JP2001178028A - Motor using magnetic powder - Google Patents

Motor using magnetic powder

Info

Publication number
JP2001178028A
JP2001178028A JP35747799A JP35747799A JP2001178028A JP 2001178028 A JP2001178028 A JP 2001178028A JP 35747799 A JP35747799 A JP 35747799A JP 35747799 A JP35747799 A JP 35747799A JP 2001178028 A JP2001178028 A JP 2001178028A
Authority
JP
Japan
Prior art keywords
metal
rotor
stator
magnetic powder
oxide film
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP35747799A
Other languages
Japanese (ja)
Inventor
Shinji Shinabe
慎治 品部
Mitsuaki Ikeda
満昭 池田
Nobuhiko Ota
暢彦 大田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Yaskawa Electric Corp
Original Assignee
Yaskawa Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Yaskawa Electric Corp filed Critical Yaskawa Electric Corp
Priority to JP35747799A priority Critical patent/JP2001178028A/en
Publication of JP2001178028A publication Critical patent/JP2001178028A/en
Pending legal-status Critical Current

Links

Landscapes

  • Soft Magnetic Materials (AREA)
  • Iron Core Of Rotating Electric Machines (AREA)

Abstract

PROBLEM TO BE SOLVED: To obtain a motor with high durability, high corrosion-resistance and superior magnetic properties. SOLUTION: At least one of a rotor or a stator of this motor is made of a soft magnetic material which contains magnetic powder particles, composed of metal particles 2 which have an average particle diameter of 10-400 μm and are made of iron or iron alloy, and metal oxide films 32 which cover the circumferences of the metal particles and contain an element which is easier to oxidize than iron, as a main component, and binder metal 5 which binds the magnetic powder particles with each other. At least a part of a surface of the rotor or stator using the magnetic powder is covered with an oxide film of covering metal, with a thickness of 20-100 μm. Fluorine resin may be contained in the covering oxide film of the covering metal 9. Aluminum may be employed as the binder metal and the covering metal. Furthermore, the rotor may rotate, while the rotor and the stator are brought into contact with each other.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、粉末の軟質磁性材
料で形成しているロータおよびステータを持つ電動機に
関し、とくに高強度で、低渦電流損失、高飽和磁束密度
および高周波における高透磁率を有する電動機に関す
る。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an electric motor having a rotor and a stator formed of a powdery soft magnetic material, and more particularly to a motor having high strength, low eddy current loss, high saturation magnetic flux density, and high magnetic permeability at high frequencies. To a motor having the same.

【0002】[0002]

【従来の技術】モータをはじめとする電気機器は近年高
周波領域で使用される事が多くなった。このような機器
に使用される磁性材料は優れた磁気特性を有する軟質磁
性材料が選定され使用される。ところが、交流電源の仕
様では鉄損(ヒステリシス損失と渦電流損失の和)が大
きいためエネルギーロスとなる。渦電流損失は周波数の
二乗に比例して増加するために、交流損失を少なくする
目的で、例えば珪素鋼板を積層して使用する。それでも
商用周波数領域で鉄損の20%を渦電流損失が占める。
また、1kHz以上になるとヒステリシス損失より渦電
流損失が大きくなると共にヒステリシス損失も大きくな
る。従って、高周波数領域で使用される磁性材料は透磁
率の低下で本来の材料自身が持っている飽和磁束密度よ
りはるかに低い磁束密度でしか使用する事ができなくな
る。このような問題に対して、0.2〜10μm厚の酸
化皮膜で覆われた鉄粒子の成形体に、溶融した鉄より酸
化しやすい金属を前記成形体の空隙部に含有させ、鉄酸
化物を還元して新しい酸化物を作り、同時に結合させて
製造する軟質磁性材料が提案された(特開平11−23
8614)。
2. Description of the Related Art In recent years, electric devices such as motors have been frequently used in a high frequency range. As a magnetic material used for such a device, a soft magnetic material having excellent magnetic properties is selected and used. However, in the specification of the AC power supply, iron loss (sum of hysteresis loss and eddy current loss) is large, resulting in energy loss. Since the eddy current loss increases in proportion to the square of the frequency, for example, a silicon steel plate is used in a laminated manner in order to reduce the AC loss. Nevertheless, eddy current loss accounts for 20% of iron loss in the commercial frequency range.
At 1 kHz or more, the eddy current loss becomes larger than the hysteresis loss, and the hysteresis loss also becomes larger. Therefore, the magnetic material used in the high frequency region can be used only at a magnetic flux density much lower than the saturation magnetic flux density of the material itself due to a decrease in magnetic permeability. In order to solve such a problem, the iron particles covered with an oxide film having a thickness of 0.2 to 10 μm contain a metal which is more easily oxidized than molten iron in a void portion of the molded body. A soft magnetic material has been proposed which is produced by reducing and producing a new oxide and simultaneously binding the same (JP-A-11-23).
8614).

