JP4416558B2 - Motor and manufacturing method thereof - Google Patents

Motor and manufacturing method thereof Download PDF

Info

Publication number
JP4416558B2
JP4416558B2 JP2004112244A JP2004112244A JP4416558B2 JP 4416558 B2 JP4416558 B2 JP 4416558B2 JP 2004112244 A JP2004112244 A JP 2004112244A JP 2004112244 A JP2004112244 A JP 2004112244A JP 4416558 B2 JP4416558 B2 JP 4416558B2
Authority
JP
Japan
Prior art keywords
yoke
nickel
motor
iron alloy
mass
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP2004112244A
Other languages
Japanese (ja)
Other versions
JP2005304103A (en
JP2005304103A5 (en
Inventor
純一 高橋
浩二 佐々木
信弘 新井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Canon Electronics Inc
Original Assignee
Canon Electronics Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Canon Electronics Inc filed Critical Canon Electronics Inc
Priority to JP2004112244A priority Critical patent/JP4416558B2/en
Publication of JP2005304103A publication Critical patent/JP2005304103A/en
Publication of JP2005304103A5 publication Critical patent/JP2005304103A5/ja
Application granted granted Critical
Publication of JP4416558B2 publication Critical patent/JP4416558B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Landscapes

  • Iron Core Of Rotating Electric Machines (AREA)

Description

本発明は、小型のステッピングモータなどのモータ及びその製造方法に関するものである。   The present invention relates to a motor such as a small stepping motor and a manufacturing method thereof.

従来の小型円柱形状のステッピングモータとしては図5に示すものがある(例えば特許文献2の図6参照)。   A conventional small cylindrical stepping motor is shown in FIG. 5 (see, for example, FIG. 6 of Patent Document 2).

ボビン101にコイル105が同心状に巻回され、ボビン101は2個のヨーク106で軸方向から狭持固定されており、ヨーク106にはボビン101の内径面円周方向に沿って磁極歯106aと106bが交互に配置され、ケース103には、磁極歯106a及び106bと一体のヨーク106が固定されてステータヨーク102が構成されている。2組のケース103の一方にはフランジ115と軸受け108が固定され、他方のケース103には他の軸受け108が固定されている。ロータ109はロータ軸110に固定されたロータマグネット111からなり、ロータ軸110は2個の軸受け108の間に回転可能に支持されている。   A coil 105 is concentrically wound around the bobbin 101, and the bobbin 101 is sandwiched and fixed in the axial direction by two yokes 106. The yoke 106 has magnetic pole teeth 106a along the circumferential direction of the inner surface of the bobbin 101. 106b are alternately arranged, and the yoke 103 integral with the magnetic pole teeth 106a and 106b is fixed to the case 103 to constitute the stator yoke 102. A flange 115 and a bearing 108 are fixed to one of the two sets of cases 103, and another bearing 108 is fixed to the other case 103. The rotor 109 is composed of a rotor magnet 111 fixed to the rotor shaft 110, and the rotor shaft 110 is rotatably supported between two bearings 108.

また、ステッピングモータの小型、高トルク化に適した図3及び図4の構造のステッピングモータが提案されている。このステッピングモータは、円周方向にn個の磁極に交互に着磁されて後述の内ヨーク14,15に回転自在に支持されている出力軸を有する円筒形状のロータマグネット11、このロータマグネット11を挟んで軸方向に対向配置される軟磁性材からなるヨークであるところの外ヨーク12,13、軟磁性材からなるヨークであるところの内ヨーク14,15、内ヨーク14,15及び外ヨーク12,13を励磁するコイル16,17、コイル16,17を支持するコイルボビン18,19、外ヨーク12,13を支持するモータカバー20、及び、モールドや銅系の非磁性材よりなり、内ヨーク14,15の内径に嵌合される軸受21,22より構成される。   In addition, a stepping motor having the structure shown in FIGS. 3 and 4 suitable for reducing the size and increasing the torque of the stepping motor has been proposed. The stepping motor includes a cylindrical rotor magnet 11 having an output shaft that is alternately magnetized to n magnetic poles in the circumferential direction and that is rotatably supported by inner yokes 14 and 15 described later, and the rotor magnet 11. The outer yokes 12 and 13 are yokes made of a soft magnetic material and are opposed to each other in the axial direction with the coil interposed therebetween, the inner yokes 14 and 15 are yokes made of a soft magnetic material, the inner yokes 14 and 15 and the outer yoke. The coils 16 and 17 for exciting the coils 12 and 13; the coil bobbins 18 and 19 for supporting the coils 16 and 17; the motor cover 20 for supporting the outer yokes 12 and 13; The bearings 21 and 22 are fitted to the inner diameters of 14 and 15.

上記従来のステッピングモータのヨークを構成する材料としては、一般的に炭素含有率が0.02質量%以下の鋼板材料である電磁軟鉄(SUY)、冷間圧延鋼板(SPC)が用いられている。SUYやSPCは、直流磁気特性は良好なものの、モータの回転時における交流磁気特性が悪い。これは、電気抵抗率が低いため、渦電流が発生しやすくなるためであり、駆動周波数が高くなるほど影響が大きくなる。そこで、ヨークの材料として、ニッケル−鉄合金(パーマロイ)板やセンダスト合金板を用いた提案がなされている(例えば特許文献3、特許文献4参照)。   As a material constituting the yoke of the conventional stepping motor, electromagnetic soft iron (SUY) and cold rolled steel plate (SPC), which are steel plate materials generally having a carbon content of 0.02% by mass or less, are used. . SUY and SPC have good direct-current magnetic characteristics, but poor alternating-current magnetic characteristics during motor rotation. This is because an eddy current is likely to be generated because the electrical resistivity is low, and the influence becomes greater as the drive frequency becomes higher. Therefore, proposals have been made using a nickel-iron alloy (permalloy) plate or sendust alloy plate as the material of the yoke (see, for example, Patent Document 3 and Patent Document 4).

