体結晶成長装置の概
略断面図である。
FIG. 1 is a schematic sectional view of a compound semiconductor crystal growth apparatus according to the present invention.

【図2】本発明にかかる化合物半導体結晶成長装置に用
いられる筒状抵抗体の斜視図である。
FIG. 2 is a perspective view of a cylindrical resistor used in the compound semiconductor crystal growth apparatus according to the present invention.

【符号の説明】[Explanation of symbols]

1 石英ガラス成長容器 3 筒状抵抗体 5 種結晶 7 原料融液(原料) 9a 電気炉発熱体 DESCRIPTION OF SYMBOLS 1 Quartz glass growth container 3 Cylindrical resistor 5 Seed crystal 7 Raw material melt (raw material) 9a Electric furnace heating element

───────────────────────────────────────────────────── フロントページの続き (72)発明者 井谷 賢哉 茨城県日立市日高町5丁目1番1号 日立 電線株式会社日高工場内 Fターム(参考) 4G077 AA02 BE46 CD02 EG02 EG20 EH07 5F053 AA09 AA11 AA22 BB06 BB08 BB13 DD03 DD07 DD11 DD20 FF04 GG01 HH04 RR03  ────────────────────────────────────────────────── ─── Continuing on the front page (72) Inventor Kenya Iya 5-1-1, Hidaka-cho, Hitachi-shi, Ibaraki F-term in the Hidaka Factory of Hitachi Cable, Ltd. (Reference) 4G077 AA02 BE46 CD02 EG02 EG20 EH07 5F053 AA09 AA11 AA22 BB06 BB08 BB13 DD03 DD07 DD11 DD20 FF04 GG01 HH04 RR03

Claims (7)

【特許請求の範囲】[Claims] 【請求項1】 種結晶及び原料を入れた有底筒体状の成
長容器を垂直に設置し、該成長容器を取り囲むように設
けられた電気炉発熱体により上記原料を所定の温度分布
で加熱して溶解させ、垂直方向に化合物半導体結晶を成
長させる化合物半導体結晶成長方法において、垂直方向
に少なくとも3つに縦切りした筒状の抵抗体を、上記成
長容器を取り囲むように上記成長容器と上記電気炉発熱
体との間に設置し、それらの抵抗体に電流を流して発熱
させると共に、独立に温度制御することにより、上記成
長容器の円周方向の温度分布を均一にして結晶を成長さ
せることを特徴とする化合物半導体結晶成長方法。
A bottomed cylindrical growth vessel containing a seed crystal and a raw material is installed vertically, and the raw material is heated at a predetermined temperature distribution by an electric furnace heating element provided to surround the growth vessel. In the compound semiconductor crystal growth method of growing a compound semiconductor crystal in the vertical direction, the growth container is vertically cut into at least three in the vertical direction, and the growth container is surrounded by the growth container so as to surround the growth container. It is installed between the heating element and the electric furnace, and heat is generated by applying a current to those resistors, and the temperature is controlled independently to grow the crystal with a uniform temperature distribution in the circumferential direction of the growth vessel. A method for growing a compound semiconductor crystal, comprising:
【請求項2】 種結晶及び原料が入れられ垂直に設置さ
れた有底筒体状の成長容器と、該成長容器を取り囲むよ
うに設けられ上記原料を所定の温度分布で加熱して溶解
させて垂直方向に化合物半導体結晶を成長させる電気炉
発熱体とを有する化合物半導体結晶成長装置において、
垂直方向に少なくとも3つに縦切りされ上記成長容器を
取り囲むように上記成長容器と上記電気炉発熱体との間
に設置され電流が流されることにより発熱する筒状の抵
抗体と、該抵抗体を上記成長容器の周りに支持する押え
支持具と、上記抵抗体に電流を流すと共に上記成長容器
の円周方向の温度分布を均一にすべく、各々の抵抗体を
独立に温度制御する温度制御手段とを備えたことを特徴
とする化合物半導体結晶成長装置。
2. A growth vessel having a bottomed cylindrical shape, which is provided with a seed crystal and a raw material, and is vertically disposed. The raw material is provided to surround the growth vessel, and the raw material is heated and melted at a predetermined temperature distribution. An electric furnace heating element for growing a compound semiconductor crystal in a vertical direction.
A tubular resistor that is vertically cut into at least three sections and is disposed between the growth vessel and the electric furnace heating element so as to surround the growth vessel and that generates heat by passing an electric current; And a temperature controller for independently controlling the temperature of each resistor so that current flows through the resistor and the temperature distribution in the circumferential direction of the growth container becomes uniform. And a means for growing a compound semiconductor crystal.
【請求項3】 上記成長容器は石英ガラスで形成されて
いる請求項2記載の化合物半導体結晶成長装置。
3. The compound semiconductor crystal growth apparatus according to claim 2, wherein said growth vessel is formed of quartz glass.
【請求項4】 上記成長容器はPBNで形成されている
請求項2記載の化合物半導体結晶成長装置。
4. The compound semiconductor crystal growth apparatus according to claim 2, wherein said growth vessel is made of PBN.
【請求項5】 上記抵抗体及び押え支持具はセラミック
スで形成されている請求項2記載の化合物半導体結晶成
長装置。
5. The compound semiconductor crystal growth apparatus according to claim 2, wherein said resistor and said holding member are formed of ceramics.
【請求項6】 上記抵抗体及び押え支持具はシリコンカ
ーバイドで形成されている請求項2記載の化合物半導体
結晶成長装置。
6. The compound semiconductor crystal growth apparatus according to claim 2, wherein said resistor and said holding support are formed of silicon carbide.
【請求項7】 上記抵抗体及び押え支持具はグラファイ
トで形成されている請求項2記載の化合物半導体結晶成
長装置。
7. The compound semiconductor crystal growth apparatus according to claim 2, wherein said resistor and said holding support are made of graphite.
JP37115199A 1999-12-27 1999-12-27 Method for growing compound semiconductor crystal and apparatus therefor Pending JP2001181085A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP37115199A JP2001181085A (en) 1999-12-27 1999-12-27 Method for growing compound semiconductor crystal and apparatus therefor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP37115199A JP2001181085A (en) 1999-12-27 1999-12-27 Method for growing compound semiconductor crystal and apparatus therefor

