JP2001180227A - Tire for heavy load - Google Patents

Tire for heavy load

Info

Publication number
JP2001180227A
JP2001180227A JP36789999A JP36789999A JP2001180227A JP 2001180227 A JP2001180227 A JP 2001180227A JP 36789999 A JP36789999 A JP 36789999A JP 36789999 A JP36789999 A JP 36789999A JP 2001180227 A JP2001180227 A JP 2001180227A
Authority
JP
Japan
Prior art keywords
tire
groove
ridge line
shoulder block
circumferential direction
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP36789999A
Other languages
Japanese (ja)
Inventor
Satoshi Tsuda
訓 津田
Shinichi Matsuura
真一 松浦
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Rubber Industries Ltd
Original Assignee
Sumitomo Rubber Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Rubber Industries Ltd filed Critical Sumitomo Rubber Industries Ltd
Priority to JP36789999A priority Critical patent/JP2001180227A/en
Publication of JP2001180227A publication Critical patent/JP2001180227A/en
Pending legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60CVEHICLE TYRES; TYRE INFLATION; TYRE CHANGING; CONNECTING VALVES TO INFLATABLE ELASTIC BODIES IN GENERAL; DEVICES OR ARRANGEMENTS RELATED TO TYRES
    • B60C11/00Tyre tread bands; Tread patterns; Anti-skid inserts
    • B60C11/03Tread patterns
    • B60C11/13Tread patterns characterised by the groove cross-section, e.g. for buttressing or preventing stone-trapping
    • B60C11/1369Tie bars for linking block elements and bridging the groove
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60CVEHICLE TYRES; TYRE INFLATION; TYRE CHANGING; CONNECTING VALVES TO INFLATABLE ELASTIC BODIES IN GENERAL; DEVICES OR ARRANGEMENTS RELATED TO TYRES
    • B60C11/00Tyre tread bands; Tread patterns; Anti-skid inserts
    • B60C11/03Tread patterns
    • B60C11/13Tread patterns characterised by the groove cross-section, e.g. for buttressing or preventing stone-trapping
    • B60C11/1376Three dimensional block surfaces departing from the enveloping tread contour
    • B60C11/1384Three dimensional block surfaces departing from the enveloping tread contour with chamfered block corners

Abstract

PROBLEM TO BE SOLVED: To improve the abrasion resistance of a shoulder part. SOLUTION: This tire for heavy load has a shoulder block 6. Groove bottom raised parts 9 respectively connecting shoulder blocks 6, 6 raised from a groove bottom and adjacent to each other in the circumferential direction, are formed on lateral grooves 4. The groove bottom raised parts 9 respectively include a main part 9a continued from a longitudinal main groove 3 side in the longitudinal direction of the lateral groove 4 at an approximately uniform height, and an inclined part 9b connected to an terminal end X of the main part 9a and gradually lowered toward a tread edge E side. The shoulder block 6 has a chamfered part 14 formed by a slant face obtained by cutting an area including a reference ridge line em where a ground surface 10 and a groove wall face 11 of the lateral groove 4 are intersected, and surrounded by a first ridge line e1 extended on the ground surface 10, a second ridge line e2 extended on the groove wall face 11, and a third ridge line e3 extended on a buttress face 13. An axial inner end of the chamfered part 14 is located on the axial inside with respect to the terminal end X of the main part 9a. A circumferential length W of the chamfered part 13 is widened toward the buttress face 13.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、耐摩耗性を向上し
うる重荷重用タイヤに関する。
The present invention relates to a heavy duty tire capable of improving abrasion resistance.

【0002】[0002]

【従来の技術及び発明が解決しようとする課題】トラッ
ク、バスなどに使用される重荷重用タイヤは、高荷重、
高内圧の下で使用されるためトレッド部が摩耗し易く、
特にトレッド端縁にショルダブロックを並べたパターン
を有するタイヤにあっては、前記ショルダブロックがク
ラウン部に比して早期に摩耗するという偏摩耗の問題が
ある。従来、この種の問題を解決するために、例えばト
レッド面の曲率半径を大きくするなどトレッド面を平坦
化しクラウン部側とショルダ部側の半径差を小さくする
ことや、制動時に大きなすべりが生じて特に摩耗しやす
いショルダブロックの路面後着側の剛性を上げることな
どが行われている。
2. Description of the Related Art Heavy-duty tires used for trucks, buses, and the like have high load,
Because it is used under high internal pressure, the tread is easy to wear,
In particular, in a tire having a pattern in which shoulder blocks are arranged on the tread edge, there is a problem of uneven wear that the shoulder blocks are worn earlier than the crown portion. Conventionally, in order to solve this kind of problem, for example, by increasing the radius of curvature of the tread surface, flattening the tread surface to reduce the radius difference between the crown portion side and the shoulder portion side, or causing a large slip when braking. In particular, increasing the rigidity of the shoulder block, which is easily worn, on the rear surface side of the road surface is performed.

【0003】しかしながら、これらの提案でも未だ十分
な効果が発揮されておらず、さらなる改善の余地を残し
ているのが現状である。発明者らは、このような実状に
鑑みて車両制動時のショルダブロックの接地形状の解析
を行った。図8(A)にはタイヤの自由転動状態の接地
形状を、図8(B)にはその制動時の接地形状の略図を
それぞれ示しており、符号Cはタイヤ赤道位置、ベクト
ルはトレッド面に作用する力を夫々示している。制動時
にはショルダ部分に大きな負荷と滑りが作用し、トレッ
ド部はショルダ側でタイヤ周方向の接地長さを増してい
る。このような接地形状の変化は、ショルダ部の偏摩耗
の主たる原因の一つとなっている。
[0003] However, these proposals have not yet exerted a sufficient effect, and there is currently room for further improvement. In view of such a situation, the inventors have analyzed the contact shape of the shoulder block during vehicle braking. FIG. 8 (A) shows the grounding shape of the tire in a free rolling state, and FIG. 8 (B) shows a schematic view of the grounding shape at the time of braking. Symbol C is the tire equator position, and vector is the tread surface. The force acting on each is shown. At the time of braking, a large load and slip act on the shoulder portion, and the tread portion increases the contact length in the tire circumferential direction on the shoulder side. Such a change in the grounding shape is one of the main causes of uneven wear of the shoulder portion.

【0004】本発明は、以上のような問題点に鑑み案出
なされたもので、ショルダブロックの形状を改善するこ
とにより、タイヤの自由転動状態と制動状態とにおいて
トレッド面の接地形状の変化を少なくし、ショルダ部の
偏摩耗を抑制しうる重荷重用タイヤを提供することを目
的としている。
The present invention has been devised in view of the above-described problems. By improving the shape of the shoulder block, the contact shape of the tread surface changes between the free rolling state and the braking state of the tire. It is an object of the present invention to provide a heavy duty tire that can reduce uneven wear of the shoulder portion.