ヨークは、板材をプレス加工、打ち抜き加工、及び折り曲げ加工等の機械加工で形状を作製するのが一般的である。形状を作製した後、板にする際の加工歪やプレスなどの形状作製の際の加工歪を除去するために真空中もしくは、還元雰囲気中で700℃〜900℃(例えば特許文献1参照)、パーマロイの場合は、1000℃以上で加熱する。そして、防錆処理として無電解ニッケルめっきや電解ニッケルめっきを施して使用しているのが一般的である。
特許第3061820号公報 特開2000−217333号公報 特開平10−14204号公報 特開2002−320372号公報
In general, the yoke is formed into a shape by machining such as pressing, punching, and bending of a plate material. After producing the shape, 700 ° C. to 900 ° C. (for example, refer to Patent Document 1) in vacuum or in a reducing atmosphere in order to remove the processing strain when forming the plate and the processing strain when forming the shape such as a press. In the case of permalloy, heating is performed at 1000 ° C. or higher. In general, electroless nickel plating or electrolytic nickel plating is applied as a rust prevention treatment.
Japanese Patent No. 3061820 JP 2000-217333 A Japanese Patent Laid-Open No. 10-14204 JP 2002-320372 A

上記したように従来のヨークは、板材をプレス加工で成形するのが一般的であるが、SUY板、SPC板や特許文献3のニッケル−鉄合金板は、歪を除去する熱処理が必須となる。しかし、その熱処理により極端に軟らかくなる。図5のヨーク106、図3及び図4の外ヨーク12,13に見られるように、ステータヨーク先端の磁極部は櫛歯形状をしているため、軟らかいと組立ての際に変形されやすい。ヨークが変形するとロータマグネットと櫛歯形状の磁極部との間隙が均一でなくなるため、トルクが小さくなったり、ステップ角度が狂ったりする。ひどい場合には、接触することで回転しないこともある。すなわち、製造歩留りに大きく影響する。   As described above, the conventional yoke is generally formed by pressing a plate material, but the SUY plate, the SPC plate, and the nickel-iron alloy plate of Patent Document 3 require heat treatment to remove strain. . However, the heat treatment makes it extremely soft. As seen in the yoke 106 in FIG. 5 and the outer yokes 12 and 13 in FIG. 3 and FIG. 4, the magnetic pole portion at the tip of the stator yoke has a comb-like shape, so that it is soft and easily deformed during assembly. When the yoke is deformed, the gap between the rotor magnet and the comb-shaped magnetic pole portion is not uniform, resulting in a small torque and an incorrect step angle. In severe cases, it may not rotate due to contact. That is, it greatly affects the manufacturing yield.

一方、特許文献4のようにヨークにセンダスト合金を用いた場合は、逆に硬く、脆いため、プレス加工の際にクラックが発生すやすい。プレス加工については、材料に係わらずモータの小型化が進むほど高寸法精度、小型化が困難になることが予想される。また、図3及び図4の内ヨーク14,15は、丸棒材の切削や板材の鍛造で作製するが、小型化に伴いやはり加工が難しくなる。   On the other hand, when Sendust alloy is used for the yoke as in Patent Document 4, since it is hard and brittle, cracks are likely to occur during press working. As for press working, it is expected that high dimensional accuracy and downsizing become more difficult as the motors become smaller regardless of the material. Further, the inner yokes 14 and 15 of FIGS. 3 and 4 are manufactured by cutting a round bar or forging a plate material. However, the processing becomes difficult as the size is reduced.

(発明の目的)
本発明の目的は、ヨークの交流磁気特性と機械的な強度を向上させることで、駆動トルクの向上を達成し、高寸法精度で製造歩留まりを高くすることのできるモータ及びその製造方法を提供することである
(Object of invention)
An object of the present invention is to provide a motor capable of achieving an improvement in driving torque and improving a manufacturing yield with a high dimensional accuracy by improving an AC magnetic characteristic and mechanical strength of a yoke, and a manufacturing method thereof. Is

上記目的を達成するために、請求項1に記載の本発明は、コイルにより励磁される磁気回路としてのヨークを備えたモータにおいて、前記ヨークが電気めっき法で形成された硫黄を含むニッケル−鉄合金からなり、該ニッケル−鉄合金の鉄の含有率が35〜59質量%で、かつ、硫黄の含有率が0.002〜0.12質量%であることを特徴とするものである。   In order to achieve the above object, the present invention according to claim 1 is a motor including a yoke as a magnetic circuit excited by a coil, wherein the yoke includes nickel-iron containing sulfur formed by electroplating. It is made of an alloy, and the nickel-iron alloy has an iron content of 35 to 59% by mass and a sulfur content of 0.002 to 0.12% by mass.

また、請求項2に記載の本発明は、出力軸が回転自在に支持されるロータマグネットと、該ロータマグネットとギャップをへだてて対向する磁極部を有して磁気回路を構成するヨークと、該ヨークを励磁するコイルとを備えたモータにおいて、前記ヨークが電気めっき法で形成された硫黄を含むニッケル−鉄合金からなり、該ニッケル−鉄合金の鉄の含有率が35〜59質量%で、かつ、硫黄の含有率が0.002〜0.12質量%であることを特徴とするものである。   According to a second aspect of the present invention, there is provided a rotor magnet in which an output shaft is rotatably supported, a yoke having a magnetic pole portion facing the rotor magnet and facing the gap, and constituting a magnetic circuit, In a motor provided with a coil for exciting a yoke, the yoke is made of a nickel-iron alloy containing sulfur formed by electroplating, and the iron content of the nickel-iron alloy is 35 to 59% by mass, And the content rate of sulfur is 0.002-0.12 mass%, It is characterized by the above-mentioned.

また、請求項3に記載の本発明は、複数の磁極に着磁されて回転自在に支持された円筒形状のロータマグネットと、該ロータマグネットの外径側と外側ギャップをへだてて対向する複数の磁極部を有する外ヨークと、前記ロータマグネットの内径側と内側ギャップをへだてて対向する磁極部を有し、前記外ヨークとともに磁気回路を構成する内ヨークと、前記内ヨークの周囲に巻き回され、前記外ヨークと前記内ヨークを励磁するコイルとを備えたモータにおいて、前記外ヨークと内ヨークの少なくとも一方が電気めっき法で形成された硫黄を含むニッケル−鉄合金からなり、該ニッケル−鉄合金の鉄の含有率が35〜59質量%で、かつ、硫黄の含有率が0.002〜0.12質量%であることを特徴とするものである。   According to a third aspect of the present invention, there is provided a cylindrical rotor magnet that is magnetized by a plurality of magnetic poles and is rotatably supported, and a plurality of rotor magnets facing the outer diameter side and the outer gap of the rotor magnet. An outer yoke having a magnetic pole part, a magnetic pole part facing the inner gap and the inner gap of the rotor magnet, and an inner yoke constituting a magnetic circuit together with the outer yoke, and wound around the inner yoke In the motor including the outer yoke and the coil for exciting the inner yoke, at least one of the outer yoke and the inner yoke is made of a nickel-iron alloy containing sulfur formed by electroplating, and the nickel-iron The iron content of the alloy is 35 to 59% by mass, and the sulfur content is 0.002 to 0.12% by mass.