【0003】[0003]

【発明が解決しようとする課題】ところが、粉末の軟質
磁性材料を用いてロータとステータを成形し、電動機を
構成する際、ロータとステータとのギャップが200μ
mと狭いので接触や衝突が発生する場合がある。この接
触や衝突により鉄粒子と結合金属との間の酸化物が薄い
ため剥げて、鉄粒子と結合金属同士が接触し、その部分
に水が付着することにより、異種金属同士の接触腐食が
発生する。そのように腐食した軟質磁性材料を電動機の
ロータやステータに用いると、腐食生成物が電動機のギ
ャップに詰まり、回転が止まったり回転むらが発生した
り振動が大きくなったりと回転不良が問題となる。この
ような表面のキズつきを防止する際には、一般的なNi
−P−Wなどの硬いめっき処理が考えられる。しかし母
材と異なる材質のめっき処理では母材との密着力が弱
く、めっき自体が剥げてしまう。また、ロータとステー
タが接触しながら回転する電動機の場合、ロータとステ
ータが接触するため、従来の軟質磁性材料では、かじり
などを起こし寿命が短いといった問題がある。そこで、
本発明は衝突させてもキズつきにくく寿命の長い、耐腐
食が高く、かつ優れた磁気特性を有する粉末の軟質磁性
材料を用いて構成される電動機を提供することを目的と
する。
However, when a rotor and a stator are formed by using a soft magnetic powder material to form an electric motor, the gap between the rotor and the stator is 200 μm.
m, contact and collision may occur. Due to this contact or collision, the oxide between the iron particles and the bonding metal is thin and peels off, and the iron particles and the bonding metal come into contact with each other and water adheres to that part, causing contact corrosion between different metals I do. When such a corroded soft magnetic material is used for the rotor or stator of a motor, corrosion products are clogged in gaps of the motor, causing problems such as rotation stoppage, uneven rotation, and large vibrations, resulting in poor rotation. . To prevent such surface flaws, a general Ni
A hard plating process such as -P-W can be considered. However, when the plating process is performed using a material different from the base material, the adhesion to the base material is weak, and the plating itself is peeled off. Further, in the case of an electric motor that rotates while the rotor and the stator are in contact with each other, the rotor and the stator are in contact with each other, so that the conventional soft magnetic material has a problem that galling or the like is caused and the life is short. Therefore,
SUMMARY OF THE INVENTION An object of the present invention is to provide an electric motor using a soft magnetic powder material having a long life, high corrosion resistance, and excellent magnetic properties even when colliding.

【0004】[0004]