【0005】[0005]

【課題を解決するための手段】本発明のうち請求項1記
載の発明は、トレッド端縁寄りをタイヤ周方向に連続し
てのびる縦主溝と、この縦主溝と前記トレッド端縁との
間で連続する横溝と、前記トレッド端縁とで区画される
ショルダブロックがタイヤ周方向に並ぶブロック列を形
成した重荷重用タイヤであって、前記横溝に、その溝底
から隆起しかつタイヤ周方向で隣り合う前記ショルダブ
ロック間を継ぐ溝底隆起部を設けるとともに、該溝底隆
起部は、前記縦主溝側から横溝の長さ方向に略同高さで
連続する主部と、この主部の終端に連なりトレッド端縁
側に向けて高さが徐々に減じる傾斜部とを含み、かつ前
記ショルダブロックに、該ショルダブロックの接地表面
と横溝の溝壁面とが交わる基準稜線を含んで切り欠き、
前記接地表面をのびる第1の稜線、前記溝壁面をのびる
第2の稜線、及び前記トレッド端縁に連なるタイヤのバ
ットレス面をのびる第3の稜線により囲まれる斜面から
なる面取り部を形成するとともに、該面取り部は、その
タイヤ軸方向の内端が、少なくとも前記主部の終端より
もタイヤ軸方向内側に位置し、かつこの面取り部のタイ
ヤ周方向長さが、バットレス面に向かって広幅となるこ
とを特徴としている。
According to the first aspect of the present invention, there is provided a vertical main groove extending continuously in the tire circumferential direction near a tread edge, and a vertical main groove and the tread edge are formed between the vertical main groove and the tread edge. A heavy groove tire in which a shoulder block defined by a lateral groove continuous between the tread edges forms a block row arranged in the tire circumferential direction, wherein the lateral groove protrudes from the groove bottom and extends in the tire circumferential direction. A groove bottom protruding portion that connects between the adjacent shoulder blocks is provided, and the groove bottom protruding portion is a main portion that is continuous at substantially the same height in the length direction of the horizontal groove from the vertical main groove side; Notch including a reference ridge line where the contact surface of the shoulder block and the groove wall surface of the lateral groove intersect with each other, and an inclined portion whose height is gradually reduced toward the tread edge side.
Forming a chamfer comprising a slope surrounded by a first ridge line extending on the ground contact surface, a second ridge line extending on the groove wall surface, and a third ridge line extending on a buttress surface of the tire connected to the tread edge; In the chamfered portion, the inner end in the tire axial direction is located at least inward in the tire axial direction from the terminal end of the main portion, and the length of the chamfered portion in the tire circumferential direction becomes wider toward the buttress surface. It is characterized by:

【0006】また請求項2記載の発明は、前記第1の稜
線は、ショルダブロックのタイヤ周方向の長さLの1.
5倍以上の曲率半径を有しかつブロック外方に向けて凸
となる円弧状としたことを特徴とする請求項1記載の重
荷重用タイヤである。
In the invention described in claim 2, the first ridge line has a length L of the shoulder block in the circumferential direction of the tire of 1.
The heavy load tire according to claim 1, wherein the tire has an arc shape having a radius of curvature of 5 times or more and protruding outward from the block.

【0007】また請求項3記載の発明は、前記面取り部
は、前記基準稜線が前記バットレス面に交わる仮想頂点
を通るタイヤ赤道面と平行な第1の面において、前記仮
想頂点から前記第1の稜線までのタイヤ周方向の長さS
aを前記ショルダブロックの長さLの15〜30%、か
つ前記仮想頂点から第2の稜線までのタイヤ半径方向の
高さhaを0.5〜1mmとし、しかも前記主部の終端を
通るタイヤ赤道面と平行な第2の面において、前記基準
稜線から第1の稜線までのタイヤ周方向の長さSbを、
前記ショルダブロックの長さLの3〜10%としたこと
を特徴とする請求項1又は2記載の重荷重用タイヤであ
る。
According to a third aspect of the present invention, the chamfered portion includes a first surface parallel to a tire equator plane passing through a virtual vertex where the reference ridge line intersects the buttress surface, and the first chamfered portion extends from the virtual vertex to the first vertex. Tire circumferential length S to ridgeline
a is 15 to 30% of the length L of the shoulder block, the height ha in the tire radial direction from the virtual vertex to the second ridge is 0.5 to 1 mm, and the tire passes the terminal end of the main portion. On a second surface parallel to the equatorial plane, the length Sb in the tire circumferential direction from the reference ridge line to the first ridge line is defined as:
The heavy load tire according to claim 1, wherein the length L of the shoulder block is 3 to 10%.

【0008】[0008]

【発明の実施の形態】以下本発明の実施の一形態を図面
に基づき、タイヤサイズが11R22.5の重荷重用ラ
ジアルタイヤ(以下、単に「タイヤ」ということがあ
る。)を例に取り図面に基づき説明する。図1には、ト
レッド面2の展開図を示し、該トレッド面2には、タイ
ヤ周方向に連続してのびる縦主溝3と、この縦主溝3に
交わる横溝4とを具えている。
BEST MODE FOR CARRYING OUT THE INVENTION Hereinafter, an embodiment of the present invention will be described with reference to the drawings, taking a heavy-load radial tire (hereinafter sometimes simply referred to as "tire") having a tire size of 11R22.5 as an example. It is explained based on. FIG. 1 is a development view of the tread surface 2. The tread surface 2 is provided with a vertical main groove 3 extending continuously in the tire circumferential direction and a horizontal groove 4 intersecting the vertical main groove 3.

【0009】前記縦主溝3は、本例では複数本が配置さ
れる。すなわち縦主溝3は、例えばタイヤ赤道Cの両側
に配された一対の内の縦主溝3a、3aと、そのタイヤ
軸方向の各外側に配されトレッド端縁E寄りの一対の外
の縦主溝3b、3bとからなり、本例ではトレッド面2
に合計4本が形成される。前記各縦主溝3は、夫々タイ
ヤ周方向にジグザグ状でかつタイヤ周方向に連続して形
成されたものを示すが、直線状或いは正弦波状とするな
ど種々の形状にて変更しうる。
In this embodiment, a plurality of vertical main grooves 3 are arranged. That is, the vertical main grooves 3 are, for example, a pair of vertical main grooves 3a, 3a arranged on both sides of the tire equator C, and a pair of outer vertical grooves arranged on each outer side in the tire axial direction and near the tread edge E. The tread surface 2 is composed of main grooves 3b and 3b.
Are formed in total. Each of the vertical main grooves 3 has a zigzag shape in the tire circumferential direction and is formed continuously in the tire circumferential direction, but can be changed in various shapes such as a linear shape or a sine wave shape.