また、請求項4に記載の本発明は、請求項1乃至3のいずれかに記載のモータを製造するに際して、導電材からなる型の上に前記ヨークと同一の形状の凹所を除いて非導電物質を形成することで、前記型の表面に前記ヨークと同じ形状の凹所を露出させ、前記型の前記凹所を、硫黄を含むニッケル−鉄合金を析出するためのめっき浴に浸漬した後、前記型をカソードとして通電し、前記凹所に硫黄を含むニッケル−鉄合金を析出させて、任意の厚みの電鋳ヨークを形成し、前記凹所から電鋳ヨークを取り外して電鋳ヨークを得ることを特徴とするものである。 According to a fourth aspect of the present invention, when the motor according to any one of the first to third aspects is manufactured, a non-recessed portion having the same shape as the yoke is formed on a mold made of a conductive material. By forming a conductive material, a recess having the same shape as the yoke is exposed on the surface of the mold, and the recess of the mold is immersed in a plating bath for depositing a nickel-iron alloy containing sulfur. Thereafter, the mold is energized as a cathode, a nickel-iron alloy containing sulfur is deposited in the recess, an electroformed yoke having an arbitrary thickness is formed, the electroformed yoke is removed from the recess, and the electroformed yoke is removed. It is characterized by obtaining.

本発明によれば、ヨークの交流磁気特性と機械的な強度を向上させることで、駆動トルクの向上を達成し、高寸法精度で製造歩留まりを高くすることができる。   According to the present invention, by improving the AC magnetic characteristics and mechanical strength of the yoke, the drive torque can be improved, and the manufacturing yield can be increased with high dimensional accuracy.

本発明によるモータは、ヨーク、例えば図3及び4に示される外ヨーク12,13、内ヨーク14,15や図5に示されるヨーク106が、電気めっき法で製造された少なくとも硫黄を含むニッケル−鉄合金からなり、このニッケル−鉄合金の鉄の含有率が35〜59質量%で、かつ、硫黄の含有率が0.002〜0.12質量%であることを特徴とするものである(電気めっき法で作製した部材を以下、電鋳と言う)。   In the motor according to the present invention, the yoke, for example, the outer yokes 12 and 13 shown in FIGS. 3 and 4, the inner yokes 14 and 15, and the yoke 106 shown in FIG. It consists of an iron alloy, and the nickel content of this nickel-iron alloy is 35 to 59% by mass, and the sulfur content is 0.002 to 0.12% by mass ( A member produced by electroplating is hereinafter referred to as electroforming).

ニッケル−鉄合金中の鉄の含有率が35〜59質量%で、かつ、硫黄の含有率が0.002質量%以上であると、磁束密度が1.4T以上、保磁力1Oe以下であり、また、電気抵抗率がSUY、SPCの2〜5倍にあたる25〜50μΩ・cmであるため、低周波数〜高周波数までの広い周波数領域で高い駆動トルクを有する。鉄の含有率が35質量%未満、また、59質量%を超える場合には、磁束密度が急激に小さくなるため、SUY、SPC材からなるヨークで構成したモータよりトルクも小さくなる。さらに、硫黄の含有率が0.002質量%以上であると、硬く、変形しにくいことがわかった。0.002質量%未満であると、めっき膜として形成しにくく、硬い膜でなくなる。一方、硫黄量が0.12質量%を超えると、硬くなりすぎて電鋳製造の際にクラックが発生しやすい。したがって、硫黄量は0.12質量%以下が好ましい。この高磁束密度と硬い性質は、電鋳形成後の特性である。ニッケルと鉄の含有率と硫黄の含有率が磁気特性と硬さを決める特異な性質である。   When the iron content in the nickel-iron alloy is 35 to 59 mass% and the sulfur content is 0.002 mass% or more, the magnetic flux density is 1.4 T or more and the coercive force is 1 Oe or less, Further, since the electrical resistivity is 25 to 50 μΩ · cm, which is 2 to 5 times that of SUY and SPC, it has a high driving torque in a wide frequency range from a low frequency to a high frequency. When the iron content is less than 35% by mass or more than 59% by mass, the magnetic flux density decreases rapidly, so that the torque is also smaller than that of a motor composed of a yoke made of SUY or SPC material. Furthermore, it was found that when the sulfur content was 0.002% by mass or more, it was hard and hardly deformed. If it is less than 0.002% by mass, it is difficult to form as a plating film, and it is not a hard film. On the other hand, if the amount of sulfur exceeds 0.12% by mass, it becomes too hard and cracks are likely to occur during electroforming. Therefore, the sulfur content is preferably 0.12% by mass or less. This high magnetic flux density and hard properties are characteristics after electroforming. The content of nickel and iron and the content of sulfur are unique properties that determine the magnetic properties and hardness.

めっき浴の組成が、例えば図6に示されるように、硫酸ニッケル、ホウ酸、塩化ナトリウム、ラウリル硫酸ナトリウム、硫酸第一鉄、サッカリンナトリウムである場合、鉄の含有率は硫酸ニッケルと硫酸第一鉄の添加量、電流密度、めっき浴温度を制御することによって定められる。硫黄は硫酸ニッケル、ラウリル硫酸ナトリウム、硫酸第一鉄、サッカリンナトリウムに含まれ、その含有率は硫酸第一鉄とサッカリンナトリウムの添加量、電流密度、めっき浴温度を制御することによって定められる。   When the composition of the plating bath is, for example, as shown in FIG. 6, nickel sulfate, boric acid, sodium chloride, sodium lauryl sulfate, ferrous sulfate, sodium saccharin, the iron content is nickel sulfate and ferrous sulfate. It is determined by controlling the amount of addition, current density, and plating bath temperature. Sulfur is contained in nickel sulfate, sodium lauryl sulfate, ferrous sulfate, and saccharin sodium, and the content is determined by controlling the amount of ferrous sulfate and sodium saccharin added, the current density, and the plating bath temperature.