【課題を解決するための手段】上記問題を解決するた
め、本発明は、平均粒径10〜400μmの鉄又は鉄合
金からなる金属粒子と、この金属粒子の周囲を覆う鉄よ
り酸化しやすい元素を主成分とした金属酸化膜からなる
磁性粉末と、前記磁性粉末同士を結合させかつ前記金属
酸化膜の成分を含有する結合金属とを有する軟質磁性材
料により、ロータまたはステータの少なくとも一方が形
成された電動機において、前記ロータまたはステータの
表面の少なくとも一部が20〜100μm厚さの前記被
覆金属の酸化膜で覆われた構成にしている。また、前記
被覆金属の酸化膜中にフッ素樹脂を含浸してもよい。ま
た、前記ロータとステータが接触しながら回転する構造
の電動機としてもよい。また、前記結合金属および被覆
金属をアルミニウムとしてもよい。
In order to solve the above-mentioned problems, the present invention provides a metal particle made of iron or an iron alloy having an average particle size of 10 to 400 μm, and an element which is more easily oxidized than iron covering the metal particle. At least one of a rotor and a stator is formed of a soft magnetic material having a magnetic powder composed of a metal oxide film containing, as a main component, and a bonding metal that couples the magnetic powders together and contains a component of the metal oxide film. In the electric motor, at least a part of the surface of the rotor or the stator is covered with an oxide film of the coating metal having a thickness of 20 to 100 μm. Further, the oxide film of the coating metal may be impregnated with a fluororesin. Further, an electric motor having a structure in which the rotor and the stator rotate while contacting each other may be used. Further, the binding metal and the coating metal may be aluminum.

【0005】[0005]

【発明の実施の形態】以下、本発明の実施例を図に基づ
いて説明する。 (第1実施例)本発明の第1実施例を図1に示す。図1
は電動機のロータおよびステータの製造工程を示すフロ
ーである。本実施例ではロータの製造工程について述べ
る。 (1) まず、磁性粉末によりロータを成形する。ロータ成
形後の外観状況を図2の斜視図に示す。6は成形体で、
その拡大模式図を図3に示す。図において、1は軟質の
磁気特性をもつ磁性粉末であり、鉄の金属粒子2とその
表面を覆う金属酸化膜3からなる。金属酸化膜3は、初
期酸化膜31としてFe2 3 が生成したものを用いて
いる。図1から分かるように、磁性粉末1同志の間は空
隙4であり、ポーラスな状態になっている。 (2) 成形体6に結合金属を加圧含浸する。結合金属とし
てアルミニウムを用い、成形体6に溶融したアルミニウ
ムを加圧含浸した。結合金属含浸後の拡大模式図を図4
に示す。図3の空隙4の部分に結合金属5のアルミニウ
ムが充填されている。また、金属酸化物3は、初期酸化
膜31のFe2 3 が還元されて最終酸化膜32として
Al2 3 が生成している。 (3) 成形体6を被覆金属で鋳ぐるみにする。被覆金属
は、結合金属と同じアルミニウムを用いた。図5は被覆
金属の鋳ぐるみの状況を示す模式図である。成形体6を
金型容器8に設置し、被覆金属9の溶融アルミニウムを
鋳湯した。 (4) 被覆金属の切削加工 成形体6の外周の被覆金属9を指定の厚さにまで切削加
工した。被覆金属9の厚さは、0〜100μmの間の6
種類である。 (5) 被覆金属の陽極酸化処理 被覆金属9の表面に酸化物Al2 3 を形成するため
に、硫酸濃度180g/l、浴温5°C以下、電流密度
3A/dm2 の処理条件で陽極酸化処理をした。陽極酸
化処理後の表面部の拡大模式図を図6に示す。被覆金属
9の表面に被覆金属酸化膜10としてAl2 3 が形成
されている。つぎに、こうして製造した被覆金属酸化膜
10で覆われたロータの評価試験を行った。評価試験
は、表面の硬度および耐食性評価のための塩水噴霧試験
を行った。その結果を表1に示す。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS An embodiment of the present invention will be described below with reference to the drawings. (First Embodiment) FIG. 1 shows a first embodiment of the present invention. FIG.
5 is a flowchart showing a manufacturing process of the rotor and the stator of the electric motor. In this embodiment, a manufacturing process of the rotor will be described. (1) First, a rotor is formed from magnetic powder. FIG. 2 is a perspective view showing the appearance after the rotor is formed. 6 is a molded body,
FIG. 3 shows an enlarged schematic diagram thereof. In the figure, reference numeral 1 denotes a magnetic powder having soft magnetic properties, which is composed of iron metal particles 2 and a metal oxide film 3 covering the surface thereof. As the metal oxide film 3, an initial oxide film 31 in which Fe 2 O 3 is generated is used. As can be seen from FIG. 1, a gap 4 is present between the magnetic powders 1 and is in a porous state. (2) The compact 6 is impregnated with the bonding metal under pressure. Aluminum was used as the binding metal, and the molded body 6 was impregnated with the molten aluminum under pressure. FIG. 4 is an enlarged schematic diagram after the impregnation of the binding metal.
Shown in The space 4 in FIG. 3 is filled with aluminum as the bonding metal 5. The metal oxide 3, Fe 2 O 3 of the initial oxide film 31 is generated for Al 2 O 3 final oxide film 32 is reduced. (3) The molded body 6 is cast-in with the coated metal. As the coating metal, the same aluminum as the bonding metal was used. FIG. 5 is a schematic diagram showing the state of the casting of the coated metal. The molded body 6 was set in the mold container 8 and the molten aluminum of the coating metal 9 was cast. (4) Cutting of coated metal The coated metal 9 on the outer periphery of the molded body 6 was cut to a specified thickness. The thickness of the coating metal 9 is between 6 and 100 μm.
Kind. (5) Anodizing treatment of coated metal In order to form oxide Al 2 O 3 on the surface of coated metal 9, under the conditions of sulfuric acid concentration 180g / l, bath temperature 5 ° C or less, current density 3A / dm 2 Anodizing treatment was performed. FIG. 6 shows an enlarged schematic diagram of the surface portion after the anodizing treatment. Al 2 O 3 is formed as a coating metal oxide film 10 on the surface of the coating metal 9. Next, an evaluation test of the rotor covered with the coated metal oxide film 10 manufactured as described above was performed. In the evaluation test, a salt spray test for evaluating the hardness and corrosion resistance of the surface was performed. Table 1 shows the results.