【0010】また前記横溝4は、本例では前記内の縦主
溝3a、3a間を継ぐ第1の横溝4a、前記内の縦主溝
3aからタイヤ軸方向外側にのびかつ前記外の縦主溝3
bに連通することなく途切れて終端する第2の横溝4
b、前記外の縦主溝3bからタイヤ軸方向内側にのびか
つ前記内の縦主溝3aに連通することなく途切れて終端
する第3の横溝4c、及び前記外の縦主溝3bからタイ
ヤ軸方向外側にのびかつトレッド端縁Eで開口する第4
の横溝4dを含むものが例示される。なお、第2、第3
の横溝4b、4cは、本例では細溝16によって連通さ
れたものが示される。
In the present embodiment, the horizontal groove 4 is a first horizontal groove 4a which connects between the inner vertical main grooves 3a, 3a, and extends outward from the inner vertical main groove 3a in the tire axial direction and extends to the outer vertical main groove 3a. Groove 3
b, the second lateral groove 4 that terminates without communication with b
b, a third lateral groove 4c extending inward in the tire axial direction from the outer vertical main groove 3b and terminating without communication with the inner vertical main groove 3a, and a tire shaft extending from the outer vertical main groove 3b. 4th extending outward in the direction and opening at the tread edge E
That includes the lateral groove 4d. Note that the second and third
The horizontal grooves 4b and 4c are connected by the narrow groove 16 in this example.

【0011】前記各縦主溝3、各横溝4の溝巾、溝深さ
などは、必要に応じて種々設定することができる。例え
ば、縦主溝3の溝巾は、トレッド接地巾TWの2.0%
以上、より好ましくは2.5%以上であって、本例の如
く重荷重用タイヤの場合には少なくとも5mm以上の巾で
連続して形成されることが好ましい。また各横溝4の溝
巾は、例えばトレッド接地巾TWの1.5%以上とする
のが望ましい。また、縦主溝3の溝深さは、例えば前記
トレッド接地巾TWの5〜12%、横溝4の溝深さは、
例えば前記トレッド接地巾TWの2〜12%とするのが
望ましい。
The width and depth of each of the vertical main grooves 3 and each of the horizontal grooves 4 can be variously set as required. For example, the groove width of the vertical main groove 3 is 2.0% of the tread contact width TW.
As described above, the content is more preferably 2.5% or more. In the case of a heavy load tire as in this example, it is preferable that the tire is formed continuously with a width of at least 5 mm or more. It is desirable that the width of each lateral groove 4 is, for example, 1.5% or more of the tread contact width TW. The groove depth of the vertical main groove 3 is, for example, 5 to 12% of the tread contact width TW, and the groove depth of the horizontal groove 4 is
For example, it is desirable to set it to 2 to 12% of the tread contact width TW.

【0012】トレッド接地巾TWは、タイヤを正規リム
にリム組みし、かつ正規内圧と正規荷重を負荷して平面
に接地させたときの最外側のトレッド端縁E、E間のタ
イヤ軸方向距離として定める。このとき、「正規リム」
とは、タイヤが基づいている規格を含む規格体系におい
て、当該規格がタイヤ毎に定めるリムであり、例えばJA
TMA であれば標準リム、TRA であれば "Design Rim" 、
或いはETRTO であれば"Measuring Rim"となる。また、
「正規内圧」とは、タイヤが基づいている規格を含む規
格体系において、各規格がタイヤ毎に定めている空気圧
であり、JATMAであれば最高空気圧、TRA であれば表 "T
IRE LOAD LIMITS AT VARIOUS COLD INFLATION PRESSURE
S" に記載の最大値、ETRTO であれば "INFLATION PRESS
URE" とする。さらに、「正規荷重」とは、タイヤが基
づいている規格を含む規格体系において、各規格がタイ
ヤ毎に定めている荷重であり、JATMA であれば最大負荷
能力、TRA であれば表 "TIRE LOAD LIMITS AT VARIOUS
COLD INFLATION PRESSURES" に記載の最大値、ETRTO で
あれば "LOAD CAPACITY"とする。
The tread contact width TW is a distance between the outermost tread edges E and E in the tire axial direction when the tire is rim-assembled on a regular rim, and a regular internal pressure and a regular load are applied and the tire is grounded on a plane. Determined as At this time, "Regular rim"
A rim is a rim defined for each tire in the standard system including the standard on which the tire is based.
Standard rim for TMA, "Design Rim" for TRA,
Or "Easy Rim" for ETRTO. Also,
"Normal internal pressure" is the air pressure specified for each tire in the standard system including the standard on which the tire is based. For JATMA, the maximum air pressure is used.
IRE LOAD LIMITS AT VARIOUS COLD INFLATION PRESSURE
Maximum value described in "S", "INFLATION PRESS" for ETRTO
URE ". Further," regular load "is the load specified by each standard in the standard system including the standard on which the tire is based. For JATMA, the maximum load capacity, TRA BA table "TIRE LOAD LIMITS AT VARIOUS
The maximum value described in "COLD INFLATION PRESSURES" or "LOAD CAPACITY" for ETRTO.

【0013】また本実施形態のタイヤは、トレッド面2
に、前記外の縦主溝3bと、この外の縦主溝3bと前記
トレッド端縁Eとの間で連続する第4の横溝4dと、前
記トレッド端縁Eとで区画されるショルダブロック6が
タイヤ周方向に並ぶブロック列を具えている。本発明で
は、ショルダブロック6を具えていればトレッド面2の
他の部分については任意に形成でき、本例では前記内の
縦主溝3a、3a間に中央のブロック5を、また前記内
の縦主溝3aと外の縦主溝3bとの間にリブ状部7を形
成しているものが例示される。
The tire of this embodiment has a tread surface 2
A shoulder block 6 defined by the outer vertical main groove 3b, a fourth horizontal groove 4d continuous between the outer vertical main groove 3b and the tread edge E, and the tread edge E. Are provided with a row of blocks arranged in the tire circumferential direction. In the present invention, other portions of the tread surface 2 can be arbitrarily formed as long as the shoulder block 6 is provided. In this example, the central block 5 is provided between the inner vertical main grooves 3a and 3a, and the inner block 5 is provided. An example in which a rib-like portion 7 is formed between the vertical main groove 3a and the outer vertical main groove 3b is exemplified.