Publications (1)

Publication Number Publication Date
JP2001181085A true JP2001181085A (en) 2001-07-03

Family

ID=18498235

Family Applications (1)

Application Number Title Priority Date Filing Date
JP37115199A Pending JP2001181085A (en) 1999-12-27 1999-12-27 Method for growing compound semiconductor crystal and apparatus therefor

Country Status (1)

Country Link
JP (1) JP2001181085A (en)

Similar Documents

Publication Publication Date Title
EP0068021B1 (en) The method and apparatus for forming and growing a single crystal of a semiconductor compound
US8231727B2 (en) Crystal growth apparatus and method
US8506706B2 (en) Systems, methods and substrates of monocrystalline germanium crystal growth
US8647433B2 (en) Germanium ingots/wafers having low micro-pit density (MPD) as well as systems and methods for manufacturing same
WO1991002832A1 (en) Method for directional solidification of single crystals
JPH09175889A (en) Single crystal pull-up apparatus
JP2001181085A (en) Method for growing compound semiconductor crystal and apparatus therefor
EP2501844A1 (en) Crystal growth apparatus and method
JP4144349B2 (en) Compound semiconductor manufacturing equipment
JP3885245B2 (en) Single crystal pulling method
JP3567662B2 (en) Single crystal growth method and apparatus
JP2690420B2 (en) Single crystal manufacturing equipment
WO2010053586A2 (en) Systems, methods and substrates of monocrystalline germanium crystal growth
JPH01317188A (en) Production of single crystal of semiconductor and device therefor
JP2733898B2 (en) Method for manufacturing compound semiconductor single crystal
JPH03193689A (en) Production of compound semiconductor crystal
JP2677859B2 (en) Crystal growth method of mixed crystal type compound semiconductor
JP2010030847A (en) Production method of semiconductor single crystal
JPH11130579A (en) Production of compound semiconductor single crystal and apparatus for producing the same
JPH05294784A (en) Single crystal growth device
JP2004018319A (en) Compound semiconducting crystal growth apparatus
JPH05139879A (en) Unit and method for growing single crystal
JP3247829B2 (en) Crystal growth furnace and crystal growth method
JP2004083301A (en) Single crystal manufacturing apparatus
JP2004026577A (en) Apparatus for growing compound semiconductor single crystal and method of growing compound semiconductor single crystal