【0006】[0006]

【表1】 [Table 1]

【0007】表1から分かるように、被覆酸化膜10の
厚さが20μm以上のものは硬度が高く、塩水噴霧試験
の結果も良好であった。被覆酸化膜10の厚さが10μ
m以下のものは硬度が低いため、衝突によるキズがつ
き、塩水噴霧試験の結果も腐食が認められた。また、被
覆酸化膜10の厚さが100μmを超える値では磁気特
性が劣り、モータの特性が悪かった。したがって、被覆
金属酸化膜の膜厚は、20μmから100μmが最適で
あることが分かった。なお、本実施例ではステータを製
造する場合について述べなかったが、ロータの場合と同
様な方法で製作することができる。また、被覆金属9に
アルミニウムを用いたが、これに限らず鉄より酸化し易
く硬度や耐食性が良好であれば他の材料を用いてもよ
い。 (第2実施例)本実施例は、図1の製造工程(5)に、
さらに1工程加えたもので、陽極酸化処理した被覆金属
酸化膜10にフッ素樹脂を含浸させたものである。本発
明の第2実施例を図7に示す。図7は、接触型減速機モ
ータに適用した模式図である。このモータは、サイクロ
イド運動により、ロータとステータが接触しながら回転
することにより、歯車なしで大きな減速を行う超低速、
低慣性の交流電動機である。図7において、11は外円
ステータ、12は内円ロータである。本実施例の製造方
法ついて述べる。先ず、ロータコアとステータの成形体
6を第1実施例と同様に陽極酸化処理し被覆金属9の表
面に25〜50μmの酸化物Al2 3 を形成させた。つぎ
に、成形体6の表面を洗浄後、フッ素樹脂の粉体を分散
させたディスパージョン中に浸漬した。最後に加熱乾燥
させることによって、陽極酸化膜の微視孔やクラックの
中ににフッ素樹脂を含浸させた。このようにしてフッ素
樹脂を含浸させた被覆金属酸化膜10で覆われたロータ
をモータに組み込んで寿命試験を行った。その結果、従
来品の寿命は5000時間であったのに対し、本実施例
のフッ素樹脂を含浸させた場合の寿命は30000時間
と6倍に伸びた。本実施例の接触型減速機モータは長寿
命を有することが分かった。
As can be seen from Table 1, when the thickness of the coating oxide film 10 was 20 μm or more, the hardness was high and the result of the salt spray test was good. The thickness of the coating oxide film 10 is 10 μm.
Those having a hardness of m or less had low hardness, and thus were scratched by collision, and corrosion was observed in the salt spray test. Further, when the thickness of the coating oxide film 10 exceeded 100 μm, the magnetic characteristics were poor and the motor characteristics were poor. Therefore, it was found that the optimal film thickness of the coated metal oxide film was 20 μm to 100 μm. In this embodiment, the case where the stator is manufactured is not described. However, the stator can be manufactured by the same method as the case of the rotor. Although aluminum is used for the coating metal 9, other materials may be used as long as they are easily oxidized than iron and have good hardness and corrosion resistance. (Second Embodiment) In this embodiment, the manufacturing process (5) shown in FIG.
In a further step, the anodized coated metal oxide film 10 is impregnated with a fluororesin. FIG. 7 shows a second embodiment of the present invention. FIG. 7 is a schematic diagram applied to a contact type reduction gear motor. This motor has a very low speed, which performs large deceleration without gears by rotating while rotating the rotor and stator by cycloidal motion.
Low inertia AC motor. In FIG. 7, 11 is an outer circle stator, and 12 is an inner circle rotor. The manufacturing method of this embodiment will be described. First, the rotor core and stator compact 6 was anodized in the same manner as in the first embodiment to form an oxide Al 2 O 3 of 25 to 50 μm on the surface of the coating metal 9. Next, after the surface of the molded body 6 was washed, it was immersed in a dispersion in which powder of a fluororesin was dispersed. Finally, by heating and drying, the microscopic holes and cracks of the anodic oxide film were impregnated with the fluororesin. The rotor covered with the coated metal oxide film 10 impregnated with the fluororesin in this manner was incorporated into a motor to perform a life test. As a result, while the life of the conventional product was 5000 hours, the life when impregnated with the fluororesin of this example was 30,000 hours, which is 6 times longer. It has been found that the contact type reduction gear motor of this embodiment has a long life.