【0014】前記第4の横溝4dには、図2に拡大して
示すように、その溝底から隆起しかつタイヤ周方向で隣
り合う前記ショルダブロック6間を継ぐ溝底隆起部9が
設けられている。該溝底隆起部9は、前記外の縦主溝3
b側から第4の横溝4dの長さ方向に略同高さで連続す
る主部9aと、この主部9aの終端Xに連なりトレッド
端縁E側に向けて高さが徐々に減じる傾斜部9bとを含
んで構成されている。このような溝底隆起部9は、ショ
ルダブロック6のタイヤ周方向の大きな倒れ込みを抑制
するなどタイヤ周方向剛性を高めるのに役立ち、該ショ
ルダブロック6の路面先着側及び後着側に偏摩耗が生じ
るのを抑制しうる。また溝底隆起部9は前記傾斜部9b
を含むことにより、ショルダブロック6のトレッド端縁
E側のタイヤ周方向剛性を相対的に柔軟化しうる結果、
例えばワンダリング性能を向上するのにも役立つ。
As shown in FIG. 2, the fourth lateral groove 4d is provided with a groove bottom raised portion 9 which protrudes from the groove bottom and connects between the shoulder blocks 6 adjacent in the tire circumferential direction. ing. The groove bottom ridge 9 is provided with the outer vertical main groove 3.
a main portion 9a continuous from the b side in the longitudinal direction of the fourth lateral groove 4d at substantially the same height, and an inclined portion connected to the end X of the main portion 9a and gradually decreasing in height toward the tread edge E side. 9b. Such groove bottom raised portions 9 help to increase the rigidity of the shoulder block 6 in the tire circumferential direction, for example, by suppressing a large fall of the shoulder block 6 in the tire circumferential direction. Can be suppressed. In addition, the groove bottom raised portion 9 is formed by the inclined portion 9b.
As a result, the tire circumferential rigidity on the tread edge E side of the shoulder block 6 can be relatively softened,
For example, it is also useful for improving wandering performance.

【0015】また溝底隆起部9は、前記主部9aの高さ
9hを例えば横溝4(第4の横溝4d)の深さの例えば
40〜80%、より好ましくは50〜80%とし、また
前記主部9aの終端Xを例えば図3に示すようにトレッ
ド端縁Eからショルダブロックのタイヤ軸方向の巾Wの
20〜50%の距離Xaを隔てる位置に設定することが
望ましい。また、傾斜部9bは、その横溝に沿った長さ
で前記主部9aの高さ9hを除した勾配を例えば0.4
〜1.2とすることが望ましい。
The height 9h of the main portion 9a is, for example, 40 to 80%, more preferably 50 to 80% of the depth of the lateral groove 4 (fourth lateral groove 4d). Preferably, the terminal end X of the main portion 9a is set at a position separated from the tread edge E by a distance Xa of 20 to 50% of the width W of the shoulder block in the tire axial direction, for example, as shown in FIG. The inclined portion 9b has a slope obtained by dividing the height 9h of the main portion 9a by a length along the lateral groove, for example, by 0.4.
It is desirable to set it to 1.2.

【0016】また本例のショルダブロック6は、該ショ
ルダブロック6の接地表面10と前記第4の横溝4dの
溝壁面11とが交わる基準稜線emを含んで切り欠き、
前記接地表面10をのびる第1の稜線e1、前記溝壁面
11をのびる第2の稜線e2、及び前記トレッド端縁E
に連なるタイヤのバットレス面13をのびる第3の稜線
e3により囲まれる斜面からなる面取り部14をタイヤ
周方向の両側に形成したものを例示している。この面取
り部14は、そのタイヤ軸方向の内端14iが、少なく
とも前記主部9aの終端Xよりもタイヤ軸方向内側に位
置しており、かつこの面取り部14のタイヤ周方向長さ
Sが、バットレス面13に向かって広幅に構成されてい
る。
Further, the shoulder block 6 of the present embodiment is notched including a reference ridge line em where the ground surface 10 of the shoulder block 6 and the groove wall surface 11 of the fourth lateral groove 4d intersect,
A first ridge e1 extending on the ground surface 10, a second ridge e2 extending on the groove wall surface 11, and the tread edge E
A chamfered portion 14 formed of a slope surrounded by a third ridge line e3 extending on a buttress surface 13 of the tire connected to the tire is illustrated on both sides in the tire circumferential direction. In the chamfered portion 14, the inner end 14i in the tire axial direction is located at least inside the terminal end X of the main portion 9a in the tire axial direction, and the length S in the tire circumferential direction of the chamfered portion 14 is It is configured wide toward the buttress surface 13.

【0017】なおタイヤのバットレス面13とは、トレ
ッド端縁Eに連なりかつ図示しないサイドウォール部に
のびるタイヤ側壁面であって通常走行に際しては路面と
接地しないが、傾斜路面や轍路、さらには荷重条件や旋
回時などによっては接地するときがある。
The buttress surface 13 of the tire is a side wall surface of the tire which is continuous with the tread edge E and extends to a side wall portion (not shown) and does not contact the road surface during normal running. Depending on the load conditions and the time of turning, there is a case where the ground is touched.

【0018】発明者らの種々の実験の結果、上述のよう
な溝底隆起部9とともにショルダブロック6に前記面取
り部14を設けることにより、タイヤの自由転動状態と
制動状態とにおいて、接地形状の変化、とりわけショル
ダ部での接地形状変化が小さいこと、またこれによりシ
ョルダブロック6の偏摩耗を効果的に抑制しうることを
見出した。その理由は、概ね溝底隆起部9によるショル
ダブロック6のタイヤ周方向剛性の向上に加え、この溝
底隆起部9の少なくとも傾斜部9bが存在している領域
に設けられた面取り部14により、制動時においてもシ
ョルダブロック6のタイヤ軸方向外側部かつタイヤ周方
向両端の接地圧が最適にコントロールされることに基づ
くものと考えられる。
As a result of various experiments conducted by the inventors, the provision of the chamfered portion 14 on the shoulder block 6 together with the above-mentioned groove bottom raised portion 9 allows the tire to be in contact with the ground in the free rolling state and the braking state. It has been found that the change in the contact shape, particularly the change in the contact shape at the shoulder portion, is small, and that the uneven wear of the shoulder block 6 can be effectively suppressed. The reason is that, in addition to the improvement in the tire circumferential rigidity of the shoulder block 6 due to the groove bottom ridge 9, the chamfered portion 14 provided at least in the region where the slope 9 b of the groove bottom ridge 9 exists. It is considered that the ground pressure at the outer side in the tire axial direction of the shoulder block 6 and both ends in the tire circumferential direction is optimally controlled even during braking.