工業的に生産されているパーマロイ板は熱処理しないと良好な磁気特性を示さないが、本発明による電鋳ニッケル−鉄合金製ヨークは熱処理なしで良く、この点で大きく異なる。   Industrially produced permalloy plates do not show good magnetic properties without heat treatment, but the electroformed nickel-iron alloy yoke according to the present invention does not require heat treatment, and is greatly different in this respect.

鉄の含有率と硫黄の含有率を適正に定めることがポイントであるが、電鋳であるから制御しやすい。ただ、電鋳品の形状によって、めっき時の歪を除去するための熱処理を施しても差し支えない。加熱温度は、350℃以下が好ましい。350℃を超える温度で加熱すると脆くなる傾向にある。   The point is to appropriately determine the iron content and the sulfur content, but it is easy to control because it is electroformed. However, depending on the shape of the electroformed product, a heat treatment for removing distortion during plating may be performed. The heating temperature is preferably 350 ° C. or lower. When heated at a temperature exceeding 350 ° C., it tends to become brittle.

また、鉄量が多いと錆が発生しやすくなるため、使用する環境が高温、高湿の場合は、電鋳品の上に無電解ニッケルや電解ニッケルなどの防錆めっきを施こせば良い。防錆被膜は2〜5μmあれば良いので、電鋳品の有する磁気特性や硬さに影響はない。図5のヨーク106及び図3及び図4の外ヨーク12,13、内ヨーク14,15として用いることで、駆動トルク特性を向上させることができ、また、組込みの際の変形がないため、製造歩留りは高い。   In addition, since the rust tends to be generated when the amount of iron is large, when the environment to be used is high temperature and high humidity, it is only necessary to apply rust prevention plating such as electroless nickel or electrolytic nickel on the electroformed product. Since the anticorrosive film only needs to be 2 to 5 μm, it does not affect the magnetic properties and hardness of the electroformed product. The use of the yoke 106 in FIG. 5 and the outer yokes 12 and 13 and the inner yokes 14 and 15 in FIGS. 3 and 4 can improve the driving torque characteristics, and there is no deformation at the time of assembly. Yield is high.

次に、上記電鋳ヨークの製造方法について、図1と図2で説明する。まず図3及び図4の外ヨーク12(13は12と同じ形状)の製造方法について、図1の(a)〜(f)で説明する。図3及び図4の外ヨーク12を作製する場合、外ヨーク12の内側と同じ外径を有する導電材からなる型30の先端に、切削性の良い金属材料やプラスチック材料のブロックから切削で作製した外ヨーク12のマスター型31を嵌める(a,b)。そして、マスター型31が嵌め込まれた部分以外の型30の表面部分には紫外線硬化樹脂などの非導電物質32が塗布などにより形成される。非導電物質32の厚みは、外ヨーク12の肉厚より大きい厚みがあれば良い。紫外線を照射させるなどして非導電物質32を硬化させてから、マスター型31を型30から外す(c)。これにより、マスター型31があった型30上の個所に凹所が形成される。これでめっきするための母型33が完成する。   Next, a method for manufacturing the electroformed yoke will be described with reference to FIGS. First, a method of manufacturing the outer yoke 12 (13 has the same shape as 12) shown in FIGS. 3 and 4 will be described with reference to FIGS. When the outer yoke 12 shown in FIGS. 3 and 4 is manufactured, it is manufactured by cutting from a block of a metal material or plastic material having good cutting properties at the tip of a die 30 made of a conductive material having the same outer diameter as the inner side of the outer yoke 12. The master die 31 of the outer yoke 12 is fitted (a, b). Then, a non-conductive substance 32 such as an ultraviolet curable resin is formed on the surface portion of the die 30 other than the portion where the master die 31 is fitted by coating or the like. The non-conductive material 32 may be thicker than the outer yoke 12. After the non-conductive substance 32 is cured by irradiating ultraviolet rays or the like, the master mold 31 is removed from the mold 30 (c). As a result, a recess is formed at a location on the mold 30 where the master mold 31 was located. This completes the mother die 33 for plating.

この母型33を、ニッケル−鉄合金を析出させるめっき浴34に浸漬させる。母型33をカソード、ニッケルのチップが入った袋35をアノードとして、例えば、母型33を回転させながら電源36により通電させる。母型33を回転させるのは、均一な膜厚を析出させるためである。通電し、母型33上のマスター型31が外された部分のみにニッケル−鉄合金を析出させる。通電は、析出膜が必要とする厚みになるまで行われる(d)。   This matrix 33 is immersed in a plating bath 34 for depositing a nickel-iron alloy. The mother die 33 is used as a cathode, and the bag 35 containing a nickel chip is used as an anode. The matrix 33 is rotated in order to deposit a uniform film thickness. Energization is performed to deposit a nickel-iron alloy only on the portion of the master die 33 where the master die 31 is removed. The energization is performed until the deposited film has a required thickness (d).

必要な厚みになったら(e)、母型33から、例えば手で引き抜いて取り外して、外ヨーク12の電鋳品を得る(f)。また、図5のモータのヨーク106も同様に作製する。   When the required thickness is reached (e), the matrix 33 is pulled out by hand, for example, and removed to obtain an electroformed product of the outer yoke 12 (f). Further, the yoke 106 of the motor shown in FIG.