【0008】[0008]

【発明の効果】以上述べたように、本発明によれば、磁
性粉末で成形した成形体に磁性粉末同士を結合する結合
金属を加圧含浸させ成形体の表面を被覆金属の被覆酸化
膜で覆う構成にしたので、磁気特性を下げることなく衝
突によるキズがつきにくい電動機のロータやステータを
作製することができた。このために、交流電圧で使用さ
れる電動機の損失を低減でき、高効率の電動機を製造で
きる効果がある。また、ロータやステータの表面を被覆
金属の酸化膜中にフッ素樹脂を含浸させたので、接触型
の減速機モータの寿命を大幅に向上できる効果がある。
As described above, according to the present invention, a molded body formed from magnetic powder is impregnated with a bonding metal for bonding magnetic powders under pressure, and the surface of the molded body is coated with a coated oxide film of a coated metal. Because of the configuration to cover, it was possible to manufacture a rotor and a stator of an electric motor that are less likely to be damaged by collision without deteriorating magnetic properties. For this reason, the loss of the motor used with the AC voltage can be reduced, and there is an effect that a highly efficient motor can be manufactured. In addition, since the surface of the rotor or the stator is impregnated with the fluororesin in the oxide film of the coating metal, the life of the contact type reduction gear motor can be greatly improved.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の成形体を製造する製造工程を示すフロ
ーである。
FIG. 1 is a flowchart showing a manufacturing process for manufacturing a molded article of the present invention.

【図2】本発明の第1実施例を示すロータの斜視図であ
る。
FIG. 2 is a perspective view of a rotor showing the first embodiment of the present invention.

【図3】本発明の第1実施例の工程(1)を示す成形体
の拡大模式図である。
FIG. 3 is an enlarged schematic view of a compact showing a step (1) of the first embodiment of the present invention.

【図4】本発明の第1実施例の工程(2)を示す成形体
の拡大模式図である。
FIG. 4 is an enlarged schematic view of a compact showing a step (2) of the first embodiment of the present invention.

【図5】本発明の第1実施例の工程(3)を示す成形体
の被覆金属を鋳ぐるむ状況を示す模式図である。
FIG. 5 is a schematic view showing a situation in which a coated metal of a formed body is cast in the step (3) of the first embodiment of the present invention.