【0019】ここで前記第1の稜線e1は、図3に示す
ように例えばショルダブロック6のタイヤ周方向の長さ
Lの1.5倍以上、より好ましくは1.7〜2.5倍の
曲率半径R1を有しかつブロック外方に向けて凸となる
円弧状に形成することが望ましい。これにより、タイヤ
の制動状態にショルダブロック6に作用する滑りと接地
圧の下で、該ショルダブロック6の接地圧を均一化して
その接地形状の変化も小さくなり、さらにショルダブロ
ック6の偏摩耗を防止する効果が向上できる。
Here, as shown in FIG. 3, the first ridge line e1 is, for example, 1.5 times or more, more preferably 1.7 to 2.5 times, the length L of the shoulder block 6 in the tire circumferential direction. It is desirable to form a circular arc shape having a radius of curvature R1 and convex toward the outside of the block. As a result, under the slippage and the contact pressure acting on the shoulder block 6 in the braking state of the tire, the contact pressure of the shoulder block 6 is made uniform, the change in the contact shape is reduced, and the uneven wear of the shoulder block 6 is further reduced. The effect of prevention can be improved.

【0020】また本明細書では、図1に示すように前記
基準稜線emが前記バットレス面13(を延長した仮想
バットレス面)に交わる点を仮想頂点VPとし、この仮
想頂点VPを通るタイヤ赤道面と平行な第1の面P1に
おけるショルダブロックの端面図を図4(A)に示して
いる。そして前記面取り部14は、本例では仮想頂点V
Pから第1の稜線e1までのタイヤ周方向の長さSaを
前記ショルダブロック6の長さLの15〜30%、かつ
前記仮想頂点VPから第2の稜線e2までのタイヤ半径
方向の高さhaを0.5〜1mmとしている。前記面取り
部14の長さSaが、ショルダブロック6のタイヤ周方
向の長さLの15%未満であると、接地形状の変化を少
なくする効果が相対的に低下する傾向があり、逆に30
%を超えると面取り部14の周方向長さが大となって傾
向があり、通常走行時際してのショルダブロック6の接
地圧の不均一を招く傾向があるなど好ましくない。また
前記高さhaが0.5mm未満であると、面取り部14に
よる効果が相対的に低下する傾向があり、逆に1mmを超
えると通常走行時のショルダブロック6の接地圧の不均
一を招きやすい傾向にある。
In this specification, a point at which the reference ridge line em intersects the buttress surface 13 (a virtual buttress surface extended from the buttress surface 13) is referred to as a virtual vertex VP, and a tire equatorial plane passing through the virtual vertex VP is shown in FIG. FIG. 4A shows an end view of the shoulder block on the first plane P1 parallel to FIG. In the present example, the chamfered portion 14 has a virtual vertex V
The length Sa in the tire circumferential direction from P to the first ridge line e1 is 15 to 30% of the length L of the shoulder block 6, and the height in the tire radial direction from the virtual vertex VP to the second ridge line e2. ha is set to 0.5 to 1 mm. If the length Sa of the chamfered portion 14 is less than 15% of the length L of the shoulder block 6 in the circumferential direction of the tire, the effect of reducing the change in the ground contact shape tends to be relatively reduced.
%, The circumferential length of the chamfered portion 14 tends to be large, which is not preferable because the contact pressure of the shoulder block 6 tends to be non-uniform during normal running. If the height ha is less than 0.5 mm, the effect of the chamfered portion 14 tends to be relatively reduced. Conversely, if the height ha is more than 1 mm, the ground pressure of the shoulder block 6 during normal running becomes uneven. Tends to be easy.

【0021】なお図4(B)に示すように、タイヤ赤道
面と平行な前記主部9aの終端Xを通る第2の面P2に
おいて、ショルダブロック6は、前記基準稜線emから
前記第1の稜線e1までのタイヤ周方向の長さSbを、
前記ショルダブロックの長さLの3〜10%程度とする
ことが望ましく、また基準稜線emから第2の稜線e2
までのタイヤ半径方向の高さhbは、前記第1の面P1
における前記高さhaよりも小とするのが望ましい。こ
のような面取り部14は、本例では平面で形成している
が、平面のみならず種々の曲面にて構成することができ
るのは言うまでもない。
As shown in FIG. 4 (B), on a second plane P2 passing through the terminal end X of the main part 9a parallel to the tire equatorial plane, the shoulder block 6 moves from the reference ridge line em to the first plane. The length Sb in the tire circumferential direction up to the ridge line e1 is
It is desirable to set the length to about 3 to 10% of the length L of the shoulder block, and the reference ridge line em to the second ridge line e2
The height hb in the tire radial direction up to the first plane P1
Is preferably smaller than the height ha. In this example, such a chamfered portion 14 is formed as a flat surface, but it is needless to say that the chamfered portion 14 can be formed not only with a flat surface but also with various curved surfaces.

【0022】図5、図6には、本発明の他の実施形態を
示している。本例の前記ショルダブロック6は、前記タ
イヤ周方向両側の面取り部14を横切ってのびる細溝1
7が形成されるとともに、前記バットレス面13を、外
バットレス部13aと内バットレス部13bとで形成し
たものを例示しており、前記実施形態と同一の箇所につ
いては同一の符号を付している。前記細溝17は、溝巾
GWが例えば1.5〜3.0mm、本例では約2.0mmと
し、タイヤ軸方向外側とに凸となる円弧状の湾曲部分1
7Aと、この湾曲部分17Aの周方向両端から前記横溝
(第4の横溝4d)へタイヤ周方向に略直線状でのびて
開口する端部分17B、17Bとを含むものを例示して
いる。
FIGS. 5 and 6 show another embodiment of the present invention. The shoulder block 6 of the present embodiment has a narrow groove 1 extending across the chamfers 14 on both sides in the tire circumferential direction.
7 is formed and the buttress surface 13 is formed by an outer buttress portion 13a and an inner buttress portion 13b, and the same reference numerals are given to the same portions as those in the embodiment. . The narrow groove 17 has a groove width GW of, for example, 1.5 to 3.0 mm, about 2.0 mm in this example, and has an arcuate curved portion 1 that protrudes outward in the tire axial direction.
7A and end portions 17B, 17B extending substantially linearly in the tire circumferential direction from the both ends in the circumferential direction of the curved portion 17A to the lateral groove (fourth lateral groove 4d) and opening.