外ヨーク12は円筒形なので、この場合の型30は、外ヨーク12の内径より僅かに大きい直径の円柱棒が良い。導電材からなる円柱棒30は、例えば、ステンレス、真鍮、リン青銅をそのまま使用したり、その表面にハードクロムなどの酸やアルカリに溶けにくい被膜をコーティングしたものを用いたりするのが好ましい。また、電鋳品を母型33から引き抜きやすくするために、めっきの前に母型33に剥離層を塗布しても良い。マスター型31は、切削、鋳造、ダイキャスト、熱可塑性樹脂の出射成形で作製すれば良い。その材料としては、ステンレス、真鍮、リン青銅、アルミニウム、銅などの切削性の良い金属を使用すれば良い。また、プラスチック材料としては、熱硬化型樹脂であるエポキシ樹脂、フェノール樹脂、アミノ樹脂、不飽和ポリエステル樹脂、シリコーン樹脂などの一般的な樹脂で良い。また、出射成形の場合は、熱可塑性樹脂で例えば、POM、ABS、PPSなどの一般的な樹脂で良い。   Since the outer yoke 12 is cylindrical, the mold 30 in this case is preferably a cylindrical rod having a diameter slightly larger than the inner diameter of the outer yoke 12. For the cylindrical rod 30 made of a conductive material, for example, stainless steel, brass, or phosphor bronze is preferably used as it is, or a surface of which is coated with a coating that hardly dissolves in acid or alkali such as hard chrome. Moreover, in order to make it easy to pull out the electroformed product from the mother die 33, a peeling layer may be applied to the mother die 33 before plating. The master mold 31 may be manufactured by cutting, casting, die casting, or thermoplastic resin injection molding. As the material, a metal having good cutting properties such as stainless steel, brass, phosphor bronze, aluminum and copper may be used. The plastic material may be a general resin such as an epoxy resin, a phenol resin, an amino resin, an unsaturated polyester resin, or a silicone resin, which is a thermosetting resin. In the case of injection molding, a thermoplastic resin such as POM, ABS, or PPS may be used.

次に、図3及び図4の内ヨーク14(15は14と同じ形状)の場合について、図2の(a)〜(e)で説明する。母型40の先端部41を内ヨーク14の内側形状と同じ形状に凹所として切削などで作製する(a)。先端部41の端面から内ヨーク14の長さと同じ高さYより上方に、電鋳外ヨーク12と同様に非導電物質32を設ける(b)。非導電物質32の厚みは、内ヨーク14の厚みより厚く設ければ良い。その後は、上記した電鋳外ヨーク12と同じようにこの母型40をニッケル−鉄合金を析出させるためのめっき浴34に浸漬させ、通電する(c)。必要な厚みになったら(d)、母型40から、例えば手で引き抜いて取り外して、内ヨーク14の電鋳品を得る(e)。電鋳品の膜厚は通電時間で決まるため、寸法精度は極めて高い。   Next, the case of the inner yoke 14 (15 is the same shape as 14) in FIGS. 3 and 4 will be described with reference to FIGS. The tip portion 41 of the mother die 40 is made as a recess in the same shape as the inner shape of the inner yoke 14 by cutting or the like (a). A non-conductive material 32 is provided from the end face of the tip 41 above the same height Y as the length of the inner yoke 14 in the same manner as the electroformed outer yoke 12 (b). The non-conductive material 32 may be provided thicker than the inner yoke 14. Thereafter, like the electroformed outer yoke 12, the mother die 40 is immersed in a plating bath 34 for depositing a nickel-iron alloy and is energized (c). When the required thickness is reached (d), the matrix 40 is pulled out by hand, for example, and removed to obtain an electroformed product of the inner yoke 14 (e). Since the film thickness of the electroformed product is determined by the energization time, the dimensional accuracy is extremely high.

めっき浴としては、電気めっき法による硫酸塩浴、スルファミン酸塩浴、塩化物浴がニッケル−鉄合金めっきを作製しやすい。これらのめっき浴に、ピット防止剤、光沢剤、pH調整剤等を適宜加えても良い。上記、めっき浴としては、ニッケルと鉄の比率、硫黄の添加量を制御しやすい上記の硫酸塩浴が好ましい。電鋳ヨークの肉厚は、モータの仕様によるが、通電時間で管理するため容易である。   As a plating bath, a sulfate bath, a sulfamate bath, and a chloride bath by electroplating are easy to produce nickel-iron alloy plating. A pit inhibitor, a brightener, a pH adjuster, or the like may be appropriately added to these plating baths. As the plating bath, the above-described sulfate bath is preferable because the ratio of nickel and iron and the amount of sulfur added can be easily controlled. Although the thickness of the electroformed yoke depends on the motor specifications, it is easy to manage by the energization time.

以下に、実施例を用いて、本発明をさらに詳しく説明する。   Hereinafter, the present invention will be described in more detail with reference to examples.

<モータ評価>
図6に示される実施例1〜5について、実験により評価を行った。
<Motor evaluation>
About Examples 1-5 shown by FIG. 6, it evaluated by experiment.

《実験1》
硫黄を含む電鋳ニッケル−鉄合金からなる外ヨーク12,13の有効性を検討した。図1を用いて説明すると、外径Φ6の円柱形状のステンレス棒からなる型30に、リン青銅のブロックの切削加工により得た図3及び図4の外ヨーク12のマスター型31を嵌合させ、型30の露出部に紫外線硬化樹脂を厚み500μmにて塗布し、紫外線を照射して硬化させることによって非導電物質32を形成した。マスター型31を母型33から外すと、マスター型31があった型30上の個所に凹所が形成される。この母型33を図6の実施例1〜5のめっき条件の硫黄を含むニッケル−鉄めっき浴34に浸漬し、母型33をカソードとして20rpmで回転させながら通電し、電解させ、肉厚300μmの電鋳ニッケル−鉄合金からなる外ヨーク12を作製し、母型33から取り外した。めっき浴の温度は、50±1℃とした。一方、内ヨーク14,15は、SUY材の棒材を切削加工で作製した。その後に850℃で2時間保持の熱処理を行い、防錆処理のため無電解ニッケルめっきを3μm施して作製した。このSUY材からなる内ヨーク14,15を電鋳ニッケル−鉄合金からなる外ヨーク12,13に圧入し、ステータヨークを作製した。図3及び図4のモータに組み込み、駆動周波数−プルアウトトルクを評価した。
<Experiment 1>
The effectiveness of the outer yokes 12 and 13 made of an electroformed nickel-iron alloy containing sulfur was examined. Referring to FIG. 1, a master die 31 of the outer yoke 12 shown in FIGS. 3 and 4 obtained by cutting a phosphor bronze block is fitted to a die 30 made of a cylindrical stainless steel rod having an outer diameter Φ6. The non-conductive substance 32 was formed by applying an ultraviolet curable resin to the exposed portion of the mold 30 with a thickness of 500 μm and irradiating it with ultraviolet rays to cure. When the master die 31 is removed from the mother die 33, a recess is formed at a location on the die 30 where the master die 31 was located. This mother die 33 is immersed in a nickel-iron plating bath 34 containing sulfur of the plating conditions of Examples 1 to 5 in FIG. 6, energized while rotating at 20 rpm using the mother die 33 as a cathode, and electrolyzed, with a thickness of 300 μm. The outer yoke 12 made of the electroformed nickel-iron alloy was prepared and removed from the mother die 33. The temperature of the plating bath was 50 ± 1 ° C. On the other hand, the inner yokes 14 and 15 were produced by cutting a SUY bar. Thereafter, heat treatment was performed at 850 ° C. for 2 hours, and electroless nickel plating was applied to 3 μm for rust prevention treatment. The inner yokes 14 and 15 made of the SUY material were press-fitted into the outer yokes 12 and 13 made of an electroformed nickel-iron alloy to produce a stator yoke. Incorporated in the motors of FIGS. 3 and 4, the drive frequency-pullout torque was evaluated.