【図6】本発明の第1実施例の工程(5)を示す成形体
完成後の拡大模式図である。
FIG. 6 is an enlarged schematic view showing a step (5) of the first embodiment of the present invention after the completion of a molded body.

【図7】本発明の第2実施例を示す接触型減速機モータ
の模式図である。
FIG. 7 is a schematic diagram of a contact type reduction gear motor showing a second embodiment of the present invention.

【符号の説明】[Explanation of symbols]

1:磁性粉末、2:金属粒子、3:金属酸化膜、31:
初期酸化膜、32:最終酸化膜、4:空隙、5:結合金
属、6:成形体、7:スペーサ、8:金型容器、9:被
覆金属、10:被覆金属酸化膜、11:外円ステータ、
12:内円ロータ
1: magnetic powder, 2: metal particles, 3: metal oxide film, 31:
Initial oxide film, 32: final oxide film, 4: void, 5: bonding metal, 6: molded body, 7: spacer, 8: mold container, 9: coated metal, 10: coated metal oxide film, 11: outer circle Stator,
12: Inner circle rotor

───────────────────────────────────────────────────── フロントページの続き Fターム(参考) 5E041 AA01 AA11 BB01 BC01 BC05 CA04 HB00 NN05 NN06 5H002 AA03 AB01 AE07  ──────────────────────────────────────────────────続 き Continued on the front page F term (reference) 5E041 AA01 AA11 BB01 BC01 BC05 CA04 HB00 NN05 NN06 5H002 AA03 AB01 AE07

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】平均粒径10〜400μmの鉄又は鉄合金
からなる金属粒子と、この金属粒子の周囲を覆う鉄より
酸化しやすい元素を主成分とした金属酸化膜からなる磁
性粉末と、前記磁性粉末同士を結合させかつ前記金属酸
化物の成分を含有する結合金属とを有する軟質磁性材料
によりロータまたはステータの少なくとも一方が形成さ
れた電動機において、 前記ロータまたはステータの表面の少なくとも一部が2
0〜100μm厚さの被覆金属の酸化膜で覆われている
ことを特徴とする磁性粉末を用いた電動機。
1. A magnetic powder comprising: a metal particle composed of iron or an iron alloy having an average particle diameter of 10 to 400 μm; An electric motor in which at least one of a rotor and a stator is formed of a soft magnetic material having magnetic powder combined with a bonding metal containing a component of the metal oxide, wherein at least a part of a surface of the rotor or the stator is 2
An electric motor using magnetic powder, which is covered with a coating metal oxide film having a thickness of 0 to 100 μm.
【請求項2】前記被覆金属の酸化膜が、フッ素樹脂を含
浸している請求項1記載の磁性粉末を用いた電動機。
2. The electric motor using magnetic powder according to claim 1, wherein the oxide film of the coating metal is impregnated with a fluororesin.
【請求項3】前記ロータとステータが接触しながら回転
する構造である請求項2記載の磁性粉末を用いた電動
機。
3. An electric motor using magnetic powder according to claim 2, wherein said rotor and said stator rotate while contacting each other.
【請求項4】前記結合金属および前記被覆金属がアルミ
ニウムである請求項1から3のいずれか1項に記載の磁
性粉末を用いた電動機。
4. An electric motor using the magnetic powder according to claim 1, wherein the bonding metal and the coating metal are aluminum.
JP35747799A 1999-12-16 1999-12-16 Motor using magnetic powder Pending JP2001178028A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP35747799A JP2001178028A (en) 1999-12-16 1999-12-16 Motor using magnetic powder

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP35747799A JP2001178028A (en) 1999-12-16 1999-12-16 Motor using magnetic powder

Publications (1)

Publication Number Publication Date
JP2001178028A true JP2001178028A (en) 2001-06-29

Family

ID=18454333

Family Applications (1)

Application Number Title Priority Date Filing Date
JP35747799A Pending JP2001178028A (en) 1999-12-16 1999-12-16 Motor using magnetic powder

Country Status (1)