【0023】また本例の外バットレス部13aは、内バ
ットレス部13bに比べてタイヤ半径方向線に対して大
きな角度θ1で傾いている。この角度θ1は、例えば3
0〜70゜、より好ましくは45〜60゜とすることが
望ましい。
The outer buttress portion 13a of this embodiment is inclined at a larger angle θ1 with respect to the tire radial direction line than the inner buttress portion 13b. This angle θ1 is, for example, 3
It is desirable that the angle be 0 to 70 °, more preferably 45 to 60 °.

【0024】[0024]

【実施例】以下、本発明をさらに具体化した実施例につ
いて説明する。タイヤサイズが11R22.5でありか
つ図1のパターン、表1に示す仕様の重荷重用ラジアル
タイヤを試作するとともに、正規リムにリム組みして内
圧700(kPa)を充填し、タイヤの自由転動状態と
制動状態との接地形状変化、制動時の摩耗エネルギー、
実車評価などを行った。前記接地形状の変化は、接地面
測定装置を用いるとともにタイヤ1本当たりに縦荷重2
6720(N)を負荷しかつ前後加速度0.2Gの制動
状態とした接地形状を調べ、図7に示すようにそのタイ
ヤ赤道でのタイヤ周方向長さCrと、トレッド端縁での
タイヤ周方向長さShとの比(Cr/Sh)を計算し
た。この比の値が1.0に近いほど制動に対するショル
ダ部の摩耗特性が優れていることを示す。
Embodiments of the present invention will be described below. A prototype tire having a tire size of 11R22.5 and a heavy load radial tire having the pattern shown in FIG. 1 and the specifications shown in Table 1 was prototyped, assembled into a regular rim, filled with an internal pressure of 700 (kPa), and free-rolled. Change of contact shape between state and braking state, wear energy at the time of braking,
The actual vehicle evaluation was performed. The change in the contact shape can be measured by using a contact surface measuring device and applying a vertical load of 2 per tire.
7620 (N) was applied and the ground contact shape in a braking state with a longitudinal acceleration of 0.2 G was examined. As shown in FIG. 7, the tire circumferential length Cr at the tire equator and the tire circumferential direction at the tread edge were measured. The ratio to the length Sh (Cr / Sh) was calculated. The closer this ratio value is to 1.0, the more excellent the wear characteristics of the shoulder portion against braking are.

【0025】また制動時の摩耗エネルギーについては、
歪ゲージを多数配した3軸方向の応力を測定しうる接地
面内応力測定センサーと、すべり量測定センサとからな
る摩耗エネルギ測定装置を用い、制動時でのショルダブ
ロックの先着側とショルダブロックの後着側それぞれの
摩耗エネルギを接地圧力、滑り量から計算した。摩耗エ
ネルギは、一般に接地圧力Pと滑り量Sとの積(P.
S)で代用することができ、タイヤ表面が接地面内に入
ったときから出るときまでを積分してこれを求めた。そ
して、後着側の摩耗エネルギーEaを、先着側の摩耗エ
ネルギーEbとの比(Ea/Eb)によって評価した。
この比の値が1.5以上であると、いわゆるヒール&ト
ウ摩耗が生じやすくなる。
Further, regarding the wear energy at the time of braking,
Using a wear energy measuring device consisting of a ground contact stress measuring sensor capable of measuring stresses in three axial directions provided with a large number of strain gauges and a slip amount measuring sensor, the first side of the shoulder block and the shoulder block during braking are used. The wear energy of each of the underwear side was calculated from the contact pressure and the slip amount. The wear energy is generally determined by the product of the contact pressure P and the slip amount S (P.
S) can be used instead, and this was determined by integrating the time from when the tire surface entered the contact surface to when it exited. Then, the wear energy Ea on the rear arrival side was evaluated by the ratio (Ea / Eb) to the wear energy Eb on the first arrival side.
When the value of this ratio is 1.5 or more, so-called heel & toe wear is likely to occur.

【0026】また実車評価では、タイヤを2−D・4タ
イプのトラックに装着し、20000km走行後、ショ
ルダブロックの先着側の摩耗量と後着側の摩耗量の差を
測定した。数値が小さいほどヒール&トウ摩耗が少なく
良好であることを示す。テストの結果を表1に示す。
In the actual vehicle evaluation, the tire was mounted on a 2-D / 4 type truck, and after traveling 20,000 km, the difference between the amount of wear on the first arrival side and the amount of wear on the rear arrival side of the shoulder block was measured. The smaller the numerical value, the better the heel & toe wear and the better. Table 1 shows the test results.

【0027】[0027]

【表1】 [Table 1]

【0028】テストの結果、実施例のものは、比較例と
比べて接地形状変化が少なく、また先着部と後着部の摩
耗エネルギーの比も小さいことが確認できた。これによ
り、クラウン部とショルダ部の径差摩耗などを抑制でき
る。また実車を用いた摩耗試験においてもヒール&トウ
摩耗などが生じにくいことが確認された。
As a result of the test, it was confirmed that the example of the present invention had less change in the contact shape and the ratio of the wear energy of the first-arrival portion and the rear-wear portion was smaller than the comparative example. As a result, it is possible to suppress a difference in wear between the crown portion and the shoulder portion. In a wear test using an actual vehicle, it was confirmed that heel and toe wear hardly occurred.

【0029】[0029]

【発明の効果】上述したように、本発明の重荷重用タイ
ヤは、ショルダブロック間に溝底隆起部を設けしかもこ
の溝底隆起部に関連させて面取り部を設けたことによ
り、タイヤの自由転動状態と制動状態とにおいて接地形
状の変化を小さくし、ひいてはショルダ部の偏摩耗を好
適に抑制しうる。
As described above, the heavy duty tire of the present invention has a groove bottom protruding portion between shoulder blocks and a chamfered portion provided in connection with this groove bottom protruding portion, so that the tire can freely rotate. The change in the contact shape between the moving state and the braking state can be reduced, and uneven wear of the shoulder portion can be suitably suppressed.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本実施形態のトレッド面を示す展開図である。FIG. 1 is a development view showing a tread surface of the present embodiment.

【図2】ショルダブロックを拡大した部分斜視図であ
る。
FIG. 2 is an enlarged partial perspective view of a shoulder block.

【図3】その平面図である。FIG. 3 is a plan view thereof.

【図4】(A)はショルダブロックの第1の面の断面
図、(B)は同第2の面の断面図である。
4A is a sectional view of a first surface of the shoulder block, and FIG. 4B is a sectional view of a second surface of the shoulder block.

【図5】本発明の他の実施形態を示すショルダブロック
の部分斜視図である。
FIG. 5 is a partial perspective view of a shoulder block showing another embodiment of the present invention.