リファレンス品として、厚み300μmのSUYからなる板材をプレス加工し、上記の内ヨーク14,15と同じ熱処理と防錆めっきを施した外ヨーク12,13を作製し、SUYからなる外ヨークと内ヨークを組み合せたステータヨークを図3及び図4のモータに組み込み、駆動トルクを評価した。それらの結果を図7に示す(500PPSのトルクを1とした相対値)。トルクは、電鋳ニッケル−鉄合金からなる外ヨークとSUYからなる内ヨークを組み合せたステータヨークの方が全周波数でトルクが高いことがわかった。   As a reference product, a 300 μm thick SUY plate was pressed to produce the outer yokes 12 and 13 that were subjected to the same heat treatment and rust-proof plating as the inner yokes 14 and 15. The stator yoke combined with was incorporated into the motor of FIGS. 3 and 4 and the drive torque was evaluated. The results are shown in FIG. 7 (relative values with a torque of 500 PPS as 1). The torque was found to be higher at all frequencies in the stator yoke in which the outer yoke made of electroformed nickel-iron alloy and the inner yoke made of SUY were combined.

《実験2》
次に電鋳ニッケル−鉄合金からなる内ヨーク14,15の有効性を検討した。図2を用いて説明すると、外径Φ4.5の円柱形状のステンレス棒からなる母型40の先端に図3及び図4の内ヨーク14,15の内側形状と同じ形状の先端部41を切削で作製した。次に、先端部41の端面から内ヨーク14,15の高さと同じYの位置より上方に紫外線硬化樹脂を500μm塗布し、紫外線を照射して硬化させることによって非導電物質32を形成した。この母型40を図6の実施例1〜5のめっき条件のニッケル−鉄めっき浴に浸漬し、母型40をカソードとして20rpmで回転させながら通電し、電解させ、肉厚300μmの電鋳ニッケル−鉄合金からなる内ヨーク14,15を作製した。実験1で作製したSUYからなる外ヨーク12,13に電鋳ニッケル−鉄合金からなる内ヨーク14,15を圧入し、ステータヨークを作製した。図3及び図4のモータに組み込み、駆動周波数−プルアウトトルクを評価した。リファレンス品として実験1で評価したSUYからなる外ヨークと内ヨークを組み合せたモータと比較評価した。その結果を図8に示す。トルクは、電鋳ニッケル−鉄合金からなる内ヨークとSUYからなる外ヨークを組み合せたステータヨークの方が全周波数でトルクが高いことがわかった。
<Experiment 2>
Next, the effectiveness of the inner yokes 14 and 15 made of an electroformed nickel-iron alloy was examined. Referring to FIG. 2, a tip 41 having the same shape as the inner shape of the inner yokes 14 and 15 in FIGS. 3 and 4 is cut at the tip of a mother die 40 made of a cylindrical stainless rod having an outer diameter of Φ4.5. It was made with. Next, a non-conductive substance 32 was formed by applying 500 μm of ultraviolet curable resin from the end face of the tip 41 above the position of the same Y as the height of the inner yokes 14, 15 and curing it by irradiating with ultraviolet rays. 6 is immersed in a nickel-iron plating bath having the plating conditions of Examples 1 to 5 in FIG. 6, energized while rotating at 20 rpm using the mother die 40 as a cathode, electrolyzed, and electroformed nickel having a thickness of 300 μm. -Inner yokes 14 and 15 made of an iron alloy were produced. The inner yokes 14 and 15 made of electroformed nickel-iron alloy were press-fitted into the outer yokes 12 and 13 made of SUY produced in Experiment 1 to produce a stator yoke. Incorporated in the motors of FIGS. 3 and 4, the drive frequency-pullout torque was evaluated. As a reference product, a comparison was made with a motor in which an outer yoke made of SUY evaluated in Experiment 1 and an inner yoke were combined. The result is shown in FIG. The torque was found to be higher at all frequencies in the stator yoke in which the inner yoke made of electroformed nickel-iron alloy and the outer yoke made of SUY were combined.

《実験3》
上記、実験1と実験2で得た実施例1〜5の電鋳ニッケル−鉄合金からなる外ヨーク12,13と内ヨーク14,15の電鋳ヨークの組み合せによるステータヨークを図3及び図4のモータに組み込んだ。そして、リファレンス品である、SUYからなる外ヨーク、内ヨークのモータと駆動トルクを比較評価した。その結果を図9に示す。トルクは、電鋳ニッケル−鉄合金からなる外ヨークと内ヨークの組み合せのモータが全周波数でトルクが高いことがわかった。また、この電鋳ヨークの組み合せは、実験1〜2と比べて最も高いトルクを示した。
<Experiment 3>
3 and 4 show a stator yoke by combining the outer yokes 12 and 13 made of the electrocast nickel-iron alloy of Examples 1 to 5 and the inner yokes 14 and 15 obtained in Experiments 1 and 2 above. Built into the motor. Then, the motors of the outer yoke made of SUY and the inner yoke, which are reference products, and the driving torque were compared and evaluated. The result is shown in FIG. The torque was found to be high at all frequencies in a motor with a combination of an outer yoke and an inner yoke made of an electroformed nickel-iron alloy. Further, this combination of electroformed yokes showed the highest torque as compared with Experiments 1 and 2.