Country Link
JP (1) JP2001178028A (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2005034304A1 (en) * 2003-09-30 2005-04-14 Sharp Kabushiki Kaisha Yoke, electromagnetic actuator, and stirling engine
EP1553685A2 (en) * 2004-01-10 2005-07-13 LG Electronics Inc. Stator for reciprocating motor
JP2008159704A (en) * 2006-12-21 2008-07-10 Fuji Electric Device Technology Co Ltd Method of manufacturing powder magnetic core
JP2008258234A (en) * 2007-04-02 2008-10-23 Seiko Epson Corp Dust core and magnetic element
KR100940158B1 (en) * 2002-07-30 2010-02-03 엘지전자 주식회사 Reciprocating motor
DE102005032069B4 (en) * 2004-07-09 2018-11-08 Denso Corporation AC motor
CN113014000A (en) * 2021-03-04 2021-06-22 卓尔博(宁波)精密机电股份有限公司 Permanent magnet alloy material motor rotor

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100940158B1 (en) * 2002-07-30 2010-02-03 엘지전자 주식회사 Reciprocating motor
WO2005034304A1 (en) * 2003-09-30 2005-04-14 Sharp Kabushiki Kaisha Yoke, electromagnetic actuator, and stirling engine
EP1553685A2 (en) * 2004-01-10 2005-07-13 LG Electronics Inc. Stator for reciprocating motor
JP2005198497A (en) * 2004-01-10 2005-07-21 Lg Electronics Inc Stator for reciprocating motor
EP1553685A3 (en) * 2004-01-10 2007-04-25 LG Electronics Inc. Stator for reciprocating motor
DE102005032069B4 (en) * 2004-07-09 2018-11-08 Denso Corporation AC motor
JP2008159704A (en) * 2006-12-21 2008-07-10 Fuji Electric Device Technology Co Ltd Method of manufacturing powder magnetic core
JP2008258234A (en) * 2007-04-02 2008-10-23 Seiko Epson Corp Dust core and magnetic element
CN113014000A (en) * 2021-03-04 2021-06-22 卓尔博(宁波)精密机电股份有限公司 Permanent magnet alloy material motor rotor
CN113014000B (en) * 2021-03-04 2022-02-18 卓尔博(宁波)精密机电股份有限公司 Permanent magnet alloy material motor rotor

Similar Documents

Publication Publication Date Title
CN112400272A (en) Method for producing a material layer and a material layer structure for a rotating electrical machine
EP1816730A1 (en) Process for producing permanent magnet for use in automotive ipm motor
JP2001178028A (en) Motor using magnetic powder
EP1028437B1 (en) HIGH CORROSION-RESISTANT R-Fe-B-BASE BONDED MAGNET AND METHOD OF MANUFACTURING THE SAME
EP1493847A2 (en) Plating tool, plating method, electroplating apparatus, plated product, and method for producing plated product
JPH09205013A (en) Bond magnet having rust-resistant coat layer and its rust-resistant coating method
KR100371786B1 (en) METHOD OF MANUFACTURING R-Fe-B BOND MAGNETS OF HIGH CORROSION RESISTANCE
WO2004098024A1 (en) Permanent magnet member for voice coil motor and voice coil motor
JP2004064895A (en) Manufacturing method for permanent magnet, permanent magnet, motor component and motor
JP2000133541A (en) Manufacture of corrosion-resistant r-fe-b bonded magnet
US20040001656A1 (en) Sintered bearing and production method therefor
JP2001250707A (en) Permanent magnet material
JP2001257112A (en) Permanent magnet material
JP3135174B2 (en) R-TM-B permanent magnet with improved corrosion resistance and method for producing the same
JP2001176716A (en) Method of manufacturing soft magnetic material
JPH04372546A (en) Stepping motor
JPH04288804A (en) Permanent magnet and manufacture thereof
JPS63167409A (en) Magnetic recording medium
JP2004022762A (en) Permanent magnet and method of manufacturing the same
JP5708123B2 (en) Magnet member
JP3159534B2 (en) Parts having a coating containing powder
JP4416558B2 (en) Motor and manufacturing method thereof
JPH0885117A (en) Molding die and production thereof
JP2541654B2 (en) Rust prevention method for resin molded core magnetic pole teeth
JP2014036156A (en) Molding surface treatment method, and molding manufacturing method