【図6】その平面図である。FIG. 6 is a plan view thereof.

【図7】タイヤの接地形状を示す略図である。FIG. 7 is a schematic view showing a ground contact shape of a tire.

【図8】(A)は自由転動状態の接地形状の略図、
(B)は制動状態の接地形状を示す略図である。
FIG. 8 (A) is a schematic view of a grounding shape in a free rolling state,
(B) is a schematic diagram showing a grounding shape in a braking state.

【符号の説明】[Explanation of symbols]

2 トレッド面 3 縦主溝 4 横溝 6 ショルダブロック 9 溝底隆起部 9a 主部 9b 傾斜部 10 接地表面 11 溝壁面 14 面取り部 em 基準の稜線 e1 第1の稜線 e2 第2の稜線 e3 第3の稜線 2 Tread surface 3 Vertical main groove 4 Horizontal groove 6 Shoulder block 9 Groove bottom raised portion 9a Main portion 9b Inclined portion 10 Ground surface 11 Groove wall surface 14 Chamfered portion em Reference ridge line e1 First ridge line e2 Second ridge line e3 Third Ridgeline

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】トレッド端縁寄りをタイヤ周方向に連続し
てのびる縦主溝と、この縦主溝と前記トレッド端縁との
間で連続する横溝と、前記トレッド端縁とで区画される
ショルダブロックがタイヤ周方向に並ぶブロック列を形
成した重荷重用タイヤであって、 前記横溝に、その溝底から隆起しかつタイヤ周方向で隣
り合う前記ショルダブロック間を継ぐ溝底隆起部を設け
るとともに、 該溝底隆起部は、前記縦主溝側から横溝の長さ方向に略
同高さで連続する主部と、この主部の終端に連なりトレ
ッド端縁側に向けて高さが徐々に減じる傾斜部とを含
み、 かつ前記ショルダブロックに、該ショルダブロックの接
地表面と横溝の溝壁面とが交わる基準稜線を含んで切り
欠き、前記接地表面をのびる第1の稜線、前記溝壁面を
のびる第2の稜線、及び前記トレッド端縁に連なるタイ
ヤのバットレス面をのびる第3の稜線により囲まれる斜
面からなる面取り部を形成するとともに、 該面取り部は、そのタイヤ軸方向の内端が、少なくとも
前記主部の終端よりもタイヤ軸方向内側に位置し、かつ
この面取り部のタイヤ周方向長さが、バットレス面に向
かって広幅となることを特徴とする重荷重用タイヤ。
1. A tire is defined by a vertical main groove extending continuously in the tire circumferential direction near a tread edge, a horizontal groove continuous between the vertical main groove and the tread edge, and the tread edge. A heavy load tire in which a shoulder block forms a block row arranged in the tire circumferential direction, and the lateral groove is provided with a groove bottom protruding portion that protrudes from the groove bottom and connects between the shoulder blocks adjacent in the tire circumferential direction. The groove bottom protruding portion is connected to a main portion which is continuous at substantially the same height in the longitudinal direction of the horizontal groove from the vertical main groove side, and is connected to the end of the main portion, and the height gradually decreases toward the tread edge side. And a notch including a reference ridgeline at which the ground surface of the shoulder block and the groove wall surface of the lateral groove intersect, and a first ridge line extending over the ground surface, a third surface extending over the groove wall surface. 2 ridges, and A chamfered portion formed by a slope surrounded by a third ridgeline extending a buttress surface of the tire connected to the tread edge is formed, and the chamfered portion has an inner end in the tire axial direction at least from an end of the main portion. A tire for heavy loads, wherein the tire is located on the inner side in the tire axial direction, and the circumferential length of the chamfered portion becomes wider toward the buttress surface.
【請求項2】前記第1の稜線は、ショルダブロックのタ
イヤ周方向の長さLの1.5倍以上の曲率半径を有しか
つブロック外方に向けて凸となる円弧状としたことを特
徴とする請求項1記載の重荷重用タイヤ。
2. The method according to claim 1, wherein the first ridge has a radius of curvature equal to or more than 1.5 times a length L of the shoulder block in the circumferential direction of the tire and is formed in an arc shape convex toward the outside of the block. The heavy duty tire according to claim 1, wherein
【請求項3】前記面取り部は、前記基準稜線が前記バッ
トレス面に交わる仮想頂点を通るタイヤ赤道面と平行な
第1の面において、前記仮想頂点から前記第1の稜線ま
でのタイヤ周方向の長さSaを前記ショルダブロックの
長さLの15〜30%、かつ前記仮想頂点から第2の稜
線までのタイヤ半径方向の高さhaを0.5〜1mmと
し、 しかも前記主部の終端を通るタイヤ赤道面と平行な第2
の面において、前記基準稜線から第1の稜線までのタイ
ヤ周方向の長さSbを、前記ショルダブロックの長さL
の3〜10%としたことを特徴とする請求項1又は2記
載の重荷重用タイヤ。
3. The tire according to claim 1, wherein the chamfered portion is formed on a first surface parallel to a tire equator plane passing through a virtual vertex where the reference ridge line intersects the buttress surface, in a tire circumferential direction from the virtual vertex to the first ridge line. The length Sa is 15 to 30% of the length L of the shoulder block, the height ha in the tire radial direction from the virtual vertex to the second ridge line is 0.5 to 1 mm, and the end of the main portion is The second parallel to the passing tire equatorial plane
, The length Sb in the tire circumferential direction from the reference ridge line to the first ridge line is defined by the length L of the shoulder block.
The heavy duty tire according to claim 1 or 2, wherein the content of the tire is 3 to 10%.
JP36789999A 1999-12-24 1999-12-24 Tire for heavy load Pending JP2001180227A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP36789999A JP2001180227A (en) 1999-12-24 1999-12-24 Tire for heavy load

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP36789999A JP2001180227A (en) 1999-12-24 1999-12-24 Tire for heavy load

Publications (1)

Publication Number Publication Date
JP2001180227A true JP2001180227A (en) 2001-07-03

Family

ID=18490485

Family Applications (1)

Application Number Title Priority Date Filing Date
JP36789999A Pending JP2001180227A (en) 1999-12-24 1999-12-24 Tire for heavy load

Country Status (1)

Country Link
JP (1) JP2001180227A (en)