(比較例1〜6)
上記、実施例1〜5の実験3と同じ手順で、図6の比較例1〜3,6の電鋳外ヨークと内ヨークの組み合せのステータヨークを作製し、図3及び図4のモータに組み込み、評価した。その結果を図10に示す。SUY材からなる外ヨークと内ヨークを組み合せたレファレンス品であるモータの方が図6の比較例1〜3,6で作製したモータより全周波数でトルクが高いことがわかった。また、比較例4は、めっき中に母型から剥がれ、形状を上手く形成できなかったものである。比較例5は、母型から外す際に割れるため、評価できるヨークが作製できなかったものである。
(Comparative Examples 1-6)
In the same procedure as in Experiment 3 of Examples 1 to 5, a stator yoke having a combination of an electroformed outer yoke and an inner yoke of Comparative Examples 1 to 3 and 6 of FIG. Built and evaluated. The result is shown in FIG. It was found that the motor, which is a reference product combining the outer yoke and the inner yoke made of SUY material, has higher torque at all frequencies than the motors manufactured in Comparative Examples 1 to 3 and 6 in FIG. Moreover, the comparative example 4 peeled off from the mother die during plating, and the shape could not be formed well. In Comparative Example 5, the yoke that can be evaluated could not be produced because it cracks when removed from the mother die.

<磁気特性評価>
図6に電鋳ニッケル−鉄合金の鉄の質量%と磁界を10Oe印加した場合の磁束密度と保磁力の値を示す。電鋳ニッケル−鉄合金からなるヨークをモータに組込んで評価した結果、鉄の含有率が35〜59質量%のヨークのように、磁束密度が1.4T以上あると、SUYからなるヨークを用いたモータより特性が良いことがわかった。また、SUYからなるヨークを熱処理し、無電解ニッケルめっきの防錆処理したものの表面のビッカース硬度(Hv100g)を測定したが、Hv90で非常にやわらかい。一方、モータトルクの大きい鉄の含有率35〜59質量%のヨークのHvが400以上あると、SUYからなるヨークの5倍以上の硬さがあるため、変形しにくい。
<Evaluation of magnetic properties>
FIG. 6 shows the values of magnetic flux density and coercive force when an iron mass% of an electroformed nickel-iron alloy and a magnetic field of 10 Oe are applied. As a result of evaluation by incorporating a yoke made of an electroformed nickel-iron alloy into a motor, when the magnetic flux density is 1.4 T or more like a yoke having an iron content of 35 to 59% by mass, a yoke made of SUY It was found that the characteristics were better than the motor used. Moreover, the yoke made of SUY was heat-treated, and the Vickers hardness (Hv 100 g) of the surface of the electroless nickel-plated rust preventive treatment was measured, but it was very soft at Hv 90. On the other hand, when the Hv of the yoke having a motor content of 35 to 59% by mass with a large motor torque is 400 or more, the yoke is more than five times harder than the yoke made of SUY, and therefore, it is difficult to deform.

本発明は、ステッピングモータのみならず、それ以外の直流モータ、交流モータにも適用することができる。   The present invention can be applied not only to a stepping motor but also to other DC motors and AC motors.

本発明による電鋳外ヨークの製造方法を示す図である。It is a figure which shows the manufacturing method of the electroformed outer yoke by this invention. 本発明による電鋳内ヨークの製造方法を示す図である。It is a figure which shows the manufacturing method of the electroformed inner yoke by this invention. 従来例と本発明に共通のモータの構成例を示す断面図である。It is sectional drawing which shows the structural example of the motor common to a prior art example and this invention. 図3に示されるモータの分解斜視図であるFIG. 4 is an exploded perspective view of the motor shown in FIG. 3. 従来例と本発明に共通のモータの他の構成例を示す断面図である。It is sectional drawing which shows the other structural example of the motor common to a prior art example and this invention. 本発明の実施例及び比較例を示す図である。It is a figure which shows the Example and comparative example of this invention. 本発明の実施例の実験1における駆動周波数−プルアウトトルク特性を示す図である。It is a figure which shows the drive frequency-pullout torque characteristic in Experiment 1 of the Example of this invention. 本発明の実施例の実験2における駆動周波数−プルアウトトルク特性を示す図である。It is a figure which shows the drive frequency-pullout torque characteristic in Experiment 2 of the Example of this invention. 本発明の実施例の実験3における駆動周波数−プルアウトトルク特性を示す図である。It is a figure which shows the drive frequency-pullout torque characteristic in Experiment 3 of the Example of this invention. 本発明の実施例に対する比較例の駆動周波数−プルアウトトルク特性を示す図である。It is a figure which shows the drive frequency-pullout torque characteristic of the comparative example with respect to the Example of this invention.

符号の説明Explanation of symbols

11 ロータマグネット
12,13 外ヨーク
14,15 内ヨーク
16,17 コイル
18,19 コイルボビン
20 モータカバー
21,22 軸受
30 型
31 マスター型
32 非導電物質
33 母型
34 めっき浴
35 アノード
36 電源
40 母型
41 先端部
101 ボビン
102 ステータヨーク
103 ケース
105 コイル
106 ヨーク
106a,106b 磁極歯
108 軸受け
109 ロータ
110 ロータ軸
111 ロータマグネット
115 フランジ
11 Rotor magnet 12, 13 Outer yoke 14, 15 Inner yoke 16, 17 Coil 18, 19 Coil bobbin 20 Motor cover 21, 22 Bearing 30 mold 31 Master mold 32 Non-conductive material 33 Mold 34 Plating bath 35 Anode 36 Power supply 40 Mother mold 41 Tip 101 Bobbin 102 Stator yoke 103 Case 105 Coil 106 Yoke 106a, 106b Magnetic pole teeth 108 Bearing 109 Rotor 110 Rotor shaft 111 Rotor magnet 115 Flange

Claims (4)