Cited By (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002002232A (en) * 2000-06-27 2002-01-08 Bridgestone Corp Pneumatic tire for heavy load
JP2003072323A (en) * 2001-09-04 2003-03-12 Sumitomo Rubber Ind Ltd Pneumatic tire
WO2007004369A1 (en) * 2005-06-30 2007-01-11 Bridgestone Corporation Pneumatic tire
JP2007131085A (en) * 2005-11-09 2007-05-31 Toyo Tire & Rubber Co Ltd Pneumatic tire
CN100471698C (en) * 2005-01-11 2009-03-25 住友橡胶工业株式会社 Loading tire
CN102049973A (en) * 2009-11-10 2011-05-11 住友橡胶工业株式会社 Pneumatic tire
JP2012076654A (en) * 2010-10-04 2012-04-19 Bridgestone Corp Pneumatic tire
JP2014012470A (en) * 2012-07-04 2014-01-23 Bridgestone Corp Tire
US20140130951A1 (en) * 2011-07-13 2014-05-15 Bridgestone Corporation Tire
US20140318676A1 (en) * 2011-11-22 2014-10-30 Bridgestone Corporation Tire
JP2017081286A (en) * 2015-10-26 2017-05-18 株式会社ブリヂストン Heavy duty tire
CN107415599A (en) * 2017-09-06 2017-12-01 安徽佳通乘用子午线轮胎有限公司 A kind of run-flat tire of the comfortable safety of simplified technique
CN108136853A (en) * 2016-01-14 2018-06-08 横滨橡胶株式会社 Pneumatic tire
CN109070656A (en) * 2016-08-31 2018-12-21 横滨橡胶株式会社 Pneumatic tire
US10308080B2 (en) * 2013-02-28 2019-06-04 Compagnie Generale Des Etablissements Michelin Civil engineering tire tread
CN110290939A (en) * 2017-02-22 2019-09-27 横滨橡胶株式会社 Pneumatic tire

Cited By (25)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002002232A (en) * 2000-06-27 2002-01-08 Bridgestone Corp Pneumatic tire for heavy load
JP2003072323A (en) * 2001-09-04 2003-03-12 Sumitomo Rubber Ind Ltd Pneumatic tire
CN100471698C (en) * 2005-01-11 2009-03-25 住友橡胶工业株式会社 Loading tire
WO2007004369A1 (en) * 2005-06-30 2007-01-11 Bridgestone Corporation Pneumatic tire
JP2007091197A (en) * 2005-06-30 2007-04-12 Bridgestone Corp Pneumatic tire
US8844594B2 (en) * 2005-11-09 2014-09-30 Toyo Tire & Rubber Co., Ltd. Pneumatic tire with tread having blocks and transverse grooves
JP4521829B2 (en) * 2005-11-09 2010-08-11 東洋ゴム工業株式会社 Pneumatic tire
JP2007131085A (en) * 2005-11-09 2007-05-31 Toyo Tire & Rubber Co Ltd Pneumatic tire
CN102049973A (en) * 2009-11-10 2011-05-11 住友橡胶工业株式会社 Pneumatic tire
JP2011102073A (en) * 2009-11-10 2011-05-26 Sumitomo Rubber Ind Ltd Pneumatic tire
JP2012076654A (en) * 2010-10-04 2012-04-19 Bridgestone Corp Pneumatic tire
US9561691B2 (en) * 2011-07-13 2017-02-07 Bridgestone Corporation Tire
US20140130951A1 (en) * 2011-07-13 2014-05-15 Bridgestone Corporation Tire
US20140318676A1 (en) * 2011-11-22 2014-10-30 Bridgestone Corporation Tire
US9162532B2 (en) * 2011-11-22 2015-10-20 Bridgestone Corporation Tire
JP2014012470A (en) * 2012-07-04 2014-01-23 Bridgestone Corp Tire
US9592707B2 (en) 2012-07-04 2017-03-14 Bridgestone Corporation Tire
US10308080B2 (en) * 2013-02-28 2019-06-04 Compagnie Generale Des Etablissements Michelin Civil engineering tire tread
JP2017081286A (en) * 2015-10-26 2017-05-18 株式会社ブリヂストン Heavy duty tire
CN108136853A (en) * 2016-01-14 2018-06-08 横滨橡胶株式会社 Pneumatic tire
CN109070656A (en) * 2016-08-31 2018-12-21 横滨橡胶株式会社 Pneumatic tire
US11186125B2 (en) 2016-08-31 2021-11-30 The Yokohama Rubber Co., Ltd. Pneumatic tire
CN110290939A (en) * 2017-02-22 2019-09-27 横滨橡胶株式会社 Pneumatic tire
US11364748B2 (en) * 2017-02-22 2022-06-21 The Yokohama Rubber Co., Ltd. Pneumatic tire
CN107415599A (en) * 2017-09-06 2017-12-01 安徽佳通乘用子午线轮胎有限公司 A kind of run-flat tire of the comfortable safety of simplified technique

Similar Documents

Publication Publication Date Title
JP6617512B2 (en) Pneumatic tire
JP4330561B2 (en) Heavy duty tire
JP2905704B2 (en) Heavy duty pneumatic tires
JP6154834B2 (en) Pneumatic tire
JP5771398B2 (en) Pneumatic tire
JP2007182097A (en) Tire for heavy load
JP2001180227A (en) Tire for heavy load
JP7081229B2 (en) tire
JP2016159861A (en) Pneumatic tire
JP4323623B2 (en) Pneumatic tire
JP7069983B2 (en) Pneumatic tires
JP7091702B2 (en) Winter tires
JP2000225815A (en) Pneumatic tire
JP6358970B2 (en) Pneumatic tire
JP6496135B2 (en) Pneumatic tire
JP4441009B2 (en) Pneumatic tire
JP6904029B2 (en) tire
JP2018138461A (en) Pneumatic tire
JP7302416B2 (en) tire
JP4783004B2 (en) Heavy duty radial tire
JP7070180B2 (en) tire
JP7056333B2 (en) tire
JP2006143134A (en) Pneumatic tire
JP6859802B2 (en) tire
JP7091897B2 (en) tire

Legal Events

Date Code Title Description
RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20040514

RD04 Notification of resignation of power of attorney

Effective date: 20041018

Free format text: JAPANESE INTERMEDIATE CODE: A7424

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050704

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20080128

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080219

A521 Written amendment

Effective date: 20080321

Free format text: JAPANESE INTERMEDIATE CODE: A523

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Effective date: 20080415

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20080417

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110425

Year of fee payment: 3

R150 Certificate of patent (=grant) or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 3

Free format text: PAYMENT UNTIL: 20110425

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 4

Free format text: PAYMENT UNTIL: 20120425

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 4

Free format text: PAYMENT UNTIL: 20120425

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 5

Free format text: PAYMENT UNTIL: 20130425

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130425

Year of fee payment: 5

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140425

Year of fee payment: 6