コイルにより励磁される磁気回路としてのヨークを備えたモータにおいて、
前記ヨークが電気めっき法で形成された硫黄を含むニッケル−鉄合金からなり、該ニッケル−鉄合金の鉄の含有率が35〜59質量%で、かつ、硫黄の含有率が0.002〜0.12質量%であることを特徴とするモータ。
In a motor having a yoke as a magnetic circuit excited by a coil,
The yoke is made of a nickel-iron alloy containing sulfur formed by an electroplating method. The nickel-iron alloy has an iron content of 35 to 59% by mass and a sulfur content of 0.002 to 0. A motor characterized by being 12% by mass.
出力軸が回転自在に支持されるロータマグネットと、該ロータマグネットとギャップをへだてて対向する磁極部を有して磁気回路を構成するヨークと、該ヨークを励磁するコイルとを備えたモータにおいて、
前記ヨークが電気めっき法で形成された硫黄を含むニッケル−鉄合金からなり、該ニッケル−鉄合金の鉄の含有率が35〜59質量%で、かつ、硫黄の含有率が0.002〜0.12質量%であることを特徴とするモータ。
In a motor provided with a rotor magnet whose output shaft is rotatably supported, a yoke having a magnetic pole part facing the rotor magnet and facing the gap, and a coil for exciting the yoke,
The yoke is made of a nickel-iron alloy containing sulfur formed by an electroplating method. The nickel-iron alloy has an iron content of 35 to 59% by mass and a sulfur content of 0.002 to 0. A motor characterized by being 12% by mass.
複数の磁極に着磁されて回転自在に支持された円筒形状のロータマグネットと、該ロータマグネットの外径側と外側ギャップをへだてて対向する複数の磁極部を有する外ヨークと、前記ロータマグネットの内径側と内側ギャップをへだてて対向する磁極部を有し、前記外ヨークとともに磁気回路を構成する内ヨークと、前記内ヨークの周囲に巻き回され、前記外ヨークと前記内ヨークを励磁するコイルとを備えたモータにおいて、
前記外ヨークと内ヨークの少なくとも一方が電気めっき法で形成された硫黄を含むニッケル−鉄合金からなり、該ニッケル−鉄合金の鉄の含有率が35〜59質量%で、かつ、硫黄の含有率が0.002〜0.12質量%であることを特徴とするモータ。
A cylindrical rotor magnet that is magnetized by a plurality of magnetic poles and is rotatably supported, an outer yoke having a plurality of magnetic pole portions facing the outer diameter side and the outer gap of the rotor magnet, and the rotor magnet An inner yoke that forms a magnetic circuit together with the outer yoke, and a coil that is wound around the inner yoke and that excites the outer yoke and the inner yoke. In a motor with
At least one of the outer yoke and the inner yoke is made of a nickel-iron alloy containing sulfur formed by electroplating, the iron content of the nickel-iron alloy is 35 to 59% by mass, and the sulfur content A motor having a rate of 0.002 to 0.12% by mass.
請求項1乃至3のいずれかに記載のモータを製造するに際して、導電材からなる型の上に前記ヨークと同一の形状の凹所を除いて非導電物質を形成することで、前記型の表面に前記ヨークと同じ形状の凹所を露出させ、前記型の前記凹所を、硫黄を含むニッケル−鉄合金を析出するためのめっき浴に浸漬した後、前記型をカソードとして通電し、前記凹所に硫黄を含むニッケル−鉄合金を析出させて、任意の厚みの電鋳ヨークを形成し、前記凹所から電鋳ヨークを取り外して電鋳ヨークを得ることを特徴とするモータの製造方法。 When manufacturing the motor according to any one of claims 1 to 3 , a surface of the mold is formed by forming a non-conductive substance on the mold made of a conductive material except for a recess having the same shape as the yoke. A recess having the same shape as that of the yoke is exposed, and the recess of the mold is immersed in a plating bath for depositing a nickel-iron alloy containing sulfur. A method of manufacturing a motor, wherein a nickel-iron alloy containing sulfur is deposited at a place to form an electroformed yoke of an arbitrary thickness, and the electroformed yoke is obtained by removing the electroformed yoke from the recess.
JP2004112244A 2004-04-06 2004-04-06 Motor and manufacturing method thereof Expired - Lifetime JP4416558B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004112244A JP4416558B2 (en) 2004-04-06 2004-04-06 Motor and manufacturing method thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004112244A JP4416558B2 (en) 2004-04-06 2004-04-06 Motor and manufacturing method thereof

Publications (3)

Publication Number Publication Date
JP2005304103A JP2005304103A (en) 2005-10-27
JP2005304103A5 JP2005304103A5 (en) 2007-05-24
JP4416558B2 true JP4416558B2 (en) 2010-02-17

Family

ID=35334995

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004112244A Expired - Lifetime JP4416558B2 (en) 2004-04-06 2004-04-06 Motor and manufacturing method thereof

Country Status (1)

Country Link
JP (1) JP4416558B2 (en)

Also Published As

Publication number Publication date
JP2005304103A (en) 2005-10-27

Similar Documents

Publication Publication Date Title
US8671552B2 (en) Method for manufacturing a rotor for an electric machine
JP4978665B2 (en) Metal magnet and motor using the same
WO2004023626A1 (en) Method of constructing a unitary amorphous metal component for an electric machine
US8269391B2 (en) Micro rotor and rotary electric machine incorporating same
US5876518A (en) R-T-B-based, permanent magnet, method for producing same, and permanent magnet-type motor and actuator comprising same
JP5284811B2 (en) Rare earth permanent magnet
JP3778271B2 (en) Permanent magnet type motor
JP4416558B2 (en) Motor and manufacturing method thereof
JP3712100B2 (en) Rotor assembly method, rotor, stepping motor
JP2002100522A (en) Dust core having magnetic anisotropy and method of manufacturing the same
JP4657635B2 (en) motor
JP2004304968A (en) Permanent magnet member for voice coil motor, and voice coil motor
US20180274118A1 (en) Method of Electroplating Conductor and Joints Thereof
JP2004064895A (en) Manufacturing method for permanent magnet, permanent magnet, motor component and motor
JP2001008388A5 (en) Smooth armature winding type AC servo motor core structure and smooth armature winding type AC servo motor using this core structure
JP2007049834A (en) Permanent magnet type rotor, its manufacturing method and servo motor
JP2001257112A (en) Permanent magnet material
Tsai et al. Winding design and fabrication of a miniature axial-flux motor by micro-electroforming
JP2881328B2 (en) Cage rotor
JP5708123B2 (en) Magnet member
JP2008079455A (en) Magnetic core, armature, electric rotary machine and compressor
CN117837058A (en) Rotor and motor
JP2003274580A (en) Synchronous machine
JPWO2020071532A1 (en) Manufacturing method of coil parts, manufacturing method of electric machines, coil parts and electric machines
JP2005032845A (en) Bond magnet and its producing method

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070403

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070403

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20091016

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20091027

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20091124

R150 Certificate of patent or registration of utility model

Ref document number: 4416558

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121204

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121204

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131204

Year of fee payment: 4

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250